JP7012404B1 - 電子部品用冷却装置 - Google Patents

電子部品用冷却装置 Download PDF

Info

Publication number
JP7012404B1
JP7012404B1 JP2021193845A JP2021193845A JP7012404B1 JP 7012404 B1 JP7012404 B1 JP 7012404B1 JP 2021193845 A JP2021193845 A JP 2021193845A JP 2021193845 A JP2021193845 A JP 2021193845A JP 7012404 B1 JP7012404 B1 JP 7012404B1
Authority
JP
Japan
Prior art keywords
heat transfer
heat
transfer tubes
juxtaposed
magnetic fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021193845A
Other languages
English (en)
Other versions
JP2023080478A (ja
Inventor
康弘 日下
Original Assignee
Btsジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Btsジャパン株式会社 filed Critical Btsジャパン株式会社
Priority to JP2021193845A priority Critical patent/JP7012404B1/ja
Application granted granted Critical
Publication of JP7012404B1 publication Critical patent/JP7012404B1/ja
Publication of JP2023080478A publication Critical patent/JP2023080478A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】動力を使用せずとも、確実に電子部品を冷却することが可能な電子部品用冷却装置を提供する。【解決手段】本発明の電子部品用冷却装置100は、内部に冷却媒体である磁性流体が流通する伝熱管111を複数並置してなる管列により構成される循環流路110上に、複数並置されてなる伝熱管111を流通する磁性流体によって電子部品Wからの熱を吸熱する吸熱面120aであって、電子部品Wの冷却対象面に接触する吸熱面120aを備える吸熱部120と、磁性流体から熱を放熱する放熱部130と、複数並置されてなる伝熱管111の全てが流入する流入部142と複数並置されてなる伝熱管111の全てが流出する流出部143とを有するタンク140と、磁性流体を磁化する磁界印加部150と、を順次配置した。【選択図】図1

