JP7018967B2 - Heat dissipation board and its manufacturing method - Google Patents

Heat dissipation board and its manufacturing method Download PDF

Info

Publication number
JP7018967B2
JP7018967B2 JP2019566857A JP2019566857A JP7018967B2 JP 7018967 B2 JP7018967 B2 JP 7018967B2 JP 2019566857 A JP2019566857 A JP 2019566857A JP 2019566857 A JP2019566857 A JP 2019566857A JP 7018967 B2 JP7018967 B2 JP 7018967B2
Authority
JP
Japan
Prior art keywords
heat
transfer member
heat transfer
hole
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019566857A
Other languages
Japanese (ja)
Other versions
JPWO2021024445A1 (en
Inventor
政邦 篠崎
光昭 戸田
金光 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiko Co Ltd
Original Assignee
Meiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiko Co Ltd filed Critical Meiko Co Ltd
Publication of JPWO2021024445A1 publication Critical patent/JPWO2021024445A1/en
Application granted granted Critical
Publication of JP7018967B2 publication Critical patent/JP7018967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Description

本発明は、放熱基板、及びその製造方法に関する。 The present invention relates to a heat dissipation substrate and a method for manufacturing the same.

発熱部品が実装されるプリント配線基板は、例えば特許文献1の従来技術として開示されているように、基板に放熱機構が備えられるのが一般的である。より具体的には、当該従来技術は、基板を貫通するように設けられた伝熱部材を挟むように、基板の両面に発熱部品とヒートシンクとをそれぞれ設けて構成されている。これにより、基板の一方の面に実装された発熱部品が発する熱は、伝熱部材を介して基板の他方の面に配置されたヒートシンクに伝えられて放熱されることになる。このとき、発熱部品とヒートシンクとの間で放熱経路を形成する伝熱部材は、例えば銅の塊からなる金属片として形成されることにより、複数のサーマルビアが形成される場合と比較して放熱経路の断面積を確保しやすく、発熱部品の発熱量が比較的大きい場合にも効率的に放熱することができる。 A printed wiring board on which a heat-generating component is mounted is generally provided with a heat dissipation mechanism, for example, as disclosed as the prior art of Patent Document 1. More specifically, the prior art is configured by providing heat generating components and heat sinks on both sides of the substrate so as to sandwich a heat transfer member provided so as to penetrate the substrate. As a result, the heat generated by the heat generating component mounted on one surface of the substrate is transferred to the heat sink arranged on the other surface of the substrate via the heat transfer member and dissipated. At this time, the heat transfer member forming the heat dissipation path between the heat generating component and the heat sink is formed as, for example, a metal piece made of a lump of copper, so that heat is dissipated as compared with the case where a plurality of thermal vias are formed. It is easy to secure the cross-sectional area of the path, and it is possible to efficiently dissipate heat even when the heat generation amount of the heat generating component is relatively large.

上記の従来技術に係る放熱基板は、実装される電子部品が基板との接触面とは反対側の面に電極端子を備え、基板表面に形成された導電パターンに対して当該電極端子がボンディングワイヤで接続されている。そして、当該従来技術に係る放熱基板は、配線基板に設けられた貫通孔に対して円柱形状の伝熱部材が埋め込まれることにより放熱経路が構成されている。このように、放熱基板の貫通孔、及び当該貫通孔に設けられる伝熱部材は、円柱形状として形成されることが一般的であり、これにより貫通孔の形成自体や、伝熱部材をかしめ又は圧入により貫通孔に対して隙間なく設けることが容易となる。 In the heat dissipation substrate according to the above-mentioned prior art, the electronic component to be mounted has an electrode terminal on the surface opposite to the contact surface with the substrate, and the electrode terminal is a bonding wire to the conductive pattern formed on the substrate surface. It is connected by. The heat radiating substrate according to the prior art has a heat radiating path formed by embedding a cylindrical heat transfer member in a through hole provided in the wiring board. As described above, the through hole of the heat radiating substrate and the heat transfer member provided in the through hole are generally formed in a cylindrical shape, whereby the formation of the through hole itself or the heat transfer member is crimped or formed. By press-fitting, it becomes easy to provide the through hole without a gap.

特開2005-051088号公報Japanese Unexamined Patent Publication No. 2005-051088

ところで、上記のような伝熱部材による放熱基板に実装される発熱部品は、基板との接触面に平板状の電極端子を備えることがある。このような場合には、当該電極端子の直下に伝熱部材を配置することにより、共に熱伝導性の良好な電極端子から伝熱部材へ効率的に熱を伝えることができる。 By the way, the heat generating component mounted on the heat radiating substrate by the heat transfer member as described above may have a flat plate-shaped electrode terminal on the contact surface with the substrate. In such a case, by arranging the heat transfer member directly under the electrode terminal, heat can be efficiently transferred from the electrode terminal having good thermal conductivity to the heat transfer member.

しかしながら、発熱部品の実装面に形成される電極端子は、通常は円形に形成されることがないため、放熱効率の観点から電極端子の全面が接する寸法の伝熱部材を設けるためには、電極端子の輪郭を包含する大径の伝熱部材を基板に埋め込む必要がある。そのため、放熱基板は、特に伝熱部材の周囲において、他部品や配線パターンを形成するための実装面積が圧迫される虞が生じる。一方、電極端子の輪郭に包含される小径の伝熱部材が基板に埋め込まれる場合には、伝熱部材が当接しない電極端子の周辺部において放熱経路が遮断され、放熱効率が低下する虞が生じる。 However, since the electrode terminals formed on the mounting surface of the heat-generating component are not usually formed in a circular shape, in order to provide a heat transfer member having a size in which the entire surface of the electrode terminals is in contact with each other from the viewpoint of heat dissipation efficiency, the electrodes are used. It is necessary to embed a large-diameter heat transfer member that includes the contour of the terminal in the substrate. Therefore, in the heat radiating substrate, there is a possibility that the mounting area for forming other parts and wiring patterns may be compressed, especially around the heat transfer member. On the other hand, when a heat transfer member having a small diameter included in the contour of the electrode terminal is embedded in the substrate, the heat dissipation path may be blocked at the peripheral portion of the electrode terminal where the heat transfer member does not abut, and the heat dissipation efficiency may decrease. Occurs.

本発明は、このような状況に鑑みてなされたものであり、その目的とするところは、基板との接触面に電極端子を備える発熱部品が実装される場合であっても、実装面積を圧迫することなく放熱効率を向上させることができる放熱基板、及びその製造方法を提供することにある。 The present invention has been made in view of such a situation, and an object thereof is to press the mounting area even when a heat generating component having an electrode terminal is mounted on a contact surface with a substrate. It is an object of the present invention to provide a heat radiating substrate capable of improving heat radiating efficiency without using the above, and a method for manufacturing the same.

本発明に係る放熱基板は、実装面に電極端子を備える発熱部品を実装するための放熱基板であって、円形の断面を有する貫通孔が形成された配線基板と、導電性材料からなり、前記貫通孔において前記配線基板の両面に亘る放熱経路を構成する伝熱部材と、を備え、前記伝熱部材は、前記貫通孔の内部に嵌合される埋設部と、前記配線基板の表面に沿って設けられる平板状の露出部と、により一体的に構成され、前記露出部は、前記発熱部品の前記電極端子と略同一形状である。 The heat-dissipating board according to the present invention is a heat-dissipating board for mounting a heat-generating component having an electrode terminal on a mounting surface, and is composed of a wiring board having a through hole having a circular cross section and a conductive material. The through hole comprises a heat transfer member that constitutes a heat transfer path extending over both sides of the wiring board, and the heat transfer member includes a buried portion fitted inside the through hole and along the surface of the wiring board. The exposed portion is integrally formed with a flat plate-shaped exposed portion provided therein, and the exposed portion has substantially the same shape as the electrode terminal of the heat generating component.

また、本発明に係る放熱基板の製造方法は、実装面に電極端子を備える発熱部品を実装するための放熱基板の製造方法であって、配線基板に円形の断面を有する貫通孔を形成する孔形成工程と、導電性材料からなる伝熱部材を、前記貫通孔に挿入される埋設部と、前記配線基板の表面に沿って設けられる平板状の露出部と、が一体的に構成される形状に加工する伝熱部材準備工程と、前記伝熱部材の前記埋設部を前記貫通孔に嵌合させる嵌合工程と、を含み、伝熱部材準備工程においては、前記露出部を前記発熱部品の前記電極端子と略同一形状に加工する。 Further, the method for manufacturing a heat transfer board according to the present invention is a method for manufacturing a heat transfer board for mounting a heat generating component having an electrode terminal on a mounting surface, and is a hole for forming a through hole having a circular cross section in the wiring board. A shape in which a forming step, a buried portion in which a heat transfer member made of a conductive material is inserted into the through hole, and a flat plate-shaped exposed portion provided along the surface of the wiring substrate are integrally formed. In the heat transfer member preparation step, the exposed portion of the heat-generating component is included in the heat transfer member preparation step of fitting the embedded portion of the heat transfer member into the through hole. It is processed into substantially the same shape as the electrode terminal.

