JPS58129424A - Optical lens - Google Patents

Optical lens

Info

Publication number
JPS58129424A
JPS58129424A JP1242682A JP1242682A JPS58129424A JP S58129424 A JPS58129424 A JP S58129424A JP 1242682 A JP1242682 A JP 1242682A JP 1242682 A JP1242682 A JP 1242682A JP S58129424 A JPS58129424 A JP S58129424A
Authority
JP
Japan
Prior art keywords
light control
light controlling
electrodes
optical lens
control element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1242682A
Other languages
Japanese (ja)
Inventor
Kazuya Ishiwatari
和也 石渡
Shigeji Iijima
飯島 繁治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1242682A priority Critical patent/JPS58129424A/en
Publication of JPS58129424A publication Critical patent/JPS58129424A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To obtain an optical lens that has function of an aperture or a shutter in itself by providing a pair of electrodes and electricity responding light controlling elements between the electrodes on an optical lens. CONSTITUTION:Transparent display electrodes 12a, 12b, 12c are formed in beltlike form on a lens 11. The film thickness of the display electrodes is 500- 3,000Angstrom . Electricity responding light controlling elements 13a, 13b, 13c are formed on the display electrodes 12a, 12b, 12c. At this time, the light controlling elements are placed between display electrodes in such a manner that the film of a light controlling element which is in contact with an display electrode does not come into contact with the film of a light controlling element provided in contact with the other display electrode. An insulating film 14 is formed over whole face of light controlling elements 13a, 13b, 13c and a facing electrode 15 is provided on it. Electrochromic substance and liquid crystal are used as a light controlling element and those which can be made to thin solid film are suitable.

Description

【発明の詳細な説明】 本発明は、光学レンズに関するもので、評しくはカメラ
等の撮影光学系における絞りやシャッター等の機能を有
する光制御素子を設けた光学レンズに関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical lens, and more particularly to an optical lens provided with a light control element having functions such as an aperture and a shutter in a photographing optical system of a camera or the like.

従来、カメラ等における絞りやシャッターは、光学レン
ズを透過した被写界光の光路中に遮光部材としての羽根
や布幕等を機械的な作′動規制に基づいて所定の絞り開
口や開口時間を制御する単体としての装置を別個に形成
していた0會た、この様な絞りやシャッターで用いてい
た羽根や布幕等の機械的な作動の代わりに、液晶などの
電気光学物質を電気的に動作させて絞り開口や開口時間
の制御を行う方法が提案されている。゛ しかしながら、この様な光制御装置を単体として撮影光
学系に組み込むことは、光学系の装置自体が長(なった
り、重くなったりする欠陥ばかりでなく、光制御装置の
部品点数の増大や光制御装置の組み込み位置精度の問題
や余分な組み込み工程が必要となっている。善に、液晶
を電気的K16作させて絞り開口や開口時間を制御する
方法ではS 液晶を動作させるためI用いている電極が透明物質で形
成されているため、その透明電極を被写界光の光路中に
おいて高糖度の位置精度をもって配置することが極めて
困−となっているため、実際や 上液晶を用いた絞飄シャッターは未だに実用化にいたっ
ていないのが現状である。
Conventionally, diaphragms and shutters in cameras and the like have been designed to set a predetermined diaphragm aperture and opening time based on mechanical operation regulations by placing blades, cloth, etc. as light shielding members in the optical path of field light that has passed through an optical lens. In addition, instead of the mechanical actuation of blades and cloth used in such apertures and shutters, electro-optical materials such as liquid crystals were controlled by electricity. A method has been proposed in which the aperture aperture and aperture time are controlled by operating the aperture.゛However, incorporating such a light control device as a standalone unit into a photographic optical system not only causes defects such as the length and weight of the optical system device itself, but also an increase in the number of parts of the light control device and There are problems with the installation position accuracy of the control device and an extra installation process is required.It is better to use the method of controlling the aperture aperture and aperture time by electrically generating the liquid crystal. Since the electrode is made of a transparent material, it is extremely difficult to position the transparent electrode in the optical path of the field light with high positional accuracy. At present, the aperture shutter has not yet been put into practical use.

本発明の目的は、前述した如き従来の光制御装置の欠点
を改良した光制御機能を有する光学レンズを提供するこ
とにある。
An object of the present invention is to provide an optical lens having a light control function that improves the drawbacks of the conventional light control device as described above.

