JP7014041B2 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
JP7014041B2
JP7014041B2 JP2018092390A JP2018092390A JP7014041B2 JP 7014041 B2 JP7014041 B2 JP 7014041B2 JP 2018092390 A JP2018092390 A JP 2018092390A JP 2018092390 A JP2018092390 A JP 2018092390A JP 7014041 B2 JP7014041 B2 JP 7014041B2
Authority
JP
Japan
Prior art keywords
threshold value
calculation unit
frequency
data
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018092390A
Other languages
English (en)
Other versions
JP2019197027A (ja
Inventor
卓也 ▲高▼山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018092390A priority Critical patent/JP7014041B2/ja
Priority to DE112019002401.9T priority patent/DE112019002401T5/de
Priority to PCT/JP2019/018558 priority patent/WO2019216375A1/ja
Priority to CN201980031456.5A priority patent/CN112105947A/zh
Publication of JP2019197027A publication Critical patent/JP2019197027A/ja
Priority to US17/092,634 priority patent/US20210055401A1/en
Application granted granted Critical
Publication of JP7014041B2 publication Critical patent/JP7014041B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/282Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using a frequency modulated carrier wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4056Means for monitoring or calibrating by simulation of echoes specially adapted to FMCW
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • G01S7/2883Coherent receivers using FFT processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本開示は、受信信号からピークを検出する技術に関する。
車両のバンパ内などに搭載されたレーダ装置によって、レーダ波を送受信して受信信号を取得し、取得した受信信号から車両周囲の他車両や歩行者などのターゲットを検出することが行われている。ところで、車両に搭載されたレーダ装置により取得された受信信号には、ターゲットからの反射信号以外に、車両の内部反射信号が含まれることがある。車両の内部反射信号は、バンパ又はレドームからの反射信号や、車両の内部パーツで生じて車両内部を伝わった反射信号などを含む。
一般に、レーダ装置によってターゲットを検出する場合、事前にレーダ装置の雑音電力値を推定し、推定した雑音電力値に所定の電力値を付加した値を検出閾値に設定して、受信信号のスペクトラム電力が検出閾値よりも大きいピークを検出する。同様のターゲット検出方法を車両に搭載されたレーダ装置に適用した場合、本来検出したくない内部反射信号の電力値が検出閾値を超えて、ターゲットからの反射信号のピークだけでなく内部反射信号のピークも検出されることがある。しかしながら、車両の内部反射信号は、レーダ装置の搭載位置や、レーダ装置と車両の内部パーツとの位置関係によって複雑に変わるため、事前にどのような内部反射信号が受信されるか推定することが困難である。そのため、内部反射信号のピークが検出されても、内部反射信号のピークとレーダ装置近くに存在するターゲットからの反射信号のピークとを区別することは困難である。
そこで、レーダ装置により受信された受信信号から静止クラッタ成分を除去する方法として、Moving Target Indication(以下、MTI)処理がある。MTI処理は、受信信号の電力スペクトラムの周波数ビンごとに、時系列にハイパスフィルタをかけることで、振幅の位相変動がない静止クラッタ成分の信号のみが抑圧された受信信号を生成する。そして、MTI処理は、生成した受信信号について検出閾値を検出し、受信信号の電力と検出閾値とを比較してピークを検出する。
Mark A. Richards著「Fundamentals of Radar Signal Processing」Chapter 5: Doppler Processing
しかしながら、MTI処理は、抑圧したい信号の振幅又は位相成分が時間的に完全に停止していない場合や、レーダシステム特性に時間変動がある場合に、完全に信号を抑圧することができない。そのため、抑圧したい信号の振幅又は位相成分が少しでも変動した場合には、抑圧したい信号の電力が、検出閾値よりも大きくなり、ピークとして検出される可能性がある。したがって、車両に搭載されたレーダ装置によって取得された受信信号にMTI処理を適用した場合、内部反射信号の振幅又は位相成分が時間的に微小な変化をして内部反射信号を十分に抑圧することができず、内部反射信号を誤検出するおそれがある。
本開示は、車両の内部反射信号の誤検出を抑制可能なレーダ装置を提供することを目的とする。
本開示の1つの局面は、車両(80)に搭載されたレーダ装置(100)であって、送信アンテナ(30)と、受信アンテナ(40)と、信号取得部(50,60)と、データ算出部(10)と、平均算出部(10)と、第1閾値算出部(10)と、第2閾値算出部(10)と、検出閾値算出部(10)と、ピーク検出部(10)と、を備える。送信アンテナは、レーダ波を送信するように構成される。受信アンテナは、レーダ波が反射されて生じた反射波を受信するように構成される。信号取得部は、反射波に基づいて受信信号を取得するように構成される。データ算出部は、信号取得部により取得された受信信号を周波数解析して、周波数の関数である複素データを算出するように構成される。平均算出部は、今回の処理サイクル以前の決められた期間における複数の複素データを周波数ビンごとに平均した、平均データを算出するように構成される。第1閾値算出部は、平均算出部により算出された平均データの電力値に、決められた加算値を加算して、周波数の関数である第1閾値を算出するように構成される。第2閾値算出部は、レーダ装置による観測における雑音電力に基づいて、周波数の関数である第2閾値を算出するように構成される。検出閾値算出部は、周波数ビンごとに、第1閾値算出部により算出された第1閾値と第2閾値算出部により算出された第2閾値とを比較して、大きい方の値を検出閾値として算出するように構成される。ピーク検出部は、周波数ビンごとに、今回の処理サイクルにおける複素データの電力値と検出閾値とを比較して、複素データの電力値が検出閾値よりも大きく且つ極大となっている周波数をピークとして検出するように構成される。
