JP2005091788A - Electrochromic element - Google Patents

Electrochromic element Download PDF

Info

Publication number
JP2005091788A
JP2005091788A JP2003325396A JP2003325396A JP2005091788A JP 2005091788 A JP2005091788 A JP 2005091788A JP 2003325396 A JP2003325396 A JP 2003325396A JP 2003325396 A JP2003325396 A JP 2003325396A JP 2005091788 A JP2005091788 A JP 2005091788A
Authority
JP
Japan
Prior art keywords
layer
film
coloring layer
oxide
ecd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003325396A
Other languages
Japanese (ja)
Inventor
Toshiaki Oimizu
利明 生水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003325396A priority Critical patent/JP2005091788A/en
Publication of JP2005091788A publication Critical patent/JP2005091788A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochromic element which has no coloring and is simply realized with excellent reproducibility. <P>SOLUTION: The electrochromic element comprises a transparent conductive film 2, an oxidation coloring layer, an electrolyte layer 5, a reduction coloring layer and a transparent conductive film 10 sequentially constructed on a substrate 1. The reduction coloring layer is constructed with a multilayer films 3, 4 of WO<SB>3</SB>and TiO<SB>2</SB>and the oxidation coloring layer is constructed with a multilayer films 6, 7 of Ir oxide and Ni oxide. The multilayer films 3, 4, 6, 7 are deposited with vacuum deposition, ion plating, ion assisted deposition and sputtering method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、表示素子や光学機器に用いられる調光素子の一つであるエレクトロクロミック素子に関する。   The present invention relates to an electrochromic element that is one of dimming elements used in display elements and optical devices.

従来、電圧を印加すると、可逆的に光の透過率、反射率を変化させることができる調光素子として、エレクトロクロミック素子(以下、ECD)が、液晶素子などと共に研究されている。ECDは、液晶素子に比べて透過率が高い、光散乱の影響が少ない、偏光の影響を受けないなど調光素子として優れた性能を有している。
しかし、WO3を還元発色層、Ir酸化物を酸化発色層に用いたECDは、電圧を印加すると青色に着色されてしまうため、デジタルカメラなどの可視光域でのカラーバランスを重視する撮像素子の調光素子として使用する場合、色再現性、カラーバランスが大きく変化し、色付きが発生してしまい望ましくなかった。
2. Description of the Related Art Conventionally, an electrochromic element (hereinafter referred to as ECD) has been studied together with a liquid crystal element or the like as a dimming element capable of reversibly changing light transmittance and reflectance when a voltage is applied. ECD has excellent performance as a light control device, such as high transmittance compared to a liquid crystal device, little influence of light scattering, and no influence of polarized light.
However, an ECD using WO 3 as a reduction color layer and Ir oxide as an oxidation color layer is colored blue when a voltage is applied. Therefore, an image sensor that places importance on color balance in a visible light region such as a digital camera. When used as a light control device, color reproducibility and color balance are greatly changed, and coloring occurs, which is not desirable.

そこで、このような着色による色付きを無くすための方法として、還元発色層としてWO3にMoO3を混ぜる方法などが公知となっている。さらに、WO3とMoO3の混合物を還元発色層として均一に成膜できる方法として、WO3とMoO3にMgO、ZrO2、Y23、Al23などを混ぜた混合物材料を還元発色膜に用いる方法が、例えば、次の特許文献1に提案されている。
また、還元発色層だけでなく、酸化発色層にIr酸化物、Ni酸化物、Sn酸化物などを用いると有効なことが、例えば、次の特許文献2に提案されている。
特開平10−177192号公報 特開平7−3440号公報
Therefore, as a method for eliminating such coloring due to coloring, a method of mixing MoO 3 with WO 3 as a reducing coloring layer is known. Furthermore, as a method for uniformly forming a mixture of WO 3 and MoO 3 as a reduction coloring layer, a mixture material obtained by mixing WO 3 and MoO 3 with MgO, ZrO 2 , Y 2 O 3 , Al 2 O 3 or the like is reduced. A method used for the color developing film is proposed in, for example, the following Patent Document 1.
Further, for example, the following Patent Document 2 proposes that it is effective to use Ir oxide, Ni oxide, Sn oxide, or the like not only in the reduction coloring layer but also in the oxidation coloring layer.
JP 10-177192 A Japanese Patent Laid-Open No. 7-3440

しかし、WO3とMoO3を混ぜる方法は、これらの沸点が異なるため、成膜した還元発色層に色付きが生じたり、部分的に色むらができたりする問題があった。
また、特許文献1には、このECDの着色による色付きを無くす方法として、MoO3の沸点よりも高い融点を有するMgO、ZrO2、Y23、Al23などをWO3とMoO3に混ぜた混合物材料を還元発色層に用いることが提案されているが、上記色付きの問題点を完全には解消できていない。
また、特許文献2では、Ir酸化物とNi酸化物の混合材料を酸化発色層に用いる方法が公知技術として公開されているが、この方法も上記特許文献1の方法における還元発色層と同様に色付きが生じたり、部分的に色むらができたりする問題がある。
However, the method of mixing WO 3 and MoO 3 has a problem in that since the boiling points thereof are different, the formed reduced color layer is colored or partially uneven.
In Patent Document 1, a method of eliminating coloring due coloration of the ECD, MgO having a melting point higher than the boiling point of MoO 3, ZrO 2, Y 2 O 3, Al 2 O 3 and WO 3 and MoO 3 Although it has been proposed to use a mixture material mixed in the reductive coloring layer, the problem of coloring cannot be completely solved.
Further, in Patent Document 2, a method of using a mixed material of Ir oxide and Ni oxide for the oxidation coloring layer is disclosed as a known technique, but this method is also the same as the reduction coloring layer in the method of Patent Document 1 described above. There is a problem that coloring occurs or color unevenness occurs partially.

本発明は、上述の問題点に鑑みてなされたものであり、色付きが無く、複雑な混合材料を使うことなく簡単に再現性良く実現できる、ECDを提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an ECD that is not colored and can be easily realized with good reproducibility without using a complicated mixed material.

上記目的を達成するため、本発明によるECDは、基板上に透明導電膜、酸化発色層、電解質層、還元発色層、透明導電膜が順次構成されているエレクトロクロミック素子において、前記還元発色層をWO3とTiO2の多層膜で構成することを特徴としている。 In order to achieve the above object, the ECD according to the present invention includes an electrochromic device in which a transparent conductive film, an oxidation coloring layer, an electrolyte layer, a reduction coloring layer, and a transparent conductive film are sequentially formed on a substrate. It is characterized by comprising a multilayer film of WO 3 and TiO 2 .

