JP7011521B2 - Thin-film deposition source for vacuum-film deposition equipment - Google Patents

Thin-film deposition source for vacuum-film deposition equipment Download PDF

Info

Publication number
JP7011521B2
JP7011521B2 JP2018079026A JP2018079026A JP7011521B2 JP 7011521 B2 JP7011521 B2 JP 7011521B2 JP 2018079026 A JP2018079026 A JP 2018079026A JP 2018079026 A JP2018079026 A JP 2018079026A JP 7011521 B2 JP7011521 B2 JP 7011521B2
Authority
JP
Japan
Prior art keywords
vapor deposition
storage box
box
deposition source
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018079026A
Other languages
Japanese (ja)
Other versions
JP2019183248A (en
Inventor
僚也 北沢
寿充 中村
宏之 岩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2018079026A priority Critical patent/JP7011521B2/en
Publication of JP2019183248A publication Critical patent/JP2019183248A/en
Application granted granted Critical
Publication of JP7011521B2 publication Critical patent/JP7011521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、真空蒸着装置用の蒸着源に関する。 The present invention relates to a vapor deposition source for a vacuum vapor deposition apparatus.

この種の蒸着源を備えた真空蒸着装置は例えば特許文献1で知られている。このものでは、被蒸着物を矩形のガラス基板(以下、「基板」という)、基板の蒸着源に対する相対移動方向をX軸方向、X軸方向に直交する基板の幅方向をY軸方向として、蒸着源が蒸着物質を収容する収容箱を有する。被蒸着物に対向する収容箱の部分には、その外方に突出させて、昇華または気化した蒸着物質を噴射する筒状の噴射ノズルがY軸方向に間隔を存して複数本列設されている。そして、真空雰囲気の真空チャンバ内で、収容箱に組み付けたシースヒータやハロゲンヒータ等の加熱手段で蒸発物質を加熱して昇華または気化させ、この昇華または気化した蒸着物質を各噴射ノズルから噴射させ、蒸着源に対してX軸方向に相対移動する基板に付着、堆積させて所定の薄膜が成膜される。この場合、蒸着源と基板との間に、この基板に対する蒸着物質の付着範囲を制限するマスクプレートを介在させて所定のパターンで基板に成膜することも従来から知られている。 A vacuum vapor deposition apparatus provided with this type of vapor deposition source is known, for example, in Patent Document 1. In this product, the material to be deposited is a rectangular glass substrate (hereinafter referred to as "substrate"), the relative movement direction of the substrate with respect to the vapor deposition source is the X-axis direction, and the width direction of the substrate orthogonal to the X-axis direction is the Y-axis direction. The vapor deposition source has a containment box for accommodating the vapor deposition material. A plurality of tubular injection nozzles for injecting sublimated or vaporized vaporized material are provided in a row at intervals in the Y-axis direction in the portion of the storage box facing the material to be vapor-deposited. ing. Then, in a vacuum chamber with a vacuum atmosphere, the evaporated substance is heated by a heating means such as a sheath heater or a halogen heater assembled in the storage box to sublimate or vaporize, and the sublimated or vaporized vaporized substance is injected from each injection nozzle. A predetermined thin film is formed by adhering and depositing on a substrate that moves relative to the vaporization source in the X-axis direction. In this case, it has been conventionally known that a mask plate that limits the range of adhesion of the vapor-deposited substance to the substrate is interposed between the vapor deposition source and the substrate to form a film on the substrate in a predetermined pattern.

一方、他形態に係る蒸着源として、内部に蒸着物質が収容されるタンク部(収容部)と、このタンク部上に配置され、一方向にのびる所定の幅で開口するスリット状の第1開口部を有するノズル部と、少なくとも前記第1開口部を露出させる第2開口部を有してタンク部及びノズル部の外壁を覆うように設けられた断熱部とを備え、タンク部とノズル部とを導電性材料で形成して単一の電源からの通電により発熱させるようにしたものが例えば特許文献2で知られている(例えば図3,4参照)。 On the other hand, as a vapor deposition source according to another form, a tank portion (accommodation portion) in which the vapor-deposited substance is accommodated, and a slit-shaped first opening arranged on the tank portion and having a predetermined width extending in one direction. A nozzle portion having a portion and a heat insulating portion having at least a second opening for exposing the first opening portion and provided to cover the outer wall of the tank portion and the nozzle portion are provided, and the tank portion and the nozzle portion are provided. Is known, for example, in Patent Document 2 (see, for example, FIGS. 3 and 4), which is formed of a conductive material and is made to generate heat by energization from a single power source.

