JP7009669B1 - How to operate the compressor unit, screw compressor and compressor unit - Google Patents

How to operate the compressor unit, screw compressor and compressor unit Download PDF

Info

Publication number
JP7009669B1
JP7009669B1 JP2021140820A JP2021140820A JP7009669B1 JP 7009669 B1 JP7009669 B1 JP 7009669B1 JP 2021140820 A JP2021140820 A JP 2021140820A JP 2021140820 A JP2021140820 A JP 2021140820A JP 7009669 B1 JP7009669 B1 JP 7009669B1
Authority
JP
Japan
Prior art keywords
compressor
flow path
bypass
connection flow
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021140820A
Other languages
Japanese (ja)
Other versions
JP2023034531A (en
Inventor
達 植田
隆 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2021140820A priority Critical patent/JP7009669B1/en
Application granted granted Critical
Publication of JP7009669B1 publication Critical patent/JP7009669B1/en
Priority to KR1020220033389A priority patent/KR102425480B1/en
Priority to CN202210390494.3A priority patent/CN114688001B/en
Publication of JP2023034531A publication Critical patent/JP2023034531A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/24Bypassing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)

Abstract

【課題】第1の圧縮機の駆動中に第2の圧縮機を起動する場合に、第1の圧縮機の吐出側での圧力の変動を抑制する。【解決手段】圧縮機ユニット10は、第1圧縮機12と、第1圧縮機12に繋がる需要先接続流路14から分岐する再液化設備接続流路16上に設けられたレシプロ式の第2圧縮機18と、制御部27とを備える。第1圧縮機は、スクリュ式の圧縮部22と、需要先接続流路14及び貯槽接続流路3を接続するバイパス流路23aと、バイパス弁23bとを含む。制御部27は、第2圧縮機18の起動の際に、圧縮部22の処理量を増大させるとともに、増大させた処理量に相当する流量が貯槽接続流路3に戻るようにバイパス弁23bの開度を大きくし、その後に、第2圧縮機18を起動するとともにバイパス弁23bの開度を小さくする。【選択図】図1PROBLEM TO BE SOLVED: To suppress a fluctuation of pressure on a discharge side of a first compressor when the second compressor is started while the first compressor is being driven. SOLUTION: A compressor unit 10 is a reciprocating second type provided on a first compressor 12 and a reciprocating equipment connection flow path 16 branching from a demand destination connection flow path 14 connected to the first compressor 12. A compressor 18 and a control unit 27 are provided. The first compressor includes a screw type compression unit 22, a bypass flow path 23a connecting the demand destination connection flow path 14 and the storage tank connection flow path 3, and a bypass valve 23b. The control unit 27 increases the processing amount of the compression unit 22 when the second compressor 18 is started, and the bypass valve 23b so that the flow rate corresponding to the increased processing amount returns to the storage tank connection flow path 3. The opening degree is increased, and then the second compressor 18 is started and the opening degree of the bypass valve 23b is reduced. [Selection diagram] Fig. 1

Description

本発明は、圧縮機ユニット、スクリュ圧縮機及び圧縮機ユニットの運転方法に関する。 The present invention relates to a compressor unit, a screw compressor, and a method for operating the compressor unit.

従来、下記特許文献1に開示されているように、液化ガス槽で発生するボイルオフガスを回収して、その少なくとも一部をガスの需要先に供給する圧縮機ユニットが知られている。特許文献1に開示された圧縮機ユニットは、液化ガス槽で発生したボイルオフガスを圧縮する第1の圧縮機を備えており、この第1の圧縮機の吐出側の流路は2つの流路に分岐している。そのうちの一方の流路は、船の推進機関に繋がっており、第1の圧縮機で圧縮されたガスの一部は推進機構で利用される。もう一方の流路は、余剰のガスを液化ガス槽に戻せるように液化ガス槽に繋がっている。このもう一方の流路には、第2の圧縮機及び液化用の熱交換器が設けられていて、当該流路を流れるガスは第2の圧縮機で圧縮された後、熱交換器及びJT(Joule Thompson)バルブを通って液化される。液化した液化ガスは液化ガス槽に環流する。 Conventionally, as disclosed in Patent Document 1 below, there is known a compressor unit that recovers boil-off gas generated in a liquefied gas tank and supplies at least a part thereof to a gas demand destination. The compressor unit disclosed in Patent Document 1 includes a first compressor that compresses the boil-off gas generated in the liquefied gas tank, and the discharge-side flow paths of the first compressor are two flow paths. Branches to. One of the channels is connected to the propulsion engine of the ship, and a part of the gas compressed by the first compressor is used by the propulsion mechanism. The other flow path is connected to the liquefied gas tank so that the excess gas can be returned to the liquefied gas tank. A second compressor and a heat exchanger for liquefaction are provided in the other flow path, and the gas flowing through the flow path is compressed by the second compressor, and then the heat exchanger and the JT are provided. It is liquefied through a (Joule-Thomson) valve. The liquefied liquefied gas recirculates in the liquefied gas tank.

特開昭49-88904号公報Japanese Unexamined Patent Publication No. 49-88904

ところで、第1の圧縮機から船の推進機関にボイルオフガスを供給しているときに、第2の圧縮機を起動させる場合がある。この場合、第2の圧縮機が起動すると、第2の圧縮機において処理することとなるボイルオフガスの処理量分だけ第1の圧縮機の吐出側の圧力が低下することとなる。これを防止すべく、第1の圧縮機の容量制御をPID制御などのフィードバック制御で行ったとしても、第2の圧縮機の起動による急な圧力変動に対応することは難しい。このため、推進機関に供給されるガスの圧力が安定するような運転が妨げられる虞がある。 By the way, when the boil-off gas is being supplied from the first compressor to the propulsion engine of the ship, the second compressor may be started. In this case, when the second compressor is started, the pressure on the discharge side of the first compressor is reduced by the amount of the boil-off gas to be processed in the second compressor. Even if the capacity control of the first compressor is performed by feedback control such as PID control in order to prevent this, it is difficult to cope with the sudden pressure fluctuation due to the start of the second compressor. Therefore, there is a possibility that the operation in which the pressure of the gas supplied to the propulsion engine is stable is hindered.

そこで、本発明は、前記従来技術を鑑みてなされたものであり、その目的とするところは、第1の圧縮機の駆動中に第2の圧縮機を起動する場合においても、第1の圧縮機の吐出側での圧力の変動を抑制することにある。 Therefore, the present invention has been made in view of the above-mentioned prior art, and an object of the present invention is the first compression even when the second compressor is started while the first compressor is being driven. The purpose is to suppress fluctuations in pressure on the discharge side of the machine.

前記の目的を達成するため、本発明は、船舶内に設置され、前記船舶に設けられた貯槽から液化ガスのボイルオフガスである対象ガスを回収してその少なくとも一部を需要先に供給する圧縮機ユニットであって、前記貯槽から貯槽接続流路を介して対象ガスを吸入する第1圧縮機と、前記第1圧縮機から前記需要先に繋がる需要先接続流路と、前記需要先接続流路から分岐し、再液化設備に繋がる再液化設備接続流路と、前記再液化設備接続流路上に設けられ、前記再液化設備に流入する前の対象ガスをさらに圧縮するレシプロ式の第2圧縮機と、前記第1圧縮機および前記第2圧縮機を制御する制御部と、を備える。前記第1圧縮機は、前記貯槽接続流路に接続されて前記対象ガスを圧縮するスクリュ式の圧縮部と、前記需要先接続流路から前記貯槽接続流路へと対象ガスの少なくとも一部を戻すバイパス手段と、を備える。前記バイパス手段は、前記需要先接続流路及び前記貯槽接続流路を接続するバイパス流路と、前記バイパス流路に設けられたバイパス弁と、を含む。前記制御部は、前記圧縮部の駆動中における前記第2圧縮機の起動の際に、前記第2圧縮機の作動によって前記第2圧縮機が処理することとなる対象ガスの必要流量に相当する流量分だけ前記圧縮部の処理量を増大させるとともに、増大させた処理量に相当する流量が前記貯槽接続流路に戻るように前記バイパス弁の開度を大きくする起動準備制御を実行し、前記起動準備制御の実行の後に、前記第2圧縮機を起動するとともに、前記起動準備制御で大きくなった前記バイパス弁の開度を所定開度小さくする起動制御を実行するように構成されている。 In order to achieve the above object, the present invention is a compressor installed in a ship, recovers a target gas which is a boil-off gas of liquefied gas from a storage tank provided in the ship, and supplies at least a part thereof to a demand destination. The machine unit, the first compressor that sucks the target gas from the storage tank through the storage tank connection flow path, the demand destination connection flow path that connects the first compressor to the demand destination, and the demand destination connection flow. A reciprocal second compression that is provided on the reliquefaction equipment connection flow path branching from the path and connected to the reliquefaction equipment and further compresses the target gas before flowing into the reliquefaction equipment. It includes a machine and a control unit that controls the first compressor and the second compressor. The first compressor has a screw-type compression unit connected to the storage tank connection flow path to compress the target gas, and at least a part of the target gas from the demand destination connection flow path to the storage tank connection flow path. It is provided with a bypass means for returning. The bypass means includes a bypass flow path connecting the demand destination connection flow path and the storage tank connection flow path, and a bypass valve provided in the bypass flow path. The control unit corresponds to the required flow rate of the target gas to be processed by the second compressor by the operation of the second compressor when the second compressor is started while the compression unit is being driven. A start-up preparation control is executed to increase the opening degree of the bypass valve so that the processing amount of the compression unit is increased by the flow rate and the flow rate corresponding to the increased processing amount returns to the storage tank connection flow path. After the start preparation control is executed, the second compressor is started, and the start control is configured to reduce the opening degree of the bypass valve, which has been increased by the start preparation control, by a predetermined opening degree.