また、本発明によるECDは、基板上に透明導電膜、酸化発色層、電解質層、還元発色層、透明導電膜が順次構成されているエレクトロクロミック素子において、前記酸化発色層をIr酸化物とNi酸化物の多層膜で構成することを特徴としている。   Further, the ECD according to the present invention is an electrochromic device in which a transparent conductive film, an oxidation coloring layer, an electrolyte layer, a reduction coloring layer, and a transparent conductive film are sequentially formed on a substrate. It is characterized by comprising a multilayer film of oxide.

また、本発明によるECDは、基板上に透明導電膜、酸化発色層、電解質層、還元発色層、透明導電膜が順次構成されているエレクトロクロミック素子において、前記還元発色層をWO3とTiO2の多層膜で構成し、前記酸化発色層をIr酸化物とNi酸化物の多層膜で構成することを特徴としている。 Also, ECD according to the present invention, a transparent conductive film, oxidation color layer on the substrate, an electrolyte layer, reduction coloring layer, the electrochromic device transparent conductive film are sequentially configured, the reduction coloring layer WO 3 and TiO 2 And the oxidation coloring layer is composed of a multilayer film of Ir oxide and Ni oxide.

また、本発明によるECDにおいては、前記多層膜は、真空蒸着、イオンプレーティング、イオンアシスト蒸着、スパッタリング法で成膜されることを特徴としている。   In the ECD according to the present invention, the multilayer film is formed by vacuum deposition, ion plating, ion-assisted deposition, or sputtering.

本発明によれば色付きの無いECDを複雑な混合材料を使わず簡単に再現性良く実現できる。   According to the present invention, ECD without color can be realized easily and with good reproducibility without using complex mixed materials.

実施例の説明に先立ち、本発明の作用効果について説明する。
本発明のECDのように、WO3とTiO2を積層して多層膜の還元発色層を形成すれば、WO3の青い色付きを抑えて色付きをなくすことができ、安定して色付きの無いECDを作製することが可能になる。
また、本発明のECDのように、Ir酸化物とNi酸化物を積層して多層膜の酸化発色層を形成すれば、安定して色付きの無いECDを作製することが可能になる。
なお、色付きの調整は、多層膜の層数、各層の膜厚を制御することで容易にできる。また多層膜の成膜時の膜厚、光学特性を安定させるために成膜手法としては、真空蒸着、イオンプレーティング、イオンアシスト蒸着、スパッタリング法で成膜することが望ましい。
Prior to the description of the embodiments, the effects of the present invention will be described.
By forming WO 3 and TiO 2 to form a multilayered reduction coloring layer as in the ECD of the present invention, the blue coloring of WO 3 can be suppressed and the coloring can be eliminated, and the ECD stably without coloring. Can be produced.
In addition, as in the case of the ECD of the present invention, if a multilayered oxide color-developing layer is formed by stacking Ir oxide and Ni oxide, it is possible to stably produce an ECD having no color.
Colored adjustment can be easily performed by controlling the number of layers of the multilayer film and the film thickness of each layer. Further, in order to stabilize the film thickness and optical characteristics when forming the multilayer film, it is desirable to form the film by vacuum deposition, ion plating, ion-assisted deposition, or sputtering.

図1は本発明の実施例1にかかるECDの概略構成図である。
実施例1のECDは次のような手順で作製する。
まず、ITO(透明導電膜)2が100nmの膜厚に成膜された透明ガラス基板1を真空蒸着装置(図示省略)の中にセットする。
次に、第1層として、酸化発色層としてのIr酸化膜3の成膜を行う。即ち、真空蒸着装置を1×10-4paまで排気する。排気の後、圧力が2×10-2paになるようO2を真空蒸着装置に導入し、基板に直接RF印加を行うイオンプレーティングの手法を用い、RFパワーを300Wに設定し、蒸着材料としてIr酸化物を用いて電子銃で蒸発させ、Ir酸化物の膜厚が20nmになるまで成膜を行う。
FIG. 1 is a schematic configuration diagram of an ECD according to Embodiment 1 of the present invention.
The ECD of Example 1 is manufactured by the following procedure.
First, a transparent glass substrate 1 on which an ITO (transparent conductive film) 2 is formed to a thickness of 100 nm is set in a vacuum vapor deposition apparatus (not shown).
Next, as a first layer, an Ir oxide film 3 is formed as an oxidative coloring layer. That is, the vacuum evaporation apparatus is evacuated to 1 × 10 −4 pa. After evacuation, O 2 is introduced into the vacuum vapor deposition apparatus so that the pressure becomes 2 × 10 −2 pa, and the RF power is set to 300 W using an ion plating method in which RF is directly applied to the substrate. The film is deposited until the film thickness of the Ir oxide is 20 nm by evaporating with an electron gun using Ir oxide.

次に、第2層として、酸化発色層としてのNi酸化膜4の成膜を行う。即ち、圧力が2×10-2paになるようO2を真空蒸着装置に導入し、基板に直接RF印加を行うイオンプレーティングの手法を用い、蒸着材料としてNi酸化物を用いて電子銃で蒸発させ、Ni酸化物の膜厚が20nmになるまで成膜を行う。 Next, as the second layer, a Ni oxide film 4 is formed as an oxidative coloring layer. That is, using an ion plating method in which O 2 is introduced into a vacuum deposition apparatus so that the pressure becomes 2 × 10 −2 pa and RF is directly applied to the substrate, Ni oxide is used as a deposition material, and an electron gun is used. Evaporation is performed until the Ni oxide film thickness reaches 20 nm.

次に、第3層として、電解質層としてのTa25膜5の成膜を行う。即ち、圧力が2×10-2paになるようO2を真空蒸着装置に導入し、基板に直接RF印加を行うイオンプレーティングの手法を用い、蒸着材料としてTa25を用いて電子銃で蒸発させ、Ta25の膜厚が200nmになるまで成膜を行う。 Next, a Ta 2 O 5 film 5 as an electrolyte layer is formed as a third layer. That is, using an ion plating method in which O 2 is introduced into a vacuum deposition apparatus so that the pressure becomes 2 × 10 −2 pa and RF is directly applied to the substrate, Ta 2 O 5 is used as a deposition material, and an electron gun is used. Evaporation is performed until film thickness of Ta 2 O 5 reaches 200 nm.