本開示の1つの局面によれば、決められた期間において算出された複素データが周波数ビンごとに平均されて、平均データが算出され、平均データの電力値に加算値が加算されて、第1閾値が算出される。決められた期間において、車両のバンパや内部パーツ等とレーダ装置との相対的な位置関係はほとんど変化しないため、各処理サイクルでの車両内部反射信号を示す複素データの振幅の位相はほとんど変化しない。一方、決められた期間において、ターゲットとレーダ装置との相対的な位置関係は変化するため、各処理サイクルでのターゲット反射信号を示す複素データの振幅及び/又は位相はランダムに変化する。よって、平均データの電力値は、今回の処理サイクルの複素データの電力値と比べて、内部反射信号が観測された周波数ビンではほとんど変化せず、ターゲット反射信号が観測された周波数ビンでは比較的大きく低下する。したがって、第1閾値に対するターゲット反射信号の影響は比較的小さくなり、第1閾値は、内部反射信号を示す複素データの電力値に加算値を加算した値と同程度の値になる。
さらに、第1閾値と雑音電力基づいて算出された第2閾値とが比較され、大きい方の値が検出閾値として算出される。すなわち、雑音電力よりも内部反射信号の電力値が大きい場合には、内部反射信号の電力値に基づいた第1閾値が検出閾値として算出される。そして、今回の処理サイクルにおける複素データの電力値と検出閾値とが比較され、ピークの周波数が検出される。したがって、検出閾値に平均データの電力値をフィードバックしたことにより、車両の内部反射信号の誤検出を抑制することができる。
なお、この欄及び特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本開示の技術的範囲を限定するものではない。
第1実施形態に係るレーダ装置の構成を示す図である。 FMCW変調波形を示す図である。 第1実施形態に係るターゲット情報取得処理の手順を示すフローチャートである。 ビート信号のタイムチャートを示す図である。 ビート信号の周波数スペクトルを示す図である。 ターゲットからの反射と車両内部反射とを説明する図である。 ターゲット反射及び車両内部反射のスペクトラム電力と雑音電力から求まる閾値とを示す図である。 MTI処理におけるピーク検出方法を説明する図である。 第1実施形態に係るピーク検出処理の手順を示すフローチャートである。 レーダ装置と反射体との位置関係が変動する場合における平均データのベクトルを示す図である。 レーダ装置と反射体との位置関係が変動しない場合における平均データのベクトルを示す図である。 ターゲット反射及び車両内部反射の電力スペクトラムと、雑音電力から求まる閾値と、第1実施形態に係る検出閾値とを示す図である。 第2実施形態に係るピーク検出処理の手順を示すフローチャートである。 ターゲット反射及び車両内部反射の電力スペクトラムと、第2実施形態に係る検出閾値とを示す図である。
以下、図面を参照しながら、発明を実施するための形態を説明する。
(第1実施形態)
<1.構成>
まず、本実施形態に係るレーダ装置100の構成について、図1を参照して説明する。レーダ装置100は、Frequency Modulated Continuous Wave(以下、FMCW)方式のレーダ装置である。図8に示すように、レーダ装置100は、車両80の前方のバンパ81の内側における車幅方向の中央に搭載されている。
レーダ装置100は、処理装置10と、傾斜波発生器20と、送信アンテナ30と、K(Kは自然数)チャンネルの受信アンテナ40と、K個の混合器50と、AD変換器60と、を備える。
処理装置10は、CPU11,ROM12,RAM13、及びI/O等を備えるマイクロコンピュータを中心に構成されている。処理装置10は、送信信号の周波数を設定する周波数制御信号を生成して、生成した周波数制御信号を傾斜波発生器20へ送信する。傾斜波発生器20は、処理装置10から受信した周波数制御信号に従ってレーダ信号を生成し、生成したレーダ信号を送信アンテナ30へ送信する。また、傾斜波発生器20は、生成したレーダ信号をK個の混合器50のそれぞれへ供給する。
送信アンテナ30は、傾斜波発生器20から受信したレーダ信号に従ってFMCW変調したレーダ波を放射する。具体的には、図2に示すように、送信アンテナ30は、変調時間Tにおいて、周波数がキャリア周波数fcからfc+Fまで単調増加する上り傾斜波と、変調時間Tにおいて、周波数がfc+Fからfcまで単調減少する下り傾斜波との組み合わせを、処理サイクルごとに繰り返し送信する。
K個の受信アンテナ40は、水平方向に一列に配置されており、各受信アンテナ40は、レーダ波が反射体で反射されて生じた反射波を受信して、反射信号を混合器50へ供給する。
K個の混合器50は、1個の受信アンテナ40に対して1個ずつ設けられている。各混合器50は、傾斜波発生器20から供給されたレーダ信号と、受信アンテナ40から供給された反射信号とを混合して、レーダ信号と反射信号との周波数の差分を周波数成分とする周波数差信号(以下、ビート信号)B(t)を生成する。図4にビート信号B(t)のタイムチャートを示す。ビート信号B(t)は、次の式(1)で表される。fbはビート周波数を表し、2つの項を加算した値が下り傾斜時のビート周波数、2つの項を減算した値が上り傾斜時のビート周波数を表す。θiは初期位相を表す。また、cは光速を表し、vはレーダ装置100に対するターゲットの速度を表し、rはレーダ装置100からターゲットまでの距離を表す。
Figure 0007014041000001
そして、各混合器50は、生成したビート信号B(t)をAD変換器60へ送信する。本実施形態では、ビート信号B(t)が受信信号に相当し、混合器50及びAD変換器60が信号取得部に相当する。
AD変換器60は、K個の混合器50から送信されたKチャンネルのビート信号B(t)を、それぞれサンプリングして、離散ビート信号b(t)を生成し、生成したKチャンネルの離散ビート信号b(t)を処理装置10へ送信する。詳しくは、AD変換器60は、傾斜波発生器20とクロック同期しており、処理サイクルごとに、レーダ波の送信開始から決まった一定の時間オフセットした後にビート信号B(t)のサンプリングを開始し、一定の時間区間をサンプリングする。
処理装置10は、AD変換器60から取り込んだKチャンネルの離散ビート信号について、周波数解析等の信号処理を実行する。処理装置10は、CPUがROM等の非遷移的実体的記録媒体に格納されたプログラムコードをロードして実行することにより、データ算出部、平均算出部、第1閾値算出部、第2閾値算出部、検出閾値算出部、及びピーク検出部の機能を実現する。これらの機能を実現する手法は、ソフトウェアに限るものではなく、その一部又は全部の機能を、論理回路やアナログ回路等を組み合わせたハードウェアを用いて実現してもよい。また、処理装置10には、車両80の車速を検出する車速センサからの検出信号が入力される。
<2.処理>
<2-1.全体処理>
次に、処理装置10が実行するターゲット情報取得処理の手順について、図3のフローチャートを参照して説明する。処理装置10は、レーダ波を送信する都度、ターゲット情報取得処理を繰り返し実行する。
まず、S10では、処理装置10は、AD変換器60によってサンプリングされたKチャンネルの上り傾斜波及び下り傾斜波の離散ビート信号b(t)を取得する。