Description

本発明は、電子部品用冷却装置に関し、特に、PC(Personal Computer)の筐体内に収納されているCPU(Central Processing Unit)やGPU(Graphic Processing Unit)を冷却する装置において、送風機などの動力を使用することなく効率的に冷却を行うための技術に関する。
業務用や家庭用として使用される通常のPCにおいて、CPUやGPUはPCの筐体内に収納されている。
CPUは作動していない状態においては常温であるが、作動に伴い発熱して高温状態となる。高温状態のまま放置すると性能を発揮できなくなるほか故障の原因となり好ましくない。しかも、筐体内に収納されているため、筐体内に配置された他の機器にも影響を及ぼすため、異常な高温状態とならないよう冷却する必要がある。従来における冷却方式としては、送風機を用いて筐体外部から強制的に吸引した空気で冷却する空冷方式を採用しているものが多い。または、伝熱管内を循環する水などの冷却媒体との熱交換によって冷却を行う液冷式のものも増えてきている。
ところで、近年においてはCPUやGPUの性能は年々向上しており、その結果、発熱量が大きく、CPUやGPUは100℃を超えるような高温状態となる。そのため、CPUやGPUの性能向上とともに、冷却性能の向上が要求されている。送風機を用いた空冷方式の場合、冷却性能を向上させるためには送風機を大きくすることが考えられるが、送風機を大きくすることに伴い、騒音が大きくなるとともに送風機を駆動するために大きな電力が必要となるというデメリットが生じる。同様に、液冷式の冷却装置においても、より多くの冷却媒体を循環させることができる大型のポンプを駆動するための動力が必要となり、PC全体としての消費電力の増加の要因となってしまう。
そこで、CPUなどの電子部品を電力を用いずに冷却する方式として、磁性流体を用いた冷却装置が提案されている(特許文献1)。
磁性流体とは、例えば酸化鉄などの磁性粒子を混濁させた流体のことであり、磁性流体の温度に応じて磁性が変化するという特徴を持つ。このような性質を利用し、高温部となる吸熱部と低温部となる放熱部と有する循環流路を形成し、放熱部付近において永久磁石や電磁石を用いて磁力を与えることで、循環流路内の磁性流体を一方向に循環させることが可能な冷却装置を作ることができる。
特開昭59-217464号公報
特許文献1に開示された発明では、循環流路上に電子部品などの発熱体から熱を受ける吸熱部と、吸熱部で受けた熱を放熱する放熱部を設け、放熱部において磁性流体を磁化するマグネットを配置することで、少ない電力で磁性流体を駆動することができる冷却装置を提供することができる。
ところで、完全に動力を使用せずに磁性流体が循環する冷却装置を実現するためには、吸熱部と放熱部との間に大きな温度差を設けることが必要となる。というのも、磁性流体には一般的に、キュリー温度に向かって磁性が低下するという感温特性があり、循環流路上に配置されたマグネットに向かう磁性流体に印加される磁気体積力の差を循環流路内で生成することが、確実な循環を得るために必要だからである。
したがって、確実に吸熱及び放熱を行うこと必要であることはもちろんのこと、流れ方向に直交する方向における温度のばらつきを抑制することも、確実な駆動力を得るためには重要となる。というのも、100℃以上の高温状態になるCPUやGPUを確実に冷却するためには、一本の伝熱管では足りず、複数本の伝熱管を並列配置して伝熱面積を広く確保するとともに循環流路の距離を長く確保することが必要だからである。
ところで、筐体内に配置されたCPUの全体から熱を吸収することを想定した場合、平面状の吸熱面に対してCPUは中央付近に配置されるため、吸熱面のうち中央付近に配置された伝熱管において熱の吸収が集中し、端部に配置された伝熱管には熱が吸収されにくい。
複数並置された伝熱管のうち、中央付近の伝熱管に吸熱が集中すると、中央付近の伝熱管の温度が高くなりすぎ、放熱部においても温度が下がりきらず、その結果、吸熱を行う高温部と放熱を行う低温部との間において適切な温度差が生じない。また、吸熱部の端部付近に配置された伝熱管の温度は高くならず、循環流路上において温度差が発生しにくい。磁性流体を用いた循環流路においては、温度差が駆動力となるため、適切な温度差が生じないことは、求められる駆動力が発生しないことにつながるため、流速が遅くなり、冷却能力が下がってしまうという問題が生じる。
本発明は、このような課題に鑑みてなされたものであり、動力を使用せずとも、確実に電子部品を冷却することが可能な電子部品用冷却装置を提供することを目的とする。
本発明の発明者らは、鋭意創作の結果、複数並置されてなる伝熱管を用いて電子部品を覆う吸熱面と、流路の途中に磁性流体を均一に混合する手段とを組み合わせることで、上記課題を解決可能であることを見出し、本発明に至った。
本発明では、以下のような解決手段を提供する。
第1の特徴に係る電子部品用冷却装置は、内部に冷却媒体である磁性流体が流通する伝熱管を複数並置してなる管列により構成される循環流路上に、複数並置されてなる伝熱管を流通する磁性流体によって電子部品からの熱を吸熱する吸熱面であって、電子部品の冷却対象面に接触する吸熱面を備える吸熱部と、磁性流体から熱を放熱する放熱部と、複数並置されてなる伝熱管の全てが流入する流入部と複数並置されてなる伝熱管の全てが流出する流出部とを有するタンクと、磁性流体を磁化する磁界印加部と、を順次配置した。
第1の特徴に係る発明によれば、複数並置されてなる伝熱管を流通する磁性流体によって電子部品からの熱を吸熱する吸熱面であって、電子部品の冷却対象面に接触する吸熱面を有する吸熱部を備えるため、吸熱面が電子部品の冷却対象面を覆うことで電子部品全体から放出される熱を確実に吸熱することができる。また、電子部品の大きさによっては、複数並置されてなる伝熱管のうち、特定の伝熱管における吸熱ばかりが多くなり偏りが生じるが、複数並置されてなる伝熱管の全てが流入する流入部と、複数並置されてなる伝熱管の全てが流出する流出部とを有するタンクを備えるため、タンクに流入する時点で伝熱管による温度のばらつきがあったとしても、タンク内で磁性流体が混合して伝熱管間での温度のばらつきを低減することができる。その結果、全ての伝熱管において適切な温度差が発生し、動力を使用せずとも、十分な駆動力を発揮して冷却能力を確保することができる。