本発明に係る圧縮機ユニットでは、第1圧縮機の圧縮部の運転中に第2圧縮機を起動した場合であっても、需要先接続流路における圧力低下を抑制することができる。しかも、第2圧縮機を起動する起動制御の前に、予め圧縮部の処理量を増大しておくため、第2圧縮機の起動時には、バイパス弁の開度を小さくするだけで済む。したがって、第2圧縮機の起動に伴う急な圧力変動に対応できる。 In the compressor unit according to the present invention, even when the second compressor is started while the compression unit of the first compressor is in operation, it is possible to suppress a pressure drop in the demand destination connection flow path. Moreover, since the processing amount of the compression unit is increased in advance before the start control for starting the second compressor, it is only necessary to reduce the opening degree of the bypass valve when starting the second compressor. Therefore, it is possible to cope with a sudden pressure fluctuation accompanying the start of the second compressor.

前記圧縮機ユニットにおいて、前記第1圧縮機の前記圧縮部が、互いに並列に配置された2つのスクリュ式圧縮機から構成されていてもよい。この場合、前記バイパス手段は、前記2つのスクリュ式圧縮機から吐出された対象ガスを前記需要先接続流路から前記貯槽接続流路へと戻す2つのバイパス流路及び前記2つのバイパス流路に1つずつ設けられた2つのバイパス弁を含んでもよい。前記制御部は、前記起動準備制御において、前記必要流量に相当する流量の半分だけ前記2つのスクリュ式圧縮機のそれぞれの処理量を増大させるとともに、増大させた処理量に相当する流量の半分の流量が前記2つのバイパス流路のそれぞれから前記貯槽接続流路へと戻るように前記2つのバイパス弁の開度をそれぞれ大きくするように構成されていてもよい。 In the compressor unit, the compression unit of the first compressor may be composed of two screw type compressors arranged in parallel with each other. In this case, the bypass means is provided in the two bypass flow paths and the two bypass flow paths for returning the target gas discharged from the two screw type compressors from the demand destination connection flow path to the storage tank connection flow path. It may include two bypass valves provided one by one . In the start-up preparation control, the control unit increases the processing amount of each of the two screw compressors by half of the flow rate corresponding to the required flow rate, and half of the flow rate corresponding to the increased processing amount. The opening degree of each of the two bypass valves may be increased so that the flow rate returns from each of the two bypass flow paths to the storage tank connection flow path.

この態様では、第1圧縮機の圧縮部が2つのスクリュ式圧縮機から構成される場合であっても、適切な起動準備制御を実現することができる。 In this aspect, even when the compression unit of the first compressor is composed of two screw type compressors, appropriate start-up preparation control can be realized.

前記圧縮機ユニットにおいて、前記第1圧縮機の前記圧縮部が、互いに並列に配置された2つのスクリュ式圧縮機から構成されていてもよい。この場合において、前記バイパス手段は、前記2つのスクリュ式圧縮機のうちの一方のスクリュ式圧縮機から吐出された対象ガスを前記需要先接続流路から前記貯槽接続流路へと戻す第1バイパス流路、及び前記第1バイパス流路に設けられた第1バイパス弁、前記2つのスクリュ式圧縮機のうちの他方のスクリュ式圧縮機から吐出された対象ガスを前記需要先接続流路から前記貯槽接続流路へと戻す第2バイパス流路、及び前記第2バイパス流路に設けられた第2バイパス弁を含んでもよい。前記一方のスクリュ式圧縮機の処理量をA1、前記他方のスクリュ式圧縮機の処理量をA2とし、前記必要流量に相当する流量をBとすると、前記制御部は、前記起動準備制御において、B×A2/(A1+A2)で得られる流量だけ前記一方のスクリュ式圧縮機の処理量を増大させるとともに、B×A2/(A1+A2)で得られる流量が前記第1バイパス流路から前記貯槽接続流路へと戻るように、前記第1バイパス弁の開度を大きくし、B×A1/(A1+A2)で得られる流量だけ前記他方のスクリュ式圧縮機の処理量を増大させるとともに、B×A1/(A1+A2)で得られる流量が前記第2バイパス流路から前記貯槽接続流路へと戻るように、前記第2バイパス弁の開度を大きくするように構成されていてもよい。 In the compressor unit, the compression unit of the first compressor may be composed of two screw type compressors arranged in parallel with each other. In this case, the bypass means is a first bypass that returns the target gas discharged from one of the two screw compressors from the demand destination connection flow path to the storage tank connection flow path. The target gas discharged from the flow path, the first bypass valve provided in the first bypass flow path, and the other screw type compressor of the two screw type compressors is sent from the demand destination connection flow path. A second bypass flow path that returns to the storage tank connection flow path and a second bypass valve provided in the second bypass flow path may be included. Assuming that the processing amount of the one screw type compressor is A1, the processing amount of the other screw type compressor is A2, and the flow rate corresponding to the required flow rate is B, the control unit performs the start-up preparation control. The processing amount of the one screw compressor is increased by the flow rate obtained by B × A2 / (A1 + A2), and the flow rate obtained by B × A2 / (A1 + A2) is the flow rate connected to the storage tank from the first bypass flow path. The opening degree of the first bypass valve is increased so as to return to the road, the processing amount of the other screw compressor is increased by the flow rate obtained by B × A1 / (A1 + A2), and B × A1 /. The opening degree of the second bypass valve may be increased so that the flow rate obtained in (A1 + A2) returns from the second bypass flow path to the storage tank connection flow path.

この態様では、第1圧縮機の圧縮部が2つのスクリュ式圧縮機から構成される場合であっても、適切な起動準備制御を実現することができる。 In this aspect, even when the compression unit of the first compressor is composed of two screw type compressors, appropriate start-up preparation control can be realized.

前記第1圧縮機は、前記起動準備制御において前記圧縮部の処理量を増大可能な、前記圧縮部の回転数調整手段、または、前記圧縮部の容量調整手段を備えていてもよい。 The first compressor may include a rotation speed adjusting means of the compression unit or a capacity adjusting means of the compression unit, which can increase the processing amount of the compression unit in the start-up preparation control.

この態様では、処理量を容易に調整できる。 In this aspect, the processing amount can be easily adjusted.

本発明に係るスクリュ圧縮機は、船舶に設けられた貯槽から液化ガスのボイルオフガスである対象ガスを貯槽接続流路を介して吸入して需要先接続流路に吐出するスクリュ圧縮機であって、前記貯槽接続流路に接続されて前記対象ガスを圧縮するスクリュ式の圧縮部と、前記需要先接続流路及び前記貯槽接続流路を接続するバイパス流路と、前記バイパス流路に設けられたバイパス弁と、を含み、前記需要先接続流路から前記貯槽接続流路へと対象ガスの少なくとも一部を戻すバイパス手段と、制御部と、を備える。前記制御部は、前記圧縮部の駆動中に、前記需要先接続流路から分岐し再液化設備に繋がる再液化設備接続流路に設けられた第2圧縮機を起動するための指令を受けると、前記第2圧縮機の作動によって前記第2圧縮機が処理することとなる対象ガスの必要流量に相当する流量分だけ前記圧縮部の処理量を増大させるとともに、増大させた処理量に相当する流量が前記貯槽接続流路に戻るように前記バイパス弁の開度を大きくする起動準備制御を実行し、前記起動準備制御の実行の後に、前記第2圧縮機を起動する起動許可信号を出力するとともに、前記起動準備制御で大きくなった前記バイパス弁の開度を所定開度小さくする起動制御を実行するように構成されている。 The screw compressor according to the present invention is a screw compressor that sucks a target gas, which is a boil-off gas of liquefied gas, from a storage tank provided in a ship through a storage tank connection flow path and discharges the target gas to a demand destination connection flow path. , A screw type compressor connected to the storage tank connection flow path to compress the target gas, a bypass flow path connecting the demand destination connection flow path and the storage tank connection flow path, and the bypass flow path are provided. It is provided with a bypass valve, a bypass means for returning at least a part of the target gas from the demand destination connection flow path to the storage tank connection flow path, and a control unit. When the control unit receives a command to start the second compressor provided in the reliquefaction facility connection flow path that branches from the demand destination connection flow path and is connected to the reliquefaction facility connection flow path while the compression unit is being driven. The processing amount of the compression unit is increased by the flow rate corresponding to the required flow rate of the target gas to be processed by the second compressor by the operation of the second compressor, and corresponds to the increased processing amount. The start preparation control for increasing the opening degree of the bypass valve is executed so that the flow rate returns to the storage tank connection flow path, and after the execution of the start preparation control, a start permission signal for starting the second compressor is output. At the same time, the start control is configured to reduce the opening degree of the bypass valve, which has been increased by the start preparation control, by a predetermined opening degree.