本発明の別の間約は、絞りあるいはシャッターとしての
機能を自身に有する光学レンズを提供することにある・ 本発明のかかる目的は、光学レンズ上Kl対の電極と該
電極の聞に配置した電気応答性光制御素子を有する光学
レンズによって達成される。
Another aspect of the present invention is to provide an optical lens that has the function of a diaphragm or a shutter.Such an object of the present invention is to provide an optical lens which has a function of a diaphragm or a shutter. This is accomplished by an optical lens with electrically responsive light control elements.

本発明の光学レンズは、電気応答性光制御素子として固
体薄膜化した電気化学的発消色物質を用いることが好ま
しく、この物質に電極や電圧の印加、もしくは電流等を
付することによって部分的あるいは全体的に着色させて
光の透過量を制御することができる。
In the optical lens of the present invention, it is preferable to use an electrochemical coloring/decolorizing substance formed into a solid thin film as an electroresponsive light control element. Alternatively, the amount of light transmitted can be controlled by coloring the entire surface.

本発明の光学レンズは、レンズ上の透明電極間に電気化
学的発消色物質が繊体薄膜化されて配電されており、こ
の際、透明電極および電気化学的発消色物質を多層ある
いは積層させて形成するこ色 ともできる。本発明で用いうる電気化学的発消物ム 質には、一般に、エレタ)胃り費ンツタ物質があり、酸
化タンダステン、酸化モリブデン、酸化メナジウム、水
酸化イリジウム等kK代表され、また、それらの混合物
を用いることもある〇固体薄膜の被着法としては、光制
御素子によって異なるが、一般に、真空蒸着法、スパッ
タ法。
In the optical lens of the present invention, an electrochemical coloring/decolorizing substance is formed into a thin film between transparent electrodes on the lens, and electricity is distributed therein. It can also be colored by letting it form. Electrochemical extinguishing substances that can be used in the present invention generally include substances such as tandasten oxide, molybdenum oxide, menadium oxide, iridium hydroxide, etc., and mixtures thereof. 〇The method of depositing the solid thin film varies depending on the light control element, but generally vacuum evaporation method and sputtering method are used.

法、浸漬法等々の方法を用いることができ、それぞれの
目的に合わせて選択できる。
Methods such as the immersion method and the immersion method can be used, and each method can be selected according to the purpose.

本発明の好ましい具体例では、透明電極と電気応答性光
制御素子の間に絶縁層を設けることができる。この際の
絶縁物質としては、例えば酸化ジルコン、酸化ケイ素、
酸化タンタル、滓化マグネシウムなどを用いることがで
き、薄膜形成法としては、真空蒸着法、スパッタ法、イ
オンプレーティン!法、クツスタイオンビーム法1漬法
などを用いることができる。例えば、表示電極層/工に
1エレクト胃りmlツタ層を加えて多層あるいは積層で
行うこともできる。
In preferred embodiments of the invention, an insulating layer can be provided between the transparent electrode and the electrically responsive light control element. Insulating materials at this time include, for example, zircon oxide, silicon oxide,
Tantalum oxide, magnesium slag, etc. can be used, and thin film formation methods include vacuum evaporation, sputtering, and ion plating! A method such as a Kutsusta ion beam method or a one-dip method can be used. For example, it is also possible to add a 1 ml ivy layer to the display electrode layer to form a multilayer or laminated structure.

本発明の別の具体例では、電気応答性光制御素子として
、キマチック液晶、コレステリック液晶マー筐晶を用い
ることが適している。
In another embodiment of the invention, it is suitable to use a chimatic liquid crystal or a cholesteric liquid crystal as the electrically responsive light control element.

本発明の光学レンズに形成する電極としてはν特に透明
電極を用いることが好ましい。この透明電極を形成しう
る材料としては、酸化スズ、酸化インジウムやこれらの
混合物を用いることができる。また、必要に応じて銀、
金、アル書ニウムなどの金属を電極に用いることも可能
である。
As the electrodes formed in the optical lens of the present invention, it is preferable to use ν especially transparent electrodes. As a material that can form this transparent electrode, tin oxide, indium oxide, or a mixture thereof can be used. Also, if necessary, silver,
It is also possible to use metals such as gold and arsenium for the electrodes.