ここで、例えばメンテナンス性や構造の簡素化を考慮して、上記特許文献1のような構造を持つ蒸着源にも上記特許文献2記載の技術を適用すること、即ち、噴射ノズルを含む収容箱をカーボン等の導電性材料で形成し、単一の電源からの通電により収納箱自体を加熱し、蒸着物質を昇華または気化させて各噴射ノズルから噴射させることが考えられる。然し、これでは、収容箱に温度むらが生じることが判明した。例えば、各噴射ノズル相互の間だけでなく、いずれかの噴射ノズルにてその先端部と基端部との間に温度むらが発生している場合、昇華または気化した蒸着物質が噴射ノズル内を通って外部に飛散していくときにその一部が噴射ノズルの内壁面に衝突するが、比較的温度が低い内壁面に衝突した蒸着物質が再凝固して堆積したのでは、ノズル詰まりを招来する。また、蒸着物質が設置される収容箱の底部に温度むらが発生している場合、比較的温度が低い部分の蒸着物質が何時までも昇華または気化しないのでは、蒸着物質が残留してしまい、蒸着物質が無駄になる。 Here, for example, in consideration of maintainability and simplification of the structure, the technique described in Patent Document 2 is applied to a vapor deposition source having a structure as described in Patent Document 1, that is, a storage box including an injection nozzle. Is formed of a conductive material such as carbon, and the storage box itself is heated by energization from a single power source to sublimate or vaporize the vapor-deposited substance and inject it from each injection nozzle. However, this turned out to cause temperature unevenness in the containment box. For example, if temperature unevenness occurs not only between the injection nozzles but also between the tip end portion and the base end portion of any of the injection nozzles, the sublimated or vaporized vaporized material enters the injection nozzles. A part of it collides with the inner wall surface of the injection nozzle when it passes through and scatters to the outside, but if the vaporized material that collided with the inner wall surface with a relatively low temperature resolidifies and accumulates, it causes nozzle clogging. do. In addition, when temperature unevenness occurs at the bottom of the storage box in which the vapor-deposited substance is installed, if the vapor-deposited substance in the relatively low temperature portion does not sublimate or vaporize forever, the vapor-filmed substance will remain. The vaporized material is wasted.

特開2014-77193号公報Japanese Unexamined Patent Publication No. 2014-77193 特開2011-60865号公報Japanese Unexamined Patent Publication No. 2011-60865

本発明は、以上の知見を基になされたものであり、通電により収納箱自体を加熱するときに、収容箱に温度むらが発生することを可及的に抑制できるようにした真空蒸着装置用の蒸着源を提供することをその課題とするものである。 The present invention has been made based on the above findings, and is for a vacuum vapor deposition apparatus capable of suppressing the occurrence of temperature unevenness in the storage box as much as possible when the storage box itself is heated by energization. It is an object of the present invention to provide a vapor deposition source of the above.

上記課題を解決するために、真空チャンバ内に配置されて被蒸着物に対して蒸着するための本発明の真空蒸着装置用の蒸着源は、蒸着物質を収容する導電性の収容箱と、電源を有して収容箱への通電による発熱で収容箱内の蒸着物質を昇華または気化させる給電回路と、被蒸着物に対向する収容箱の部分に突設されて昇華または気化した蒸着物質を噴射する噴射ノズルとを備え、噴射ノズルが突設された収容箱の部分に通電する給電回路は、電流の入力位置及び出力位置の異なる複数のもので構成されることを特徴とする。 In order to solve the above problems, the vapor deposition source for the vacuum vapor deposition apparatus of the present invention, which is arranged in a vacuum chamber and vapor-deposits on an object to be vapor-deposited, has a conductive storage box for accommodating the vapor-deposited material and a power source. A power supply circuit that sublimates or vaporizes the vaporized material in the storage box by the heat generated by energizing the storage box, and injects the sublimated or vaporized vaporized material that is projected from the part of the storage box facing the object to be deposited. The power feeding circuit provided with the injection nozzle and energizing the portion of the storage box in which the injection nozzle is projected is characterized in that it is composed of a plurality of ones having different current input positions and output positions .

本発明によれば、抵抗を持つ導体としての収容箱に各給電回路により通電する(例えば直流電流を流す)と、そのときに生じるジュール効果で収容箱が発熱する。このとき、収容箱に対する各給電回路の入力位置及び出力位置や、各給電回路からの通電電流値を適宜設定すれば、噴射ノズルを含め収容箱を流れる電流の分布が適宜調整されて、収容箱に温度むらが発生することを可及的に抑制できる。 According to the present invention, when the storage box as a conductor having resistance is energized by each feeding circuit (for example, a direct current is passed), the storage box generates heat due to the Joule effect generated at that time. At this time, if the input position and output position of each power supply circuit with respect to the storage box and the energization current value from each power supply circuit are appropriately set, the distribution of the current flowing through the storage box including the injection nozzle is appropriately adjusted and the storage box is used. It is possible to suppress the occurrence of temperature unevenness as much as possible.

本発明において、収容箱が、一面を開口した箱部と、前記噴射ノズルが突設された収容箱の部分を構成してこの箱部の開口を着脱自在に閉塞する蓋部とを有する場合、箱部と蓋部との間に両者を電気的に縁切りする絶縁シールが介在され、箱部に少なくとも1個の前記給電回路が接続されていることが好ましい。この場合、例えば蓋部にて、電源を有する給電回路が複数接続されていてもよい。これによれば、箱部と蓋部とを電気的に縁切りした上で、箱部と蓋部毎に電流の分布が適宜調整して温度むらが発生することを抑制でき、そのため、温度むらの発生に起因するノズル詰まりや蒸着物質の残留を防止でき、有利である。 In the present invention, when the storage box has a box portion having an opening on one side and a lid portion forming a portion of the storage box in which the injection nozzle is projected and detachably closing the opening of the box portion. It is preferable that an insulating seal that electrically cuts the edges between the box portion and the lid portion is interposed, and at least one of the power feeding circuits is connected to the box portion . In this case, for example, a plurality of power feeding circuits having a power source may be connected to the lid portion. According to this, after the box portion and the lid portion are electrically cut off, the current distribution can be appropriately adjusted for each box portion and the lid portion to suppress the occurrence of temperature unevenness, and therefore, the temperature unevenness can be suppressed. It is advantageous because it can prevent the nozzle clogging and the residual vaporized material due to the generation.