本発明に係る圧縮機ユニットの運転方法は、船舶に設けられた貯槽から液化ガスのボイルオフガスである対象ガスを回収してその少なくとも一部を需要先に供給する圧縮機ユニットの運転方法であって、前記圧縮機ユニットは、前記貯槽から貯槽接続流路を介して対象ガスを吸入して需要先接続流路に対象ガスを吐出する第1圧縮機と、前記需要先接続流路から分岐して再液化設備に繋がる再液化設備接続流路に設けられたレシプロ式の第2圧縮機と、を備えている。前記第1圧縮機は、前記貯槽接続流路に接続されて前記対象ガスを圧縮するスクリュ式の圧縮部と、前記需要先接続流路と前記貯槽接続流路とを接続するバイパス流路と、前記バイパス流路に設けられたバイパス弁と、を有する。前記運転方法には、前記第1圧縮機の前記圧縮部を駆動する駆動ステップと、前記圧縮部の駆動中における前記第2圧縮機の起動に際し、前記第2圧縮機の作動によって前記第2圧縮機が処理することとなる対象ガスの必要流量に相当する流量分だけ前記圧縮部の処理量を増大させるとともに、増大させた処理量に相当する流量が前記貯槽接続流路に戻るように前記バイパス弁の開度を大きくする起動準備ステップと、前記起動準備ステップの後に、前記第2圧縮機を起動するとともに、前記起動準備ステップにおいて大きくなった前記バイパス弁の開度を所定開度小さくする起動ステップと、が含まれる。 The method for operating the compressor unit according to the present invention is a method for operating the compressor unit that recovers a target gas, which is a boil-off gas of liquefied gas, from a storage tank provided in a ship and supplies at least a part thereof to a demand destination. The compressor unit is branched from the first compressor, which sucks the target gas from the storage tank through the storage tank connection flow path and discharges the target gas to the demand destination connection flow path, and the demand destination connection flow path. It is equipped with a reciprocal type second compressor provided in the reliquefaction equipment connection flow path connected to the reliquefaction equipment. The first compressor includes a screw-type compression unit connected to the storage tank connection flow path to compress the target gas, a bypass flow path connecting the demand destination connection flow path and the storage tank connection flow path, and the like. It has a bypass valve provided in the bypass flow path. The operation method includes a drive step for driving the compression unit of the first compressor, and the second compression by the operation of the second compressor when the second compressor is started while the compression unit is being driven. The processing amount of the compressor is increased by the flow rate corresponding to the required flow rate of the target gas to be processed by the machine, and the bypass is such that the flow rate corresponding to the increased processing amount returns to the storage tank connection flow path. After the start preparation step for increasing the valve opening and the start preparation step, the second compressor is started and the bypass valve opening increased in the start preparation step is reduced by a predetermined opening. And, including.

以上説明したように、本発明によれば、第1の圧縮機の駆動中に第2の圧縮機を起動する場合においても、第1の圧縮機の吐出側での圧力の変動を抑制することができる。 As described above, according to the present invention, even when the second compressor is started while the first compressor is being driven, the fluctuation of the pressure on the discharge side of the first compressor is suppressed. Can be done.

第1実施形態に係る圧縮機ユニットの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compressor unit which concerns on 1st Embodiment. 前記圧縮機ユニットにおいて第2圧縮機を起動するときの運転動作を説明するためのフロー図である。It is a flow diagram for demonstrating the operation operation at the time of starting the 2nd compressor in the compressor unit. 起動準備制御を説明するためのフロー図である。It is a flow diagram for demonstrating start-up preparation control. 起動制御を説明するためのフロー図である。It is a flow diagram for demonstrating activation control. 第2実施形態に係る圧縮機ユニットの構成を概略的に示す図である。It is a figure which shows roughly the structure of the compressor unit which concerns on 2nd Embodiment. その他の実施形態に係るスクリュ圧縮機の構成を概略的に示す図である。It is a figure which shows roughly the structure of the screw compressor which concerns on other embodiment.

以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

(第1実施形態)
本実施形態に係る圧縮機ユニット10(図1参照)は、図略の船舶内に設置されて、船舶に設けられた貯槽1から液化ガスのボイルオフガスである対象ガスを回収する圧縮機ユニットである。この圧縮機ユニット10によって回収された対象ガスは、その少なくとも一部が需要先に供給される。需要先としては、例えば、船舶の推進機関(推進用エンジン等)、船舶内に設置された発電装置等が挙げられる。これらは所定の圧力範囲のガスを受け入れるガス利用装置である。液化ガスとしては、液化天然ガス(LNG)、液化水素(LH2)等が挙げられる。
(First Embodiment)
The compressor unit 10 (see FIG. 1) according to the present embodiment is a compressor unit installed in a ship (not shown) and recovering a target gas which is a boil-off gas of liquefied gas from a storage tank 1 provided in the ship. be. At least a part of the target gas recovered by the compressor unit 10 is supplied to the demand destination. Examples of the demand destination include a propulsion engine (propulsion engine, etc.) of a ship, a power generation device installed in the ship, and the like. These are gas utilization devices that accept gas in a predetermined pressure range. Examples of the liquefied gas include liquefied natural gas (LNG) and liquefied hydrogen (LH2).

図1に示すように、圧縮機ユニット10は、液化ガスが貯留される貯槽1に繋がった貯槽接続流路3に接続された第1圧縮機12と、第1圧縮機12と前記需要先とをつなぐ需要先接続流路14と、需要先接続流路14から分岐するとともに再液化設備5に繋がる再液化設備接続流路16と、再液化設備接続流路16に設けられた第2圧縮機18と、を備えている。再液化設備5は、第1圧縮機12によって圧縮されたガスのうち余剰分を貯槽1に戻すべく、ガスを再液化するための設備である。第2圧縮機18は、再液化設備5に流入する前のガスを圧縮する圧縮機であり、レシプロ式の圧縮機によって構成されている。すなわち、第2圧縮機18は第1圧縮機12とは独立して駆動可能である。再液化設備5によって再液化された液化ガスは貯槽1に戻される。 As shown in FIG. 1, the compressor unit 10 includes a first compressor 12 connected to a storage tank connection flow path 3 connected to a storage tank 1 in which liquefied gas is stored, a first compressor 12, and the demand destination. A second compressor provided in the demand destination connection flow path 14 connecting the two, the reliquefaction facility connection flow path 16 branching from the demand destination connection flow path 14 and connecting to the reliquefaction facility 5, and the reliquefaction facility connection flow path 16. It is equipped with 18. The reliquefaction facility 5 is a facility for reliquefying the gas in order to return the surplus portion of the gas compressed by the first compressor 12 to the storage tank 1. The second compressor 18 is a compressor that compresses the gas before it flows into the reliquefaction facility 5, and is composed of a reciprocating compressor. That is, the second compressor 18 can be driven independently of the first compressor 12. The liquefied gas reliquefied by the reliquefaction equipment 5 is returned to the storage tank 1.

再液化設備接続流路16には、開閉弁20が設けられている。開閉弁20は第2圧縮機18が作動する際に開放される。また、再液化設備接続流路16には、スピルバック弁16bを有するスピルバック流路16aが、第2圧縮機18を迂回するように接続されている。 An on-off valve 20 is provided in the reliquefaction equipment connection flow path 16. The on-off valve 20 is opened when the second compressor 18 is operated. Further, a spillback flow path 16a having a spillback valve 16b is connected to the reliquefaction facility connection flow path 16 so as to bypass the second compressor 18.

第1圧縮機12は、貯槽1で発生したボイルオフガスである対象ガスを所定の圧力まで圧縮するための圧縮機であり、貯槽接続流路3に接続された圧縮部22と、圧縮部22とは別体のバイパス手段23と、を備えている。圧縮部22は、スクリュ式の圧縮機によって構成されており、雌雄一対のスクリューロータ(図示省略)と、スクリューロータを収容する筐体(図示省略)とを含む。 The first compressor 12 is a compressor for compressing the target gas, which is the boil-off gas generated in the storage tank 1, to a predetermined pressure, and the compression unit 22 connected to the storage tank connection flow path 3 and the compression unit 22 Is provided with a separate bypass means 23. The compression unit 22 is composed of a screw type compressor, and includes a pair of male and female screw rotors (not shown) and a housing (not shown) for accommodating the screw rotors.