また、第1の特徴に係る発明は、流入部又は流出部のいずれか一方において、伝熱管が並置される順序を入れ替える入れ替え部を有する。
これによると、タンクの流入部又は流出部において伝熱管が並置される順序を入れ替える入れ替え部を有するため、タンクの前後において伝熱管による温度のばらつきをより確実に低減することができる。そのため、局所的な高温部の発生を抑制して確実な吸熱と放熱を行うことができ、その結果、全ての伝熱管において適切な温度差が発生し、動力を使用せずとも、十分な駆動力を発揮して冷却能力を確保することができる。
の特徴に係る発明は、第の特徴に係る発明であって、入れ替え部において、タンク中央部の伝熱管とタンク端部の伝熱管とを入れ替えるようにする。
の特徴に係る発明によると、入れ替え部において、タンク中央部の伝熱管とタンク端部の伝熱管とを入れ替えるようにすることで、比較的温度の高い中央部の伝熱管がタンクの端部に、比較的温度の低い端部の伝熱管がタンクの中央部に流入するよう、伝熱管の配列を入れ替えることができる。そのため、吸熱部を通過した後の磁性流体の温度は、伝熱管間でばらつきがなくなり、その結果、吸熱部や放熱部において適切に熱伝達が行われ、十分な駆動力を発揮して冷却能力を確保することができる。
の特徴に係る発明は、第1又は第2の特徴に係る発明であって、吸熱面が、複数並置されてなる伝熱管が貫通する伝熱ブロックの一面として形成される。
の特徴に係る発明によると、吸熱面が、複数並置されてなる伝熱管が貫通する伝熱ブロックの一面として形成されるため、伝熱ブロックの大きさによって熱容量を変化させることができ、設計の自由度が増す。また、複雑な加工を必要としないため、CPUの形状や大きさなどの仕様が変わったとしても、比較的安価に吸熱部を構築することができる。
の特徴に係る発明は、第1又は第2の特徴に係る発明であって、吸熱面が、複数並置されてなる伝熱管の一部又は全部を加工して形成された平坦面よりなる。
の特徴に係る発明によると、伝熱管を加工して平坦面とすることで吸熱部とするため、重量を増加させることなく効率よく熱を吸収することが可能な吸熱部を形成することができ、小型で軽量の冷却装置を実現することができる。
の特徴に係る発明は、第1ないし第のいずれかの特徴に係る発明であって、放熱部は、複数並置されてなる伝熱管が貫通するフィン付き伝熱ブロックとして形成される。
の特徴に係る発明によると、放熱部が複数並置されてなる伝熱管が貫通するフィン付き伝熱ブロックとして形成されるため、伝熱ブロックの大きさやフィンの伝熱面積等によって熱容量を変化させることができ、設計の自由度が増す。また、複雑な加工を必要としないため、CPUの形状や大きさなどの仕様が変わったとしても、比較的安価に放熱部を構築することができる。
の特徴に係る発明は、第1ないし第のいずれかの特徴に係る発明であって、磁界印加部が、永久磁石によって形成される。
の特徴に係る発明によると、磁界印加部が永久磁石によって形成されるため、他の電気回路等を組み込むことなく常時磁力を印加することが可能であり、吸熱部と放熱部との温度差に応じて自動的に作動することが可能な冷却装置を実現することができる。
の特徴に係る発明は、第1ないし第のいずれかの特徴に係る発明であって、磁界印加部が、フィン付きの永久磁石によって形成される。
の特徴に係る発明によると、磁界印加部がフィン付きの永久磁石によって形成されるため、磁性流体の磁化が行われ磁性が最も強くなる磁界印加部において磁性流体の温度が最も低くなり、磁化が最も弱まる高温部との温度差を確保して確実に磁性流体を駆動することが可能な冷却装置を提供することができる。
本発明によれば、動力を使用せずとも、確実に電子部品を冷却することが可能な電子部品用冷却装置を提供することができる。
図1は、第一実施形態に係る電子部品用冷却装置100の概略図である。 図2は、第一実施形態に係る吸熱部120の概略図である。図2(a)が斜視図であり、図2(b)が正面図である。 図3は、第二実施形態に係る吸熱部220の概略図である。図3(a)が斜視図であり、図3(b)が正面図である。
以下、本発明を実施するための形態について図を参照しながら説明する。なお、これはあくまでも一例であって、本発明の技術的範囲はこれに限られるものではない。
なお、本発明において、電子部品とは、CPUやGPUなど、冷却対象となっている装置そのものだけでなく、冷却対象となっている装置を保護するケーシングをも含む全体を指すものとし、その用途や設置の態様によって電子部品という用語が指す技術範囲が狭められるものではない。
[第一実施形態に係る電子部品用冷却装置の全体構成]
図1を用いて、第一実施形態に係る電子部品用冷却装置100の全体構成を説明する。
図1は、第一実施形態に係る電子部品用冷却装置100の斜視図を示す。
第一実施形態に係る電子部品用冷却装置100は、内部に冷却媒体である磁性流体が流通する伝熱管111を複数並置してなる管列により構成される循環流路110上に、電子部品Wから発生する熱を吸熱する吸熱部120、磁性流体が保有する熱を放出する放熱部130、複数並置された伝熱管を一旦収集するタンク140、及び、磁性流体に磁界を印加することで磁性流体を磁化する磁界印加部150が順次配置されることによって構成される。
循環流路110は、磁性流体が流通する伝熱管111を複数並置してなる管列により構成される。それぞれの伝熱管111は、例えば銅など、熱伝導率の高い金属でできた横断面略円形状の細管であり、外径はおよそ5~10mmである。それぞれの伝熱管111の端部は、後述するタンク140に対し、流入部及び流出部として接続され、タンク140を中心に循環流路110を形成する。本実施形態においては、6本の伝熱管111が開示されているが、伝熱管111の本数は、冷却対象となる電子部品Wの大きさ等に応じて変更されるべきものであり、これに限ったものではない。
吸熱部120は、冷却対象となる電子部品から発生する熱を吸収する部位であり、電子部品Wに接触する吸熱面120aを有する。吸熱面120aを含む吸熱部120の詳細については後述するが、吸熱部120においては、複数の伝熱管111内を流通する磁性流体が吸熱面120aを介して熱を奪うことによって熱を吸収し、それによって電子部品Wが冷却される。