次に、第4層として、還元発色層としてのTiO2膜6の成膜を行う。即ち、第2層と同じ圧力条件、同じ手法を用い、蒸着材料としてTiO2を用いて電子銃で蒸発させ、TiO2の膜厚が200nmになるまで成膜を行う。 Next, as the fourth layer, a TiO 2 film 6 is formed as a reducing color developing layer. That is, using the same pressure condition and the same method as the second layer, using TiO 2 as an evaporation material and evaporating with an electron gun, the film is formed until the film thickness of TiO 2 reaches 200 nm.

次に、第5層として、還元発色層としてのWO3膜7の成膜を行う。即ち、第2層と同じ圧力条件、同じ手法を用い、蒸着材料としてWO3を用いて電子銃で蒸発させ、WO3の膜厚が900nmになるまで成膜を行う。 Next, as a fifth layer, a WO 3 film 7 is formed as a reduction coloring layer. That is, using the same pressure condition and the same method as the second layer, evaporating with an electron gun using WO 3 as a deposition material, film formation is performed until the film thickness of WO 3 becomes 900 nm.

次に、第6層として、ITO膜8の成膜を行う。即ち、第2層と同じ圧力条件、同じ手法を用い、蒸着材料としてITOを用いて電子銃で蒸発させ、ITOの膜厚が200nmになるまで成膜を行う。   Next, an ITO film 8 is formed as a sixth layer. That is, using the same pressure condition and the same method as the second layer, using ITO as a vapor deposition material and evaporating with an electron gun, film formation is performed until the ITO film thickness reaches 200 nm.

その後、このように構成された上記ECDの外周面を樹脂8で封止し、その上にガラス基板10を貼り合わせた。樹脂8は、熱硬化型の2成分系エポキシ樹脂であり、例えば、主剤として常温では液状のビスフェノール型の樹脂と、硬化剤として常温で液状のアミン系の樹脂で組成されている。
このように作製された実施例1のECDにおける、上下のITO2,8に+2Vの電圧を印加したときと、電圧を印加しないとき(スルー状態)の夫々の分光透過率特性を図2に示す。
実施例1のECDでは、電圧の印加により着色したときにおいても色付きの無いニュートラルな分光特性が得られた。
Thereafter, the outer peripheral surface of the ECD configured as described above was sealed with a resin 8, and a glass substrate 10 was bonded thereon. The resin 8 is a thermosetting two-component epoxy resin, and is composed of, for example, a bisphenol-type resin that is liquid at room temperature as a main agent and an amine-based resin that is liquid at room temperature as a curing agent.
FIG. 2 shows the spectral transmittance characteristics of the ECD of Example 1 manufactured in this way when a voltage of +2 V is applied to the upper and lower ITO 2 and 8 and when no voltage is applied (through state).
In the ECD of Example 1, neutral spectral characteristics without coloring were obtained even when colored by applying a voltage.

図3は本発明の実施例2にかかるECDの概略構成図である。
実施例2のECDは次のような手順で作製する。
まず、ITO(透明導電膜)2が100nmの膜厚に成膜された透明ガラス基板1を真空蒸着装置(図示省略)の中にセットする。
次に、第1層〜第3層までは、実施例1と同じ手順で同様の膜を作製する。
FIG. 3 is a schematic configuration diagram of an ECD according to the second embodiment of the present invention.
The ECD of Example 2 is manufactured by the following procedure.
First, a transparent glass substrate 1 on which an ITO (transparent conductive film) 2 is formed to a thickness of 100 nm is set in a vacuum vapor deposition apparatus (not shown).
Next, for the first layer to the third layer, similar films are produced in the same procedure as in the first embodiment.

次に、第4層として、還元発色層としてのWO3膜7の成膜を行う。即ち、第3層と同じ圧力条件、同じ手法を用い、蒸着材料としてWO3を用いて電子銃で蒸発させ、WO3の膜厚が400nmになるまで成膜を行う。 Next, as a fourth layer, a WO 3 film 7 is formed as a reduction coloring layer. That is, using the same pressure condition and the same method as the third layer, evaporating with an electron gun using WO 3 as an evaporation material, film formation is performed until the film thickness of WO 3 reaches 400 nm.

次に、第5層として、還元発色層としてのTiO2膜6の成膜を行う。即ち、第3層と同じ圧力条件、同じ手法を用い、蒸着材料としてTiO2を用いて電子銃で蒸発させ、TiO2の膜厚が200nmになるまで成膜を行う。 Next, as a fifth layer, a TiO 2 film 6 is formed as a reducing color developing layer. That is, using the same pressure condition and the same method as the third layer, using TiO 2 as an evaporation material and evaporating with an electron gun, the film is formed until the film thickness of TiO 2 reaches 200 nm.

次に、第6層として、還元発色層としてのWO3膜7’の成膜を行う。即ち、第3層と同じ圧力条件、同じ手法を用い、蒸着材料としてWO3を用いて電子銃で蒸発させ、WO3の膜厚が400nmになるまで成膜を行う。 Next, as a sixth layer, a WO 3 film 7 ′ as a reduction coloring layer is formed. That is, using the same pressure condition and the same method as the third layer, evaporating with an electron gun using WO 3 as an evaporation material, film formation is performed until the film thickness of WO 3 reaches 400 nm.

次に、第7層として、ITO膜8の成膜を行う。即ち、第3層と同じ圧力条件、同じ手法を用い、蒸着材料としてITOを用いて電子銃で蒸発させ、ITOの膜厚が200nmになるまで成膜を行う。   Next, an ITO film 8 is formed as a seventh layer. That is, using the same pressure condition and the same method as the third layer, using ITO as a vapor deposition material and evaporating with an electron gun, film formation is performed until the ITO film thickness reaches 200 nm.

その後、このように構成された上記ECDの外周面を実施例1と同様に樹脂8で封止し、その上にガラス基板10を貼り合わせた。
このように作製された実施例2のECDにおける、上下のITO2,8に+2Vの電圧を印加したときと、電圧を印加しないとき(スルー状態)の夫々の分光透過率特性は、図2に示した実施例1と同様であり、電圧の印加により着色したときにおいても色付きの無いニュートラルな分光特性が得られた。
Thereafter, the outer peripheral surface of the ECD thus configured was sealed with the resin 8 in the same manner as in Example 1, and the glass substrate 10 was bonded thereon.
In the ECD of Example 2 manufactured in this way, the spectral transmittance characteristics when +2 V is applied to the upper and lower ITO 2 and 8 and when no voltage is applied (through state) are shown in FIG. As in Example 1, neutral spectral characteristics without coloring were obtained even when colored by application of voltage.