バイパス手段23は、圧縮部22を迂回しつつ需要先接続流路14及び貯槽接続流路3を接続するバイパス流路23aと、バイパス流路23aに設けられたバイパス弁23bと、を含む。バイパス弁23bによってバイパス流路23aが開かれると、圧縮部22から吐出されたガスの一部は、バイパス流路23aを通して需要先接続流路14から貯槽接続流路3(すなわち、第1圧縮機12の吸込側)に戻される。 The bypass means 23 includes a bypass flow path 23a that connects the demand destination connection flow path 14 and the storage tank connection flow path 3 while bypassing the compression unit 22, and a bypass valve 23b provided in the bypass flow path 23a. When the bypass flow path 23a is opened by the bypass valve 23b, a part of the gas discharged from the compression unit 22 passes through the bypass flow path 23a from the demand destination connection flow path 14 to the storage tank connection flow path 3 (that is, the first compressor). It is returned to the suction side of 12).

第1圧縮機12は、圧縮部22によるガスの処理量を増大可能な調整手段12aを有している。調整手段12aは、圧縮部22の圧縮容量を調整可能に構成された容量調整手段である。より具体的には、スクリュ式の圧縮部22の容量調整手段は、ガスの吐出容量を調整可能なスライド弁(図示省略)を含む。また、第1圧縮機12がインバータを有している場合、調整手段12aに代えて、または、調整手段12aと共に、圧縮部22の回転数を調整可能に構成された回転数調整手段(すなわち、インバータ制御手段)である他の調整手段を有してもよい。 The first compressor 12 has an adjusting means 12a capable of increasing the amount of gas processed by the compression unit 22. The adjusting means 12a is a capacity adjusting means configured so that the compressed capacity of the compression unit 22 can be adjusted. More specifically, the capacity adjusting means of the screw type compression unit 22 includes a slide valve (not shown) capable of adjusting the gas discharge capacity. When the first compressor 12 has an inverter, the rotation speed adjusting means (that is, the rotation speed adjusting means) configured so that the rotation speed of the compression unit 22 can be adjusted in place of the adjusting means 12a or together with the adjusting means 12a. It may have other adjusting means which is an inverter control means).

需要先接続流路14には、需要先接続流路14を流れるガスの圧力を検出する圧力検出器25が設けられている。圧力検出器25は、需要先接続流路14において、バイパス流路23aの接続部よりも下流側に配置されている。圧力検出器25は、検出圧力を示す信号を出力する。 The demand destination connection flow path 14 is provided with a pressure detector 25 that detects the pressure of the gas flowing through the demand destination connection flow path 14. The pressure detector 25 is arranged on the downstream side of the connection portion of the bypass flow path 23a in the demand destination connection flow path 14. The pressure detector 25 outputs a signal indicating the detected pressure.

圧力検出器25から出力された信号は制御部27に入力される。制御部27は、CPU及びメモリデバイス等を含むコンピュータによって構成され、記憶されたプログラムを実行することにより、所定の機能を発揮する。制御部27には、第1圧縮機12、第2圧縮機18、バイパス弁23b及び開閉弁20が電気的に接続されており、制御部27はこれらを制御するように構成されている。すなわち、制御部27の機能には、第1駆動制御部27a、第2駆動制御部27b及びバイパス制御部27cが含まれる。第1駆動制御部27aは、第1圧縮機12の調整手段12aを制御するように構成されている。第2駆動制御部27bは、第2圧縮機18を制御するとともに開閉弁20の開閉を行うように構成されている。バイパス制御部27cは、バイパス弁23bの開度制御を行うように構成されている。 The signal output from the pressure detector 25 is input to the control unit 27. The control unit 27 is configured by a computer including a CPU, a memory device, and the like, and exerts a predetermined function by executing a stored program. The first compressor 12, the second compressor 18, the bypass valve 23b, and the on-off valve 20 are electrically connected to the control unit 27, and the control unit 27 is configured to control these. That is, the functions of the control unit 27 include the first drive control unit 27a, the second drive control unit 27b, and the bypass control unit 27c. The first drive control unit 27a is configured to control the adjusting means 12a of the first compressor 12. The second drive control unit 27b is configured to control the second compressor 18 and open / close the on-off valve 20. The bypass control unit 27c is configured to control the opening degree of the bypass valve 23b.

制御部27が前記プログラムを実行することにより、起動準備制御及び起動制御が実行される。 When the control unit 27 executes the program, the start preparation control and the start control are executed.

起動準備制御及び起動制御は、第1圧縮機12の駆動中において第2圧縮機18を起動する際に行う制御であり、起動準備制御は、起動制御を実行する前に実行される。すなわち、起動準備制御は、第2圧縮機18を駆動する前に行っておく制御であり、第2圧縮機18を起動するための指令を制御部27が受信することにより実行される。この指令は、例えば、船舶のオペレータによる所定の操作によって船舶側から出力されてもよく、あるいは、貯槽1内のガス圧力が所定値を超えたときに船舶側から出力されてもよい。 The start-up preparation control and the start-up control are controls performed when the second compressor 18 is started while the first compressor 12 is being driven, and the start-up preparation control is executed before the start-up control is executed. That is, the start-up preparation control is a control performed before driving the second compressor 18, and is executed when the control unit 27 receives a command for starting the second compressor 18. This command may be output from the ship side by a predetermined operation by the operator of the ship, or may be output from the ship side when the gas pressure in the storage tank 1 exceeds a predetermined value.

起動制御は、起動準備制御が終了した後に実行される。すなわち、起動制御では第2圧縮機18の駆動を開始するが、この起動制御の開始は、起動準備制御が終了するまで許可されない。このため、船舶側から第2圧縮機18を起動するための指令が制御部27に入力されただけでは第2圧縮機18は起動されず、制御部27が第2圧縮機18の起動を許可するための制御を実行した後で初めて第2圧縮機18が起動する。 The start control is executed after the start preparation control is completed. That is, in the start control, the driving of the second compressor 18 is started, but the start of the start control is not permitted until the start preparation control is completed. Therefore, the second compressor 18 is not started only by inputting a command for starting the second compressor 18 from the ship side to the control unit 27, and the control unit 27 permits the start of the second compressor 18. The second compressor 18 is started only after the control for the operation is executed.

ここで、圧縮機ユニット10の運転方法について、図2~図4を参照しつつ説明する。なお、この運転方法は、第1圧縮機12の駆動中に第2圧縮機18を起動するときの運転方法である。 Here, the operation method of the compressor unit 10 will be described with reference to FIGS. 2 to 4. It should be noted that this operation method is an operation method when the second compressor 18 is started while the first compressor 12 is being driven.

図2に示すように、第1圧縮機12の駆動中、すなわち、圧縮部22の駆動中(ステップST11(駆動ステップ))には、バイパス弁23bの開度及びスライド弁の位置(又は圧縮機回転数)が調整されている。つまり、需要先に所定の圧力のガスが所定流量で供給されるように、バイパス制御部27cによるバイパス弁23bの制御及び第1駆動制御部27aによるスライド弁の制御(又は圧縮機回転数の制御)が行われている。したがって、圧縮機ユニット10から需要先に供給されるガスの圧力及び流量がコントロールされる。そして、第1圧縮機12の駆動中に制御部27が第2圧縮機18を起動するための指令を受信すると(ステップST12)、制御部27は起動準備制御を実行する(ステップST13(起動準備ステップ))。起動準備制御では、後述するように、第1圧縮機12における圧縮部22の処理量を増大させるとともにバイパス弁23bの開度を増大させる制御が行われる。このため、一時的に需要先接続流路14におけるガス圧力が変動することがある。したがって、バイパス弁23bの開度が所定範囲内に収まるまでの間、待機する(ステップST14)。その後、起動制御の実行が可能となる(ステップST15(起動ステップ))。 As shown in FIG. 2, while the first compressor 12 is being driven, that is, while the compression unit 22 is being driven (step ST11 (drive step)), the opening degree of the bypass valve 23b and the position of the slide valve (or the compressor). The number of revolutions) has been adjusted. That is, the bypass control unit 27c controls the bypass valve 23b and the first drive control unit 27a controls the slide valve (or the compressor rotation speed control) so that the gas of a predetermined pressure is supplied to the demand destination at a predetermined flow rate. ) Is being performed. Therefore, the pressure and flow rate of the gas supplied from the compressor unit 10 to the demand destination are controlled. Then, when the control unit 27 receives a command for starting the second compressor 18 while the first compressor 12 is being driven (step ST12), the control unit 27 executes the start preparation control (step ST13 (start preparation). Step)). In the start-up preparation control, as will be described later, control is performed to increase the processing amount of the compression unit 22 in the first compressor 12 and increase the opening degree of the bypass valve 23b. Therefore, the gas pressure in the demand destination connection flow path 14 may temporarily fluctuate. Therefore, the system waits until the opening degree of the bypass valve 23b falls within a predetermined range (step ST14). After that, the start control can be executed (step ST15 (start step)).