続いて、S20では、処理装置10は、チャンネルごとに、上り傾斜時及び下り傾斜時の離散ビート信号b(t)のそれぞれに対して複素FFT処理を実行し、図5に示すように、上り傾斜時及び下り傾斜時のFFT複素データをそれぞれ算出する。複素FFT処理は、周波数解析の一例である。今回の処理サイクルの時刻t0におけるFFT複素データS(t0,fb)は、次の式(2)で表されるように、ビート周波数fbの関数である。FFT複素データS(t0,fb)は、振幅の大きさとその位相の情報を含む。FFT複素データS(t0,fb)の位相は、反射体が少しでも動くと敏感に反応する。例えば、キャリア周波数fcが77GHzの場合、反射体の位置が1mm変化すると、位相が185°回転する。
Figure 0007014041000002
FFT複素データS(t0,fb)の電力スペクトラムPsは、図7の実線と一点鎖線とを合わせたグラフになる。ビート周波数fbは、距離rと相関があり、距離情報を表す。処理装置10は、Kチャンネル分の上り傾斜時のFFT複素データS(t0,fb)を周波数ビンごとに加算して上り傾斜時の合成複素データSk(t0,fb)を算出する。また、処理装置10は、Kチャンネル分の下り傾斜時のFFT複素データS(t0,fb)を周波数ビンごとに加算して下り傾斜時の合成複素データSk(t0,fb)を算出する。本実施形態では、合成複素データSk(t0,fb)が複素データに相当する。
続いて、S30では、処理装置10は、周波数ビンごとに、上り傾斜時及び下り傾斜時の合成複素データSk(t0,fb)のそれぞれと後述する検出閾値とを比較する。そして、処理装置10は、上り傾斜時及び下り傾斜時の合成複素データSk(t0,fb)のそれぞれから、ピークとして、合成複素データSk(t0,fb)の電力値が検出閾値よりも大きく、且つ、極大となっているビート周波数fb(以下、ピーク周波数)を検出する。複数のターゲットが観測された場合には、複数のピーク周波数が検出される。ピーク検出処理の詳細は後述する。
続いて、S40では、処理装置10は、Kチャンネルの上り傾斜時及び下り傾斜時のFFT複素データS(t0,fb)のそれぞれから、S30において検出されたピーク周波数の成分を抽出する。そして、処理装置10は、抽出したK個の上り傾斜時のピーク周波数の成分について、Multiple Signal Classification(以下、MUSIC)等のアルゴリズムを用いた到来方向推定処理を実行して、ターゲットごとに、車両80に対するターゲットの方位を推定する。同様に処理装置10は、抽出したK個の下り傾斜時のピーク周波数の成分について、到来方向推定処理を実行して、ターゲットごとに、車両80に対するターゲットの方位を推定する。
続いて、S50では、処理装置10は、S40で推定した上り傾斜時及び下り傾斜時の各ターゲットの方位と、上り傾斜時及び下り傾斜時の合成複素データSk(t0,fb)の電力情報とを用いて、同じターゲットに対応した上り傾斜時のピーク周波数と、下り傾斜時のピーク周波数とをペアマッチする。そして、処理装置10は、ターゲットごとに、ペアマッチした上り傾斜時及び下り傾斜時のピーク周波数から、車両80に対するターゲットの速度v、及び車両80からターゲットまでの距離rを算出する。
続いて、S60では、処理装置10は、今回の処理サイクルにおいて検出されたターゲットのトラッキングを行う。すなわち、処理装置10は、前回の処理サイクルまでに検出されたターゲットの情報と、今回の処理サイクルにおいて検出されたターゲットの情報とを接続し、ターゲットの移動方向などを算出する。
続いて、S70では、処理装置10は、ターゲットの速度v、距離r、方位、移動方向などを含むターゲット情報を、ECUへ送信する。ECUは、ターゲット情報を用いて、走行支援などのアプリケーションを実行する。例えば、ECUは、ターゲット情報を用いて、車両80がターゲットと衝突する可能性が比較的高い場合に、警報を出力するアプリケーションを実行する。以上で本処理を終了する。
なお、本実施形態では、S20の処理が、処理装置10が実現するデータ算出部の機能に相当する。
<2-2.内部反射>
次に、レーダ装置100が受信する反射信号について説明する。図6に示すように、レーダ装置100は、車両80の周辺に存在する他車両90や歩行者95を検出すべきターゲットとしている。しかしながら、レーダ装置100は、ターゲットからの反射波以外に、検出したくない車両80の内部反射波も受信する。内部反射波は、車両80内で生じた反射波であり、図6に示すように、バンパ81によって送信波が反射された生じた反射波を含む。レーダ装置100が、バンパ81の外部に搭載されている場合には、内部反射波は、バンパ81の代わりにレーダ装置100を保護するレドームによって送信波が反射されて生じた反射波を含む。また、内部反射波は、車両80の内部パーツ82で送信波が反射されて生じた反射波なども含む。送信波は、バンパ81を介して内部パーツ82へ伝達されて反射されることがある。また、内部パーツ82で反射されて生じた反射波は、バンパ81を介してレーダ装置100へ伝わることがある。
レーダ装置100(具体的には、送信アンテナ30及び受信アンテナ40)と、バンパ81、内部パーツ82との相対的な位置関係は、時間的にほぼ変動しない。具体的には、この相対的な位置関係は、時間的にmmオーダー未満しか変動しない。そのため、車両内部反射信号を示す合成複素データSk(t0,fb)の振幅の位相は、時間的にほぼ変動しない。一方、レーダ装置100とターゲットとの相対的な位置関係は、時間的にmmオーダー以上変動する。そのため、ターゲット反射信号を示す合成複素データSk(t0,fb)の振幅の位相は、時間的に比較的大きく変動する。
図7に示すように、合成複素データSk(t0,fb)の電力スペクトラムPsにおいて、車両内部反射信号を示すピークpk_iは、車両80から近い距離に表れる。そして、電力スペクトラムPsにおいて、ピークpk_iと近い位置に、レーダ装置100と近い位置に存在する近接ターゲットを示すピークpk_tも現れる。そのため、電力スペクトラムPsの電力値と、雑音電力に基づいて算出された検出閾値とを比較してピークを検出した場合、ピークpk_iとピークpk_tのどちらも検出される。検出されたピークpk_i,pk_tは、車両内部反射とターゲットのどちらを示すピークなのかを区別をつけることが困難である。
なお、本実施形態において、検出閾値は、雑音電力から求められる検出閾値である。雑音電力は、レーダ装置100の熱雑音電力、路面反射電力など、ターゲットからの反射電力以外の電力である。例えば、ターゲットを歩行者のみにした場合には、他車両からの反射電力も雑音電力に含まれる。
ここで、受信信号から静止クラッタ成分を抑圧する手法として、図8に示すMTI処理がある。MTI処理は、チャンネルごと且つ距離ビンごと(すなわち周波数ビンごと)に、FFT複素データS(t,fb)の時系列にハイパスフィルタを適用することで、振幅及び位相の変動がない信号が抑圧された抑圧データSm(t,fb)を生成する。図8は、説明をわかりやすくするため、ハイパスフィルタ処理を、時刻t0のFFT複素データS(t0,fb)から、t0-nT(n=0,1,…N-1)の期間(すなわち、t0~t0-(N-1)Tの期間)の時系列の平均値を除去する処理に置き換えている。Nは、自然数であり、ハイパスフィルタ処理を適用する時系列に含まれる処理サイクル数を表す。
そして、MTI処理は、生成した各チャンネルの抑圧データSm(t0,fb)を合成した後、合成抑圧データSmk(t0,fb)について検出閾値を検出する。検出閾値は、例えば、Constant False Alarm Rate(以下、CFAR)検出によって検出される。CFARは、検出閾値を設定する距離ビン周辺の信号電力に基づいて検出閾値を設定する方法である。