図4は本発明の実施例3にかかるECDの概略構成図である。
実施例3のECDは次のような手順で作製する。
まず、ITO(透明導電膜)2が100nmの膜厚に成膜された透明ガラス基板1を真空蒸着装置(図示省略)の中にセットする。
次に、第1層〜第3層までは、実施例1と同じ手順で同様の膜を作製する。
FIG. 4 is a schematic configuration diagram of an ECD according to Embodiment 3 of the present invention.
The ECD of Example 3 is manufactured by the following procedure.
First, a transparent glass substrate 1 on which an ITO (transparent conductive film) 2 is formed to a thickness of 100 nm is set in a vacuum vapor deposition apparatus (not shown).
Next, for the first layer to the third layer, similar films are produced in the same procedure as in the first embodiment.

次に、第4層として、還元発色層としてのWO3膜7の成膜を行う。即ち、第3層と同じ圧力条件、同じ手法を用い、蒸着材料としてWO3を用いて電子銃で蒸発させ、WO3の膜厚が200nmになるまで成膜を行う。 Next, as a fourth layer, a WO 3 film 7 is formed as a reduction coloring layer. That is, using the same pressure condition and the same method as the third layer, using WO 3 as an evaporation material, evaporation is performed with an electron gun, and film formation is performed until the film thickness of WO 3 becomes 200 nm.

次に、第5層として、還元発色層としてのTiO2膜6の成膜を行う。即ち、第3層と同じ圧力条件、同じ手法を用い、蒸着材料としてTiO2を用いて電子銃で蒸発させ、TiO2の膜厚が100nmになるまで成膜を行う。 Next, as a fifth layer, a TiO 2 film 6 is formed as a reducing color developing layer. That is, using the same pressure condition and the same method as the third layer, using TiO 2 as an evaporation material and evaporating with an electron gun, the film is formed until the film thickness of TiO 2 reaches 100 nm.

次に、第6層として、還元発色層としてのWO3膜7’の成膜を行う。即ち、第3層と同じ圧力条件、同じ手法を用い、蒸着材料としてWO3を用いて電子銃で蒸発させ、WO3の膜厚が200nmになるまで成膜を行う。 Next, as a sixth layer, a WO 3 film 7 ′ as a reduction coloring layer is formed. That is, using the same pressure condition and the same method as the third layer, using WO 3 as an evaporation material, evaporation is performed with an electron gun, and film formation is performed until the film thickness of WO 3 becomes 200 nm.

次に、第7層として、還元発色層としてのTiO2膜6’の成膜を行う。即ち、第3層と同じ圧力条件、同じ手法を用い、蒸着材料としてTiO2を用いて電子銃で蒸発させ、TiO2の膜厚が100nmになるまで成膜を行う。 Next, as a seventh layer, a TiO 2 film 6 ′ as a reduction coloring layer is formed. That is, using the same pressure condition and the same method as the third layer, using TiO 2 as an evaporation material and evaporating with an electron gun, the film is formed until the film thickness of TiO 2 reaches 100 nm.

次に、第8層として、還元発色層としてのWO3膜7”の成膜を行う。即ち、第3層と同じ圧力条件、同じ手法を用い、蒸着材料としてWO3を用いて電子銃で蒸発させ、WO3の膜厚が200nmになるまで成膜を行う。 Next, as an eighth layer, a WO 3 film 7 ″ as a reduction coloring layer is formed. That is, using the same pressure condition and the same technique as those of the third layer, using WO 3 as an evaporation material, an electron gun is used. Evaporation is performed until the film thickness of WO 3 reaches 200 nm.

次に、第9層として、ITO膜8の成膜を行う。即ち、第3層と同じ圧力条件、同じ手法を用い、蒸着材料としてITOを用いて電子銃で蒸発させ、ITOの膜厚が200nmになるまで成膜を行う。   Next, an ITO film 8 is formed as a ninth layer. That is, using the same pressure condition and the same method as the third layer, using ITO as a vapor deposition material and evaporating with an electron gun, film formation is performed until the ITO film thickness reaches 200 nm.

その後、このように構成された上記ECDの外周面を実施例1と同様に樹脂8で封止し、その上にガラス基板10を貼り合わせた。
このように作製された実施例3のECDにおける、上下のITO2,8に+2Vの電圧を印加したときと、電圧を印加しないとき(スルー状態)の夫々の分光透過率特性は、図2に示した実施例1と同様であり、電圧の印加により着色したときにおいても色付きの無いニュートラルな分光特性が得られた。
Thereafter, the outer peripheral surface of the ECD thus configured was sealed with the resin 8 in the same manner as in Example 1, and the glass substrate 10 was bonded thereon.
In the ECD of Example 3 manufactured in this way, the spectral transmittance characteristics when +2 V is applied to the upper and lower ITO 2 and 8 and when no voltage is applied (through state) are shown in FIG. As in Example 1, neutral spectral characteristics without coloring were obtained even when colored by application of voltage.

図5は本発明の実施例4にかかるECDの概略構成図である。
実施例4のECDは次のような手順で作製する。
まず、ITO(透明導電膜)2が100nmの膜厚に成膜された透明ガラス基板を真空蒸着装置(図示省略)の中にセットする。
FIG. 5 is a schematic configuration diagram of an ECD according to Embodiment 4 of the present invention.
The ECD of Example 4 is produced by the following procedure.
First, a transparent glass substrate on which ITO (transparent conductive film) 2 is formed to a thickness of 100 nm is set in a vacuum vapor deposition apparatus (not shown).