本発明によれば、基板との接触面に電極端子を備える発熱部品が実装される場合であっても、実装面積を圧迫することなく放熱効率を向上させることができる放熱基板、及びその製造方法を提供することができる。 According to the present invention, even when a heat-generating component provided with an electrode terminal is mounted on a contact surface with a substrate, a heat-dissipating substrate capable of improving heat dissipation efficiency without squeezing the mounting area, and a method for manufacturing the same. Can be provided.

本発明の第1実施形態に係る放熱基板の断面図である。It is sectional drawing of the heat dissipation substrate which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る基板準備工程を示す断面図である。It is sectional drawing which shows the substrate preparation process which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る孔形成工程を示す断面図である。It is sectional drawing which shows the hole formation process which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るめっき工程を示す断面図である。It is sectional drawing which shows the plating process which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るパターニング工程を示す断面図である。It is sectional drawing which shows the patterning process which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る伝熱部材準備工程により形成される伝熱部材を示す斜視図である。It is a perspective view which shows the heat transfer member formed by the heat transfer member preparation process which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る嵌合工程を示す断面図である。It is sectional drawing which shows the fitting process which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る部品実装工程を示す断面図である。It is sectional drawing which shows the component mounting process which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る放熱基板の断面図である。It is sectional drawing of the heat dissipation substrate which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る伝熱部材の形状を示す側面図である。It is a side view which shows the shape of the heat transfer member which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る孔形成工程を示す断面図である。It is sectional drawing which shows the hole formation process which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る放熱基板の断面図である。It is sectional drawing of the heat dissipation substrate which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る伝熱部材の形状を示す側面図である。It is a side view which shows the shape of the heat transfer member which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る孔形成工程を示す断面図である。It is sectional drawing which shows the hole formation process which concerns on 3rd Embodiment of this invention.

以下、図面を参照し、本発明の実施の形態について詳細に説明する。尚、本発明は、以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施の形態の説明に用いる図面は、いずれも構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、または省略などを行っており、構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described below, and can be arbitrarily modified and implemented without changing the gist thereof. In addition, the drawings used for explaining the embodiments are all schematically showing the constituent members, and are partially emphasized, enlarged, reduced, or omitted in order to deepen the understanding of the constituent members. It may not accurately represent the scale or shape.

<第1実施形態>
図1は、本発明の第1実施形態に係る放熱基板1の断面図である。放熱基板1は、発熱部品2が基板の実装面に実装される場合に、発熱部品2からの熱を実装面とは反対側の面へ伝えて放熱することができるプリント回路基板であり、配線基板10、伝熱部材20、及びヒートシンク30を備える。
<First Embodiment>
FIG. 1 is a cross-sectional view of a heat dissipation substrate 1 according to the first embodiment of the present invention. The heat radiating board 1 is a printed circuit board capable of transmitting heat from the heat generating component 2 to a surface opposite to the mounting surface to dissipate heat when the heat generating component 2 is mounted on the mounting surface of the board, and is a wiring board. A substrate 10, a heat transfer member 20, and a heat sink 30 are provided.

配線基板10は、本実施形態においては、第1外層配線層11、第2外層配線層12、複数の内層配線層13、及び絶縁層14を備える。より具体的には、配線基板10は、発熱部品2が実装される一方の面に第1外層配線層11が設けられると共に、他方の面に第2外層配線層12が設けられ、これらの間に複数の内層配線層13が形成されている。そして、回路パターンが形成される各配線層は、絶縁層14により互いに絶縁されると共に、図示しないビア等で部分的に接続されることにより、基板全体として電子回路が構成される。 In the present embodiment, the wiring board 10 includes a first outer layer wiring layer 11, a second outer layer wiring layer 12, a plurality of inner layer wiring layers 13, and an insulating layer 14. More specifically, in the wiring board 10, the first outer layer wiring layer 11 is provided on one surface on which the heat generating component 2 is mounted, and the second outer layer wiring layer 12 is provided on the other surface, and between them. A plurality of inner layer wiring layers 13 are formed on the surface. The wiring layers on which the circuit pattern is formed are insulated from each other by the insulating layer 14, and are partially connected by vias (not shown) to form an electronic circuit as the entire substrate.

尚、配線基板10は、内層配線層13が形成されない両面板であってもよく、又は、より多くの内層配線層13が形成される多層基板であってもよい。また、内層配線層13は、配線基板10の製造過程においてパターニングによる回路形成が行われているが、本実施形態においては図示を省略している。そして、配線基板10は、発熱部品2が実装される位置において、円形の断面を有する貫通孔THが形成されると共に、貫通孔THに伝熱部材20が嵌合されている。 The wiring board 10 may be a double-sided board on which the inner layer wiring layer 13 is not formed, or may be a multilayer board on which more inner layer wiring layers 13 are formed. Further, although the inner layer wiring layer 13 is formed by patterning in the manufacturing process of the wiring board 10, the illustration is omitted in the present embodiment. Then, in the wiring board 10, a through hole TH having a circular cross section is formed at a position where the heat generating component 2 is mounted, and the heat transfer member 20 is fitted in the through hole TH.

伝熱部材20は、導電性及び熱伝導性を有する金属からなり、例えば銅からなるいわゆる銅インレイである。本実施形態に係る伝熱部材20は、詳細を後述するように、第1外層配線層11の表面から貫通孔THを介して第2外層配線層12まで延在し、配線基板10の両面に亘る放熱経路を構成する。 The heat transfer member 20 is a so-called copper inlay made of a metal having conductivity and heat conductivity, for example, copper. As will be described in detail later, the heat transfer member 20 according to the present embodiment extends from the surface of the first outer layer wiring layer 11 to the second outer layer wiring layer 12 via the through hole TH, and extends on both sides of the wiring board 10. It constitutes a heat transfer path.

ここで、本実施形態に係る発熱部品2は、配線基板10側の実装面において平板状の電極端子2aを備えると共に、側面から突出する2本の端子2bが備えられており(図8参照)、伝熱部材20の表面と電極端子2aとが接するように配線基板10に実装されている。より具体的には、発熱部品2は、例えば表面実装タイプの公知のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。 Here, the heat generating component 2 according to the present embodiment is provided with a flat plate-shaped electrode terminal 2a on the mounting surface on the wiring board 10 side, and is provided with two terminals 2b protruding from the side surface (see FIG. 8). , The surface of the heat transfer member 20 and the electrode terminal 2a are mounted on the wiring board 10 so as to be in contact with each other. More specifically, the heat generating component 2 is, for example, a surface mount type known MOSFET (Metal Oxide Semiconductor Field Effect Transistor).

そして、伝熱部材20は、配線基板10の第1外層配線層11が形成された面において、電極端子2aと面同士が接するように発熱部品2が実装されている。このため、発熱部品2からの熱は、電極端子2a及び伝熱部材20を介して第2外層配線層12側に伝えられ、第2外層配線層12に設けられたヒートシンク30により放熱される。 The heat transfer member 20 is mounted with the heat generating component 2 so that the surface of the wiring board 10 is in contact with the electrode terminal 2a on the surface on which the first outer layer wiring layer 11 is formed. Therefore, the heat from the heat generating component 2 is transferred to the second outer layer wiring layer 12 side via the electrode terminal 2a and the heat transfer member 20, and is dissipated by the heat sink 30 provided in the second outer layer wiring layer 12.

ヒートシンク30は、第2外層配線層12における伝熱部材20の表面を含む位置において熱伝導性及び粘着性を有する放熱シート20aにより取り付けることができる。放熱シート20aは、伝熱部材20とヒートシンク30とに密着することにより、伝熱部材20からヒートシンク30への伝熱性を向上させて効率的に放熱することができる。このとき、伝熱部材20とヒートシンク30と間を絶縁する必要がある場合には、絶縁性を有する放熱シート20aが採用される。また、放熱シート20aに替えて、熱伝導性を有するペースト状の放熱ペーストを塗布してもよい。尚、ヒートシンク30は、本発明に必須の構成ではなく、伝熱部材20の表面とその周囲を金属層で覆うことにより形成される放熱パッドで代用してもよい。 The heat sink 30 can be attached by a heat radiating sheet 20a having thermal conductivity and adhesiveness at a position including the surface of the heat transfer member 20 in the second outer layer wiring layer 12. The heat radiating sheet 20a is in close contact with the heat transfer member 20 and the heat sink 30, so that the heat transfer property from the heat transfer member 20 to the heat sink 30 can be improved and heat can be efficiently dissipated. At this time, when it is necessary to insulate between the heat transfer member 20 and the heat sink 30, a heat dissipation sheet 20a having an insulating property is adopted. Further, instead of the heat radiating sheet 20a, a paste-like heat radiating paste having thermal conductivity may be applied. The heat sink 30 is not essential to the present invention, and may be replaced with a heat radiation pad formed by covering the surface of the heat transfer member 20 and its periphery with a metal layer.

次に、放熱基板1の製造方法を図2乃至8の各工程に沿って示しつつ、放熱基板1の構造についてより詳細に説明する。本実施形態に係る放熱基板1の製造方法は、一例として基板準備工程、孔形成工程、めっき工程、パターニング工程、伝熱部材準備工程、嵌合工程、及び部品実装工程を含む。 Next, the structure of the heat radiating substrate 1 will be described in more detail while showing the manufacturing method of the heat radiating substrate 1 along with the steps of FIGS. 2 to 8. As an example, the method for manufacturing the heat radiation substrate 1 according to the present embodiment includes a substrate preparation step, a hole forming step, a plating step, a patterning step, a heat transfer member preparation step, a fitting step, and a component mounting step.