放熱部130は、電子部品Wから熱を奪うことで高温になった磁性流体が保有する熱を放出する部位である。本実施形態における放熱部130は、複数並置されてなる伝熱管111が貫通するフィン付き伝熱ブロックとして形成される。つまり、複数の伝熱管111が貫通する伝熱ブロック131を備え、伝熱ブロック131には、複数のフィン132が配設されており、気流の起こりにくいPCの筐体内においても効率的に熱を放出することができるようになっている。なお、放熱部130を構成するフィン付き伝熱ブロックの数は一つである必要はなく、複数配設されていても構わない。要求される冷却能力や伝熱管111の本数、ないしは循環流路110の経路長さに応じて、適宜変更されるべきものである。
タンク140は、複数並置された伝熱管を一旦収集するための部位であり、また、循環流路110内に磁性流体を封入するために設けられたものである。つまり、タンク140は循環流路110を形成する系全体において最も高い位置に配設されており、また、タンク140の頂部には開閉可能な封入口141が設けられていて、製造時やメンテナンス時において、磁性流体が封入され、循環流路110が磁性流体で満たされるようになっている。本発明における電子部品用冷却装置は、蒸発等の相変化を伴わない液体の状態で磁性流体が循環するものであるため、頂部に設けられた封入口141を介して磁性流体が注入された循環流路110は、全体が磁性流体で満たされた状態となる。
タンク140には、複数並置されてなる伝熱管111の全てが流入する流入部142と、複数並置されてなる伝熱管111の全てが流出する流出部143が設けられる。
また、第一実施形態においては、流入部142において、伝熱管111が並置される順序を入れ替える入れ替え部144が形成される。入れ替え部144においては、図1に示すように、特に、中央部に配置された伝熱管111と端部に配置された伝熱管111とを入れ替えるよう形成することが好ましい。図1に示す例においては、紙面に対して最も手前の伝熱管111と手前から3番目の伝熱管111の位置を交換してタンク140に流入させるとともに、最も奥の伝熱管111と奥から3番目の伝熱管111の位置を交換してタンク140に流入させている。
磁界印加部150は、磁性流体に磁界を印加することで磁性流体を磁化する部位である。第一実施形態においては、磁界印加部150は永久磁石、好ましくはネオジム磁石によって形成される。ネオジム磁石等の永久磁石を用いることによって、電磁石によって磁界を印加するものとは異なり、電力の供給回路なども必要なく、独立した冷却装置としてPCの筐体内等に配設することができる。
さらに、第一実施形態においては、ネオジム磁石を構成するブロックに複数のフィン151を配設し、磁界印加部150からも放熱できるよう構成している。
[第一実施形態に係る電子部品用冷却装置による冷却方法]
次に、第一実施形態に係る電子部品用冷却装置を用いて電子部品Wを冷却する方法及びその作動原理について説明する。
冷却対象となっている電子部品Wを含む装置の電源が入っていない状態、つまり、電子部品Wが常温の状態においては、循環流路110内に封入された磁性流体は静止したままである。
というのも、磁界印加部150により常時磁性流体に磁界が作用しているため、その近傍の磁性流体を磁界印加部150の方向に引き寄せる磁気体積力が印加するものの、循環流路110内で温度が均一の場合には、引き寄せる力が磁界印加部150の前後で釣り合うため、磁性流体の運動が発生しないからである。
装置の電源が入り、電子部品Wが作動することに伴い電子部品Wの温度が上昇すると、電子部品Wに接触している吸熱面120aを介して、吸熱部120に熱が吸収され、吸熱部120近傍における磁性流体の温度が上昇する。磁性流体には一般的に、キュリー温度に向かって磁性が低下するという感温特性がある。そのため、吸熱部120近傍における磁性流体の温度が上昇すると、当該箇所における磁性流体の磁性が低下し、当該箇所における磁性流体が磁界印加部150方向に引き寄せられる力は低下する。
一方、磁界印加部150においては、永久磁石によって常時、磁性流体の磁化が生じているため、吸熱部120側と逆側、つまりタンク140側から引き寄せる力は常時印加されている。そのため、磁界印加部150前後において磁気体積力の差が発生し、その磁気体積力の差によって、磁界印加部150を挟んで常温側から高温側に向けて磁性流体が循環流路内を流動し始める。
磁性流体が流動すると、吸熱部120で熱を吸収した磁性流体が放熱部130を通過する際、磁性流体から熱が放出され、同時に、磁界印加部150においても、フィン付きの永久磁石から熱が放出される。そのため、吸熱部120に流入する際の磁性流体は温度が低下しており、吸熱部120において効率的に熱が吸収される。
このように、循環流路110において吸熱と放熱を行うことにより、高温部と低温部が発生し、磁性流体の温度が低い箇所において磁界を印加することで、磁性流体に一方向の磁気体積力が発生し、循環流路110内における磁性流体の循環が行われる。
磁性流体の循環が行われるに際し、吸熱部120で電子部品Wからの熱を吸収した磁性流体は、次に、放熱部130において熱を放出することで温度が低下する。そして、磁性流体はタンク140に流入することで、伝熱管111間による温度のばらつきを低減したうえで、タンク140から流出して磁界印加部150で磁界を印加され磁化される。
磁界印加部150に流入する磁性流体の温度は放熱部130やタンク140の作用により、常温近傍まで低下しており、磁界印加部150で磁化されることで適切な磁気体積力が印加され、磁界印加部150方向に引き寄せられるようになる。
一方、磁界印加部150から流出した磁性流体は再び吸熱部120において高温となるため、磁性が低下し磁気体積力も低下する。そのため、吸熱部120方向から磁界印加部150方向に引き寄せられる力が弱くなり、磁界印加部150から吸熱部120に向けての一方向の流れが継続的に発生し、磁性流体は循環流路110内の循環を継続する。
以上が、第一実施形態における電子部品用冷却装置100を用いて電子部品Wを冷却する際の作動原理である。