また、本発明において、前記箱部または前記蓋部の少なくとも一方に、その板厚方向またはこれに直交する方向にくぼむくぼみ部が局所的に形成されていることが好ましい。これによれば、くぼみ部が形成された箇所ではその断面積が小さくなることで抵抗が大きくなり、発熱量を局所的に増加させることができるため、これを比較的温度が低い部分に採用すれば、より一層温度むらが発生することを抑制でき、有利である。 Further, in the present invention, it is preferable that a recessed portion is locally formed on at least one of the box portion or the lid portion in the plate thickness direction or the direction orthogonal to the plate thickness direction. According to this, in the place where the dent is formed, the cross-sectional area becomes smaller and the resistance becomes larger, and the calorific value can be increased locally. Therefore, this should be adopted in the part where the temperature is relatively low. This is advantageous because it is possible to further suppress the occurrence of temperature unevenness.

ところで、一般の真空蒸着装置用の蒸着源は、噴射ノズルが突設された収容箱の部分が鉛直方向上側に位置する姿勢で真空チャンバ内に設置される。このとき、収容箱の底壁が、互いに向かい合う側面からその中央領域に向けて鉛直方向下方に夫々傾斜する傾斜面を有していれば、例えば、蒸着物質の加熱時、金属材料のように液相を経て気相に転移するものであれば、液相になったものが傾斜面を伝って収容箱の中央領域に集められる。そして、いずれかの給電回路による通電でこの中央領域における発熱量を局所的に増加させておけば、最後まで蒸着物質を確実に気化させることができ、有利である。 By the way, the vapor deposition source for a general vacuum vapor deposition apparatus is installed in the vacuum chamber in a posture in which the portion of the storage box in which the injection nozzle is projected is located on the upper side in the vertical direction. At this time, if the bottom wall of the storage box has an inclined surface that inclines downward in the vertical direction from the side surfaces facing each other toward the central region thereof, for example, when the vapor deposition material is heated, a liquid such as a metal material is used. If it is transferred from the phase to the gas phase, the liquid phase is collected in the central region of the storage box along the inclined surface. Then, if the calorific value in this central region is locally increased by energization by any of the feeding circuits, the vaporized material can be reliably vaporized until the end, which is advantageous.

(a)は、本発明の実施形態の蒸着源を備える真空蒸着装置を説明する、一部を断面視とした部分斜視図、(b)は、真空蒸着装置を正面側からみた部分断面図。(A) is a partial perspective view showing a partially sectional view of the vacuum vapor deposition apparatus including the vapor deposition source according to the embodiment of the present invention, and (b) is a partial sectional view of the vacuum vapor deposition apparatus viewed from the front side. (a)は、図1のIIa―IIa線に沿う断面図、(b)は、蓋部の箱部側から視た底面図。(A) is a cross-sectional view taken along the line IIa-IIa of FIG. 1, and (b) is a bottom view seen from the box portion side of the lid portion. 変形例に係る収容箱の蓋部の平面図。The plan view of the lid part of the containment box which concerns on a modification. 変形例に係る収容箱の箱部の断面図。Sectional drawing of the box part of the containment box which concerns on a modification.

以下、図面を参照して、被成膜物を矩形の輪郭を持つ所定厚さのガラス基板(以下、「基板Sw」という)とし、基板Swの片面に所定の薄膜を成膜する場合を例に本発明の真空蒸着装置用の蒸着源DSの実施形態を説明する。以下においては、「上」、「下」といった方向を指す用語は、図1に示す蒸着源の姿勢を基準とする。 Hereinafter, referring to the drawings, an example is a case where the film to be deposited is a glass substrate having a rectangular outline and a predetermined thickness (hereinafter referred to as “substrate Sw”), and a predetermined thin film is formed on one side of the substrate Sw. An embodiment of the vapor deposition source DS for the vacuum vapor deposition apparatus of the present invention will be described. In the following, the terms indicating the directions such as "up" and "down" are based on the attitude of the vapor deposition source shown in FIG.

図1(a)及び(b)を参照して、Dmは、本実施形態の蒸着源DSを備える真空蒸着装置である。真空蒸着装置Dmは、真空チャンバ1を備え、真空チャンバ1には、特に図示して説明しないが、排気管を介して真空ポンプが接続され、所定圧力(真空度)に真空引きして保持できるようになっている。また、真空チャンバ1の上部には基板搬送装置2が設けられている。基板搬送装置2は、成膜面としての下面を開放した状態で基板Swを保持するキャリア21を有し、図外の駆動装置によってキャリア21、ひいては基板Swを真空チャンバ1内の一方向に所定速度で移動するようになっている。基板搬送装置2としては公知のものが利用できるため、これ以上の説明は省略する。また、以下においては、蒸着源DSに対する基板Swの相対移動方向をX軸方向、X軸方向に直交する基板Swの幅方向をY軸方向とする。 With reference to FIGS. 1 (a) and 1 (b), Dm is a vacuum vapor deposition apparatus including the vapor deposition source DS of the present embodiment. The vacuum vapor deposition apparatus Dm includes a vacuum chamber 1, and a vacuum pump is connected to the vacuum chamber 1 via an exhaust pipe, although not particularly illustrated, and can be evacuated to a predetermined pressure (vacuum degree) and held. It has become like. Further, a substrate transfer device 2 is provided above the vacuum chamber 1. The substrate transfer device 2 has a carrier 21 that holds the substrate Sw in a state where the lower surface as a film forming surface is open, and the carrier 21 and thus the substrate Sw are predetermined in one direction in the vacuum chamber 1 by a drive device (not shown). It is designed to move at speed. Since a known substrate transfer device 2 can be used, further description thereof will be omitted. Further, in the following, the relative movement direction of the substrate Sw with respect to the vapor deposition source DS is defined as the X-axis direction, and the width direction of the substrate Sw orthogonal to the X-axis direction is defined as the Y-axis direction.