図2は、本発明の第1実施形態に係る基板準備工程を示す断面図である。基板準備工程においては、後の工程により第1外層配線層11となる第1銅箔層11´、及び後の工程により第2外層配線層12となる第2銅箔層12´が絶縁層14の両面に形成された配線基板10が準備される。尚、配線基板10を多層基板とする場合には、絶縁層14の内部にパターニングされた内層配線層13を含む基板を準備する。 FIG. 2 is a cross-sectional view showing a substrate preparation step according to the first embodiment of the present invention. In the substrate preparation step, the first copper foil layer 11'which becomes the first outer layer wiring layer 11 in the later step and the second copper foil layer 12' which becomes the second outer layer wiring layer 12 in the later step are the insulating layer 14. The wiring board 10 formed on both sides of the above is prepared. When the wiring board 10 is a multilayer board, a board including the inner layer wiring layer 13 patterned inside the insulating layer 14 is prepared.

図3は、本発明の第1実施形態に係る孔形成工程を示す断面図である。孔形成工程においては、上記した基板準備工程で準備された配線基板10に対して、発熱部品2の実装位置に貫通孔THを牙設する。本実施形態に係る放熱基板1の製造方法においては、配線基板10に円柱状の貫通孔THを形成することができる第1ドリルD1を使用する。 FIG. 3 is a cross-sectional view showing a hole forming step according to the first embodiment of the present invention. In the hole forming step, a through hole TH is provided at the mounting position of the heat generating component 2 with respect to the wiring board 10 prepared in the above-mentioned board preparation step. In the method for manufacturing the heat dissipation substrate 1 according to the present embodiment, the first drill D1 capable of forming a columnar through hole TH in the wiring substrate 10 is used.

図4は、本発明の第1実施形態に係るめっき工程を示す断面図である。めっき工程においては、配線基板10に形成された貫通孔THの内側面と、第1銅箔層11´及び第2銅箔層12´の表面とに銅めっきを形成する。これにより、配線基板10は、両面に第1外層配線層11及び第2外層配線層12がそれぞれ形成されると共に、貫通孔THの内側面におけるめっきにより各配線層が互いに接続される。尚、貫通孔THの内側面、及び各外層配線層におけるめっき処理は、必要に応じて行われるものであり、本発明においては必須の工程ではない。 FIG. 4 is a cross-sectional view showing a plating process according to the first embodiment of the present invention. In the plating step, copper plating is formed on the inner side surface of the through hole TH formed in the wiring board 10 and the surfaces of the first copper foil layer 11'and the second copper foil layer 12'. As a result, the first outer layer wiring layer 11 and the second outer layer wiring layer 12 are formed on both sides of the wiring board 10, and the wiring layers are connected to each other by plating on the inner side surface of the through hole TH. The plating treatment on the inner surface of the through hole TH and each outer layer wiring layer is performed as necessary, and is not an essential step in the present invention.

図5は、本発明の第1実施形態に係るパターニング工程を示す断面図である。パターニング工程においては、例えば公知のフォトリソグラフィにより、配線基板10の第1外層配線層11及び第2外層配線層12が所望の回路パターンに加工される。 FIG. 5 is a cross-sectional view showing a patterning step according to the first embodiment of the present invention. In the patterning step, for example, by known photolithography, the first outer layer wiring layer 11 and the second outer layer wiring layer 12 of the wiring board 10 are processed into a desired circuit pattern.

続いて、伝熱部材準備工程について説明する。伝熱部材準備工程は、放熱基板1の伝熱部材20を準備する工程であり、上記した基板準備工程からパターニング工程までの配線基板10に対する一連の加工とは別に進められる。図6は、本発明の第1実施形態に係る伝熱部材準備工程により形成される伝熱部材20を示す斜視図である。 Subsequently, the heat transfer member preparation process will be described. The heat transfer member preparation step is a step of preparing the heat transfer member 20 of the heat dissipation substrate 1, and is performed separately from the series of processing of the wiring board 10 from the substrate preparation step to the patterning step described above. FIG. 6 is a perspective view showing a heat transfer member 20 formed by the heat transfer member preparation step according to the first embodiment of the present invention.

本実施形態に係る伝熱部材20は、円柱状に形成される埋設部21と、平板状に形成される露出部22とが一体的に構成される形状の金属からなり、例えば電気伝導性及び熱伝導性に優れた銅を金型成型により加工して形成することができる。 The heat transfer member 20 according to the present embodiment is made of a metal having a shape in which a buried portion 21 formed in a columnar shape and an exposed portion 22 formed in a flat plate shape are integrally formed, for example, electrical conductivity and electric conductivity. Copper with excellent thermal conductivity can be processed and formed by mold molding.

より具体的には、埋設部21は、後の工程において圧入法又はかしめ法により配線基板10の貫通孔THの内部に嵌合される部分であり、貫通孔THの寸法に合わせて直径R及び高さHが設定される。また、露出部22は、平面視した場合に上記した発熱部品2の電極端子2aと略同一形状の平板状であり、後の工程において配線基板10の表面に沿って設けられることになる部分である。 More specifically, the embedded portion 21 is a portion fitted inside the through hole TH of the wiring board 10 by a press-fitting method or a caulking method in a later step, and has a diameter R and a diameter R according to the dimensions of the through hole TH. The height H is set. Further, the exposed portion 22 has a flat plate shape having substantially the same shape as the electrode terminal 2a of the heat generating component 2 described above when viewed in a plan view, and is provided along the surface of the wiring board 10 in a later step. be.

そして、伝熱部材20は、嵌合工程において配線基板10の貫通孔THに嵌合される。図7は、本発明の第1実施形態に係る嵌合工程を示す断面図である。嵌合工程においては、伝熱部材準備工程で形成された伝熱部材20を配線基板10に対してプレス機Pで押圧することにより、伝熱部材20の埋設部21を貫通孔THに篏合させる。 Then, the heat transfer member 20 is fitted into the through hole TH of the wiring board 10 in the fitting process. FIG. 7 is a cross-sectional view showing a fitting process according to the first embodiment of the present invention. In the fitting process, the heat transfer member 20 formed in the heat transfer member preparation process is pressed against the wiring substrate 10 by the press machine P, so that the embedded portion 21 of the heat transfer member 20 is fitted into the through hole TH. Let me.

ここで、嵌合工程においては、圧入法又はかしめ法を適用することができる。圧入法は、伝熱部材20の埋設部21の直径Rを貫通孔THの内径よりも僅かに大きくし、伝熱部材20の埋設部21の高さHを配線基板10の厚みと等しくした上で、プレス機Pにより埋設部21を貫通孔THに埋めるように固定する方法である。また、カシメ法は、伝熱部材20の埋設部21の直径Rを貫通孔THの内径よりも小さくし、伝熱部材20の埋設部21の高さHを配線基板10の厚みよりも高くした上で、プレス機Pにより露出部22を押圧して埋設部21を変形させながら、埋設部21を貫通孔THに埋めるように固定する方法である。 Here, in the fitting process, the press-fitting method or the caulking method can be applied. In the press-fitting method, the diameter R of the buried portion 21 of the heat transfer member 20 is made slightly larger than the inner diameter of the through hole TH, and the height H of the buried portion 21 of the heat transfer member 20 is made equal to the thickness of the wiring board 10. Then, it is a method of fixing the buried portion 21 so as to be filled in the through hole TH by the press machine P. Further, in the caulking method, the diameter R of the buried portion 21 of the heat transfer member 20 is made smaller than the inner diameter of the through hole TH, and the height H of the buried portion 21 of the heat transfer member 20 is made higher than the thickness of the wiring board 10. Above, the exposed portion 22 is pressed by the press machine P to deform the embedded portion 21, and the embedded portion 21 is fixed so as to be buried in the through hole TH.

そして、伝熱部材20は、嵌合工程により貫通孔THに固定されると共に、露出部22が配線基板の表面、すなわち第1外層配線層11に沿って設けられることになる。このとき、配線基板10の表面と露出部22との間に、銅めっきによる第1外層配線層11が形成されている場合には、第1外層配線層11の一部が露出部22と面接触することにより、伝熱部材20と第1外層配線層11との電気伝導性を向上させることができる。 The heat transfer member 20 is fixed to the through hole TH by the fitting process, and the exposed portion 22 is provided along the surface of the wiring board, that is, along the first outer layer wiring layer 11. At this time, when the first outer layer wiring layer 11 by copper plating is formed between the surface of the wiring board 10 and the exposed portion 22, a part of the first outer layer wiring layer 11 is surfaced with the exposed portion 22. By contacting the heat transfer member 20, the electrical conductivity between the heat transfer member 20 and the first outer layer wiring layer 11 can be improved.

また、貫通孔THの内側面に銅めっきが形成されている場合には、当該銅めっきと伝熱部材20との接触面積が増加することにより、当該銅めっきを介して配線基板10の各配線層と伝熱部材20との電気伝導性を向上させることができる。 Further, when copper plating is formed on the inner side surface of the through hole TH, the contact area between the copper plating and the heat transfer member 20 increases, so that each wiring of the wiring board 10 passes through the copper plating. The electrical conductivity between the layer and the heat transfer member 20 can be improved.