本発明の光学レンズ上に形成する電極は、光制御素子と
して電気化学的発消色物質を用いる際には、表示電極と
対向電極を相対向させて、あるいは相対向させずに立体
状で配電してもよく、またレンズの同一面上に配電させ
て1対の電極を形成できる。また、光制御素子として液
晶を用いる際には1対の電極を立体状で相対向させて配
電させることが好ましい。
When the electrode formed on the optical lens of the present invention uses an electrochemical color-developing and decoloring substance as a light control element, the display electrode and the counter electrode can be arranged to face each other, or to distribute power in a three-dimensional manner without facing each other. Alternatively, a pair of electrodes can be formed by distributing power on the same surface of the lens. Furthermore, when a liquid crystal is used as the light control element, it is preferable that a pair of electrodes be arranged three-dimensionally and facing each other for power distribution.

以下、本発明の実施例を図TMK従って説明する。Embodiments of the present invention will be described below with reference to Figure TMK.

第1図および鎮2図は、本発明の光学レンズの部分断面
図である〇 第1図において、1はカメフ鏡曽内撮影光学系中の1つ
のレンズを示す。レンズ11 (図面では便宜上平面状
′に現わした)り上には透明な表示電極12m、 12
% 12・が帯状に形成されている。この表示電極12
”v 12b、 12aの膜厚は、一般に500A 〜
5000i トL、、好t L < ハ2oooKm*
トtルコトtitている。
1 and 2 are partial sectional views of the optical lens of the present invention. In FIG. 1, 1 indicates one lens in the Kamef mirror-Sonai photographing optical system. There is a lens 11 (shown as a flat surface in the drawing for convenience) and transparent display electrodes 12 m, 12 on top.
% 12• is formed in a band shape. This display electrode 12
”The film thickness of 12b and 12a is generally 500A ~
5000i To L,, Goodt L < Ha2oooKm*
It's tight.

第1図の様な簡単な膜構成では′、表示電極と隣りの表
示電極間がおいているために、単に各表示電極12〜1
2に、12・の上に光制御素子被膜15へ15b。
In the simple film configuration as shown in FIG.
2, 15b to the light control element coating 15 on 12.

15eを重ねただけでは、遮光しない部分ができてしま
う。また、全面に亘って光制御素子を被着した場合には
、にじみ現象が現れ制御が難しいのでつの欠陥を補うこ
とができる。この際、1つの表示電極に接触している光
制御素子の被膜は、他方の表示電極KIII触して設け
た光制御素子の被膜と接触しないよ、うKすることが必
要である。この様ん な電極RK界Iする光制御素子の形成は、例えば電子ビ
ーム真空蒸着法やXバッタ法の際に発生する寺き込み現
象を盲動に利用することができる。
If only layers 15e are overlapped, there will be areas where light is not blocked. Furthermore, if the light control element is applied over the entire surface, a bleed phenomenon appears and is difficult to control, so it is possible to compensate for the defect. At this time, it is necessary to prevent the coating of the light control element that is in contact with one display electrode from coming into contact with the coating of the light control element that is provided in contact with the other display electrode KIII. For forming a light control element having such an electrode RK field, it is possible to blindly utilize the drop-in phenomenon that occurs during, for example, the electron beam vacuum evaporation method or the X-butter method.

また、光制御素子として、例えばエレクトーク胃ヤツク
物質(酸化タングステンなど)を用いる際には、その膜
厚は一般に5ooo X〜5ooo Xとすることが好
ましい。
Further, when using, for example, an electric gas material (tungsten oxide, etc.) as the light control element, it is generally preferable that the film thickness is 500X to 500X.

光制御素子i5m、 15bt 15@の上には、全m
K亘って絶縁層14が形成されている。絶縁層14は、
酸化ジルコンや連化マダネシウムなどによって形成した
3000ム〜5000ムの被膜とすることができる。
Above the light control element i5m, 15bt 15@, all m
An insulating layer 14 is formed over K. The insulating layer 14 is
It can be a film of 3000 µm to 5000 µm formed of zirconium oxide, entrained madanesium, or the like.

さらに、この絶縁層14の上に対向電極15を有してい
る。
Furthermore, a counter electrode 15 is provided on this insulating layer 14.