そして、第一実施形態においては、吸熱部120において、電子部品Wの冷却対象面に接触する吸熱面120aを用いて、複数並置されてなる伝熱管111を流通する磁性流体によって電子部品Wからの熱を吸熱するため、電子部品Wの大きさに関わらず吸熱面120aが電子部品Wの冷却対象面を覆うことで電子部品W全体から放出される熱を確実に吸熱することができる。そのため、吸熱部120は確実に高温状態に維持されることになり、吸熱部120近傍における磁性流体の磁性を低く維持することができる。
また、電子部品Wの大きさによっては、複数並置されてなる伝熱管111のうち、特定の伝熱管111における吸熱ばかりが多くなり偏りが生じることがあるが、複数並置されてなる伝熱管111の全てが流入する流入部142と、複数並置されてなる伝熱管111の全てが流出する流出部143とを有するタンク140を有するため、タンク140に流入する時点で伝熱管111による温度のばらつきがあったとしても、タンク140内で磁性流体が混合して伝熱管111間での温度のばらつきを低減することができる。その結果、全ての伝熱管111において、吸熱部120と磁界印加部150との間で適切な温度差が発生し、動力を使用せずとも、十分な駆動力を発揮して冷却能力を確保することができる。
さらに、流入部142においては、伝熱管111が並置される順序を入れ替える入れ替え部144を有するため、タンク140の前後において伝熱管111による温度のばらつきをより確実に低減することができる。そのため、局所的な高温部の発生を抑制して確実な吸熱と放熱を行うことができ、その結果、全ての伝熱管111において適切な温度差が発生し、動力を使用せずとも、十分な駆動力を発揮して冷却能力を確保することができる。
すなわち、例えば電子部品Wが吸熱面120aの中心部付近のみに配置されている場合、複数並置された伝熱管111のうち、中央部近傍に配置された伝熱管111による吸熱が主体となり、中央部近傍に配置された伝熱管111内の磁性流体の温度は十分に上昇するものの、端部に配置された伝熱管111内の磁性流体の温度はあまり上昇せず、伝熱管111間で温度差が生じてしまう。放熱部130において、中央部近傍の磁性流体の温度が下がり切らないままタンク140に流入すると、タンク140内でも温度のばらつきが収まらず、中央部近傍の磁性流体の温度が高く、端部の磁性流体の温度が低いまま流出部143から流出してしまう恐れがある。そのような場合においては、吸熱部120と磁界印加部150で適切な温度差が発生せず、磁気体積力の差が失われ、駆動力が発生しない恐れがある。駆動力が発生しなければ吸熱部120や放熱部130における熱伝達率が低下し、適切な熱伝達が行われなくなり、さらに冷却能力が低下し、ひいては磁性流体の駆動力が低下するという悪循環が生じる。
そこで、第一実施形態においては、複数並置されてなる伝熱管111の全てが流入する流入部142と、複数並置されてなる伝熱管111の全てが流出する流出部143とを有するタンク140を備えるとともに、流入部142においては、伝熱管111が並置される順序を入れ替える入れ替え部144を備える。これにより、複数並置された伝熱管111のうち中央部近傍の伝熱管111を流れる磁性流体ばかりが高温になることを防止するとともに、伝熱管111間の温度のばらつきを抑制して温度を均一化し、吸熱部120や放熱部130において適切に熱伝達が行われるようにする。
特に、入れ替え部144においては、タンク140中央部の伝熱管111とタンク140端部の伝熱管111とを入れ替えるようにすることで、比較的温度の高い中央部の伝熱管111がタンク140の端部に、比較的温度の低い端部の伝熱管111がタンク140の中央部に流入するよう、伝熱管111の配列を入れ替えることができる。そのため、仮にタンク140内で磁性流体が完全に混合できなかったとしても、流出部143においては、中央部近傍の伝熱管111から温度の低い磁性流体が、端部近傍の伝熱管111からは温度の高い磁性流体が流出する。ここで、吸熱部120においては、中央部近傍の伝熱管111の方が端部近傍の伝熱管111よりも多くの熱を吸収するため、吸熱部120を通過した後の磁性流体の温度は、伝熱管111間でばらつきがなくなり、その結果、吸熱部120や放熱部130において適切に熱伝達が行われ、十分な駆動力を発揮して冷却能力を確保することができる。
また、本発明において、放熱部130は、複数並置されてなる伝熱管111が貫通するフィン付き伝熱ブロックとして形成されるため、伝熱ブロック131の大きさやフィン132の伝熱面積等によって熱容量を変化させることができ、設計の自由度が増す。また、複雑な加工を必要としないため、電子部品Wの形状や大きさなどの仕様が変わったとしても、比較的安価に放熱部を構築することができる。
また、磁界印加部150が永久磁石によって形成されるため、他の電気回路等を組み込むことなく常時磁力を印加することが可能であり、吸熱部120と放熱部130との温度差に応じて自動的に作動することが可能な冷却装置を実現することができる。
特に、磁界印加部150をフィン付きの永久磁石によって形成することで、磁性流体の磁化が行われ磁性が最も強くなる磁界印加部150において磁性流体の温度が最も低くなり、磁化が最も弱まる高温部との温度差を確保して確実に磁性流体を駆動することが可能な冷却装置を提供することができる。
[第一実施形態に係る吸熱部の構成]
次に、図2を用いて、第一実施形態に係る吸熱部120の全体構成を説明する。
図2(a)は、第一実施形態に係る吸熱部120の斜視図を、図2(b)は、第一実施形態に係る吸熱部120の正面図を示したものである。
図2(a)及び図2(b)に示すように、第一実施形態に係る吸熱部120は、複数並置されてなる伝熱管が貫通する金属製の伝熱ブロック121と、伝熱ブロック121に配設された放熱フィン122によって形成される。つまり、伝熱ブロック121には伝熱管111の外径と略同一の内径を有する貫通孔121hが、伝熱管111の本数と同じ数だけ設けられており、貫通孔121h内に挿通される伝熱管111を介して伝熱ブロック121に熱が伝達される。また、伝熱ブロック121の底面が吸熱面120aとして電子部品Wと接触することで、電子部品Wから効率的に熱を吸収することができ、効率よく伝熱管111内の磁性流体に熱を伝えることができる。
第一実施形態においては、伝熱ブロック121を用いて吸熱部120を構成するため、伝熱ブロック121の大きさによって熱容量を変化させることができ、設計の自由度が増す。また、複雑な加工を必要としないため、電子部品Wの形状や大きさなどの仕様が変わったとしても、比較的安価に吸熱部120を構築することができる。