図8は、本発明の第1実施形態に係る部品実装工程を示す断面図である。図8においては、配線基板10において発熱部品2の実装に係る構成要素を模式的に表しており、例えばパターニングされた第1外層配線層11などの他の構成要素については図示を省略している。尚、発熱部品2及びその電極端子2aは、図8に示す形状に限られるものではなく、例えば正方形、長方形、凸形状、台形、その他の多角形や、より複雑な形状等、種々のバリエーションが想定される。 FIG. 8 is a cross-sectional view showing a component mounting process according to the first embodiment of the present invention. In FIG. 8, the components related to the mounting of the heat generating component 2 on the wiring board 10 are schematically shown, and other components such as the patterned first outer layer wiring layer 11 are not shown. .. The heat generating component 2 and its electrode terminal 2a are not limited to the shape shown in FIG. 8, and may have various variations such as a square, a rectangle, a convex shape, a trapezoid, another polygon, and a more complicated shape. is assumed.

部品実装工程においては、伝熱部材20の露出部22の表面に半田ペーストが塗布されると共に、当該半田ペーストを介して電極端子2aを合わせるように発熱部品2が配置され、公知のリフロー処理により伝熱部材20と発熱部品2とが接続される。 In the component mounting process, the solder paste is applied to the surface of the exposed portion 22 of the heat transfer member 20, and the heat generating component 2 is arranged so as to align the electrode terminals 2a via the solder paste, and the heat transfer component 2 is arranged by a known reflow process. The heat transfer member 20 and the heat generating component 2 are connected.

このとき、配線基板10の表面において、発熱部品2の2本の端子2bに対応する位置に第1外層配線層11の一部からなる電極パッド15を形成しておくことで、リフロー処理により電極端子2a及び端子2bを同時に配線基板10に接続することができる。そして、第2外層配線層12にヒートシンク30を接続することにより、発熱部品2が実装された図1に示す放熱基板1が完成する。尚、放熱基板1は、他の電子部品の実装やソルダーレジストによる絶縁被覆など、一般的なプリント回路基板に共通する他の工程が適宜行われる。 At this time, by forming an electrode pad 15 composed of a part of the first outer layer wiring layer 11 at a position corresponding to the two terminals 2b of the heat generating component 2 on the surface of the wiring board 10, an electrode is formed by reflow processing. The terminals 2a and 2b can be connected to the wiring board 10 at the same time. Then, by connecting the heat sink 30 to the second outer layer wiring layer 12, the heat dissipation substrate 1 shown in FIG. 1 on which the heat generating component 2 is mounted is completed. The heat radiating board 1 is appropriately subjected to other steps common to general printed circuit boards, such as mounting of other electronic components and insulating coating with a solder resist.

以上のように、本実施形態に係る放熱基板1は、貫通孔THに嵌合される埋設部21と配線基板10の表面に露出する露出部22とが一体的に形成された形状の伝熱部材20が配線基板10に設けられている。そして、埋設部21は、発熱部品2の電極端子2aよりも断面が小さい円柱状に形成されているため、配線基板10に実装される発熱部品2の周囲に配置される他の電子部品や配線パターンに干渉することがない。また、露出部22は、発熱部品2の電極端子2aと略同一形状に形成されているため、発熱部品2からの熱を最大限受け入れつつ、一体的且つ連続的に形成された埋設部21に当該熱を伝えることができる。これにより、本発明の第1実施態様に係る放熱基板1によれば、基板との接触面に電極端子2aを備える発熱部品2が実装される場合であっても、実装面積を圧迫することなく放熱効率を向上させることができる。 As described above, the heat radiating substrate 1 according to the present embodiment has a heat transfer shape in which the embedded portion 21 fitted in the through hole TH and the exposed portion 22 exposed on the surface of the wiring board 10 are integrally formed. The member 20 is provided on the wiring board 10. Since the embedded portion 21 is formed in a columnar shape having a cross section smaller than that of the electrode terminal 2a of the heat generating component 2, other electronic components and wiring arranged around the heat generating component 2 mounted on the wiring board 10 are formed. Does not interfere with the pattern. Further, since the exposed portion 22 is formed in substantially the same shape as the electrode terminal 2a of the heat generating component 2, the embedded portion 21 is integrally and continuously formed while receiving the maximum heat from the heat generating component 2. The heat can be transmitted. As a result, according to the heat radiating substrate 1 according to the first embodiment of the present invention, even when the heat generating component 2 provided with the electrode terminal 2a is mounted on the contact surface with the substrate, the mounting area is not pressed. The heat dissipation efficiency can be improved.

また、本実施形態に係る放熱基板1は、配線基板10の発熱部品2が実装される面において、めっきにより形成される第1外層配線層11が伝熱部材20の露出部22と面接触するように構成されるため、発熱部品2の電極端子2aから伝熱部材20の露出部22を介して第1外層配線層11へ至る経路として、導電性に優れた導電路及び熱伝導性に優れた放熱経路を確保することができる。 Further, in the heat radiating substrate 1 according to the present embodiment, the first outer layer wiring layer 11 formed by plating comes into surface contact with the exposed portion 22 of the heat transfer member 20 on the surface on which the heat generating component 2 of the wiring substrate 10 is mounted. As a path from the electrode terminal 2a of the heat generating component 2 to the first outer layer wiring layer 11 via the exposed portion 22 of the heat transfer member 20, a conductive path having excellent conductivity and excellent thermal conductivity are provided. It is possible to secure a heat dissipation path.

更に、本実施形態に係る放熱基板1は、貫通孔THの内側面において各配線層に接続されるめっき層が形成され、また、当該めっき層と伝熱部材20とが面接触することにより接触面積が増加するため、発熱部品2の電極端子2aから伝熱部材20及び当該めっき層を介して配線基板10の各配線層に至る導電路の電気伝導性を向上させることができる。 Further, in the heat radiating substrate 1 according to the present embodiment, a plating layer connected to each wiring layer is formed on the inner surface of the through hole TH, and the plating layer and the heat transfer member 20 are in surface contact with each other. Since the area is increased, it is possible to improve the electrical conductivity of the conductive path from the electrode terminal 2a of the heat generating component 2 to each wiring layer of the wiring substrate 10 via the heat transfer member 20 and the plating layer.

<第2実施形態>
次に、本発明の第2実施形態について説明する。第2実施形態に係る放熱基板3は、上記した第1実施形態の放熱基板1における貫通孔TH及び伝熱部材20の形状が第1実施形態と異なる。以下、第1実施形態と異なる部分について説明することとし、第1実施形態と共通する構成要素については、同じ符号を付して詳細な説明を省略する。
<Second Embodiment>
Next, a second embodiment of the present invention will be described. The heat radiating substrate 3 according to the second embodiment is different from the first embodiment in the shapes of the through hole TH and the heat transfer member 20 in the heat radiating substrate 1 of the first embodiment described above. Hereinafter, the parts different from those of the first embodiment will be described, and the components common to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.

図9は、本発明の第2実施形態に係る放熱基板3の断面図である。本実施形態に係る放熱基板3は、配線基板10に設けられた貫通孔THが第1外層配線層11側において径が連続的に広がる形状を有している。また、配線基板10に固定される伝熱部材40は、貫通孔THの形状に合わせて形成されている。 FIG. 9 is a cross-sectional view of the heat dissipation substrate 3 according to the second embodiment of the present invention. The heat radiating substrate 3 according to the present embodiment has a shape in which the through hole TH provided in the wiring board 10 continuously expands in diameter on the side of the first outer layer wiring layer 11. Further, the heat transfer member 40 fixed to the wiring board 10 is formed according to the shape of the through hole TH.

図10は、本発明の第2実施形態に係る伝熱部材40の形状を示す側面図である。第2実施形態に係る伝熱部材40は、配線基板10の貫通孔THに嵌合される埋設部41と、第1外層配線層11の表面に設けられる平板状の露出部42とが一体的に構成される形状の金属からなり、例えば電気伝導性及び熱伝導性に優れた銅を金型成型により加工して形成することができる。 FIG. 10 is a side view showing the shape of the heat transfer member 40 according to the second embodiment of the present invention. In the heat transfer member 40 according to the second embodiment, the embedded portion 41 fitted in the through hole TH of the wiring substrate 10 and the flat plate-shaped exposed portion 42 provided on the surface of the first outer layer wiring layer 11 are integrated. For example, copper having an excellent electric conductivity and thermal conductivity can be processed by molding to form a metal having a shape of.