次に、第1層として、酸化発色層としてのIr酸化膜3の成膜を行う。即ち、真空蒸着装置を1×10-4paまで排気した後、圧力が2×10-2paになるようO2を真空蒸着装置に導入し、基板に直接RF印加を行うイオンプレーティングの手法を用い、RFパワーを300Wに設定し、蒸着材料としてIr酸化物を用いて電子銃で蒸発させ、Ir酸化物の膜厚が10nmになるまで成膜を行う。 Next, as a first layer, an Ir oxide film 3 is formed as an oxidative coloring layer. That is, after the vacuum deposition apparatus is evacuated to 1 × 10 −4 pa, O 2 is introduced into the vacuum deposition apparatus so that the pressure becomes 2 × 10 −2 pa, and RF plating is directly applied to the substrate. , The RF power is set to 300 W, Ir oxide is used as a vapor deposition material and evaporated by an electron gun, and film formation is performed until the film thickness of Ir oxide reaches 10 nm.

次に、第2層として、酸化発色層としてのNi酸化膜4の成膜を行う。即ち、圧力が2×10-2paになるようO2を真空蒸着装置に導入し、基板に直接RF印加を行うイオンプレーティングの手法を用い、蒸着材料としてNi酸化物を用いて電子銃で蒸発させ、Ni酸化膜の膜厚が30nmになるまで成膜を行う。 Next, as the second layer, a Ni oxide film 4 is formed as an oxidative coloring layer. That is, using an ion plating method in which O 2 is introduced into a vacuum deposition apparatus so that the pressure becomes 2 × 10 −2 pa and RF is directly applied to the substrate, Ni oxide is used as a deposition material, and an electron gun is used. Evaporation is performed until the Ni oxide film has a thickness of 30 nm.

次に、第3層として、酸化発色層としてのIr酸化膜3’の成膜を行う。即ち、圧力が2×10-2paになるようO2を真空蒸着装置に導入し、基板に直接RF印加を行うイオンプレーティングの手法を用い、RFパワーを300Wに設定し、蒸着材料としてIr酸化物を用いて電子銃で蒸発させ、Ir酸化物の膜厚が10nmになるまで成膜を行う。 Next, as a third layer, an Ir oxide film 3 ′ as an oxidation coloring layer is formed. That is, O 2 is introduced into a vacuum vapor deposition apparatus so that the pressure becomes 2 × 10 −2 pa, an ion plating method in which RF is directly applied to the substrate, an RF power is set to 300 W, and Ir is used as a vapor deposition material. The oxide is evaporated with an electron gun, and film formation is performed until the Ir oxide film thickness reaches 10 nm.

次に、第4層として、電解質層としてのTa25膜5の成膜を行う。即ち、圧力が2×10-2paになるようO2を真空蒸着装置に導入し、基板に直接RF印加を行うイオンプレーティングの手法を用い、蒸着材料としてTa25を用いて電子銃で蒸発させ、Ta25の膜厚が200nmになるまで成膜を行う。 Next, a Ta 2 O 5 film 5 as an electrolyte layer is formed as a fourth layer. That is, using an ion plating method in which O 2 is introduced into a vacuum deposition apparatus so that the pressure becomes 2 × 10 −2 pa and RF is directly applied to the substrate, Ta 2 O 5 is used as a deposition material, and an electron gun is used. Evaporation is performed until film thickness of Ta 2 O 5 reaches 200 nm.

次に、第5層として、還元発色層としてのWO3膜7の成膜を行う。即ち、第4層と同じ圧力条件、同じ手法を用い、蒸着材料としてWO3を用いて電子銃で蒸発させ、WO3の膜厚が400nmになるまで成膜を行う。 Next, as a fifth layer, a WO 3 film 7 is formed as a reduction coloring layer. That is, using the same pressure condition and the same method as the fourth layer, using WO 3 as a vapor deposition material, evaporation is performed with an electron gun, and film formation is performed until the film thickness of WO 3 reaches 400 nm.

次に、第6層として、還元発色層としてのTiO2膜6の成膜を行う。即ち、第4層と同じ圧力条件、同じ手法を用い、蒸着材料としてTiO2を用いて電子銃で蒸発させ、TiO2の膜厚が200nmになるまで成膜を行う。 Next, as a sixth layer, a TiO 2 film 6 is formed as a reducing color developing layer. That is, using the same pressure condition and the same method as the fourth layer, using TiO 2 as an evaporation material, evaporating with an electron gun, and forming the film until the thickness of TiO 2 reaches 200 nm.

次に、第7層として、還元発色層としてのWO3膜7’の成膜を行う。即ち、第4層と同じ圧力条件、同じ手法を用い、蒸着材料としてWO3を用いて電子銃で蒸発させ、WO3の膜厚が400nmになるまで成膜を行う。 Next, as a seventh layer, a WO 3 film 7 ′ is formed as a reduction coloring layer. That is, using the same pressure condition and the same method as the fourth layer, using WO 3 as a vapor deposition material, evaporation is performed with an electron gun, and film formation is performed until the film thickness of WO 3 reaches 400 nm.

次に、第8層として、ITO膜8の成膜を行う。即ち、第4層と同じ圧力条件、同じ手法を用い、蒸着材料としてITOを用いて電子銃で蒸発させ、ITOの膜厚が200nmになるまで成膜を行う。   Next, an ITO film 8 is formed as an eighth layer. That is, using the same pressure condition and the same method as the fourth layer, using ITO as an evaporation material and evaporating with an electron gun, film formation is performed until the ITO film thickness reaches 200 nm.

その後、このように構成された上記ECDの外周面を実施例1と同様に樹脂8で封止し、その上にガラス基板10を貼り合わせた。
このように作製された実施例4のECDにおける、上下のITO2,8に+2Vの電圧を印加したときと、電圧を印加しないとき(スルー状態)の夫々の分光透過率特性は、図2に示した実施例1と同様であり、電圧の印加により着色したときにおいても色付きの無いニュートラルな分光特性が得られた。
Thereafter, the outer peripheral surface of the ECD thus configured was sealed with the resin 8 in the same manner as in Example 1, and the glass substrate 10 was bonded thereon.
In the ECD of Example 4 manufactured in this way, the spectral transmittance characteristics when +2 V is applied to the upper and lower ITO 2 and 8 and when no voltage is applied (through state) are shown in FIG. As in Example 1, neutral spectral characteristics without coloring were obtained even when colored by application of voltage.

図6は本発明の実施例5にかかるECDの概略構成図である。
実施例5のECDは次のような手順で作製する。
まず、ITO(透明導電膜)2が100nmの膜厚に成膜された透明ガラス基板を真空蒸着装置(図示省略)の中にセットする。
FIG. 6 is a schematic configuration diagram of an ECD according to Embodiment 5 of the present invention.
The ECD of Example 5 is produced by the following procedure.
First, a transparent glass substrate on which ITO (transparent conductive film) 2 is formed to a thickness of 100 nm is set in a vacuum vapor deposition apparatus (not shown).