[第二実施形態に係る吸熱部の構成]
次に、図3を用いて、第二実施形態に係る吸熱部220の全体構成を説明する。
図3(a)は、第二実施形態に係る吸熱部220の斜視図を、図3(b)は、第二実施形態に係る吸熱部220の正面図を示したものである。
図3(a)及び図3(b)に示すように、第二実施形態に係る吸熱部220は、複数並置されてなる伝熱管111の一部又は全部を平坦面221として形成してなる。つまり、第二実施形態に係る吸熱面220aは、複数並置された伝熱管111を集束し、集束された伝熱管111にプレス加工を施すなどして平坦面221とすることによって形成される。そして、第二実施形態に係る吸熱部220においては、電子部品Wに接する側の平坦面221が吸熱面220aとなり、電子部品Wと接触して電子部品Wの熱を吸収する。
伝熱管111を加工して平坦面221とすることで吸熱部220とするため、重量を増加させることなく効率よく熱を吸収することが可能な吸熱部220を形成することができ、小型で軽量の冷却装置を実現することができる。
以上、まとめると、本発明の効果は以下の通りとなる。
本発明は、内部に冷却媒体である磁性流体が流通する伝熱管111を複数並置してなる管列により構成される循環流路110上に、複数並置されてなる伝熱管111を流通する磁性流体によって電子部品Wからの熱を吸熱する吸熱面120aであって、電子部品の冷却対象面に接触する吸熱面120aを備える吸熱部120と、磁性流体から熱を放熱する放熱部130と、複数並置されてなる伝熱管111の全てが流入する流入部142と複数並置されてなる伝熱管111の全てが流出する流出部143とを有するタンク140と、磁性流体を磁化する磁界印加部150と、を順次配置した電子部品用冷却装置100である。
複数並置されてなる伝熱管111を流通する磁性流体によって電子部品Wからの熱を吸熱する吸熱面120aであって、電子部品Wの冷却対象面に接触する吸熱面120aを備える吸熱部を備えるため、吸熱面120aが電子部品Wの冷却面を覆うことで電子部品W全体から放出される熱を確実に吸熱することができる。また、電子部品Wの大きさによっては、複数並置されてなる伝熱管111のうち、特定の伝熱管111における吸熱ばかりが多くなり偏りが生じるが、複数並置されてなる伝熱管111の全てが流入する流入部142と、複数並置されてなる伝熱管111の全てが流出する流出部143とを有するタンク140を有するため、タンク140に流入する時点で伝熱管111による温度のばらつきがあったとしても、タンク140内で磁性流体が混合して伝熱管111間での温度のばらつきを低減することができる。その結果、全ての伝熱管111において適切な温度差が発生し、動力を使用せずとも、十分な駆動力を発揮して冷却能力を確保することができる。
タンクの流入部142又は流出部143において伝熱管111が並置される順序を入れ替える入れ替え部144を有するため、タンク140の前後において伝熱管111による温度のばらつきをより確実に低減することができる。そのため、局所的な高温部の発生を抑制して確実な吸熱と放熱を行うことができ、その結果、全ての伝熱管111において適切な温度差が発生し、動力を使用せずとも、十分な駆動力を発揮して冷却能力を確保することができる。
そして、入れ替え部144において、タンク140中央部の伝熱管111とタンク140端部の伝熱管111とを入れ替えるようにすることで、比較的温度の高い中央部の伝熱管111がタンク140の端部に、比較的温度の低い端部の伝熱管111がタンク140の中央部に流入するよう、伝熱管111の配列を入れ替えることができる。そのため、吸熱部120を通過した後の磁性流体の温度は、伝熱管111間でばらつきがなくなり、その結果、吸熱部120や放熱部130において適切に熱伝達が行われ、十分な駆動力を発揮して冷却能力を確保することができる。
また、吸熱面120aが、複数並置されてなる伝熱管111が貫通する伝熱ブロック121の一面として形成されるため、伝熱ブロック121の大きさによって熱容量を変化させることができ、設計の自由度が増す。また、複雑な加工を必要としないため、電子部品Wの形状や大きさなどの仕様が変わったとしても、比較的安価に吸熱部を構築することができる。
また、伝熱管111を加工して平坦面221とすることで吸熱部220とするため、重量を増加させることなく効率よく熱を吸収することが可能な吸熱部220を形成することができ、小型で軽量の冷却装置を実現することができる。
また、放熱部130は、複数並置されてなる伝熱管111が貫通するフィン付き伝熱ブロックとして形成されるため、伝熱ブロック131の大きさやフィン132の伝熱面積等によって熱容量を変化させることができ、設計の自由度が増す。また、複雑な加工を必要としないため、電子部品Wの形状や大きさなどの仕様が変わったとしても、比較的安価に放熱部130を構築することができる。
また、磁界印加部150が永久磁石によって形成されるため、他の電気回路等を組み込むことなく常時磁力を印加することが可能であり、吸熱部120と放熱部130との温度差に応じて自動的に作動することが可能な冷却装置を実現することができる。
また、磁界印加部150がフィン151付きの永久磁石によって形成されるため、磁性流体の磁化が行われ磁性が最も強くなる磁界印加部150において磁性流体の温度が最も低くなり、磁化が最も弱まる高温部との温度差を確保して確実に磁性流体を駆動することが可能な冷却装置を提供することができる。
以上、本発明の実施形態について説明したが、本発明は上述したこれらの実施形態に限るものではない。また、本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施形態に記載されたものに限定されるものではない。
この発明の電子部品用冷却装置は、PCの筐体中に配置されるCPUやGPUのみならず、様々な電子部品を冷却する冷却装置として適用することができる。
100 電子部品用冷却装置
110 循環流路
111 伝熱管
120、220 吸熱部
120a、220a 吸熱面
121 伝熱ブロック
122 フィン
221 平坦面
130 放熱部
140 タンク
141 封入口
142 流入部
143 流出部
144 入れ替え部
150 磁界印加部