また、埋設部41は、円柱状に形成された円柱部41aと、逆円錐台状に形成された中間部41bとが一続きに形成されており、中間部41bにおいて円柱部41aから露出部42へかけて円形の断面が連続的に拡大している。すなわち、中間部41bの側面Sが直線となるような形状に加工されている。そして、伝熱部材40は、埋設部41においては円柱部41a及び中間部41bの断面形状がいずれも円形となる。尚、露出部42については、上記した第1実施形態と同様に、平面視した場合に発熱部品2の電極端子2aと略同一形状の平板状に形成されている。 Further, in the buried portion 41, a cylindrical portion 41a formed in a columnar shape and an intermediate portion 41b formed in an inverted truncated cone shape are continuously formed, and in the intermediate portion 41b, the columnar portion 41a to the exposed portion 42 are formed. The circular cross section is continuously expanding toward. That is, the side surface S of the intermediate portion 41b is processed into a straight line. In the embedded portion 41 of the heat transfer member 40, the cross-sectional shapes of the cylindrical portion 41a and the intermediate portion 41b are both circular. The exposed portion 42 is formed in a flat plate shape having substantially the same shape as the electrode terminal 2a of the heat generating component 2 when viewed in a plan view, as in the first embodiment described above.

図11は、本発明の第2実施形態に係る孔形成工程を示す断面図である。本実施形態においては、上記した形状の伝熱部材40を配線基板10の貫通孔THに嵌合させるために、図11に示すような段付きドリルとしての第2ドリルD2を使用する。これにより、上記した形状の伝熱部材40を嵌合させることができる貫通孔THを一回の穴あけ加工により形成することができる。このように形成された貫通孔THに対して、上記した形状の伝熱部材40を篏合させることにより、図9に示す放熱基板3が形成される。 FIG. 11 is a cross-sectional view showing a hole forming step according to the second embodiment of the present invention. In the present embodiment, a second drill D2 as a stepped drill as shown in FIG. 11 is used in order to fit the heat transfer member 40 having the above-mentioned shape into the through hole TH of the wiring board 10. As a result, a through hole TH into which the heat transfer member 40 having the above-mentioned shape can be fitted can be formed by a single drilling process. The heat radiating substrate 3 shown in FIG. 9 is formed by arranging the heat transfer member 40 having the above-mentioned shape with the through hole TH thus formed.

以上のように、本発明の第2実施形態に係る放熱基板3は、伝熱部材40の中間部41bの形状が逆円錐台形状であるため、配線基板10の貫通孔TH及び伝熱部材40の形状を高精度で容易に成形することができる。また、本実施形態に係る伝熱部材40は、直角の角部を持たない貫通孔THに嵌合されることになるため、例えば貫通孔THの内側面にめっき層が形成される場合に、プレス時において当該めっき層との接触面における部分ごとの圧力のばらつきを抑制することができる。従って、本発明の第2実施形態に係る放熱基板3は、当該めっき層と伝熱部材40との密着性を向上させることができる。 As described above, in the heat radiating substrate 3 according to the second embodiment of the present invention, since the shape of the intermediate portion 41b of the heat transfer member 40 is an inverted truncated cone shape, the through hole TH of the wiring board 10 and the heat transfer member 40 The shape of the above can be easily formed with high accuracy. Further, since the heat transfer member 40 according to the present embodiment is fitted into the through hole TH having no right-angled corners, for example, when a plating layer is formed on the inner surface of the through hole TH, for example, when a plating layer is formed on the inner surface of the through hole TH. At the time of pressing, it is possible to suppress the variation in pressure for each portion on the contact surface with the plating layer. Therefore, the heat radiating substrate 3 according to the second embodiment of the present invention can improve the adhesion between the plating layer and the heat transfer member 40.

<第3実施形態>
次に、本発明の第3実施形態について説明する。第3実施形態に係る放熱基板4は、上記した第1実施形態の放熱基板1における貫通孔TH及び伝熱部材20の形状が第1実施形態と異なる。以下、第1実施形態と異なる部分について説明することとし、第1実施形態と共通する構成要素については、同じ符号を付して詳細な説明を省略する。
<Third Embodiment>
Next, a third embodiment of the present invention will be described. The heat radiating substrate 4 according to the third embodiment is different from the first embodiment in the shapes of the through hole TH and the heat transfer member 20 in the heat radiating substrate 1 of the first embodiment described above. Hereinafter, the parts different from those of the first embodiment will be described, and the components common to the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.

図12は、本発明の第3実施形態に係る放熱基板4の断面図である。本実施形態に係る放熱基板4は、配線基板10に設けられた貫通孔THが第1外層配線層11側において径が連続的に広がる形状を有している。また、配線基板10に固定される伝熱部材50は、貫通孔THの形状に合わせて形成されている。 FIG. 12 is a cross-sectional view of the heat dissipation substrate 4 according to the third embodiment of the present invention. The heat radiating substrate 4 according to the present embodiment has a shape in which the through hole TH provided in the wiring board 10 continuously expands in diameter on the side of the first outer layer wiring layer 11. Further, the heat transfer member 50 fixed to the wiring board 10 is formed according to the shape of the through hole TH.

図13は、本発明の第3実施形態に係る伝熱部材50の形状を示す側面図である。第3実施形態に係る伝熱部材50は、配線基板10の貫通孔THに嵌合される埋設部51と、第1外層配線層11の表面に設けられる平板状の露出部52とが一体的に構成される形状の金属からなり、例えば電気伝導性及び熱伝導性に優れた銅を金型成型により加工して形成することができる。 FIG. 13 is a side view showing the shape of the heat transfer member 50 according to the third embodiment of the present invention. In the heat transfer member 50 according to the third embodiment, the embedded portion 51 fitted in the through hole TH of the wiring substrate 10 and the flat plate-shaped exposed portion 52 provided on the surface of the first outer layer wiring layer 11 are integrated. Copper having an excellent electric conductivity and thermal conductivity, which is made of a metal having a shape of the above, can be formed by processing by mold molding.

また、埋設部51は、円柱状に形成された円柱部51aと、円柱部51aから露出部52へかけて逆R面に沿った形状で拡大する中間部51bとが一続きに形成されており、中間部51bにおいて円柱部51aから露出部52へかけて円形の断面が連続的に拡大している。すなわち、中間部51bの側面Sが逆R面となるような形状に加工されている。そして、伝熱部材50は、埋設部51においては円柱部51a及び中間部51bの断面形状がいずれも円形となる。尚、露出部52については、上記した第1実施形態と同様に、平面視した場合に発熱部品2の電極端子2aと略同一形状の平板状に形成されている。 Further, in the buried portion 51, a cylindrical portion 51a formed in a columnar shape and an intermediate portion 51b extending from the columnar portion 51a to the exposed portion 52 in a shape along an inverted R surface are continuously formed. In the intermediate portion 51b, a circular cross section continuously expands from the cylindrical portion 51a to the exposed portion 52. That is, it is processed into a shape such that the side surface S of the intermediate portion 51b is an inverted R surface. In the embedded portion 51, the heat transfer member 50 has a circular cross-sectional shape of both the cylindrical portion 51a and the intermediate portion 51b. The exposed portion 52 is formed in a flat plate shape having substantially the same shape as the electrode terminal 2a of the heat generating component 2 when viewed in a plan view, as in the first embodiment described above.

図14は、本発明の第3実施形態に係る孔形成工程を示す断面図である。本実施形態においては、上記した形状の伝熱部材50を配線基板10の貫通孔THに嵌合させるために、図14に示すような第3ドリルD3を使用する。これにより、上記した形状の伝熱部材50を嵌合させることができる貫通孔THを一回の穴あけ加工により形成することができる。このように形成された貫通孔THに対して、上記した形状の伝熱部材50を篏合させることにより、図12に示す放熱基板4が形成される。 FIG. 14 is a cross-sectional view showing a hole forming step according to a third embodiment of the present invention. In the present embodiment, a third drill D3 as shown in FIG. 14 is used in order to fit the heat transfer member 50 having the above-mentioned shape into the through hole TH of the wiring board 10. As a result, a through hole TH into which the heat transfer member 50 having the above-mentioned shape can be fitted can be formed by a single drilling process. The heat radiating substrate 4 shown in FIG. 12 is formed by arranging the heat transfer member 50 having the above-mentioned shape with the through hole TH thus formed.

以上のように、本発明の第3実施形態に係る放熱基板4は、伝熱部材50の中間部51bの形状が逆R面に沿った側面Sを有する形状であるため、配線基板10の貫通孔TH及び伝熱部材50の形状を高精度で容易に成形することができる。また、本実施形態に係る伝熱部材50は、直角の角部を持たない貫通孔THに嵌合されることになるため、例えば貫通孔THの内側面にめっき層が形成される場合に、プレス時において当該めっき層との接触面における圧力が部分ごとにばらつかないよう均一化させることができる。従って、本発明の第3実施形態に係る放熱基板4は、当該めっき層と伝熱部材50との密着性をより向上させることができる。 As described above, since the heat radiating substrate 4 according to the third embodiment of the present invention has the shape of the intermediate portion 51b of the heat transfer member 50 having the side surface S along the inverted R surface, the heat radiating substrate 4 penetrates the wiring board 10. The shapes of the holes TH and the heat transfer member 50 can be easily formed with high accuracy. Further, since the heat transfer member 50 according to the present embodiment is fitted into the through hole TH having no right-angled corners, for example, when a plating layer is formed on the inner surface of the through hole TH, for example, when a plating layer is formed on the inner surface of the through hole TH. At the time of pressing, the pressure on the contact surface with the plating layer can be made uniform so as not to vary from portion to portion. Therefore, the heat radiating substrate 4 according to the third embodiment of the present invention can further improve the adhesion between the plating layer and the heat transfer member 50.