各電極は、リード線で電子回路などと電気的に接続され
て、所望の絞り開口を形成するために、1対の電極間に
電圧や電流〆供給されてレンズの所望の個所を着色する
ことができる。光制御素子としてエレク)−りIII々
ツク物質を用いた際には○→0→eの電圧を印加するこ
とで発消色させることができ、また液晶を用いた際には
電圧をオン→オフすることで発情色するこEができる。
Each electrode is electrically connected to an electronic circuit or the like using a lead wire, and in order to form a desired aperture aperture, a voltage or current is supplied between the pair of electrodes to color a desired part of the lens. Can be done. When an electronic material is used as a light control element, coloring can be caused by applying a voltage of ○→0→e, and when a liquid crystal is used, the voltage can be turned on→ By turning it off, you can get excited.

本発明で用いる光制御素子を多層で形成することができ
るが、かかる実施例は第2図で示すことができる。
Although the light control element used in the present invention can be formed in multiple layers, such an embodiment can be illustrated in FIG.

11に2図において、レンズ21 (図面では便宜上平
画状に現わした)の全WJK亘った纂1の表示電lI2
2が形成され、その上に第1の光制御素子の被膜25が
帯状に形成され、このglの光制御素子の被I[25の
着色によって最大の絞りを得ることができる。
In Figure 11 and Figure 2, the display voltage lI2 of the series 1 across the entire WJK of the lens 21 (shown as a flat image in the drawing for convenience)
2 is formed, and a coating 25 of the first light control element is formed in a band shape thereon, and the maximum aperture can be obtained by coloring the coating I [25 of the light control element of this gl.

第1の光制御素子の被膜23の上には全面に亘って總1
の絶縁層24を有している。更に、Illの絶縁層24
の上には第1の対向電極25が帯状に形成され、更Ki
g2の絶縁層26.第2の光制御素子の被膜27.第5
の絶縁層28.第2の表示電極29.iE5の光制御素
子の被膜50およびII4の絶縁層51が順次積層され
ており、応答速度や遮光性を改善しうる構成になってい
る。
On the coating 23 of the first light control element, there is a
It has an insulating layer 24 of. Furthermore, the insulating layer 24 of Ill
A first counter electrode 25 is formed in the shape of a strip on top of the Ki.
g2 insulating layer 26. Second light control element coating 27. Fifth
Insulating layer 28. Second display electrode 29. The film 50 of the light control element of iE5 and the insulating layer 51 of II4 are laminated in sequence, and the structure is such that response speed and light shielding properties can be improved.

ll11図の巻金は光制御素子の被膜を同心円状あるい
はドーtymKwt作したもので、絞りに対して最小の
膜構成で済む。會た、ドーナツ型の任意の一ンダを発消
色させることも可能である。これに対し、第2図は、絞
りの段数に合わせて膜を製・作した例である。第2図で
光制御素子の被膜を発色させるときには、その上層にあ
る光制御素子の被膜を全て発色させることで、絞りの効
果を上げることができる。
The winding shown in Fig. ll11 has a concentric or dot tymKwt film for the light control element, and requires only the minimum film configuration for the diaphragm. It is also possible to color or fade any donut-shaped piece. On the other hand, FIG. 2 shows an example in which membranes are produced in accordance with the number of stages of the aperture. When the coating of the light control element is colored in FIG. 2, the effect of the diaphragm can be increased by coloring all the coatings of the light control element located above it.

本発明によれば、光制御装置として組み込むガフス板等
の余分な部品の設計、製作は全く不必要であり、組み込
む位置精度も考える必要はなくなり、また工程面でも、
単品の加工工程は不要であり、いわゆる物性素子を形成
する工程のみで良く、更にレンズに反射防止膜を形成す
る工程と同一工程で、光制御機能を有する光学レンズを
形成することが可能である。
According to the present invention, it is completely unnecessary to design and manufacture extra parts such as a gaff plate to be incorporated as a light control device, and there is no need to consider the accuracy of the assembly position.
There is no need for a single processing step; only the step of forming a so-called physical element is required, and furthermore, it is possible to form an optical lens with a light control function in the same step as forming an antireflection film on the lens. .