MTI処理は、抑圧したい信号の振幅又は位相成分が時間的に少しでも変動する場合に、抑圧したい信号を小さくすることはできるものの、完全に抑圧することができないことがある。この場合、抑圧したい信号の電力が検出閾値よりも大きくなることがある。
バンパ81、内部パーツ82、送信アンテナ30、及び受信アンテナ40は、車両80の走行に伴う振動によって、mm未満のオーダーの微小変動することがある。よって、内部反射信号を示す合成複素データSk(t,fb)の振幅の位相成分は、時間的に微小な変化をすることがある。したがって、レーダ装置100によって算出された時刻t0の合成複素データSk(t0,fb)に対してMTI処理を実行しても、内部反射信号の電力が検出閾値よりも大きくなる可能性がある。
そこで、本実施形態では、処理装置10は、チャンネルごと且つ周波数ビンごとに、時刻t0から時刻t0-(N-1)Tまでの期間のFFT複素データS(t,fb)の時系列を平均し、平均データSav(t0,fb)を算出する。そして、処理装置10は、各チャンネルの平均データSav(t0,fb)を合成して、合成平均データSavk(t0,fb)を算出し、算出した合成平均データSavk(t0,fb)を検出閾値にフィードバックする。すなわち、車両内部反射信号が観測された周波数ビンの検出閾値を、車両内部反射信号の電力に応じて大きくすることで、車両内部反射信号の誤検出を抑制する。本実施形態では、合成平均データSavk(t0,fb)が平均データに相当する。
<2-3.ピーク検出処理>
次に、処理装置10が実行するピーク検出処理の手順について、図9のフローチャートを参照して説明する。
まず、S300では、処理装置10は、車速センサ70から受信した検出信号に基づいて、後述する平均期間において、車両80が移動していたか否か判定する。平均期間において車両80がまったく移動せずに停止していた場合は、S320の処理へ進み、平均期間において車両80が移動していた場合は、S310の処理へ進む。
S310では、処理装置10は、チャンネルごと且つ周波数ビンごとに、予め決められた平均期間におけるFFT複素データS(t,fb)を平均して、平均データSav(t0,fb)を算出する。平均期間を、t0-nT(n=0,1,…N-1)の期間とすると、各チャンネルの平均データSav(t0,fb)は、次の式(3)で表される。さらに、処理装置10は、Kチャンネル分の平均データSav(t0,fb)を合成して、合成平均データSavk(t0,fb)を算出する。具体的には、処理装置10は、過去のN個の処理サイクルで算出したFFT複素データ(t,fb)をすべて保持しておいて、N個のFFT複素データ(t,fb)の平均を算出する。
なお、処理装置10は、最新の時刻t0のFFT複素データ(t0,fb)と、前回の処理サイクルにおいて算出した平均データSav(t0-1,fb)とから、今回の処理サイクルにおける平均データSav(t0,fb)を算出してもよい。
Figure 0007014041000003
図10に示すように、レーダ装置100と反射体との相対的な位置関係が変動する場合(具体的には、mmオーダー以上の変動)、FFT複素データS(t,fb)の振幅の位相がランダムに変化するため、平均ベクトルの大きさが非常に小さくなる。その結果、平均データSav(t0,fb)の電力は、FFT複素データS(t0,fb)の電力と比べて、10×log10(N)だけ低下する。
一方、図11に示すように、レーダ装置100と反射体との相対的な位置関係がほぼ変動しない場合(具体的には、mmオーダー未満の変動)、FFT複素データS(t,fb)の振幅の位相の変化が小さい。よって、平均してもベクトルの大きさ及び向きはあまり変わらない。その結果、平均データSav(t0,fb)の電力は、FFT複素データS(t0,fb)の電力とほぼ一致する。よって、合成平均データSavk(t0,fb)の電力は、合成複素データSk(t0,fb)の電力と比べて、車両内部反射信号が観測された周波数ビンでは変化せず、ターゲット反射信号が観測された周波数ビンでは大きく低下する。
なお、車両80が停止している場合、レーダ装置100と静止物との相対的な位置関係が変化しないため、静止物を示すFFT複素データS(t,fb)の振幅の位相は時間的に変動しない。そのため、処理装置10が、車両80の停止中に取得された離散ビート信号b(t)から算出されたFFT複素データS(t,fb)を含めて、複数のFFT複素データS(t,fb)を平均すると、静止物からの反射信号を示す合成平均データSavk(t0,fb)の電力は抑圧されない。その結果、後述する合成平均データSavk(t0,fb)をフィードバックした検出閾値は、静止物が観測された周波数ビンにおいて上昇し、静止物が検出できなくなることがある。よって、処理装置10は、平均期間において車両80が移動している場合に限って、平均データSav(t0,fb)及び合成平均データSavk(t0,fb)を算出する。
さらに、処理装置10は、平均データSav(t0,fb)及び合成平均データSavk(t0,fb)を算出する距離範囲、すなわち周波数ビンの範囲を、車両80の長さに基づいた範囲に限定する。内部反射信号は、車両80の前端から後端までの車長の範囲内で観測され、車長よりも遠方では観測されない。よって、処理装置は、平均データSav(t0,fb)及び合成平均データSavk(t0,fb)を算出する距離範囲を、例えば、車両80の車長以内の範囲や、車両80の車長に余裕値を加算した値以内の範囲に限定する。
また、平均期間は、検出したいターゲットを示すFFT複素データS(t,fb)の振幅の位相がランダムとみなせる程度の時間であり、例えば、キャリア周波数fcが24GHzの場合、1s以上であるとよい。また、平均期間は、長すぎると、検出したターゲット反射信号の電力が大電力であった場合に、その周波数ビンにおける平均データSav(t,fb)の電力がしばらくの間大きい値に留まってしまう。そのため、平均期間は、大電力のターゲット反射信号を検出した場合に影響が長引かない期間、例えば、キャリア周波数fcが24GHzの場合、10s以下であるとよい。
続いて、S320では、処理装置10は、検出閾値を決定する。具体的には、処理装置10は、合成平均データSavk(t0,fb)の電力値に加算値X(dB)を加算して、周波数の関数である第1閾値を算出する。加算値X(dB)は、予め決められた正の値であり、合成平均データSavk(t0,fb)の精度に応じて設定される余裕値である。S310において、合成平均データSavk(t0,fb)を算出していない場合は、合成平均データSavk(t0,fb)の電力値は0である。
また、処理装置10は、レーダ装置100による観測における雑音電力に基づいて第2閾値を算出する。処理装置10は、各チャンネルの雑音電力の合計値に、加算値Y(dB)を加算して、周波数の関数である第2閾値を算出する。加算値Y(dB)は、予め決められた値であり、誤検出率に応じて設定される余裕値である。
さらに、処理装置10は、周波数ビンごとに、第1閾値と第2閾値とを比較して、大きい方の値を検出閾値として算出する。算出された検出閾値は、図12の二点鎖線で示すように、車両内部反射信号が観測されたレーダ装置100の近傍では第1閾値となり、車両内部反射信号を示す合成複素データSk(t0,fb)の電力よりも大きな値になっている。また、算出された検出閾値は、レーダ装置100の遠方では第2閾値となっている。
続いて、S330では、処理装置10は、周波数ビンごとに、合成複素データSk(t,fb)と、S320において決定した検出閾値とを比較して、合成複素データSk(t,fb)が検出閾値よりも大きく、且つ極大となっている周波数をピークとして検出する。以上で、本処理を終了する。