基板搬送装置2によって搬送される基板Swと後述の蒸着源DSとの間には、板状のマスクプレート3が設けられている。本実施形態では、マスクプレート3は、基板Swと一体に取り付けられて基板Swと共に基板搬送装置2によって搬送されるようになっている。なお、マスクプレート3は、真空チャンバ1に予め固定配置しておくこともできる。マスクプレート3には、板厚方向に貫通する複数の開口31が形成され、これら開口31がない位置にて蒸着物質の基板Swに対する付着範囲が制限されることで所定のパターンで基板Swに成膜されるようになっている。マスクプレート3としては、インバー、アルミ、アルミナやステンレス等の金属製の他、ポリイミド等の樹脂製のものが用いられる。そして、真空チャンバ1の底面には、X軸方向に移動される基板Swに対向させて本実施形態の蒸着源DSが設けられている。 A plate-shaped mask plate 3 is provided between the substrate Sw transported by the substrate transport device 2 and the vapor deposition source DS described later. In the present embodiment, the mask plate 3 is integrally attached to the substrate Sw and is conveyed together with the substrate Sw by the substrate transfer device 2. The mask plate 3 may be fixedly arranged in the vacuum chamber 1 in advance. A plurality of openings 31 penetrating in the plate thickness direction are formed in the mask plate 3, and the adhesion range of the vapor-deposited substance to the substrate Sw is limited at a position where these openings 31 do not exist, so that the substrate Sw is formed in a predetermined pattern. It is designed to be filmed. As the mask plate 3, a metal such as Invar, aluminum, alumina or stainless steel, or a resin such as polyimide is used. The bottom surface of the vacuum chamber 1 is provided with the vapor deposition source DS of the present embodiment facing the substrate Sw that is moved in the X-axis direction.

図2も参照して、蒸着源DSは、蒸着物質4を収容する収容箱5を有する。収容箱5が、上面を開口した箱部51と、箱部51の上面開口を着脱自在に閉塞する板状の蓋部52とを有し、箱部51の底面に蒸着物質4が直接設置されるようになっている。この場合、箱部51と蓋部52は、カーボン等の導電性材料で形成され、箱部51と蓋部52の間には、両者を電気的に縁切りする絶縁シールとしての枠状の碍子53が介在されている(この場合、碍子53は収容箱5内を密閉する役割を果たすようになっている)。蒸着物質4としては、基板Swに成膜しようとする薄膜に応じて適宜選択(例えば、Ag、Li、MgやMoO)され、顆粒状またはタブレット状の固形のものが利用される。なお、特に図示して説明しないが、箱部51内には分散板が設けられ、昇華または気化した蒸着物質4を後述の各噴射ノズルから略均等な流量で噴射できるようになっている。 Also with reference to FIG. 2, the vapor deposition source DS has a storage box 5 for accommodating the vapor deposition material 4. The storage box 5 has a box portion 51 having an open upper surface and a plate-shaped lid portion 52 that detachably closes the upper surface opening of the box portion 51, and the vapor-deposited substance 4 is directly installed on the bottom surface of the box portion 51. It has become so. In this case, the box portion 51 and the lid portion 52 are formed of a conductive material such as carbon, and a frame-shaped insulator 53 as an insulating seal that electrically cuts the edges between the box portion 51 and the lid portion 52 is provided between the box portion 51 and the lid portion 52. (In this case, the insulator 53 serves to seal the inside of the storage box 5). The vapor-deposited substance 4 is appropriately selected (for example, Ag, Li, Mg, MoO 3 ) according to the thin film to be formed on the substrate Sw, and a solid substance in the form of granules or tablets is used. Although not particularly illustrated and described, a dispersion plate is provided in the box portion 51 so that the sublimated or vaporized vapor-deposited substance 4 can be injected from each of the injection nozzles described later at a substantially uniform flow rate.

蓋部52には、所定高さの筒体で構成される、昇華または気化させた蒸着物質4を噴射する噴射ノズル54がY軸方向に所定の間隔で(本実施形態では、6本)列設されている。なお、例えば基板Swに蒸着したときのY軸方向の膜厚分布や、マスクボケの発生などの問題を防止するために、各噴射ノズル54は、その孔軸が基板Swに平行に設置される蓋部52の上面に対して30度~60度の範囲内の所定角度で傾斜されていてもよい。また、蓋部52には、Y軸方向の両側面から外方に突出させて前後一対の端子部52a,52bが夫々形成され、各対の端子部52a,52bには、直流電源6,6からの正負の出力ケーブル61が夫々接続され、蓋部52を含めて給電回路Pc1,Pc2を構成するようになっている。 In the lid portion 52, injection nozzles 54 for injecting a sublimated or vaporized vaporized substance 4 composed of a cylinder having a predetermined height are arranged at predetermined intervals in the Y-axis direction (six in the present embodiment). It is set up. For example, in order to prevent problems such as film thickness distribution in the Y-axis direction and occurrence of mask blur when vapor-deposited on the substrate Sw, each injection nozzle 54 has a lid whose hole axis is installed in parallel with the substrate Sw. It may be inclined at a predetermined angle within the range of 30 degrees to 60 degrees with respect to the upper surface of the portion 52. Further, a pair of front and rear terminal portions 52a and 52b are formed on the lid portion 52 so as to project outward from both side surfaces in the Y-axis direction, and each pair of terminal portions 52a and 52b are formed with a DC power supply 61. The positive and negative output cables 61 from 62 are connected to each other, and the power feeding circuits Pc1 and Pc2 are configured including the lid portion 52.