Claims (7)

  1. 内部に冷却媒体である磁性流体が流通する伝熱管を複数並置してなる管列により構成される循環流路上に、
    前記複数並置されてなる伝熱管を流通する磁性流体によって前記電子部品からの熱を吸熱する吸熱面であって、前記電子部品の冷却対象面に接触する吸熱面を備える吸熱部と、
    前記磁性流体から熱を放熱する放熱部と、
    前記複数並置されてなる伝熱管の全てが流入する流入部と、前記複数並置されてなる伝熱管の全てが流出する流出部とを有するタンクと、
    前記磁性流体を磁化する磁界印加部と、を順次配置するとともに、
    前記流入部又は前記流出部のいずれか一方において、前記伝熱管が並置される順序を入れ替える入れ替え部を有する、
    ことを特徴とする電子部品用冷却装置。
  2. 前記入れ替え部において、前記タンク中央部の伝熱管と前記タンク端部の伝熱管とを入れ替えるようにする、
    請求項に記載の電子部品用冷却装置。
  3. 前記吸熱面が、前記複数並置されてなる伝熱管が貫通する伝熱ブロックの一面として形成される、
    請求項1又は2に記載の電子部品用冷却装置。
  4. 前記吸熱面が、複数並置されてなる伝熱管の一部又は全部を加工して形成された平坦面よりなる、
    請求項1又は2に記載の電子部品用冷却装置。
  5. 前記放熱部は、前記複数並置されてなる伝熱管が貫通するフィン付き伝熱ブロックとして形成される、
    請求項1~のいずれかに記載の電子部品用冷却装置。
  6. 前記磁界印加部が、永久磁石によって形成される、
    請求項1~のいずれかに記載の電子部品用冷却装置。
  7. 前記磁界印加部が、フィン付きの永久磁石によって形成される、
    請求項1~のいずれかに記載の電子部品用冷却装置。
JP2021193845A 2021-11-30 2021-11-30 電子部品用冷却装置 Active JP7012404B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021193845A JP7012404B1 (ja) 2021-11-30 2021-11-30 電子部品用冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021193845A JP7012404B1 (ja) 2021-11-30 2021-11-30 電子部品用冷却装置