以上で実施形態の説明を終えるが、本発明は上記した各実施形態に限定されるものではない。例えば、上記の各実施形態では、伝熱部材の露出部の厚みを問わないこととしたが、実装される発熱部品の発熱量に応じて厚みを増加させるよう形状を規定してもよい。 Although the description of the embodiment is completed above, the present invention is not limited to each of the above-described embodiments. For example, in each of the above embodiments, the thickness of the exposed portion of the heat transfer member is not limited, but the shape may be specified so as to increase the thickness according to the amount of heat generated by the heat-generating component to be mounted.

<本発明の実施態様>
本発明の第1の態様は、実装面に電極端子を備える発熱部品を実装するための放熱基板であって、円形の断面を有する貫通孔が形成された配線基板と、導電性材料からなり、前記貫通孔において前記配線基板の両面に亘る放熱経路を構成する伝熱部材と、を備え、前記伝熱部材は、前記貫通孔の内部に嵌合される埋設部と、前記配線基板の表面に沿って設けられる平板状の露出部と、により一体的に構成され、前記露出部は、前記発熱部品の前記電極端子と略同一形状である、放熱基板である。
<Embodiment of the present invention>
The first aspect of the present invention is a heat-dissipating substrate for mounting a heat-generating component having an electrode terminal on a mounting surface, which comprises a wiring board having a through hole having a circular cross section and a conductive material. The through hole comprises a heat transfer member constituting a heat dissipation path extending over both surfaces of the wiring board, and the heat transfer member is provided on a buried portion fitted inside the through hole and on the surface of the wiring board. The exposed portion is integrally formed with a flat plate-shaped exposed portion provided along the line, and the exposed portion is a heat radiating substrate having substantially the same shape as the electrode terminal of the heat generating component.

本発明の第1の態様に係る放熱基板は、配線基板において発熱部品が実装される位置に貫通孔が設けられ、当該貫通孔に嵌合される伝熱部材により放熱経路が構成されている。ここで、伝熱部材は、貫通孔に嵌合される埋設部と配線基板の表面に露出する露出部が一体的に形成された形状を有している。そして、埋設部は、発熱部品の電極端子よりも断面が小さい円柱状に形成されているため、配線基板に実装される発熱部品の周囲に配置される他の電子部品や配線パターンに干渉することがない。また、露出部は、発熱部品の電極端子と略同一形状に形成されているため、発熱部品からの熱を最大限受け入れつつ、一体的且つ連続的に形成された埋設部に当該熱を伝えることができる。これにより、本発明の第1の態様に係る放熱基板によれば、基板との接触面に電極端子を備える発熱部品が実装される場合であっても、実装面積を圧迫することなく放熱効率を向上させることができる。 The heat radiating substrate according to the first aspect of the present invention is provided with a through hole at a position on the wiring board on which a heat generating component is mounted, and a heat transfer member fitted in the through hole constitutes a heat radiating path. Here, the heat transfer member has a shape in which an embedded portion fitted in the through hole and an exposed portion exposed on the surface of the wiring board are integrally formed. Since the embedded portion is formed in a columnar shape having a smaller cross section than the electrode terminals of the heat-generating component, it may interfere with other electronic components and wiring patterns arranged around the heat-generating component mounted on the wiring board. There is no. Further, since the exposed portion is formed in substantially the same shape as the electrode terminal of the heat generating component, the heat from the heat generating component is received as much as possible, and the heat is transferred to the integrally and continuously formed embedded portion. Can be done. As a result, according to the heat dissipation substrate according to the first aspect of the present invention, even when a heat generating component having an electrode terminal is mounted on the contact surface with the substrate, the heat dissipation efficiency is improved without squeezing the mounting area. Can be improved.

本発明の第2の態様は、上記した本発明の第1の態様において、前記配線基板の表面と前記露出部との間が導電性材料によりめっき処理されている、放熱基板である。 A second aspect of the present invention is the heat-dissipating substrate in which the surface of the wiring board and the exposed portion are plated with a conductive material in the first aspect of the present invention described above.

本発明の第2の態様に係る放熱基板によれば、配線基板の発熱部品が実装される面において、めっきにより形成される外層配線層が伝熱部材の露出部と面接触するように構成されるため、発熱部品の電極端子から伝熱部材の露出部を介して外層配線層へ至る経路として、導電性に優れた導電路及び熱伝導性に優れた放熱経路を確保することができる。 According to the heat dissipation substrate according to the second aspect of the present invention, the outer layer wiring layer formed by plating is configured to be in surface contact with the exposed portion of the heat transfer member on the surface on which the heat generating component of the wiring substrate is mounted. Therefore, as a path from the electrode terminal of the heat generating component to the outer layer wiring layer through the exposed portion of the heat transfer member, it is possible to secure a conductive path having excellent conductivity and a heat dissipation path having excellent thermal conductivity.

本発明の第3の態様は、上記した本発明の第1又は2の態様において、前記貫通孔の内側面が導電性材料によりめっき処理されている、放熱基板である。 A third aspect of the present invention is the heat dissipation substrate in which the inner surface of the through hole is plated with a conductive material in the first or second aspect of the present invention described above.

本発明の第3の態様に係る放熱基板によれば、貫通孔の内側面において各配線層に接続されるめっき層が形成され、また、当該めっき層と伝熱部材とが面接触することにより接触面積が増加するため、発熱部品の電極端子から伝熱部材及び当該めっき層を介して配線基板の各配線層に至る導電路の電気伝導性を向上させることができる。 According to the heat dissipation substrate according to the third aspect of the present invention, a plating layer connected to each wiring layer is formed on the inner surface of the through hole, and the plating layer and the heat transfer member are in surface contact with each other. Since the contact area increases, it is possible to improve the electrical conductivity of the conductive path from the electrode terminal of the heat generating component to each wiring layer of the wiring substrate via the heat transfer member and the plating layer.

本発明の第4の態様は、上記した本発明の第1乃至3のいずれかに記載の態様において、前記伝熱部材の前記埋設部は、円柱形状の円柱部と、前記円柱部から前記露出部へかけて断面が連続的に拡大する中間部と、を含む、放熱基板である。 A fourth aspect of the present invention is the embodiment described in any one of the first to third aspects of the present invention, wherein the embedded portion of the heat transfer member has a cylindrical cylindrical portion and the exposed portion from the cylindrical portion. It is a heat dissipation substrate including an intermediate portion whose cross section continuously expands toward the portion.

本発明の第4の態様に係る放熱基板によれば、伝熱部材の断面形状を円形とした上で、発熱部品の電極端子の全面から熱を受ける露出部から相対的に小径の円柱部まで中間部により連続的に伝熱部材が形成されていることから、放熱経路が部分的に遮断されることなく発熱部品からの熱をスムーズに他方の面に伝えることができる。 According to the heat dissipation substrate according to the fourth aspect of the present invention, the heat transfer member has a circular cross-sectional shape, and from the exposed portion that receives heat from the entire surface of the electrode terminal of the heat generating component to the cylindrical portion having a relatively small diameter. Since the heat transfer member is continuously formed by the intermediate portion, the heat from the heat generating component can be smoothly transferred to the other surface without partially interrupting the heat dissipation path.

本発明の第5の態様は、上記した本発明の第4に記載の態様において、前記中間部は、前記円柱部から前記露出部へかけて直線的に拡大する、放熱基板である。 A fifth aspect of the present invention is, in the fourth aspect of the present invention described above, the intermediate portion is a heat dissipation substrate that linearly expands from the cylindrical portion to the exposed portion.

本発明の第5の態様に係る放熱基板によれば、伝熱部材の中間部の形状が逆円錐台形状であるため、配線基板の貫通孔及び伝熱部材を精度よく形成することができ、例えば貫通孔の内側面にめっき層が形成される場合に、当該めっき層と伝熱部材との密着性を向上させることができる。 According to the heat radiating substrate according to the fifth aspect of the present invention, since the shape of the intermediate portion of the heat transfer member is an inverted conical trapezoidal shape, the through hole of the wiring board and the heat transfer member can be formed accurately. For example, when a plating layer is formed on the inner surface of the through hole, the adhesion between the plating layer and the heat transfer member can be improved.

本発明の第6の態様は、上記した本発明の第4に記載の態様において、前記中間部は、前記円柱部から前記露出部へかけて逆R面に沿った形状で拡大する、放熱基板である。 A sixth aspect of the present invention is, in the fourth aspect of the present invention described above, the heat dissipation substrate in which the intermediate portion expands from the cylindrical portion to the exposed portion in a shape along an inverted R surface. Is.

本発明の第6の態様に係る放熱基板によれば、伝熱部材の中間部の側面形状が逆R面に沿った形状を有することにより、貫通孔の内側面に対して均等に接するため、例えば貫通孔の内側面にめっき層が形成される場合に、当該めっき層と伝熱部材との密着性を向上させることができる。 According to the heat dissipation substrate according to the sixth aspect of the present invention, since the side surface shape of the intermediate portion of the heat transfer member has a shape along the inverted R surface, the heat transfer member is evenly in contact with the inner side surface of the through hole. For example, when a plating layer is formed on the inner surface of the through hole, the adhesion between the plating layer and the heat transfer member can be improved.