上記実施形態では、各噴射ノズル54を含めて蓋部52に温度むらが発生しないように前後一対の端子部52a,52bを2個設けて2個の給電回路Pc1,Pc2で通電するようにしているが、これに限定されるものではなく、例えば、給電回路Pc1,Pc2により蓋部52に通電して実際の温度分布を予め実験的に求め、この求めたものから、例えば、端子部の位置(電流の入力位置及び出力位置)や、給電回路の数を適宜設定して、蓋部52を流れる電流の分布を調整することができる。他方で、電流の分布を調整するだけでは、例えば、蓋部52に突設した所定長さの各噴射ノズル54における温度むらの発生を抑制できない場合には、噴射ノズル54が突出された蓋部52の部分の板厚がその他の部分より薄くなるように、蓋部52下面の所定位置には板厚方向にくぼむくぼみ部55を凹設してもよい(図2参照)。これによれば、くぼみ部が55形成された箇所ではその断面積が小さくなることで抵抗が大きくなり、発熱量を局所的に増加させることができる。 In the above embodiment, two pairs of front and rear terminal portions 52a and 52b are provided so that the lid portion 52 including each injection nozzle 54 does not have temperature unevenness, and the two feeding circuits Pc1 and Pc2 are energized. However, the present invention is not limited to this, and for example, the lid portion 52 is energized by the feeding circuits Pc1 and Pc2 to experimentally obtain the actual temperature distribution in advance, and from this obtained one, for example, the position of the terminal portion. (Current input position and output position) and the number of power feeding circuits can be appropriately set to adjust the distribution of the current flowing through the lid portion 52. On the other hand, if it is not possible to suppress the occurrence of temperature unevenness in each of the injection nozzles 54 having a predetermined length projecting from the lid portion 52 by simply adjusting the current distribution, for example, the lid portion on which the injection nozzle 54 protrudes. A recessed portion 55 may be recessed in the plate thickness direction at a predetermined position on the lower surface of the lid portion 52 so that the plate thickness of the portion 52 is thinner than that of the other portions (see FIG. 2). According to this, in the place where 55 of the recessed portions are formed, the cross-sectional area becomes smaller and the resistance becomes larger, so that the calorific value can be locally increased.

他方、箱部51もまた、Y軸方向の両側面から外方に突出させて前後一対の端子部51aが形成され、一対の端子部51aには、直流電源6からの正負の出力ケーブル61が接続され、蓋部52のものとは異なる給電回路Pc3を構成するようになっている。この場合、上記同様、給電回路Pc3により箱部51に通電して実際の温度分布を予め実験的に求め、この求めたものから、端子部の位置(電流の入力位置及び出力位置)や、給電回路の数を適宜設定して、箱部51を流れる電流の分布を調整し、または、例えば、蒸着物質4が直接設置される箱部51の底壁に温度むらが発生しているような場合には、箱部51の底壁の断面積を局所的に小さくするようにしてもよい。なお、各直流電源6,6,6は真空チャンバ1外に設けられるものであり、それ自体は公知のものであるため、これ以上の説明は省略する。 On the other hand, the box portion 51 is also projected outward from both side surfaces in the Y-axis direction to form a pair of front and rear terminal portions 51a, and the pair of terminal portions 51a are formed with positive and negative output cables 61 from the DC power supply 63 . Is connected to form a feeding circuit Pc3 different from that of the lid 52. In this case, similarly to the above, the box portion 51 is energized by the power supply circuit Pc3 to obtain the actual temperature distribution experimentally in advance, and from this obtained value, the position of the terminal part (current input position and output position) and the power supply are supplied. When the number of circuits is appropriately set to adjust the distribution of the current flowing through the box portion 51, or for example, when the bottom wall of the box portion 51 where the vapor deposition material 4 is directly installed has temperature unevenness. Alternatively, the cross-sectional area of the bottom wall of the box portion 51 may be locally reduced. Since each of the DC power supplies 6 1 , 6 2 , 6 3 is provided outside the vacuum chamber 1 and is known by itself, further description thereof will be omitted.