なお、本実施形態では、S310の処理が、処理装置10が実現する平均算出部の機能に相当し、S320の処理が、処理装置10が実現する第1閾値算出部、第2閾値算出部及び検出閾値算出部の機能に相当する。また、S330の処理が、処理装置10が実現するピーク検出部の機能に相当する。
<3.効果>
以上説明した第1実施形態によれば、以下の効果が得られる。
(1)合成平均データSavk(t0,fb)がフィードバックされた第1閾値と、雑音電力に基づいて算出された第2閾値とが比較され、大きい方の値が検出閾値として算出される。これにより、車両内部反射信号が観測されたレーダ装置100の近傍では、検出閾値は、車両内部反射信号の電力値よりも大きい第1閾値となる。したがって、車両内部反射信号の誤検出を抑制することができる。
(2)車両80が移動している時に取得された離散ビート信号b(t)から算出されたFFT複素データS(t0,fb)のみが平均されて、平均データSav(t0,fb)が算出される。これにより、車両80の周囲に存在する静止物のターゲットが検出できなくなることを抑制することができる。
(3)平均データSav(t0,fb)及び合成平均データSavk(t0,fb)を算出する距離範囲を車長に基づいた範囲に限定することによって、原理上内部反射が生じえない距離領域で閾値を上げることなく、内部反射信号の誤検出を抑制することができる。
(第2実施形態)
<1.第1実施形態との相違点>
第2実施形態は、基本的な構成は第1実施形態と同様であるため、共通する構成については説明を省略し、相違点を中心に説明する。なお、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
前述した第1実施形態では、ピーク検出処理において、合成平均データSavk(t0,fb)を検出閾値にフィードバックした。これに対し、第2実施形態では、ピーク検出処理において、合成平均データSavk(t0,fb)を検出閾値にフィードバックするとともに、周波数ビンごとに、合成複素データSk(t0,fb)を、合成複素データSk(t0,fb)から合成平均データSavk(t0、fb)を減算した値に更新する。
<2.ピーク検出処理>
次に、第2実施形態の処理装置10が、第1実施形態のピーク検出処理に代えて実行するピーク処理について、図13のフローチャートを参照して説明する。
まず、S305及びS315では、処理装置10は、図9のS300及びS310の処理と同様の処理を行う。
続いて、S325では、処理装置10は、式(4)に示すように、チャンネルごと且つ周波数ビンごとに、FFT複素データS(t0,fb)を、FFT複素データS(t0,fb)から平均データSav(t0,fb)を減算した値に更新する。
S(t0,fb)=S(t0,fb)-Sav(t0,fb) …(4)
そして、処理装置10は、各チャンネルのFFT複素データS(t0,fb)を合成して、合成複素データSk(t0,fb)を算出する。上述したように、平均データSav(t0,fb)の電力は、FFT複素データS(t0,fb)の電力と比べて、車両内部反射信号が観測された周波数ビンではほぼ変化せず、ターゲット反射信号が観測された周波数ビンでは比較的大きく低下する。そのため、図14に示すように、更新されたFFT複素データS(t0,fb)の電力は、更新前と比べて、車両内部反射信号が観測された周波数ビンでは比較的大きく低下するが、ターゲット反射信号が観測された周波数ビンではほとんど低下しない。
続いて、S335では、処理装置10は、合成平均データSavk(t0,fb)の電力値に加算値X(dB)を加算して、周波数の関数である第1閾値を算出する。本実施形態では、更新後のFFT複素データS(t0,fb)の電力が、更新前と比べて、車両内部反射信号が観測された周波数ビンにおいて大きく低下するため、加算値X(dB)は負の値とする。
また、処理装置10は、図9のS320の処理と同様にして、第2閾値を算出し、周波数ビンごとに、第1閾値と第2閾値とを比較して、大きい方の値を検出閾値として算出する。算出された検出閾値は、図14の二点鎖線で示すように、レーダ装置100の近傍では、車両内部反射信号を示す合成複素データSk(t0,fb)の電力よりも大きく、ターゲット反射信号を示す合成複素データSk(t0,fb)の電力よりも小さい値になる。
続いて、S345では、処理装置10は、図9のS340の処理と同様にして、周波数ビンごとに、S325において算出した合成複素データSk(t0,fb)と、S335において決定した検出閾値とを比較して、ピークを検出する。以上で、本処理を終了する。
なお、本実施形態では、S325の処理が、処理装置10が実現する更新部の機能に相当する。
<3.効果>
以上説明した第2実施形態によれば、前述した第1実施形態の効果(1)~(3)に加え、以下の効果が得られる。
(4)チャンネルごとに、FFT複素データS(t0,fb)が、FFT複素データS(t0,fb)から平均データSav(t0,fb)を減算した値に、更新される。これにより、内部反射信号を示すFFT複素データS(t0,fb)が抑圧され、内部反射信号を示すFFT複素データS(t0,fb)の電力値と、ターゲット反射信号を示すFFT複素データS(t0,fb)の電力値との差が大きくなる。そして、合成平均データSavk(t0,fb)の電力値に負の加算値Xを加算することで、内部反射信号を示すFFT複素データS(t0,fb)の電力値と、ターゲット反射信号を示すFFT複素データS(t0,fb)の電力値との間の値である第1閾値が算出される。したがって、車両内部反射信号の誤検出を抑制しつつ、レーダ装置100の近くに位置するターゲットからのターゲット反射信号を検出することができる。
(他の実施形態)
以上、本開示を実施するための形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
(a)上記実施形態では、レーダ装置100の変調方式はFMCW方式であったが、変調方式はFMCW方式に限定されるものではない。本開示は、位相情報が取り出せるすべての変調方式(例えば、多周波CW方式やパルス方式)のレーダ装置に適用することができる。
(b)上り傾斜波と下り傾斜波の1セットを1つの送信波とすると、送信波と送信波との間隔は均等でなくてもよい。すなわち、処理サイクルの間隔は均等でなくてもよい。
(c)上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしてもよい。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換してもよい。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
(d)上述したレーダ装置の他、当該レーダ装置を構成要素とするシステム、当該レーダ装置の処理装置としてコンピュータを機能させるためのプログラム、このプログラムを記録した半導体メモリ等の非遷移的実態的記録媒体、ピーク検出方法など、種々の形態で本開示を実現することもできる。
10…処理装置、30…送信アンテナ、40…受信アンテナ、50…混合器、60…AD変換器、80…車両、100…レーダ装置。

Claims (4)

  1. 車両(80)に搭載されたレーダ装置(100)であって、
    レーダ波を送信するように構成された送信アンテナ(30)と、
    前記レーダ波が反射されて生じた反射波を受信するように構成された受信アンテナ(40)と、
    前記反射波に基づいて受信信号を取得するように構成された信号取得部(50,60)と、
    前記信号取得部により取得された前記受信信号を周波数解析して、周波数の関数である複素データを算出するように構成されたデータ算出部(10)と、