起動準備制御は、第2圧縮機18を起動するための指令を受信すると実行されるが、この指令を受信しただけでは、第2圧縮機18は起動しない。制御部27がこの指令を受けると、図3に示すように、制御部27(第1駆動制御部27a)は、第1圧縮機12の圧縮部22によるガス処理量の増大制御を開始する(ステップST131)。すなわち、後の起動制御において第2圧縮機18を起動するため、この起動に伴って需要先接続流路14のガス圧力が下がらないようにすべく、第2圧縮機18が処理することとなるガス処理量に相当する流量分だけ第1圧縮機12の圧縮部22によるガス処理量を増大させる。 The start preparation control is executed when a command for starting the second compressor 18 is received, but the second compressor 18 is not started only by receiving this command. When the control unit 27 receives this command, as shown in FIG. 3, the control unit 27 (first drive control unit 27a) starts control for increasing the gas processing amount by the compression unit 22 of the first compressor 12 (1st drive control unit 27a). Step ST131). That is, since the second compressor 18 is started in the later start control, the second compressor 18 is processed so that the gas pressure of the demand destination connection flow path 14 does not decrease with this start. The gas processing amount by the compression unit 22 of the first compressor 12 is increased by the flow rate corresponding to the gas processing amount.

ガス処理量を増大させるには、第1駆動制御部27aは第1圧縮機12の調整手段12aを制御する。例えば第1駆動制御部27aは、スライド弁をロード側に移動させる制御を行う。なお、これに代え/これとともに、第1駆動制御部27aはスクリュ式の圧縮部22の回転数を増大させる制御を行ってもよい。 In order to increase the gas processing amount, the first drive control unit 27a controls the adjusting means 12a of the first compressor 12. For example, the first drive control unit 27a controls to move the slide valve to the load side. Instead of / in addition to this, the first drive control unit 27a may perform control to increase the rotation speed of the screw type compression unit 22.

スライド弁を移動させる場合には、第1駆動制御部27aは、制御部27に予め記憶されているバイパス弁23bの開度設定値になるまでの間、スライド弁をロード側に移動させる。または、圧縮部22の回転数を上げる場合には、第1駆動制御部27aは、制御部27に予め記憶されているバイパス弁23bの開度設定値になるまでの間、圧縮部22の回転数を増大させる。 When moving the slide valve, the first drive control unit 27a moves the slide valve to the load side until the opening degree set value of the bypass valve 23b stored in advance in the control unit 27 is reached. Alternatively, when increasing the rotation speed of the compression unit 22, the first drive control unit 27a rotates the compression unit 22 until the opening degree setting value of the bypass valve 23b stored in advance in the control unit 27 is reached. Increase the number.

ここで、予め記憶されているバイパス弁23bの開度設定値とは、第2圧縮機18が処理することとなるガス処理量に相当する流量分だけ貯槽接続流路3(第1圧縮機12の吸込側)に戻すために必要な開度設定値である。 Here, the opening setting value of the bypass valve 23b stored in advance is the storage tank connection flow path 3 (first compressor 12) by the flow rate corresponding to the gas processing amount to be processed by the second compressor 18. This is the opening setting value required to return to the suction side).

スライド弁がロード側に移動を開始(又は、回転数の増大が開始)すると、圧力検出器25で取得される需要先接続流路14の吐出圧が増大しようとする。制御部27(バイパス制御部27c)は、吐出圧を一定に維持するためバイパス弁23bの開度を大きくし始める(ステップST132)。したがって、圧縮部22のガス処理量が増大したとしても、需要先に供給されるガスの吐出圧(あるいは流量)は増大しない。 When the slide valve starts moving to the load side (or the rotation speed starts to increase), the discharge pressure of the demand destination connection flow path 14 acquired by the pressure detector 25 tends to increase. The control unit 27 (bypass control unit 27c) starts to increase the opening degree of the bypass valve 23b in order to maintain the discharge pressure constant (step ST132). Therefore, even if the amount of gas processed by the compression unit 22 increases, the discharge pressure (or flow rate) of the gas supplied to the demand destination does not increase.

そして、バイパス弁23bの開度が上述した開度設定値となると、スライド弁の移動が停止する(又は、回転数の増大が停止する)。 Then, when the opening degree of the bypass valve 23b reaches the above-mentioned opening degree setting value, the movement of the slide valve is stopped (or the increase in the rotation speed is stopped).

本実施形態では、第2圧縮機18の起動によって新たに必要となる対象ガスの必要流量に関し、これに相当する流量分に対応するバイパス弁23bの開度が制御部27に予め記憶されている。ただし、これに限られるものではなく、第2圧縮機18を起動させるための指令を受け取ってから、新たに必要となる流量を計算し、計算で得られた流量が出るようにバイパス弁23bの開度を制御するようにしてもよい。 In the present embodiment, with respect to the required flow rate of the target gas newly required by starting the second compressor 18, the opening degree of the bypass valve 23b corresponding to the corresponding flow rate is stored in advance in the control unit 27. .. However, the present invention is not limited to this, and after receiving the command for starting the second compressor 18, the newly required flow rate is calculated, and the bypass valve 23b is used so that the calculated flow rate is output. The opening degree may be controlled.

バイパス弁23bの開度が所定範囲内に収まるまで、起動制御に移行せずに待機する(図2におけるステップST14)。そして、バイパス弁23bの開度がこの所定範囲に収まると、起動許可信号が第2駆動制御部27bに送られて、起動制御に移る(図2におけるステップST15)。なお、本実施形態において、バイパス弁の開度設定値に代えて、当該開度設定値から換算されるガス流量が所定範囲内に収まっているか否かに基づいて、起動制御に移行するか判断してもよい。ステップST14では、圧力検出器25の検出圧力が所定範囲内に収まっているか否かについても併せて確認されてもよい。 Until the opening degree of the bypass valve 23b is within a predetermined range, the system waits without shifting to the start control (step ST14 in FIG. 2). Then, when the opening degree of the bypass valve 23b falls within this predetermined range, a start permission signal is sent to the second drive control unit 27b, and the start control is started (step ST15 in FIG. 2). In the present embodiment, instead of the bypass valve opening setting value, it is determined whether to shift to start control based on whether the gas flow rate converted from the opening setting value is within a predetermined range. You may. In step ST14, it may also be confirmed whether or not the detection pressure of the pressure detector 25 is within a predetermined range.

起動制御では、図4に示すように、制御部27(第2駆動制御部27b)が起動許可信号を受けて第2圧縮機18を起動する(ステップST151)。そして、第2圧縮機18が起動して、所定回転数で第2圧縮機18が駆動していることが確認されると、制御部27(バイパス制御部27c)は、バイパス弁23bの開度を所定開度だけ小さくする(ステップST152)。すなわち、第2圧縮機18が起動することに伴って、需要先接続流路14におけるガス圧力が低下するため、バイパス弁23bの開度を小さくすることにより、需要先接続流路14におけるガス圧力の低下を抑制する。このとき、バイパス制御部27cは、ステップST132において増大させた分だけバイパス弁23bの開度を小さくしてもよい。すなわち、ステップST132において大きくなったバイパス弁23bの開度が元の開度に戻されてもよい。これにより、第2圧縮機18が起動した後の需要先接続流路14におけるガス圧力は、起動準備制御が開始される前の需要先接続流路14におけるガス圧力と略同じになる。なお、このとき、バイパス制御部27cは、ステップST132におけるバイパス弁23bの開度設定をリセットする。 In the start control, as shown in FIG. 4, the control unit 27 (second drive control unit 27b) receives the start permission signal and starts the second compressor 18 (step ST151). Then, when the second compressor 18 is started and it is confirmed that the second compressor 18 is being driven at a predetermined rotation speed, the control unit 27 (bypass control unit 27c) opens the bypass valve 23b. Is reduced by a predetermined opening (step ST152). That is, since the gas pressure in the demand destination connection flow path 14 decreases as the second compressor 18 starts, the gas pressure in the demand destination connection flow path 14 is reduced by reducing the opening degree of the bypass valve 23b. Suppresses the decrease in gas. At this time, the bypass control unit 27c may reduce the opening degree of the bypass valve 23b by the amount increased in step ST132. That is, the opening degree of the bypass valve 23b that has increased in step ST132 may be returned to the original opening degree. As a result, the gas pressure in the demand destination connection flow path 14 after the second compressor 18 is started becomes substantially the same as the gas pressure in the demand destination connection flow path 14 before the start preparation control is started. At this time, the bypass control unit 27c resets the opening degree setting of the bypass valve 23b in step ST132.