上記蒸着源DSを用いて基板Sw表面に成膜するのに際しては、箱部51内に所定の蒸着物質4、例えばAgやMgといった金属材料を収容した後、碍子53を介在させた状態で蓋部52を取り付けて、その内部を密閉する。次に、真空チャンバ1を所定圧力まで真空引きすると、給電回路Pc1~Pc3の各直流電源6,6,6により箱部51と蓋部52に通電する。すると、抵抗を持つ導体としての箱部51に通電したときに生じるジュール効果で箱部51が発熱し、伝熱でその内部の蒸着物質4が所定温度(例えば800℃~1400℃)に加熱されて液相を経て気化する。このとき、箱部51と別の給電回路Pc1,Pc2から通電により蓋部52自体も発熱し、その通電電流を適宜設定することで、各噴射ノズル54を含めその全体が箱部51と同等で略均等な温度になる。そして、気化した蒸着物質が各噴射ノズル54から噴射され、マスクプレート3越しに基板Sw表面に付着、堆積し、所定のパターンで成膜される。 When forming a film on the surface of the substrate Sw using the vapor deposition source DS, a predetermined vapor deposition substance 4, for example, a metal material such as Ag or Mg is housed in the box portion 51, and then the lid is interposed with the insulator 53 interposed therebetween. A portion 52 is attached and the inside thereof is sealed. Next, when the vacuum chamber 1 is evacuated to a predetermined pressure, the box portion 51 and the lid portion 52 are energized by the DC power supplies 6 1 , 6 2 , 63 of the power supply circuits Pc1 to Pc3. Then, the box portion 51 generates heat due to the Joule effect generated when the box portion 51 as a conductor having resistance is energized, and the vapor-deposited substance 4 inside the box portion 4 is heated to a predetermined temperature (for example, 800 ° C to 1400 ° C) by heat transfer. It vaporizes through the liquid phase. At this time, the lid portion 52 itself also generates heat by energization from the power supply circuits Pc1 and Pc2 separate from the box portion 51, and by appropriately setting the energization current, the whole including each injection nozzle 54 is equivalent to the box portion 51. The temperature becomes almost uniform. Then, the vaporized vaporized substance is ejected from each injection nozzle 54, adheres to and deposits on the surface of the substrate Sw through the mask plate 3, and is formed into a film in a predetermined pattern.

以上の実施形態によれば、収容箱5の箱部51と蓋部52とに、複数の給電回路Pc1~Pc3から夫々通電することと、蓋部52だけでも複数の給電回路Pc1,Pc2から夫々通電して電流分布を調整していることと、くぼみ部55が形成された箇所にて発熱量を局所的に増加させることとが相俟って、箱部51と蓋部52毎に、ひいては収容箱5に温度むらが発生することを可及的に抑制でき、温度むらの発生に起因するノズル詰まりや蒸着物質の残留を確実に防止できる。 According to the above embodiment, the box portion 51 and the lid portion 52 of the storage box 5 are energized from the plurality of power supply circuits Pc1 to Pc3, respectively, and the lid portion 52 alone is supplied from the plurality of power supply circuits Pc1 and Pc2, respectively. The combination of energizing and adjusting the current distribution and locally increasing the calorific value at the place where the recess 55 is formed makes it possible to use each of the box portion 51 and the lid portion 52, and thus the lid portion 52. It is possible to suppress the occurrence of temperature unevenness in the storage box 5 as much as possible, and it is possible to reliably prevent nozzle clogging and residual vaporized material due to the occurrence of temperature unevenness.

以上、本発明の実施形態について説明したが、本発明の技術思想の範囲を逸脱しない限り、種々の変形が可能である。上記実施形態では、収容箱5を箱部51と蓋部52とで構成し、碍子53を介在されて組み付けるものを例に説明したが、これに限定されるものではなく、収容箱を一体ものとすることができる。この場合、複数の給電回路を収容箱に通電して実際の温度分布を予め実験的に求め、この求めたものから、端子部の位置(電流の入力位置及び出力位置)や、給電回路の数を適宜設定すればよい。また、上記実施形態では、各給電回路Pc1~Pc3の電源として直流電源6,6,6を用いるものを例に説明したが、これに限定されるものではなく、所定周波数の交流電源を用いることもできる。 Although the embodiments of the present invention have been described above, various modifications are possible as long as they do not deviate from the scope of the technical idea of the present invention. In the above embodiment, the case where the storage box 5 is composed of the box portion 51 and the lid portion 52 and assembled with the insulator 53 interposed therebetween is described as an example, but the present invention is not limited to this, and the storage box is integrated. Can be. In this case, a plurality of power supply circuits are energized in the storage box to experimentally obtain the actual temperature distribution in advance, and from the obtained values, the position of the terminal portion (current input position and output position) and the number of power supply circuits are obtained. Should be set as appropriate. Further, in the above embodiment, the case where the DC power supplies 6 1 , 6 2 and 63 are used as the power sources of the power supply circuits Pc1 to Pc3 has been described as an example, but the present invention is not limited to this, and the AC power supply having a predetermined frequency is not limited thereto. Can also be used.

また、上記実施形態では、給電回路Pc1~Pc3からの通電による発熱時、蓋部52下面の所定位置には板厚方向にくぼむくぼみ部55を凹設して局所的に発熱量を増加させるものを例に説明したが、これに限定されるものではない。例えば、図3に示すように、変形例に係る蓋部520では、板厚方向に直交する方向(即ち、蓋部520の長手方向の側面からその内方に向け)くぼむ他のくぼみ部550を局所的に形成するようにしてもよい。また。くぼみ部は、箱部または蓋部の少なくとも一方に形成されていればよい。 Further, in the above embodiment, when heat is generated by energization from the power supply circuits Pc1 to Pc3, a recessed portion 55 is recessed in a predetermined position on the lower surface of the lid portion 52 in the plate thickness direction to locally increase the amount of heat generated. The explanation is given by taking as an example, but the present invention is not limited to this. For example, as shown in FIG. 3, in the lid portion 520 according to the modified example, another recessed portion that is recessed in a direction orthogonal to the plate thickness direction (that is, from the longitudinal side surface of the lid portion 520 toward the inside thereof). The 550 may be formed locally. Also. The recess may be formed in at least one of the box and the lid.