    今回の処理サイクル以前の決められた期間における複数の前記複素データを周波数ビンごとに平均した、平均データを算出するように構成された平均算出部(10)と、
    前記平均算出部により算出された前記平均データの電力値に、決められた加算値を加算して、周波数の関数である第1閾値を算出するように構成された第1閾値算出部(10)と、
    前記レーダ装置による観測における雑音電力に基づいて、周波数の関数である第2閾値を算出するように構成された第2閾値算出部(10)と、
    周波数ビンごとに、前記第1閾値算出部により算出された前記第1閾値と前記第2閾値算出部により算出された前記第2閾値とを比較して、大きい方の値を検出閾値として算出するように構成された検出閾値算出部(10)と、
    周波数ビンごとに、前記今回の処理サイクルにおける前記複素データの電力値と前記検出閾値とを比較して、前記複素データの電力値が前記検出閾値よりも大きく且つ極大となっている周波数をピークとして検出するように構成されたピーク検出部(10)と、を備える、
    レーダ装置。
  2. 前記加算値は負の値であり、
    前記今回の処理サイクルにおいて前記データ算出部により算出された前記複素データを、周波数ビンごとに前記複素データから前記平均算出部により算出された前記平均データを減算した値に、更新するように構成された更新部(10)を備え、
    前記ピーク検出部は、前記更新部により更新された前記複素データの電力値と前記検出閾値とを比較して、前記周波数を前記ピークとして検出するように構成されている、
    請求項1に記載のレーダ装置。
  3. 前記平均算出部は、前記決められた期間に車両が移動していることを条件として、前記平均データを算出するように構成されている、
    請求項1又は2に記載のレーダ装置。
  4. 前記データ算出部により算出された前記複素データの周波数は前記レーダ装置からの距離情報を表し、
    前記平均算出部は、前記平均データを算出する距離範囲を、前記車両の長さに基づいた範囲に限定するように構成されている、
    請求項1~3のいずれか1項に記載のレーダ装置。
JP2018092390A 2018-05-11 2018-05-11 レーダ装置 Active JP7014041B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018092390A JP7014041B2 (ja) 2018-05-11 2018-05-11 レーダ装置
DE112019002401.9T DE112019002401T5 (de) 2018-05-11 2019-05-09 Radarvorrichtung
PCT/JP2019/018558 WO2019216375A1 (ja) 2018-05-11 2019-05-09 レーダ装置
CN201980031456.5A CN112105947A (zh) 2018-05-11 2019-05-09 雷达装置
US17/092,634 US20210055401A1 (en) 2018-05-11 2020-11-09 Radar apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018092390A JP7014041B2 (ja) 2018-05-11 2018-05-11 レーダ装置

Publications (2)

Publication Number Publication Date
JP2019197027A JP2019197027A (ja) 2019-11-14
JP7014041B2 true JP7014041B2 (ja) 2022-02-01

Family

ID=68467549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018092390A Active JP7014041B2 (ja) 2018-05-11 2018-05-11 レーダ装置

Country Status (5)

Country Link
US (1) US20210055401A1 (ja)
JP (1) JP7014041B2 (ja)
CN (1) CN112105947A (ja)
DE (1) DE112019002401T5 (ja)
WO (1) WO2019216375A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6750567B2 (ja) * 2017-05-30 2020-09-02 株式会社Soken 物体検出装置
JP2021162351A (ja) * 2020-03-30 2021-10-11 株式会社アイシン 物体検出システム
JP7487534B2 (ja) * 2020-04-08 2024-05-21 株式会社アイシン 物体検出装置
JP2022034379A (ja) * 2020-08-18 2022-03-03 株式会社ミツトヨ 測定装置および測定方法
JP2022035278A (ja) * 2020-08-20 2022-03-04 株式会社アイシン 物体検出装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233157A (ja) 2003-01-29 2004-08-19 Omron Corp レーダ環境判定方法、物体判定方法及びレーダ環境判定システム
WO2005059588A1 (ja) 2003-12-16 2005-06-30 Murata Manufacturing Co., Ltd. レーダ
JP2012103007A (ja) 2010-11-05 2012-05-31 Denso Corp ピーク検出閾値の設定方法、物標情報生成装置、プログラム

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943511A (en) * 1974-05-31 1976-03-09 Hughes Aircraft Company Spike enable circuit
US5633642A (en) * 1993-11-23 1997-05-27 Siemens Aktiengesellschaft Radar method and device for carrying out the method
US5546085A (en) * 1994-12-05 1996-08-13 Loral Corporation Separating coherent radio-frequency interference from synthetic aperture data
US6011515A (en) * 1996-10-08 2000-01-04 The Johns Hopkins University System for measuring average speed and traffic volume on a roadway
US20030048223A1 (en) * 2000-11-07 2003-03-13 Vytas Kezys Content-based adaptive parasitic array antenna system
US6556871B2 (en) * 2001-01-04 2003-04-29 Cardiac Pacemakers, Inc. System and method for receiving telemetry data from an implantable medical device