以上説明したように、本実施形態によれば、第1圧縮機12の圧縮部22の運転中に第2圧縮機18を起動した場合であっても、需要先接続流路14における圧力低下を抑制することができる。しかも、第2圧縮機18を起動する起動制御の前に、予め圧縮部22の処理量を増大しておくため、第2圧縮機18の起動時には、バイパス弁23bの開度を小さくするだけで済む。したがって、第2圧縮機18の起動に伴う急な圧力変動に対応できる。 As described above, according to the present embodiment, even when the second compressor 18 is started while the compression unit 22 of the first compressor 12 is in operation, the pressure drop in the demand destination connection flow path 14 is reduced. It can be suppressed. Moreover, since the processing amount of the compression unit 22 is increased in advance before the start control for starting the second compressor 18, it is only necessary to reduce the opening degree of the bypass valve 23b when starting the second compressor 18. I'm done. Therefore, it is possible to cope with a sudden pressure fluctuation accompanying the start of the second compressor 18.

なお、本実施形態では、第2圧縮機18の回転数が所定回転数に到達した後にバイパス弁23bの開度を下げるようにしているが、これに限られない。例えば、起動許可信号によって第2圧縮機18を起動すると同時にバイパス弁23bの開度を下げる動作を開始してもよく、あるいは、第2圧縮機18の回転数が上がりつつある状態でバイパス弁23bの開度を下げる動作を開始してもよい。 In the present embodiment, the opening degree of the bypass valve 23b is reduced after the rotation speed of the second compressor 18 reaches a predetermined rotation speed, but the present invention is not limited to this. For example, the operation of lowering the opening degree of the bypass valve 23b may be started at the same time as starting the second compressor 18 by the start permission signal, or the bypass valve 23b may be started in a state where the rotation speed of the second compressor 18 is increasing. You may start the operation of lowering the opening degree of.

(第2実施形態)
図5は本発明の第2実施形態を示す。尚、ここでは第1実施形態と同じ構成要素には同じ符号を付し、その詳細な説明を省略する。
(Second Embodiment)
FIG. 5 shows a second embodiment of the present invention. Here, the same components as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

第1実施形態では、第1圧縮機12の圧縮部22が1つのスクリュ式圧縮機によって構成されているのに対し、第2実施形態では、第1圧縮機12の圧縮部22が2つのスクリュ式圧縮機によって構成されている。すなわち、圧縮部22は第1圧縮部22aと第2圧縮部22bとを含む。 In the first embodiment, the compression unit 22 of the first compressor 12 is composed of one screw type compressor, whereas in the second embodiment, the compression unit 22 of the first compressor 12 has two screws. It is composed of a type compressor. That is, the compression unit 22 includes a first compression unit 22a and a second compression unit 22b.

具体的に、貯槽接続流路3は、貯槽1に接続された本流路3aと、本流路3aの下流端から分岐する2つの分岐流路3b,3cと、を含む。一方の分岐流路3bには、スクリュ式圧縮機からなる第1圧縮部22aが設けられ、他方の分岐流路3cには、スクリュ式圧縮機からなる第2圧縮部22bが設けられている。すなわち、第1圧縮部22a及び第2圧縮部22bは貯槽接続流路3に対して、互いに並列に接続されている。本実施形態では、第1圧縮部22aを構成するスクリュ式圧縮機と、第2圧縮部22bを構成するスクリュ式圧縮機とは、同じ圧縮容量の圧縮機である。ただし、必ずしも第1圧縮部22aおよび第2圧縮部22bは同じ圧縮容量の圧縮機である必要はない。 Specifically, the storage tank connecting flow path 3 includes a main flow path 3a connected to the storage tank 1 and two branch flow paths 3b and 3c that branch from the downstream end of the main flow path 3a. One branch flow path 3b is provided with a first compression unit 22a made of a screw type compressor, and the other branch flow path 3c is provided with a second compression part 22b made of a screw type compressor. That is, the first compression unit 22a and the second compression unit 22b are connected in parallel to each other with respect to the storage tank connection flow path 3. In the present embodiment, the screw type compressor constituting the first compression unit 22a and the screw type compressor constituting the second compression unit 22b are compressors having the same compression capacity. However, the first compression unit 22a and the second compression unit 22b do not necessarily have to be compressors having the same compression capacity.

需要先接続流路14は、2つの分岐路14b,14cと、両分岐路14b,14cが合流し需要先に繋がる合流路14aと、を含む。第1圧縮部22aの吐出部には、一方の分岐路14bが接続され、第2圧縮部22bの吐出部には、他方の分岐路14cが接続されている。第1圧縮部22a及び第2圧縮部22bから吐出されたガスは対応する分岐路14b,14cを通して合流路14aに流入する。 The demand destination connection flow path 14 includes two branch paths 14b and 14c and a combined flow path 14a where both branch paths 14b and 14c merge and connect to the demand destination. One branch path 14b is connected to the discharge section of the first compression section 22a, and the other branch path 14c is connected to the discharge section of the second compression section 22b. The gas discharged from the first compression unit 22a and the second compression unit 22b flows into the junction flow path 14a through the corresponding branch paths 14b and 14c.

バイパス手段23は、2つのバイパス流路23a(第1バイパス流路23a1及び第2バイパス流路23a2)と、2つのバイパス流路23aに設けられた2つのバイパス弁23b(第1バイパス弁23b1及び第2バイパス弁23b2)と、を含む。 The bypass means 23 includes two bypass flow paths 23a (first bypass flow path 23a1 and second bypass flow path 23a2) and two bypass valves 23b (first bypass valve 23b1 and) provided in the two bypass flow paths 23a. Second bypass valve 23b2) and the like.

第1バイパス流路23a1は、貯槽接続流路3における一方の分岐流路3bと、需要先接続流路14における一方の分岐路14bとを接続している。すなわち、第1バイパス流路23a1は、第1圧縮部22aから吐出されたガスの一部を貯槽接続流路3に戻す。第2バイパス流路23a2は、貯槽接続流路3における他方の分岐流路3cと、需要先接続流路14における他方の分岐路14cとを接続している。すなわち、第2バイパス流路23a2は、第2圧縮部22bから吐出されたガスの一部を貯槽接続流路3に戻す。 The first bypass flow path 23a1 connects one branch flow path 3b in the storage tank connection flow path 3 and one branch path 14b in the demand destination connection flow path 14. That is, the first bypass flow path 23a1 returns a part of the gas discharged from the first compression unit 22a to the storage tank connection flow path 3. The second bypass flow path 23a2 connects the other branch flow path 3c in the storage tank connection flow path 3 and the other branch flow path 14c in the demand destination connection flow path 14. That is, the second bypass flow path 23a2 returns a part of the gas discharged from the second compression unit 22b to the storage tank connection flow path 3.

需要先接続流路14の各分岐路14b,14cに圧力検出器25がそれぞれ設けられているが、需要先接続流路14の合流路14aに1つの圧力検出器25が設けられていてもよい。なお、各分岐路14b,14cにはそれぞれ開閉弁31,32が設けられている。なお、開閉弁31,32に代えて、または、開閉弁31,32と共に逆止弁が設けられてもよい。 A pressure detector 25 is provided in each of the branch paths 14b and 14c of the demand destination connection flow path 14, but one pressure detector 25 may be provided in the combined flow path 14a of the demand destination connection flow path 14. .. The on-off valves 31 and 32 are provided in the branch paths 14b and 14c, respectively. A check valve may be provided in place of the on-off valves 31 and 32, or together with the on-off valves 31 and 32.

第2実施形態では、第1駆動制御部27aは、第1圧縮部22a及び第2圧縮部22bのそれぞれにおいて、起動準備制御(ステップST13)において、第2圧縮機18の起動によって新たに必要となる対象ガスの必要流量に相当する流量の半分のガス処理量を増大させる(ステップST131)。つまり、第1圧縮部22a及び第2圧縮部22bの両方によって必要流量が賄われるが、第2圧縮機18の起動時において、第1圧縮部22a及び第2圧縮部22bのガス処理量の増大分を同じにして、第1圧縮部22a及び第2圧縮部22bの負荷を同じにする。 In the second embodiment, the first drive control unit 27a is newly required by starting the second compressor 18 in the start preparation control (step ST13) in each of the first compression unit 22a and the second compression unit 22b. The gas processing amount is increased by half of the flow rate corresponding to the required flow rate of the target gas (step ST131). That is, the required flow rate is covered by both the first compression unit 22a and the second compression unit 22b, but when the second compressor 18 is started, the amount of gas processed by the first compression unit 22a and the second compression unit 22b increases. The minutes are the same, and the loads of the first compression unit 22a and the second compression unit 22b are the same.