Publications (2)

Publication Number Publication Date
JP7012404B1 true JP7012404B1 (ja) 2022-01-28
JP2023080478A JP2023080478A (ja) 2023-06-09

Family

ID=80735339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021193845A Active JP7012404B1 (ja) 2021-11-30 2021-11-30 電子部品用冷却装置

Country Status (1)

Country Link
JP (1) JP7012404B1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240467A (ja) 2002-02-15 2003-08-27 Showa Denko Kk 磁性流体駆動装置
WO2006059623A1 (ja) 2004-12-03 2006-06-08 Da Vinci Co., Ltd. 強制対流式熱移送装置
US20070139885A1 (en) 2005-12-21 2007-06-21 Sun Microsystems, Inc. Heat sink having magnet array for megneto-hydrodynamic hot spot cooling
US20080036076A1 (en) 2006-08-11 2008-02-14 Sun Microsystems, Inc. Intelligent cooling method combining passive and active cooling components
CN202394169U (zh) 2011-11-17 2012-08-22 中国矿业大学 热敏磁流体电脑cpu散热装置
JP2019070456A (ja) 2017-10-06 2019-05-09 キヤノン株式会社 冷却装置、及び冷却装置を有する電子機器
CN112732051A (zh) 2021-01-15 2021-04-30 饶秀举 一种计算机机箱的防尘散热装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355942A (en) * 1991-08-26 1994-10-18 Sun Microsystems, Inc. Cooling multi-chip modules using embedded heat pipes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240467A (ja) 2002-02-15 2003-08-27 Showa Denko Kk 磁性流体駆動装置
WO2006059623A1 (ja) 2004-12-03 2006-06-08 Da Vinci Co., Ltd. 強制対流式熱移送装置
US20070139885A1 (en) 2005-12-21 2007-06-21 Sun Microsystems, Inc. Heat sink having magnet array for megneto-hydrodynamic hot spot cooling
US20080036076A1 (en) 2006-08-11 2008-02-14 Sun Microsystems, Inc. Intelligent cooling method combining passive and active cooling components
CN202394169U (zh) 2011-11-17 2012-08-22 中国矿业大学 热敏磁流体电脑cpu散热装置
JP2019070456A (ja) 2017-10-06 2019-05-09 キヤノン株式会社 冷却装置、及び冷却装置を有する電子機器
CN112732051A (zh) 2021-01-15 2021-04-30 饶秀举 一种计算机机箱的防尘散热装置

Also Published As

Publication number Publication date
JP2023080478A (ja) 2023-06-09

Similar Documents

Publication Publication Date Title
US5441102A (en) Heat exchanger for electronic equipment
US9441888B2 (en) Loop type pressure-gradient-driven low-pressure thermosiphon device
US20170074554A1 (en) Thermo-Magnetic Cooling System and Electronic Apparatus
KR100817267B1 (ko) 냉각재킷
US9074823B2 (en) Thermal siphon structure
JP2005229047A (ja) 電子機器の冷却システム、及び、それを使用した電子機器
JP2007155269A (ja) 冷却装置
US10136553B2 (en) Heat dissipation device and electronic device containing the same
JP2006050742A (ja) 強制風冷式電力変換装置および電気車
TW201728826A (zh) 散熱裝置與電子系統
JP7012404B1 (ja) 電子部品用冷却装置
US20110192572A1 (en) Heat exchanger
CN111726973A (zh) 一种利用磁场实现大热流密度器件冷却的装置及方法
CN112732051A (zh) 一种计算机机箱的防尘散热装置
CN116096055A (zh) 一种带封板式散热器
CN207705184U (zh) 一种散热装置
CN113923950A (zh) 一种利用磁场和微槽道实现大热流密度器件冷却的装置及方法
JP4367223B2 (ja) 熱移動装置
JP3122899U (ja) 放熱システム
CN108323099B (zh) 翅片式热管耦合散热器
CN112105231A (zh) 一种脉动热管式刀片式服务器热管理系统
CN105939593B (zh) 散热装置及电子设备
CN101453860A (zh) 热导装置、热导管及导热方法
CN219068715U (zh) 一种利用磁场实现大热流密度器件冷却的装置
CN218273313U (zh) 一种用于计算机芯片的风冷水冷组合散热设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220111

R150 Certificate of patent or registration of utility model

Ref document number: 7012404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150