更に、上記実施形態では、箱部51として、蒸着物質4が直接設置される底壁が平坦な略直方体状のものを例に説明したが、これに限定されるものでない。例えば、図に示すように、変形例に係る箱部510では、その底壁が、互いに向かい合う側面(例えば、箱部510の長手方向の側面)からその中央に向けて鉛直方向下方に夫々傾斜する傾斜面511で形成されている。これによれば、例えば、蒸着物質4の加熱時、金属材料のように液相を経て気相に転移するものであれば、液相になったものが傾斜面511を伝って箱部510の中央領域に集められる。そして、給電回路による通電でこの中央領域における発熱量を局所的に増加させておけば、最後まで蒸着物質4を確実に気化させることができ、有利である。 Further, in the above embodiment, as the box portion 51, a substantially rectangular parallelepiped shape having a flat bottom wall on which the vapor-deposited substance 4 is directly installed has been described as an example, but the present invention is not limited thereto. For example, as shown in FIG. 4 , in the box portion 510 according to the modified example, the bottom walls thereof are inclined downward in the vertical direction from the side surfaces facing each other (for example, the longitudinal side surfaces of the box portion 510) toward the center thereof. It is formed by an inclined surface 511. According to this, for example, when the vapor-deposited substance 4 is heated, if it is transferred to the gas phase via the liquid phase like a metal material, the liquid phase is transmitted through the inclined surface 511 to the box portion 510. Collected in the central area. Then, if the calorific value in this central region is locally increased by energization by the feeding circuit, the vaporized substance 4 can be surely vaporized until the end, which is advantageous.

また、上記実施形態では、被成膜物をガラス基板Swとし、基板搬送装置2によりガラス基板Swを一定の速度で搬送しながら成膜するものを例に説明したが、真空蒸着装置Dmの構成は、上記のものに限定されるものではない。例えば、被成膜物をシート状の基材とし、駆動ローラと巻取りローラとの間で一定の速度で基材を移動させながら基材の片面に成膜するような装置にも本発明は適用できる。また、真空チャンバ1内に基板Swとマスクプレート3を一体として固定し、蒸着源DSに公知の構造を持つ駆動手段を付設して、基板Swに対して蒸着源DSを相対移動させながら成膜することにも本発明は適用できる。即ち、基板Swと蒸着源DSを相対的に移動させれば、基板Swと蒸着源DSのいずれか、もしくは両方を移動させてもよい。更に、収容箱5に噴射ノズル54を一列で設けたものを例に説明したが、複数例設けることもできる。 Further, in the above embodiment, a case where the film to be filmed is a glass substrate Sw and a film is formed while the glass substrate Sw is conveyed at a constant speed by the substrate transfer device 2 has been described as an example. Is not limited to the above. For example, the present invention is also a device in which a film-deposited object is used as a sheet-shaped base material, and the base material is moved between the drive roller and the take-up roller at a constant speed to form a film on one side of the base material. Applicable. Further, the substrate Sw and the mask plate 3 are integrally fixed in the vacuum chamber 1, and a driving means having a known structure is attached to the vapor deposition source DS to form a film while moving the vapor deposition source DS relative to the substrate Sw. The present invention can also be applied to this. That is, if the substrate Sw and the vapor deposition source DS are relatively moved, either or both of the substrate Sw and the vapor deposition source DS may be moved. Further, although the case where the injection nozzles 54 are provided in a row in the storage box 5 has been described as an example, a plurality of examples may be provided.

DS…真空蒸着装置用の蒸着源、Dm…真空蒸着装置、Sw…基板(被蒸着物)1…真空チャンバ、4…蒸着物質、5…収容箱、51、510…箱部、52、520…蓋部、53…碍子(絶縁シール)、55…くぼみ部、54…噴射ノズル、511…傾斜面、6~6…直流電源(電源)、Pc1~Pc3…給電回路。
DS ... Evaporation source for vacuum vapor deposition equipment, Dm ... Vacuum vapor deposition equipment, Sw ... Substrate (material to be deposited) 1 ... Vacuum chamber, 4 ... Evaporated material, 5 ... Storage box, 51, 510 ... Box part, 52, 520 ... Cover, 53 ...(insulation seal), 55 ... recess, 54 ... injection nozzle, 511 ... inclined surface, 61 to 63 ... DC power supply (power supply), Pc1 to Pc3 ... power supply circuit.

Claims (4)