バイパス制御部27cは、起動準備制御(ステップST13)において、新たに必要となる必要流量の半分の流量がそれぞれ第1バイパス流路23a1及び第2バイパス流路23a2から貯槽接続流路3へと戻るように、第1バイパス弁23b1の開度及び第2バイパス弁23b2の開度をそれぞれ大きくする(ステップST132)。本実施形態では、第1バイパス弁23b1の開度及び第2バイパス弁23b2の開度をそれぞれ同じ開度だけ大きくしている。 In the start-up preparation control (step ST13), the bypass control unit 27c returns half of the newly required flow rate from the first bypass flow path 23a1 and the second bypass flow path 23a2 to the storage tank connection flow path 3, respectively. As described above, the opening degree of the first bypass valve 23b1 and the opening degree of the second bypass valve 23b2 are increased (step ST132). In the present embodiment, the opening degree of the first bypass valve 23b1 and the opening degree of the second bypass valve 23b2 are increased by the same opening degree.

そして、起動制御(ステップST15)では、バイパス制御部27cは、ステップST132において増大させた分だけバイパス弁23bの開度を小さくする(ステップST152)。つまり、第1バイパス弁23b1の開度及び第2バイパス弁23b2の開度をそれぞれ同じ開度だけ小さくする。 Then, in the start control (step ST15), the bypass control unit 27c reduces the opening degree of the bypass valve 23b by the amount increased in step ST132 (step ST152). That is, the opening degree of the first bypass valve 23b1 and the opening degree of the second bypass valve 23b2 are reduced by the same opening degree.

第2実施形態によれば、第1圧縮機12の圧縮部22が2つのスクリュ式圧縮機から構成される場合であっても、適切な起動準備制御を実現することができる。 According to the second embodiment, even when the compression unit 22 of the first compressor 12 is composed of two screw type compressors, appropriate start-up preparation control can be realized.

なお、第2実施形態では、起動準備制御において、新たに必要となる必要流量の半分の流量を第1圧縮部22aと第2圧縮部22bとにおいて増大させるようにしているが、この構成に限られるものではない。例えば、第1圧縮部22aを第2圧縮部22bよりもより増大させるようにしてもよい。 In the second embodiment, in the start-up preparation control, half of the newly required required flow rate is increased in the first compression unit 22a and the second compression unit 22b, but the configuration is limited to this. It is not something that can be done. For example, the first compression unit 22a may be made larger than the second compression unit 22b.

この場合において、需要先に供給されるガスの流量の内の80%を第1圧縮部22aで賄い、20%を第2圧縮部22bで賄う構成を仮定する。つまり、第1圧縮部22aの処理量A1=80%、第2圧縮部22bの処理量A2=20%である場合を仮定する。この場合において、第2圧縮機18の起動によって新たに必要となる必要流量Bが第1圧縮機12の容量の70%だったとすると、起動準備制御では、第1圧縮部22aの容量増大分を、B×A2/(A1+A2)=0.7×0.2×(0.8+0.2)=0.14とし、第2圧縮部22bの容量増大分を、B×A1/(A1+A2)=0.7×0.8×(0.8+0.2)=0.56としてもよい。すなわち、第1圧縮部22aについては、ガス処理量を1.14倍に増大させ、第2圧縮部22bについては、ガス処理量を1.56倍に増大させてもよい。つまり、ガス処理量の大きな第1圧縮部22aにおいてはガス処理量の増大分を抑える一方で、ガス処理量が比較的小さい第2圧縮部22bについてはガス処理量の増大分をより大きくする。またこのとき、第1バイパス弁23b1の開度の増大分を、0.7×0.2×(0.8+0.2)=0.14とし、現行の開度の1.14倍とする。また、第2バイパス弁23b2の開度の増大分を、0.7×0.8×(0.8+0.2)=0.56とし、現行の開度の1.56倍とする。なお、第1バイパス弁23b1及び第2バイパス弁23b2の開度は、スケール開度に応じて設定される。これにより、第1圧縮部22a及び第2圧縮部22bのガス処理量に差がある状態で運転している場合において、増大後の第1圧縮部22a及び第2圧縮部22bの負荷の差を減らすことができる。 In this case, it is assumed that 80% of the flow rate of the gas supplied to the demand destination is covered by the first compression unit 22a and 20% is covered by the second compression unit 22b. That is, it is assumed that the processing amount A1 of the first compression unit 22a is 80% and the processing amount of the second compression unit 22b is 20%. In this case, assuming that the required flow rate B newly required by starting the second compressor 18 is 70% of the capacity of the first compressor 12, in the start preparation control, the capacity increase of the first compression unit 22a is performed. , B × A2 / (A1 + A2) = 0.7 × 0.2 × (0.8 + 0.2) = 0.14, and the capacity increase of the second compression unit 22b is B × A1 / (A1 + A2) = 0. It may be set to 0.7 × 0.8 × (0.8 + 0.2) = 0.56. That is, the gas processing amount may be increased 1.14 times for the first compression unit 22a, and the gas processing amount may be increased 1.56 times for the second compression unit 22b. That is, the increase in the gas processing amount is suppressed in the first compression unit 22a having a large gas processing amount, while the increase in the gas processing amount is further increased in the second compression unit 22b having a relatively small gas processing amount. At this time, the increase in the opening degree of the first bypass valve 23b1 is set to 0.7 × 0.2 × (0.8 + 0.2) = 0.14, which is 1.14 times the current opening degree. Further, the increase in the opening degree of the second bypass valve 23b2 is set to 0.7 × 0.8 × (0.8 + 0.2) = 0.56, which is 1.56 times the current opening degree. The opening degree of the first bypass valve 23b1 and the second bypass valve 23b2 is set according to the scale opening degree. As a result, when the operation is performed in a state where there is a difference in the gas processing amount between the first compression unit 22a and the second compression unit 22b, the difference in the load between the first compression unit 22a and the second compression unit 22b after the increase can be obtained. Can be reduced.

なお、その他の構成、作用及び効果はその説明を省略するが、前記第1実施形態の説明を第2実施形態に援用することができる。 Although the description of other configurations, actions and effects will be omitted, the description of the first embodiment can be incorporated into the second embodiment.

(その他の実施形態)
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明は、前記実施形態に限られるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。例えば、図6に示すように、スクリュ式の圧縮部22とバイパス手段23と制御部27とを備えたスクリュ圧縮機50が構成されてもよい。なお、制御部27には、第2圧縮機18の駆動制御を行うための第2駆動制御部27bは含まれていないが、制御部27は、第2圧縮機18を起動するための指令を受信可能となっている。
(Other embodiments)
It should be noted that the embodiments disclosed this time are exemplary in all respects and are not considered to be restrictive. The present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the spirit of the present invention. For example, as shown in FIG. 6, a screw compressor 50 including a screw-type compression unit 22, a bypass means 23, and a control unit 27 may be configured. Although the control unit 27 does not include the second drive control unit 27b for controlling the drive of the second compressor 18, the control unit 27 issues a command for starting the second compressor 18. It is possible to receive.

スクリュ圧縮機50の圧縮部22は需要先接続流路14にガスを吐出する。需要先接続流路14には、図示省略するが、図1と同様に再液化設備接続流路16が接続されている。このスクリュ圧縮機50の圧縮部22の駆動中に、制御部27が、再液化設備接続流路16に設けられた図外の第2圧縮機18を起動するための指令を受けると、制御部27は起動準備制御を実行する。起動準備制御では、制御部27(第1駆動制御部27a)は、第2圧縮機18が処理することとなる対象ガスの必要流量に相当する流量分だけ圧縮部22の処理量を増大させ、また、制御部27(バイパス制御部27c)は、増大させた処理量に相当する流量が貯槽接続流路3に戻るようにバイパス弁23bの開度を大きくする。そして、バイパス弁23bの開度が所定範囲に収まると、制御部27は、起動制御を実行する。起動制御では、制御部27は、第2圧縮機18を起動する起動許可信号を出力し、またバイパス制御部27cは、バイパス弁23bの開度を所定開度だけ小さくする。 The compression unit 22 of the screw compressor 50 discharges gas to the demand destination connection flow path 14. Although not shown, the reliquefaction equipment connection flow path 16 is connected to the demand destination connection flow path 14 as in FIG. 1. While driving the compression unit 22 of the screw compressor 50, when the control unit 27 receives a command to start the second compressor 18 (not shown) provided in the reliquefaction equipment connection flow path 16, the control unit 27 receives a command. 27 executes the start preparation control. In the start-up preparation control, the control unit 27 (first drive control unit 27a) increases the processing amount of the compression unit 22 by the flow rate corresponding to the required flow rate of the target gas to be processed by the second compressor 18. Further, the control unit 27 (bypass control unit 27c) increases the opening degree of the bypass valve 23b so that the flow rate corresponding to the increased processing amount returns to the storage tank connection flow path 3. Then, when the opening degree of the bypass valve 23b falls within a predetermined range, the control unit 27 executes the start control. In the start control, the control unit 27 outputs a start permission signal for starting the second compressor 18, and the bypass control unit 27c reduces the opening degree of the bypass valve 23b by a predetermined opening degree.