次に、第1層として、酸化発色層としてのIr酸化膜3の成膜を行う。即ち、真空蒸着装置を1×10-4paまで排気した後、圧力が2×10-2paになるようO2を真空蒸着装置に導入し、基板に直接RF印加を行うイオンプレーティングの手法を用い、RFパワーを300Wに設定し、蒸着材料としてIr酸化物を用いて電子銃で蒸発させ、Ir酸化物の膜厚が10nmになるまで成膜を行う。 Next, as a first layer, an Ir oxide film 3 is formed as an oxidative coloring layer. That is, after the vacuum deposition apparatus is evacuated to 1 × 10 −4 pa, O 2 is introduced into the vacuum deposition apparatus so that the pressure becomes 2 × 10 −2 pa, and RF plating is directly applied to the substrate. , The RF power is set to 300 W, Ir oxide is used as the vapor deposition material and evaporated using an electron gun, and film formation is performed until the Ir oxide film thickness reaches 10 nm.

次に、第2層として、酸化発色層としてのNi酸化膜4の成膜を行う。即ち、圧力が2×10-2paになるようO2を真空蒸着装置に導入し、基板に直接RF印加を行うイオンプレーティングの手法を用い、蒸着材料としてNi酸化物を用いて電子銃で蒸発させ、Ni酸化膜の膜厚が20nmになるまで成膜を行う。 Next, as the second layer, a Ni oxide film 4 is formed as an oxidative coloring layer. That is, using an ion plating method in which O 2 is introduced into a vacuum deposition apparatus so that the pressure becomes 2 × 10 −2 pa and RF is directly applied to the substrate, Ni oxide is used as a deposition material, and an electron gun is used. Evaporation is performed until the Ni oxide film has a thickness of 20 nm.

次に、第3層として、酸化発色層としてのIr酸化膜3’の成膜を行う。即ち、圧力が2×10-2paになるようO2を真空蒸着装置に導入し、基板に直接RF印加を行うイオンプレーティングの手法を用い、RFパワーを300Wに設定し、蒸着材料としてIr酸化物を用いて電子銃で蒸発させ、Ir酸化物を膜厚が10nmになるまで成膜を行う。 Next, as a third layer, an Ir oxide film 3 ′ as an oxidation coloring layer is formed. That is, O 2 is introduced into a vacuum vapor deposition apparatus so that the pressure becomes 2 × 10 −2 pa, an ion plating method in which RF is directly applied to the substrate, an RF power is set to 300 W, and Ir is used as a vapor deposition material. The oxide is evaporated with an electron gun, and Ir oxide is deposited until the film thickness reaches 10 nm.

次に、第4層として、酸化発色層としてのNi酸化膜4’の成膜を行う。即ち、圧力が2×10-2paになるようO2を真空蒸着装置に導入し、基板に直接RF印加を行うイオンプレーティングの手法を用い、蒸着材料としてNi酸化物を用いて電子銃で蒸発させ、Ni酸化膜の膜厚が20nmになるまで成膜を行う。 Next, as a fourth layer, a Ni oxide film 4 ′ is formed as an oxidation coloring layer. That is, using an ion plating method in which O 2 is introduced into a vacuum deposition apparatus so that the pressure becomes 2 × 10 −2 pa and RF is directly applied to the substrate, Ni oxide is used as a deposition material, and an electron gun is used. Evaporation is performed until the Ni oxide film has a thickness of 20 nm.

次に、第5層として、電解質層としてのTa25膜5の成膜を行う。即ち、圧力が2×10-2paになるようO2を真空蒸着装置に導入し、基板に直接RF印加を行うイオンプレーティングの手法を用い、蒸着材料としてTa25を用いて電子銃で蒸発させ、Ta25の膜厚が200nmになるまで成膜を行う。 Next, a Ta 2 O 5 film 5 as an electrolyte layer is formed as a fifth layer. That is, using an ion plating method in which O 2 is introduced into a vacuum deposition apparatus so that the pressure becomes 2 × 10 −2 pa and RF is directly applied to the substrate, Ta 2 O 5 is used as a deposition material, and an electron gun is used. Evaporation is performed until film thickness of Ta 2 O 5 reaches 200 nm.

次に、第6層として、還元発色層としてのWO3膜7の成膜を行う。即ち、第5層と同じ圧力条件、同じ手法を用い、蒸着材料としてWO3を用いて電子銃で蒸発させ、WO3の膜厚が400nmになるまで成膜を行う。 Next, as a sixth layer, a WO 3 film 7 is formed as a reduction coloring layer. That is, using the same pressure condition and the same method as the fifth layer, using WO 3 as an evaporation material, evaporation is performed with an electron gun, and film formation is performed until the film thickness of WO 3 reaches 400 nm.

次に、第7層として、還元発色層としてのTiO2膜6の成膜を行う。即ち、第5層と同じ圧力条件、同じ手法を用い、蒸着材料としてTiO2を用いて電子銃で蒸発させ、TiO2の膜厚が200nmになるまで成膜を行う。 Next, as a seventh layer, a TiO 2 film 6 is formed as a reduction coloring layer. That is, using the same pressure condition and the same method as the fifth layer, using TiO 2 as a vapor deposition material and evaporating with an electron gun, the film is formed until the film thickness of TiO 2 reaches 200 nm.

次に、第8層として、還元発色層としてのWO3膜7’の成膜を行う。即ち、第5層と同じ圧力条件、同じ手法を用い、蒸着材料としてWO3を用いて電子銃で蒸発させ、WO3の膜厚が400nmになるまで成膜を行う。 Next, as an eighth layer, a WO 3 film 7 ′ as a reduction coloring layer is formed. That is, using the same pressure condition and the same method as the fifth layer, using WO 3 as an evaporation material, evaporation is performed with an electron gun, and film formation is performed until the film thickness of WO 3 reaches 400 nm.

次に、第9層として、ITO膜8の成膜を行う。即ち、第5層と同じ圧力条件、同じ手法を用い、蒸着材料としてITOを用いて電子銃で蒸発させ、ITOの膜厚が200nmになるまで成膜を行う。   Next, an ITO film 8 is formed as a ninth layer. That is, using the same pressure condition and the same method as the fifth layer, using ITO as a vapor deposition material and evaporating with an electron gun, film formation is performed until the ITO film thickness reaches 200 nm.