【図面の簡単な説明】[Brief explanation of drawings]

第1vAおよび第2図は、本発明の光学レンズの部分断
函図である。 11.21・・・・eレンズ、12% 12b、 12
@ eas@s表示電極、15a、 15b、 13e
・・・拳・電気応答性光制御素子の被膜、14・・・−
・絶縁層、15−争・・壷対向電極、22・・0・第1
の表示電極、25・・・・O”′@1o電気応電気応答
性光制御被子、24・ゆ・第1の絶縁層、25−・・・
會嬉1の対向電極、26・・・−・第2の絶縁層、27
#・・・拳第2の電気応答性光制御素子の被膜、28@
−・−−第6の絶縁層、29−・・・−IE2の表示電
極、!10−・・・・第3の電気応答性光制御素子の被
膜、51・嗜・・O第4の絶縁層。 特許出願人 中ヤノン株式会社
1vA and 2 are partially cutaway box views of the optical lens of the present invention. 11.21...e lens, 12% 12b, 12
@eas@s Display electrodes, 15a, 15b, 13e
... Coating of fist/electrically responsive light control element, 14...-
- Insulating layer, 15 - pot counter electrode, 22 - 0, 1st
display electrode, 25...O"'@1o electroresponsive light control element, 24. first insulating layer, 25-...
Opposite electrode of meeting 1, 26...--Second insulating layer, 27
#...Fist second electrically responsive light control element coating, 28@
---Sixth insulating layer, 29---Display electrode of IE2,! 10-... Coating of third electrically responsive light control element, 51... O fourth insulating layer. Patent applicant Nakayanon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 光学レンズ上に1対の電極と該電極間に配置した電気応
答性光制御素子を有することを特徴とする光学レンズ。
An optical lens comprising a pair of electrodes on the optical lens and an electrically responsive light control element disposed between the electrodes.
JP1242682A 1982-01-27 1982-01-27 Optical lens Pending JPS58129424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1242682A JPS58129424A (en) 1982-01-27 1982-01-27 Optical lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1242682A JPS58129424A (en) 1982-01-27 1982-01-27 Optical lens

Publications (1)

Publication Number Publication Date
JPS58129424A true JPS58129424A (en) 1983-08-02

Family

ID=11804951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1242682A Pending JPS58129424A (en) 1982-01-27 1982-01-27 Optical lens

Country Status (1)

Country Link
JP (1) JPS58129424A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163819A (en) * 1986-12-26 1988-07-07 Hiroshi Tanaka Liquid crystal shutter
JPH02113224A (en) * 1988-10-24 1990-04-25 Olympus Optical Co Ltd Electrooptical stop device
WO2020039547A1 (en) * 2018-08-23 2020-02-27 三菱電機株式会社 Heat exchanger unit, and refrigeration cycle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163819A (en) * 1986-12-26 1988-07-07 Hiroshi Tanaka Liquid crystal shutter
JPH02113224A (en) * 1988-10-24 1990-04-25 Olympus Optical Co Ltd Electrooptical stop device
WO2020039547A1 (en) * 2018-08-23 2020-02-27 三菱電機株式会社 Heat exchanger unit, and refrigeration cycle device

Similar Documents

Publication Publication Date Title
US4652090A (en) Dispersed iridium based complementary electrochromic device
US4824221A (en) Electrochromic device
US4256379A (en) Electrochromic device
US5011582A (en) Method for producing electrochromic device with application of AC voltage between the electrode layers
US4060311A (en) Electrochromic device
US4123841A (en) Electrochromic display device manufacture method
JPS5844425A (en) Variable light transmitting apparatus
US4433901A (en) All solid type electrochromic display element
US4235528A (en) Ceramics for electrochromic display
US4233339A (en) Method for making electrochromic films having improved etch resistance
US4375319A (en) Electrochromic display device
JPS58129424A (en) Optical lens
JP2005091788A (en) Electrochromic element
JPS58139128A (en) Entirely solid-state electrochromic element
US3439174A (en) Electrolytic image transducer
DE2747856C2 (en)
JPH07140308A (en) Half mirror variable in ratio of transmittance/ reflectivity
JPS5827484B2 (en) display cell
US3088883A (en) Electrophotographic system
JPH0348569Y2 (en)
US3860943A (en) Electrooptical-calibrated variable neutral density filter with split area control
US4632516A (en) Electrochromic element
JPH0128927B2 (en)
US4475795A (en) Electrochromic films having improved etch resistance
JPS58184115A (en) Phase difference microscope