真空チャンバ内に配置されて被蒸着物に対して蒸着するための真空蒸着装置用の蒸着源であって、
蒸着物質を収容する導電性の収容箱と、電源を有して収容箱への通電による発熱で収容箱内の蒸着物質を昇華または気化させる給電回路と、被蒸着物に対向する収容箱の部分に突設されて昇華または気化した蒸着物質を噴射する噴射ノズルとを備えるものにおいて、
噴射ノズルが突設された収容箱の部分に通電する給電回路は、電流の入力位置及び出力位置の異なる複数のもので構成されることを特徴とする真空蒸着装置用の蒸着源。
A vapor deposition source for a vacuum vapor deposition apparatus that is placed in a vacuum chamber to deposit a film on an object to be deposited.
A conductive storage box that houses the vapor-deposited material, a power supply circuit that has a power supply and sublimates or vaporizes the vaporized material in the storage box by the heat generated by energizing the storage box, and the part of the storage box facing the vaporized material. In those equipped with an injection nozzle that is projected onto the surface and injects a sublimated or vaporized vaporized substance.
A vapor deposition source for a vacuum vapor deposition apparatus , wherein a power feeding circuit that energizes a portion of a storage box in which an injection nozzle is projected is composed of a plurality of circuits having different current input positions and output positions .
請求項1記載の真空蒸着装置用の蒸着源であって、前記収容箱が、一面を開口した箱部と、前記噴射ノズルが突設された収容箱の部分を構成して箱部の開口を着脱自在に閉塞する蓋部とを有するものにおいて、
箱部と蓋部との間に両者を電気的に縁切りする絶縁シールが介在され、箱部に少なくとも1個の前記給電回路が接続されていることを特徴とする真空蒸着装置用の蒸着源。
The vapor deposition source for the vacuum vapor deposition apparatus according to claim 1, wherein the storage box comprises a box portion having an opening on one side and a storage box portion in which the injection nozzle is projected, and the opening of the box portion is opened. In those having a lid that can be detachably closed,
A vapor deposition source for a vacuum vapor deposition apparatus, characterized in that an insulating seal that electrically cuts the edges between the box portion and the lid portion is interposed, and at least one of the power feeding circuits is connected to the box portion .
前記箱部または前記蓋部の少なくとも一方に、その板厚方向またはこれに直交する方向にくぼむくぼみ部が局所的に形成されていることを特徴とする請求項2記載の真空蒸着装置用の蒸着源。 The vacuum vapor deposition apparatus according to claim 2, wherein a recessed portion is locally formed on at least one of the box portion or the lid portion in the plate thickness direction or a direction orthogonal to the plate thickness direction. Deposition source. 請求項1~3のいずれか1項に記載の真空蒸着装置用の蒸着源であって、前記噴射ノズルが突設された前記収容箱の部分が鉛直方向上側に位置する姿勢で設置されるものにおいて、
前記収容箱の底壁は、互いに向かい合う側面からその中央領域に向けて鉛直方向下方に夫々傾斜する傾斜面を有することを特徴とする真空蒸着装置用の蒸着源。
The vapor deposition source for the vacuum vapor deposition apparatus according to any one of claims 1 to 3, wherein the portion of the storage box in which the injection nozzle is projected is installed in a posture of being located on the upper side in the vertical direction. In
A vapor deposition source for a vacuum vapor deposition apparatus, wherein the bottom wall of the storage box has an inclined surface that is inclined downward in the vertical direction from the side surfaces facing each other toward the central region thereof.
JP2018079026A 2018-04-17 2018-04-17 Thin-film deposition source for vacuum-film deposition equipment Active JP7011521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018079026A JP7011521B2 (en) 2018-04-17 2018-04-17 Thin-film deposition source for vacuum-film deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018079026A JP7011521B2 (en) 2018-04-17 2018-04-17 Thin-film deposition source for vacuum-film deposition equipment

Publications (2)

Publication Number Publication Date
JP2019183248A JP2019183248A (en) 2019-10-24
JP7011521B2 true JP7011521B2 (en) 2022-01-26

Family

ID=68339974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018079026A Active JP7011521B2 (en) 2018-04-17 2018-04-17 Thin-film deposition source for vacuum-film deposition equipment

Country Status (1)

Country Link
JP (1) JP7011521B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7396928B2 (en) 2020-02-28 2023-12-12 株式会社アルバック Vacuum deposition equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291589A (en) 2000-03-03 2001-10-19 Eastman Kodak Co Thermal physical vapor deposition source
JP2007524763A (en) 2004-02-25 2007-08-30 イーストマン コダック カンパニー Deposition source with minimal condensation effect

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291589A (en) 2000-03-03 2001-10-19 Eastman Kodak Co Thermal physical vapor deposition source
JP2007524763A (en) 2004-02-25 2007-08-30 イーストマン コダック カンパニー Deposition source with minimal condensation effect

Also Published As

Publication number Publication date
JP2019183248A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
KR101671489B1 (en) Evaporation source for organic material and vapor depositing apparatus including the same
KR101711502B1 (en) Method and apparatus for vapor deposition
KR20040069281A (en) Method of designing a thermal physical vapor deposition system
KR20140053980A (en) Vapor deposition system and supply head
JP2006063446A (en) Vacuum deposition apparatus of organic substance
KR100666572B1 (en) Vapor deposition apparatus for organic material
JP7011521B2 (en) Thin-film deposition source for vacuum-film deposition equipment
JP2004100002A (en) Evaporation source and thin-film deposition system using the same
JP4216522B2 (en) Evaporation source and thin film forming apparatus using the same
CN110656309B (en) Evaporation source and evaporation device
JP4516499B2 (en) Organic vapor deposition equipment
KR100471358B1 (en) Device for depositing electroluminescent layer
JP2020002388A (en) Vapor deposition source for vacuum evaporation system
KR100796589B1 (en) Depositing source and apparatus including the same
JP6106433B2 (en) Evaporation source device
CN109415800B (en) Vacuum evaporation device
JP6983096B2 (en) Thin-film deposition source for vacuum-film deposition equipment
TW201842220A (en) Device and method for thermally treating a substrate using a cooled shielding plate
KR20060099974A (en) Evaporation source and vapor deposition apparatus having the same
KR20040078365A (en) Deposition source for a vapor depositing device
KR100623719B1 (en) Vapor deposition source for organic material
JPH0544023A (en) Method and device for evaporating substance
JP7303031B2 (en) Evaporation source for vacuum deposition equipment
JP5921974B2 (en) Vapor discharge apparatus and film forming apparatus
JP6712592B2 (en) Apparatus for depositing layers on a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220114

R150 Certificate of patent or registration of utility model

Ref document number: 7011521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150