その後、このように構成された上記ECDの外周面を実施例1と同様に樹脂8で封止し、その上にガラス基板10を貼り合わせた。
このように作製された実施例5のECDにおける、上下のITO2,8に+2Vの電圧を印加したときと、電圧を印加しないとき(スルー状態)の夫々の分光透過率特性は、図2に示した実施例1と同様であり、電圧の印加により着色したときにおいても色付きの無いニュートラルな分光特性が得られた。
Thereafter, the outer peripheral surface of the ECD thus configured was sealed with the resin 8 in the same manner as in Example 1, and the glass substrate 10 was bonded thereon.
In the ECD of Example 5 manufactured in this way, the spectral transmittance characteristics when +2 V is applied to the upper and lower ITO 2 and 8 and when no voltage is applied (through state) are shown in FIG. As in Example 1, neutral spectral characteristics without coloring were obtained even when colored by application of voltage.

なお、上記各実施例において、他のイオンビームアシスト蒸着、スパッタリングで成膜してECDを作製した場合も、図2に示す分光透過率特性と同様な結果が得られた。   In each of the above examples, the same results as the spectral transmittance characteristics shown in FIG. 2 were obtained when the ECD was formed by film formation by other ion beam assisted vapor deposition or sputtering.

本発明の実施例1にかかるECDの概略構成図である。It is a schematic block diagram of ECD concerning Example 1 of this invention. 実施例1のECDにおける、上下ITOに+2Vの電圧を印加したときと、電圧を印加しないとき(スルー状態)の夫々の分光特化率特性を示すグラフである。It is a graph which shows each spectral specialization rate characteristic when the voltage of + 2V is applied to upper and lower ITO in ECD of Example 1, and when a voltage is not applied (through state). 本発明の実施例2にかかるECDの概略構成図である。It is a schematic block diagram of ECD concerning Example 2 of this invention. 本発明の実施例3にかかるECDの概略構成図である。It is a schematic block diagram of ECD concerning Example 3 of this invention. 本発明の実施例4にかかるECDの概略構成図である。It is a schematic block diagram of ECD concerning Example 4 of this invention. 本発明の実施例5にかかるECDの概略構成図である。It is a schematic block diagram of ECD concerning Example 5 of this invention.

符号の説明Explanation of symbols

1,10 ガラス基板
2,8 ITO膜(透明導電膜)
3,3’ Ir酸化膜(酸化発色層)
4,4’ Ni酸化膜(酸化発色層)
5 Ta25膜(電解質層)
6,6’ TiO2膜(還元発色層)
7,7’,7” WO3膜(還元発色層)
9 樹脂
1,10 glass substrate 2,8 ITO film (transparent conductive film)
3,3 'Ir oxide film (oxidation coloring layer)
4,4 'Ni oxide film (oxidation coloring layer)
5 Ta 2 O 5 film (electrolyte layer)
6,6 'TiO 2 film (reduction coloring layer)
7, 7 ', 7 "WO 3 film (reduction coloring layer)
9 Resin

Claims (4)

基板上に透明導電膜、酸化発色層、電解質層、還元発色層、透明導電膜が順次構成されているエレクトロクロミック素子において、前記還元発色層をWO3とTiO2の多層膜で構成することを特徴とするエレクトロクロミック素子。 In an electrochromic device in which a transparent conductive film, an oxidation coloring layer, an electrolyte layer, a reduction coloring layer, and a transparent conductive film are sequentially formed on a substrate, the reduction coloring layer is formed of a multilayer film of WO 3 and TiO 2. A characteristic electrochromic device. 基板上に透明導電膜、酸化発色層、電解質層、還元発色層、透明導電膜が順次構成されているエレクトロクロミック素子において、前記酸化発色層をIr酸化物とNi酸化物の多層膜で構成することを特徴とするエレクトロクロミック素子。   In an electrochromic device in which a transparent conductive film, an oxidation coloring layer, an electrolyte layer, a reduction coloring layer, and a transparent conductive film are sequentially formed on a substrate, the oxidation coloring layer is formed of a multilayer film of Ir oxide and Ni oxide. An electrochromic device characterized by that. 基板上に透明導電膜、酸化発色層、電解質層、還元発色層、透明導電膜が順次構成されているエレクトロクロミック素子において、前記還元発色層をWO3とTiO2の多層膜で構成し、前記酸化発色層をIr酸化物とNi酸化物の多層膜で構成することを特徴とするエレクトロミック素子。 In an electrochromic device in which a transparent conductive film, an oxidation coloring layer, an electrolyte layer, a reducing coloring layer, and a transparent conductive film are sequentially formed on a substrate, the reducing coloring layer is formed of a multilayer film of WO 3 and TiO 2 , An electrochromic device comprising an oxidation coloring layer composed of a multilayer film of Ir oxide and Ni oxide. 前記多層膜は、真空蒸着、イオンプレーティング、イオンアシスト蒸着、スパッタリング法で成膜されていることを特徴とする請求項1〜3のいずれかに記載のエレクトロクロミック素子。   The electrochromic device according to claim 1, wherein the multilayer film is formed by vacuum deposition, ion plating, ion-assisted deposition, or sputtering.
JP2003325396A 2003-09-18 2003-09-18 Electrochromic element Withdrawn JP2005091788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325396A JP2005091788A (en) 2003-09-18 2003-09-18 Electrochromic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325396A JP2005091788A (en) 2003-09-18 2003-09-18 Electrochromic element

Publications (1)

Publication Number Publication Date
JP2005091788A true JP2005091788A (en) 2005-04-07

Family

ID=34455849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325396A Withdrawn JP2005091788A (en) 2003-09-18 2003-09-18 Electrochromic element

Country Status (1)