US7058144B2 (en) * 2001-08-07 2006-06-06 Conexant, Inc. Intelligent control system and method for compensation application in a wireless communications system
JP3895165B2 (ja) * 2001-12-03 2007-03-22 株式会社エヌ・ティ・ティ・ドコモ 通信制御システム、通信制御方法、通信基地局及び移動端末
US6801580B2 (en) * 2002-04-09 2004-10-05 Qualcomm, Incorporated Ordered successive interference cancellation receiver processing for multipath channels
AU2003226794A1 (en) * 2002-04-10 2003-11-10 Nanotron Technologies Gmbh Transceiver device
WO2003088532A1 (en) * 2002-04-11 2003-10-23 The Johns Hopkins University Intrusion detection system for wireless networks
JP3983158B2 (ja) * 2002-11-25 2007-09-26 富士通株式会社 電波レーダの信号処理方法
GB0306898D0 (en) * 2003-03-26 2003-04-30 Bouchard Michel Vehicle proximity alarm system
JP4239689B2 (ja) * 2003-05-30 2009-03-18 スズキ株式会社 車両用警報システム及び車両用警報発生方法
EP1808965B1 (en) * 2004-11-02 2011-02-16 Panasonic Corporation Noise suppresser
JP4544304B2 (ja) * 2005-05-16 2010-09-15 株式会社村田製作所 レーダ
WO2006123499A1 (ja) * 2005-05-16 2006-11-23 Murata Manufacturing Co., Ltd. レーダ
IL170726A (en) * 2005-09-07 2011-12-29 Camero Tech Ltd Signal acquisition system and method for ultra-wideband (uwb) radar
GB0519051D0 (en) * 2005-09-19 2005-10-26 Nokia Corp Search algorithm
JP3906869B2 (ja) * 2005-12-21 2007-04-18 三菱電機株式会社 Fm−cwレーダ装置
US20070171122A1 (en) * 2006-01-25 2007-07-26 Fujitsu Ten Limited Radar apparatus and interference detection method
US7623061B2 (en) * 2006-11-15 2009-11-24 Autoliv Asp Method and apparatus for discriminating with respect to low elevation target objects
JP5061623B2 (ja) * 2007-01-30 2012-10-31 株式会社デンソー レーダ装置
JP4356758B2 (ja) * 2007-03-20 2009-11-04 株式会社デンソー Fmcwレーダ
JP4492628B2 (ja) * 2007-03-20 2010-06-30 株式会社デンソー 干渉判定方法,fmcwレーダ
WO2009045682A2 (en) * 2007-09-28 2009-04-09 Athanasios Leontaris Treating video information
JP5697910B2 (ja) * 2010-07-06 2015-04-08 古野電気株式会社 閾値設定方法、物標探知方法、閾値設定装置、物標探知装置、閾値設定プログラム、および物標探知プログラム
US8874390B2 (en) * 2011-03-23 2014-10-28 Hach Company Instrument and method for processing a doppler measurement signal
DE102011079615A1 (de) * 2011-07-22 2013-01-24 Robert Bosch Gmbh FMCW-Radarsystem und Interferenzerkennungsverfahren für FMCW-Radarsysteme
CN102368697B (zh) * 2011-09-30 2018-04-03 中兴通讯股份有限公司 干扰测量信令通知、干扰测量及反馈方法及其装置
US9110168B2 (en) * 2011-11-18 2015-08-18 Farrokh Mohamadi Software-defined multi-mode ultra-wideband radar for autonomous vertical take-off and landing of small unmanned aerial systems
JP2013217886A (ja) * 2012-04-12 2013-10-24 Honda Elesys Co Ltd 車載用のレーダ装置、検知方法、検知プログラム
US9444502B2 (en) * 2012-05-21 2016-09-13 L-3 Communications Corporation Interference cancellation system for cancelling interference in the optical domain
JP5912879B2 (ja) * 2012-05-31 2016-04-27 株式会社デンソー レーダ装置
US20140313080A1 (en) * 2013-04-19 2014-10-23 Telefonaktiebolaget L M Ericsson Multi-beam smart antenna for wylan and pico cellular applications
JP6321464B2 (ja) * 2014-06-13 2018-05-09 株式会社デンソー レーダ装置
US10067221B2 (en) * 2015-04-06 2018-09-04 Texas Instruments Incorporated Interference detection in a frequency modulated continuous wave (FMCW) radar system
US10054672B2 (en) * 2015-08-31 2018-08-21 Veoneer Us, Inc. Apparatus and method for detecting and correcting for blockage of an automotive radar sensor
KR101890352B1 (ko) * 2015-12-11 2018-08-21 주식회사 만도 차량용 레이더 장치 및 그의 고스트 제거 방법
US11575196B2 (en) * 2015-12-15 2023-02-07 Denso Corporation Antenna device