本発明の第7の態様は、実装面に電極端子を備える発熱部品を実装するための放熱基板の製造方法であって、配線基板に円形の断面を有する貫通孔を形成する孔形成工程と、導電性材料からなる伝熱部材を、前記貫通孔に挿入される埋設部と、前記配線基板の表面に沿って設けられる平板状の露出部と、が一体的に構成される形状に加工する伝熱部材準備工程と、前記伝熱部材の前記埋設部を前記貫通孔に嵌合させる嵌合工程と、を含み、伝熱部材準備工程においては、前記露出部を前記発熱部品の前記電極端子と略同一形状に加工する、放熱基板の製造方法である。 A seventh aspect of the present invention is a method for manufacturing a heat transfer substrate for mounting a heat transfer component having an electrode terminal on a mounting surface, which comprises a hole forming step of forming a through hole having a circular cross section on the wiring substrate. A heat transfer member made of a conductive material is processed into a shape in which a buried portion inserted into the through hole and a flat plate-shaped exposed portion provided along the surface of the wiring substrate are integrally formed. The heat transfer member preparation step includes a fitting step of fitting the embedded portion of the heat transfer member into the through hole, and in the heat transfer member preparation step, the exposed portion is referred to the electrode terminal of the heat generation component. It is a method of manufacturing a heat transfer substrate that is processed into substantially the same shape.

本発明の第7の態様に係る放熱基板の製造方法は、配線基板に貫通孔を形成し、埋設部と露出部を有する伝熱部材を当該貫通孔に嵌合する。このとき、当該伝熱部材は、発熱部品の電極端子よりも断面が小さい円柱状の埋設部と、発熱部品の電極端子と略同一形状に形成される露出部とが一体的且つ連続的に形成される。これにより、本発明の第7の態様に係る放熱基板の製造方法によれば、基板との接触面に電極端子を備える発熱部品が実装される場合であっても、実装面積を圧迫することなく放熱効率を向上させることができる放熱基板を形成することができる。また、本発明の第7の態様に係る放熱基板の製造方法によれば、貫通孔の断面が円形であることにより、ドリルによる一回の孔あけ工程で配線基板に貫通孔を形成することができる。 In the method for manufacturing a heat radiating substrate according to a seventh aspect of the present invention, a through hole is formed in the wiring board, and a heat transfer member having an embedded portion and an exposed portion is fitted into the through hole. At this time, in the heat transfer member, a cylindrical embedded portion having a smaller cross section than the electrode terminal of the heat generating component and an exposed portion formed in substantially the same shape as the electrode terminal of the heat generating component are integrally and continuously formed. Will be done. As a result, according to the method for manufacturing a heat-dissipating substrate according to the seventh aspect of the present invention, even when a heat-generating component having an electrode terminal on a contact surface with the substrate is mounted, the mounting area is not squeezed. It is possible to form a heat dissipation substrate that can improve the heat dissipation efficiency. Further, according to the method for manufacturing a heat dissipation substrate according to the seventh aspect of the present invention, since the cross section of the through hole is circular, it is possible to form a through hole in the wiring board in one drilling step with a drill. can.

本発明の第8の態様は、上記した本発明の第7の態様において、前記嵌合工程の前に、前記配線基板の表面と前記露出部との間を導電性材料によりめっき処理する、放熱基板の製造方法である。 In the eighth aspect of the present invention, in the seventh aspect of the present invention described above, before the fitting step, the surface of the wiring board and the exposed portion are plated with a conductive material to dissipate heat. This is a method for manufacturing a substrate.

本発明の第8の態様に係る放熱基板の製造方法によれば、配線基板の発熱部品が実装される面において、めっきにより形成される外層配線層が伝熱部材の露出部と面接触するように構成されるため、発熱部品の電極端子から伝熱部材の露出部を介して外層配線層へ至る経路として、導電性に優れた導電路及び熱伝導性に優れた放熱経路を確保することができる。 According to the method for manufacturing a heat radiating substrate according to the eighth aspect of the present invention, the outer layer wiring layer formed by plating is in surface contact with the exposed portion of the heat transfer member on the surface on which the heat generating component of the wiring substrate is mounted. Therefore, it is possible to secure a conductive path with excellent conductivity and a heat dissipation path with excellent thermal conductivity as a path from the electrode terminal of the heat generating component to the outer layer wiring layer via the exposed portion of the heat transfer member. can.

本発明の第9の態様は、上記した本発明の第7又は8の態様において、前記嵌合工程の前に、前記貫通孔の内側面を導電性材料によりめっき処理する、放熱基板の製造方法である。 A ninth aspect of the present invention is the method for manufacturing a heat-dissipating substrate in which the inner surface of the through hole is plated with a conductive material before the fitting step in the seventh or eighth aspect of the present invention described above. Is.

本発明の第9の態様に係る放熱基板の製造方法によれば、貫通孔の内側面に形成されるめっき層が配線基板の各配線層に接続されると共に、当該めっき層と伝熱部材との接触面積が増加することにより、発熱部品の電極端子から、伝熱部材及び当該めっき層を介して配線基板の各配線層に至る導電路の電気伝導性を向上させることができる。 According to the method for manufacturing a heat dissipation substrate according to a ninth aspect of the present invention, the plating layer formed on the inner side surface of the through hole is connected to each wiring layer of the wiring board, and the plating layer and the heat transfer member are connected to each other. By increasing the contact area of the heat-generating component, it is possible to improve the electrical conductivity of the conductive path from the electrode terminal of the heat-generating component to each wiring layer of the wiring board via the heat transfer member and the plating layer.

本発明の第10の態様は、上記した本発明の第7乃至9のいずれかに記載の態様において、前記伝熱部材準備工程においては、前記伝熱部材の前記埋設部を、円柱形状の円柱部と、前記円柱部から前記露出部へかけて断面が連続的に拡大する中間部と、を含む形状に加工する、放熱基板の製造方法である。 A tenth aspect of the present invention is the embodiment described in any one of the seventh to ninth aspects of the present invention, wherein in the heat transfer member preparation step, the embedded portion of the heat transfer member is formed into a cylindrical cylinder. This is a method for manufacturing a heat transfer substrate, which is processed into a shape including a portion and an intermediate portion whose cross section continuously expands from the cylindrical portion to the exposed portion.

本発明の第10の態様に係る放熱基板の製造方法によれば、伝熱部材の断面形状を円形とした上で、発熱部品の電極端子の全面から熱を受ける露出部から相対的に小径の円柱部まで中間部により連続的に伝熱部材が形成されていることから、放熱経路が部分的に遮断されることなく発熱部品からの熱をスムーズに他方の面に伝えることができる放熱基板を製造することができる。 According to the method for manufacturing a heat radiating substrate according to the tenth aspect of the present invention, the heat transfer member has a circular cross-sectional shape and has a relatively small diameter from the exposed portion that receives heat from the entire surface of the electrode terminal of the heat generating component. Since the heat transfer member is continuously formed by the intermediate part up to the columnar part, the heat dissipation substrate that can smoothly transfer the heat from the heat generating component to the other surface without partially interrupting the heat dissipation path. Can be manufactured.

本発明の第11の態様は、上記した本発明の第10の態様において、前記伝熱部材準備工程においては、前記中間部を前記円柱部から前記露出部へかけて直線的に拡大する形状に加工する、放熱基板の製造方法である。 The eleventh aspect of the present invention is the tenth aspect of the present invention described above, in which the intermediate portion is linearly expanded from the columnar portion to the exposed portion in the heat transfer member preparation step. It is a method of manufacturing a heat transfer substrate to be processed.

本発明の第11の態様に係る放熱基板の製造方法によれば、伝熱部材の中間部の形状が逆円錐台形状であるため、配線基板の貫通孔及び伝熱部材を精度よく形成することができ、例えば貫通孔の内側面にめっき層が形成される場合に、当該めっき層と伝熱部材との密着性を向上させることができる。 According to the method for manufacturing a heat transfer substrate according to the eleventh aspect of the present invention, since the shape of the intermediate portion of the heat transfer member is an inverted truncated cone shape, the through hole of the wiring board and the heat transfer member are accurately formed. For example, when a plating layer is formed on the inner surface of the through hole, the adhesion between the plating layer and the heat transfer member can be improved.

本発明の第12の態様は、上記した本発明の第10の態様において、前記伝熱部材準備工程においては、前記中間部を前記円柱部から前記露出部へかけて逆R面に沿った形状で拡大する形状に加工する、放熱基板の製造方法である。 A twelfth aspect of the present invention is the tenth aspect of the present invention, wherein in the heat transfer member preparation step, the intermediate portion is formed along the inverted R surface from the cylindrical portion to the exposed portion. This is a method of manufacturing a heat-dissipating substrate, which is processed into a shape that expands with.

本発明の第12の態様に係る放熱基板の製造方法によれば、伝熱部材の中間部の側面形状が逆R面に沿った形状を有することにより、貫通孔の内側面に対して均等に接するため、例えば貫通孔の内側面にめっき層が形成される場合に、当該めっき層と伝熱部材との密着性を向上させることができる。 According to the method for manufacturing a heat radiating substrate according to the twelfth aspect of the present invention, the side surface shape of the intermediate portion of the heat transfer member has a shape along the inverted R surface, so that the side surface shape is uniform with respect to the inner side surface of the through hole. Therefore, when a plating layer is formed on the inner surface of the through hole, for example, the adhesion between the plating layer and the heat transfer member can be improved.