Country Link
JP (1) JP2005091788A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203740A (en) * 2007-02-22 2008-09-04 Nissan Motor Co Ltd Dimming element and dimming device
US8049949B2 (en) * 2008-08-29 2011-11-01 Ppg Industries Ohio, Inc. Multi-layer electrode for high contrast electrochromic devices
WO2015088033A1 (en) * 2013-12-13 2015-06-18 Canon Kabushiki Kaisha Electrochromic device, optical filter, lens unit, and imaging apparatus
JP2018526665A (en) * 2015-07-14 2018-09-13 ビュー, インコーポレイテッド Counter electrode for electrochromic devices
JP2020518004A (en) * 2017-04-24 2020-06-18 エルジー・ケム・リミテッド Electrochromic film and electrochromic device including the same
US10852613B2 (en) 2009-03-31 2020-12-01 View, Inc. Counter electrode material for electrochromic devices
US10996533B2 (en) 2010-04-30 2021-05-04 View, Inc. Electrochromic devices
US11327382B2 (en) 2014-11-26 2022-05-10 View, Inc. Counter electrode for electrochromic devices
US11370699B2 (en) 2009-03-31 2022-06-28 View, Inc. Counter electrode for electrochromic devices
US11409177B2 (en) 2009-03-31 2022-08-09 View, Inc. Counter electrode for electrochromic devices
US11422426B2 (en) 2014-09-05 2022-08-23 View, Inc. Counter electrode for electrochromic devices
US11440838B2 (en) 2009-03-31 2022-09-13 View, Inc. Fabrication of low defectivity electrochromic devices
US11525181B2 (en) 2009-03-31 2022-12-13 View, Inc. Electrochromic devices
US11592722B2 (en) 2010-04-30 2023-02-28 View, Inc. Electrochromic devices
US11891327B2 (en) 2014-05-02 2024-02-06 View, Inc. Fabrication of low defectivity electrochromic devices
US11947232B2 (en) 2009-03-31 2024-04-02 View, Inc. Fabrication of low defectivity electrochromic devices

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203740A (en) * 2007-02-22 2008-09-04 Nissan Motor Co Ltd Dimming element and dimming device
US8049949B2 (en) * 2008-08-29 2011-11-01 Ppg Industries Ohio, Inc. Multi-layer electrode for high contrast electrochromic devices
US11635665B2 (en) 2009-03-31 2023-04-25 View, Inc. Counter electrode material for electrochromic devices
US11525181B2 (en) 2009-03-31 2022-12-13 View, Inc. Electrochromic devices
US11409177B2 (en) 2009-03-31 2022-08-09 View, Inc. Counter electrode for electrochromic devices
US11947232B2 (en) 2009-03-31 2024-04-02 View, Inc. Fabrication of low defectivity electrochromic devices
US11898233B2 (en) 2009-03-31 2024-02-13 View, Inc. Electrochromic devices
US10852613B2 (en) 2009-03-31 2020-12-01 View, Inc. Counter electrode material for electrochromic devices
US11440838B2 (en) 2009-03-31 2022-09-13 View, Inc. Fabrication of low defectivity electrochromic devices
US11370699B2 (en) 2009-03-31 2022-06-28 View, Inc. Counter electrode for electrochromic devices
US11966140B2 (en) 2009-03-31 2024-04-23 View, Inc. Counter electrode for electrochromic devices
US10996533B2 (en) 2010-04-30 2021-05-04 View, Inc. Electrochromic devices
US11592722B2 (en) 2010-04-30 2023-02-28 View, Inc. Electrochromic devices
US9977306B2 (en) 2013-12-13 2018-05-22 Canon Kabushiki Kaisha Electrochromic device, optical filter, lens unit, and imaging apparatus
JP2015132809A (en) * 2013-12-13 2015-07-23 キヤノン株式会社 Electrochromic element, optical filter, lens unit, and imaging device
WO2015088033A1 (en) * 2013-12-13 2015-06-18 Canon Kabushiki Kaisha Electrochromic device, optical filter, lens unit, and imaging apparatus
US11891327B2 (en) 2014-05-02 2024-02-06 View, Inc. Fabrication of low defectivity electrochromic devices
US11422426B2 (en) 2014-09-05 2022-08-23 View, Inc. Counter electrode for electrochromic devices
US11327382B2 (en) 2014-11-26 2022-05-10 View, Inc. Counter electrode for electrochromic devices
US11960188B2 (en) 2014-11-26 2024-04-16 View, Inc. Counter electrode for electrochromic devices
JP2018526665A (en) * 2015-07-14 2018-09-13 ビュー, インコーポレイテッド Counter electrode for electrochromic devices
JP7080250B2 (en) 2017-04-24 2022-06-03 エルジー・ケム・リミテッド Electrochromic film and electrochromic devices including it
US11467460B2 (en) 2017-04-24 2022-10-11 Lg Chem, Ltd. Electrochromic film and an electrochromic device comprising the same
JP2020518004A (en) * 2017-04-24 2020-06-18 エルジー・ケム・リミテッド Electrochromic film and electrochromic device including the same

Similar Documents

Publication Publication Date Title
JP2005091788A (en) Electrochromic element
WO2004105054A1 (en) Amorphous transparent conductive film, sputtering target as its raw material, amorphous transparent electrode substrate, process for producing the same and color filter for liquid crystal display
KR19980702311A (en) Electrochromic device and display device having same
CN111769210A (en) Display substrate, preparation method thereof and display device
CN101512388A (en) Multilayer film
JP4432056B2 (en) Liquid crystal display element and liquid crystal display device using the liquid crystal display element
JPH11174427A (en) Liquid crystal display device and liquid crystal projector
JP2004295090A (en) Color liquid crystal display device and manufacturing method therefor, and manufacturing method for color filter substrate
JP2005062772A (en) Electrochromic element
US20060050207A1 (en) Liquid crystal display unit
JP3053548B2 (en) Electric field discharge type flat fluorescent lamp
JP2004133234A (en) Electrochromic element and solid cell
TW201224592A (en) Liquid crystal panel for liquid crystal projector, and liquid crystal projector
JPH06160876A (en) Transparent electrode plate and its production
JPH1152117A (en) Black mask, color filter and liquid crystal display
JP2020046574A (en) Liquid crystal device, method for manufacturing liquid crystal device, and electronic apparatus
JPH1195009A (en) Titanium black mask, manufacture thereof, color filter using titanium black mask, and liquid crystal display
JPH05142585A (en) Display panel
JPH11142615A (en) Black mask, color filter and liquid crystal display
JPH11209884A (en) Production of substrate with light shielding layer and production of color filter substrate
TWI467303B (en) Display device and method of manufacturing the same
JP2007033588A (en) Liquid crystal display element and liquid crystal projector
JPH11223811A (en) Black mask, color filter, and liquid crystal display
JPH10197905A (en) Electrochromic layer and electrochromic element using same
JPH1138221A (en) Tantalum-based black mask, color filter formed by using the same, and liquid crystal display

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205