JP6788388B2 (ja) * 2016-06-17 2020-11-25 株式会社デンソーテン レーダ装置及びレーダ装置の制御方法
US10962640B2 (en) * 2016-06-17 2021-03-30 Fujitsu Ten Limited Radar device and control method of radar device
US10271301B2 (en) * 2016-06-28 2019-04-23 SekureTrak, Inc. Systems and methods for tracking items
EP3293547B1 (en) * 2016-09-13 2023-07-05 Centre National d'Etudes Spatiales Cepstrum-based multipath mitigation of a spread spectrum radiocommunication signal
US20190369221A1 (en) * 2017-03-06 2019-12-05 Hitachi Automotive Systems, Ltd. Radar device
JP2018205022A (ja) * 2017-05-31 2018-12-27 パナソニック株式会社 レーダ信号処理装置およびレーダ信号処理方法
JP6858093B2 (ja) * 2017-08-01 2021-04-14 株式会社デンソーテン レーダ装置および物標検出方法
US10775221B2 (en) * 2017-09-29 2020-09-15 Rosemount Tank Radar Ab Adaptive echo threshold
US10977946B2 (en) * 2017-10-19 2021-04-13 Veoneer Us, Inc. Vehicle lane change assist improvements
US20190271775A1 (en) * 2018-03-01 2019-09-05 Qualcomm Incorporated Motion detection using the magnitude of channel impulse response
US11175376B2 (en) * 2018-09-18 2021-11-16 Infineon Technologies Ag System and method for determining interference in a radar system
US11275174B2 (en) * 2019-08-28 2022-03-15 Waymo Llc Methods and systems for reducing vehicle sensor interference
EP3816665B1 (en) * 2019-11-04 2024-05-15 Nxp B.V. Interference suppression in a fmcw radar system
KR102562375B1 (ko) * 2020-02-13 2023-08-02 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
JP2021196254A (ja) * 2020-06-12 2021-12-27 株式会社アイシン 物体検出装置
US20230184926A1 (en) * 2021-12-15 2023-06-15 GM Global Technology Operations LLC Radar anti-spoofing system for identifying ghost objects created by reciprocity-based sensor spoofing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233157A (ja) 2003-01-29 2004-08-19 Omron Corp レーダ環境判定方法、物体判定方法及びレーダ環境判定システム
WO2005059588A1 (ja) 2003-12-16 2005-06-30 Murata Manufacturing Co., Ltd. レーダ
JP2012103007A (ja) 2010-11-05 2012-05-31 Denso Corp ピーク検出閾値の設定方法、物標情報生成装置、プログラム

Also Published As

Publication number Publication date
CN112105947A (zh) 2020-12-18
US20210055401A1 (en) 2021-02-25
WO2019216375A1 (ja) 2019-11-14
JP2019197027A (ja) 2019-11-14
DE112019002401T5 (de) 2021-01-28

Similar Documents

Publication Publication Date Title
JP7014041B2 (ja) レーダ装置
JP4492628B2 (ja) 干渉判定方法,fmcwレーダ
US10234541B2 (en) FMCW radar device
JP4356758B2 (ja) Fmcwレーダ
US9778355B2 (en) Signal processing method and device for frequency-modulated continuous waveform radar system
US10649074B2 (en) Target detector and target detection method for detecting target using radar waves
JP7173735B2 (ja) レーダ装置及び信号処理方法
KR20150005187A (ko) 주파수 변조 연속파 레이더 감지 장치 및 그의 연속파를 이용한 물체 감지 방법
US20150234041A1 (en) Radar apparatus
US9372260B2 (en) Object detecting device, object detecting method, object detecting program, and motion control system
JP5992574B1 (ja) 物体検出装置
WO2017209292A1 (ja) 物標検出装置
KR20190125453A (ko) 하나 이상의 표적의 반경방향 상대 가속도를 결정하기 위한 방법 및 레이더 장치
JP2015028440A (ja) レーダ装置、及び、信号処理方法
JP2019109179A (ja) 車両の物体検出装置
JP2009014405A (ja) 車載用レーダ装置
JP2010271337A (ja) レーダ装置
JP2000321352A (ja) 車載用レーダ装置
US8188909B2 (en) Observation signal processing apparatus
JP2012168119A (ja) レーダ装置
KR20160066413A (ko) Fmcw 레이더의 동작방법
JP2008026239A (ja) レーダ
JP2016128751A (ja) レーダ装置、信号処理方法、および、車両制御システム
JP7128000B2 (ja) レーダ装置
JP2019194627A (ja) レーダ信号処理装置およびレーダ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220103