1、3、4 放熱基板
2 発熱部品
2a 電極端子
10 配線基板
20 伝熱部材
21 埋設部
22 露出部
TH 貫通孔
1, 3, 4 Heat dissipation board 2 Heat generation component 2a Electrode terminal 10 Wiring board 20 Heat transfer member 21 Embedded part 22 Exposed part TH through hole

Claims (9)

実装面に電極端子を備える発熱部品を実装するための放熱基板であって、
略真円形の断面を有する貫通孔が形成された配線基板と、
導電性材料からなり、前記貫通孔において前記配線基板の両面に亘る放熱経路を構成する伝熱部材と、を備え、
前記伝熱部材は、前記貫通孔の内部に嵌合される埋設部と、前記配線基板の表面に沿って設けられる平板状の露出部と、により一体的に構成され、
前記露出部は、前記発熱部品の前記電極端子と略同一形状であり、
前記伝熱部材の前記埋設部は、円柱形状の円柱部と、前記円柱部から前記露出部へかけて断面が連続的に拡大する中間部と、を含む、放熱基板。
A heat-dissipating board for mounting heat-generating components equipped with electrode terminals on the mounting surface.
A wiring board with a through hole having a substantially circular cross section,
A heat transfer member made of a conductive material and forming a heat dissipation path over both sides of the wiring board in the through hole is provided.
The heat transfer member is integrally composed of an embedded portion fitted inside the through hole and a flat plate-shaped exposed portion provided along the surface of the wiring board.
The exposed portion has substantially the same shape as the electrode terminal of the heat generating component, and has substantially the same shape .
The embedded portion of the heat transfer member is a heat dissipation substrate including a cylindrical portion having a cylindrical shape and an intermediate portion whose cross section continuously expands from the columnar portion to the exposed portion .
前記中間部は、前記円柱部から前記露出部へかけて直線的に拡大する、請求項に記載の放熱基板。 The heat dissipation substrate according to claim 1 , wherein the intermediate portion linearly expands from the cylindrical portion to the exposed portion. 前記中間部は、前記円柱部から前記露出部へかけて逆R面に沿った形状で拡大する、請求項に記載の放熱基板。 The heat-dissipating substrate according to claim 1 , wherein the intermediate portion expands from the cylindrical portion to the exposed portion in a shape along an inverted R surface. 実装面に電極端子を備える発熱部品を実装するための放熱基板の製造方法であって、
配線基板に略真円形の断面を有する貫通孔を形成する孔形成工程と、
導電性材料からなる伝熱部材を、前記貫通孔に挿入される埋設部と、前記配線基板の表面に沿って設けられる平板状の露出部と、が一体的に構成される形状に加工する伝熱部材準備工程と、
前記伝熱部材の前記埋設部を圧入法又はかしめ法により前記貫通孔に嵌合させる嵌合工程と、を含み、
伝熱部材準備工程においては、前記露出部を前記発熱部品の前記電極端子と略同一形状に加工する、放熱基板の製造方法。
It is a method of manufacturing a heat dissipation board for mounting a heat-generating component having electrode terminals on the mounting surface.
A hole forming process for forming a through hole having a substantially circular cross section on a wiring board,
A heat transfer member made of a conductive material is processed into a shape in which a buried portion inserted into the through hole and a flat plate-shaped exposed portion provided along the surface of the wiring board are integrally formed. Thermal member preparation process and
A fitting step of fitting the embedded portion of the heat transfer member into the through hole by a press-fitting method or a caulking method is included.
In the heat transfer member preparation step, a method for manufacturing a heat radiating substrate, in which the exposed portion is processed into substantially the same shape as the electrode terminal of the heat generating component.
前記嵌合工程の前に、前記配線基板の表面と前記露出部との間を導電性材料によりめっき処理する、請求項に記載の放熱基板の製造方法。 The method for manufacturing a heat-dissipating substrate according to claim 4 , wherein the surface of the wiring board and the exposed portion are plated with a conductive material before the fitting step. 前記嵌合工程の前に、前記貫通孔の内側面を導電性材料によりめっき処理する、請求項4又は5に記載の放熱基板の製造方法。 The method for manufacturing a heat-dissipating substrate according to claim 4 or 5 , wherein the inner surface of the through hole is plated with a conductive material before the fitting step. 前記伝熱部材準備工程においては、前記伝熱部材の前記埋設部を、円柱形状の円柱部と、前記円柱部から前記露出部へかけて断面が連続的に拡大する中間部と、を含む形状に加工する、請求項4乃至6のいずれかに記載の放熱基板の製造方法。 In the heat transfer member preparation step, the embedded portion of the heat transfer member has a shape including a cylindrical portion and an intermediate portion whose cross section continuously expands from the columnar portion to the exposed portion. The method for manufacturing a heat transfer substrate according to any one of claims 4 to 6 , which is processed in 1. 前記伝熱部材準備工程においては、前記中間部を前記円柱部から前記露出部へかけて直線的に拡大する形状に加工する、請求項に記載の放熱基板の製造方法。 The method for manufacturing a heat dissipation substrate according to claim 7 , wherein in the heat transfer member preparation step, the intermediate portion is processed into a shape that linearly expands from the cylindrical portion to the exposed portion. 前記伝熱部材準備工程においては、前記中間部を前記円柱部から前記露出部へかけて逆R面に沿った形状で拡大する形状に加工する、請求項に記載の放熱基板の製造方法。 The method for manufacturing a heat dissipation substrate according to claim 7 , wherein in the heat transfer member preparation step, the intermediate portion is processed into a shape that expands in a shape along an inverted R surface from the cylindrical portion to the exposed portion.
JP2019566857A 2019-08-08 2019-08-08 Heat dissipation board and its manufacturing method Active JP7018967B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031294 WO2021024445A1 (en) 2019-08-08 2019-08-08 Heat dissipation substrate and production method therefor

Publications (2)

Publication Number Publication Date
JPWO2021024445A1 JPWO2021024445A1 (en) 2021-09-13
JP7018967B2 true JP7018967B2 (en) 2022-02-14

Family

ID=74503047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019566857A Active JP7018967B2 (en) 2019-08-08 2019-08-08 Heat dissipation board and its manufacturing method

Country Status (2)

Country Link
JP (1) JP7018967B2 (en)
WO (1) WO2021024445A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205992A (en) 2009-03-04 2010-09-16 Hitachi Kokusai Electric Inc Printed board
JP2015133373A (en) 2014-01-10 2015-07-23 株式会社デンソー Circuit board and electronic device
JP2018125515A (en) 2017-02-03 2018-08-09 株式会社デンソー Electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786717A (en) * 1993-09-17 1995-03-31 Fujitsu Ltd Printing wiring board structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205992A (en) 2009-03-04 2010-09-16 Hitachi Kokusai Electric Inc Printed board
JP2015133373A (en) 2014-01-10 2015-07-23 株式会社デンソー Circuit board and electronic device
JP2018125515A (en) 2017-02-03 2018-08-09 株式会社デンソー Electronic device

Also Published As

Publication number Publication date
WO2021024445A1 (en) 2021-02-11
JPWO2021024445A1 (en) 2021-09-13

Similar Documents

Publication Publication Date Title
US6900535B2 (en) BGA/LGA with built in heat slug/spreader
JP6021504B2 (en) Printed wiring board, printed circuit board, and printed circuit board manufacturing method
US20130027896A1 (en) Electronic component embedded printed circuit board and method of manufacturing the same
WO2009110376A1 (en) Leadframe substrate, semiconductor module and method for manufacturing leadframe substrate
JP2008103615A (en) Electronic component mounting multilayer wiring board and its manufacturing method
JP5885630B2 (en) Printed board
JPWO2017017885A1 (en) Mounting structure, manufacturing method of mounting structure, and radio
JP6716045B1 (en) Component-embedded substrate and method for manufacturing component-embedded substrate
US10051734B2 (en) Wiring board and method for manufacturing the same
JP5380242B2 (en) Manufacturing method of electronic component mounting substrate and electronic component mounting substrate
JP2013098185A (en) Wiring board with heat sink and method for manufacturing the same
JP2008198921A (en) Module component and manufacturing method
JP5397012B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2010062199A (en) Circuit board
JP2009135391A (en) Electronic device and method of manufacturing the same
JP5539453B2 (en) Electronic component-mounted multilayer wiring board and manufacturing method thereof
JP7018967B2 (en) Heat dissipation board and its manufacturing method
JP2019029622A (en) Heat dissipation substrate and method for manufacturing heat dissipation substrate
JP5369875B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
TWI599283B (en) Printed circuit board and fabrication method thereof
JP2020167217A (en) Wiring board, and manufacturing method thereof
JP5601413B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP7161629B1 (en) Substrate with built-in component and method for manufacturing the same
JP2005051012A (en) High heat radiating plastic package and its manufacturing method
JP2007141887A (en) Semiconductor device and printed wiring board employing it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211105

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211115

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220201

R150 Certificate of patent or registration of utility model

Ref document number: 7018967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150