前記実施形態では、起動準備制御において、スライド弁のロード側への移動(又は回転数の増大)に連動してバイパス弁23bの開度が増大されるような制御方法であったがこれに限られず、様々な制御方法が採用されてよい。例えば、スライド弁の制御(又は回転数の制御)とバイパス弁23bの制御は、第2圧縮機16の処理量に基づき設定されるそれぞれの制御量に基づいて独立して行われてもよい。 In the above-described embodiment, in the start-up preparation control, the control method is such that the opening degree of the bypass valve 23b is increased in conjunction with the movement of the slide valve to the load side (or the increase in the rotation speed), but the control method is limited to this. Instead, various control methods may be adopted. For example, the control of the slide valve (or the control of the rotation speed) and the control of the bypass valve 23b may be performed independently based on the respective control amounts set based on the processing amount of the second compressor 16.

前記実施形態において、温度検出器(図示省略)が需要先接続流路14に設けられて、この温度検出器による検出温度に基づいてバイパス弁23bの制御、及び、スライド弁による容量調整又は回転数調整が行われてもよい。この検出温度に基づく制御は、第1圧縮機12の圧縮部22への注油、注水、対象ガスが液化した液の注入等により行われる。 In the above embodiment, a temperature detector (not shown) is provided in the demand destination connection flow path 14, the bypass valve 23b is controlled based on the temperature detected by the temperature detector, and the capacity is adjusted or the rotation speed is adjusted by the slide valve. Adjustments may be made. The control based on the detected temperature is performed by lubricating, injecting water, injecting a liquid in which the target gas is liquefied, or the like into the compression unit 22 of the first compressor 12.

1 :貯槽
3 :貯槽接続流路
5 :再液化設備
10 :圧縮機ユニット
12 :第1圧縮機
12a :調整手段
14 :需要先接続流路
16 :再液化設備接続流路
18 :第2圧縮機
22 :圧縮部
22a :第1圧縮部
22b :第2圧縮部
23 :バイパス手段
23a :バイパス流路
23a1 :第1バイパス流路
23a2 :第2バイパス流路
23b :バイパス弁
23b1 :第1バイパス弁
23b2 :第2バイパス弁
27 :制御部
50 :スクリュ圧縮機
ST11 :駆動ステップ
ST13 :起動準備ステップ
ST15 :起動ステップ
1: Storage tank 3: Storage tank connection flow path 5: Reliquefaction equipment 10: Compressor unit 12: First compressor 12a: Adjustment means 14: Demand destination connection flow path 16: Reliquefaction equipment connection flow path 18: Second compressor 22: Compression unit 22a: First compression unit 22b: Second compression unit 23: Bypass means 23a: Bypass flow path 23a1: First bypass flow path 23a2: Second bypass flow path 23b: Bypass valve 23b1: First bypass valve 23b2 : Second bypass valve 27: Control unit 50: Screw compressor ST11: Drive step ST13: Start preparation step ST15: Start step

Claims (6)

船舶内に設置され、前記船舶に設けられた貯槽から液化ガスのボイルオフガスである対象ガスを回収してその少なくとも一部を需要先に供給する圧縮機ユニットであって、
前記貯槽から貯槽接続流路を介して対象ガスを吸入する第1圧縮機と、
前記第1圧縮機から前記需要先に繋がる需要先接続流路と、
前記需要先接続流路から分岐し、再液化設備に繋がる再液化設備接続流路と、
前記再液化設備接続流路上に設けられ、前記再液化設備に流入する前の対象ガスをさらに圧縮するレシプロ式の第2圧縮機と、
前記第1圧縮機および前記第2圧縮機を制御する制御部と、
を備え、
前記第1圧縮機が、前記貯槽接続流路に接続されて前記対象ガスを圧縮するスクリュ式の圧縮部と、前記需要先接続流路から前記貯槽接続流路へと対象ガスの少なくとも一部を戻すバイパス手段と、を備え、
前記バイパス手段は、前記需要先接続流路及び前記貯槽接続流路を接続するバイパス流路と、前記バイパス流路に設けられたバイパス弁と、を含み、
前記制御部は、
前記圧縮部の駆動中における前記第2圧縮機の起動の際に、
前記第2圧縮機の作動によって前記第2圧縮機が処理することとなる対象ガスの必要流量に相当する流量分だけ前記圧縮部の処理量を増大させるとともに、増大させた処理量に相当する流量が前記貯槽接続流路に戻るように前記バイパス弁の開度を大きくする起動準備制御を実行し、
前記起動準備制御の実行の後に、前記第2圧縮機を起動するとともに、前記起動準備制御で大きくなった前記バイパス弁の開度を所定開度小さくする起動制御を実行するように構成されている、圧縮機ユニット。
A compressor unit installed in a ship that recovers a target gas, which is a boil-off gas of liquefied gas, from a storage tank provided in the ship and supplies at least a part of the target gas to a demand destination.
The first compressor that sucks the target gas from the storage tank through the storage tank connection flow path, and
A demand destination connection flow path that connects the first compressor to the demand destination,
The reliquefaction equipment connection flow path that branches from the demand destination connection flow path and connects to the reliquefaction equipment.
A reciprocating second compressor provided on the reliquefaction equipment connection flow path and further compressing the target gas before flowing into the reliquefaction equipment.
A control unit that controls the first compressor and the second compressor,
Equipped with
The first compressor is connected to the storage tank connection flow path to compress the target gas, and at least a part of the target gas is transferred from the demand destination connection flow path to the storage tank connection flow path. Equipped with a bypass means to return,
The bypass means includes a bypass flow path connecting the demand destination connection flow path and the storage tank connection flow path, and a bypass valve provided in the bypass flow path.
The control unit
When the second compressor is started while the compression unit is being driven,
The processing amount of the compression unit is increased by the flow rate corresponding to the required flow rate of the target gas to be processed by the second compressor by the operation of the second compressor, and the processing amount corresponding to the increased processing amount is increased. Executes start-up preparation control to increase the opening degree of the bypass valve so that the gas returns to the storage tank connection flow path.
After the execution of the start preparation control, the second compressor is started, and the start control is configured to reduce the opening degree of the bypass valve increased by the start preparation control by a predetermined opening degree. , Compressor unit.
前記第1圧縮機の前記圧縮部が、互いに並列に配置された2つのスクリュ式圧縮機から構成され、
前記バイパス手段が、前記2つのスクリュ式圧縮機から吐出された対象ガスを前記需要先接続流路から前記貯槽接続流路へと戻す2つのバイパス流路及び前記2つのバイパス流路に1つずつ設けられた2つのバイパス弁を含み、
前記制御部は、
前記起動準備制御において、
前記必要流量に相当する流量の半分だけ前記2つのスクリュ式圧縮機のそれぞれの処理量を増大させるとともに、増大させた処理量に相当する流量の半分の流量が前記2つのバイパス流路のそれぞれから前記貯槽接続流路へと戻るように前記2つのバイパス弁の開度をそれぞれ大きくする、請求項1に記載の圧縮機ユニット。
The compression unit of the first compressor is composed of two screw type compressors arranged in parallel with each other.
The bypass means has one bypass flow path for returning the target gas discharged from the two screw compressors from the demand destination connection flow path to the storage tank connection flow path and one for each of the two bypass flow paths. Including two bypass valves provided
The control unit
In the start preparation control,
The processing amount of each of the two screw compressors is increased by half of the flow rate corresponding to the required flow rate, and half of the flow rate corresponding to the increased processing amount is generated from each of the two bypass flow paths. The compressor unit according to claim 1, wherein the opening degree of each of the two bypass valves is increased so as to return to the storage tank connection flow path.
前記第1圧縮機の前記圧縮部が、互いに並列に配置された2つのスクリュ式圧縮機から構成され、
前記バイパス手段が、前記2つのスクリュ式圧縮機のうちの一方のスクリュ式圧縮機から吐出された対象ガスを前記需要先接続流路から前記貯槽接続流路へと戻す第1バイパス流路、及び前記第1バイパス流路に設けられた第1バイパス弁、前記2つのスクリュ式圧縮機のうちの他方のスクリュ式圧縮機から吐出された対象ガスを前記需要先接続流路から前記貯槽接続流路へと戻す第2バイパス流路、及び前記第2バイパス流路に設けられた第2バイパス弁を含み、
前記一方のスクリュ式圧縮機の処理量をA1、前記他方のスクリュ式圧縮機の処理量をA2とし、前記必要流量に相当する流量をBとすると、
前記制御部は、
前記起動準備制御において、
B×A2/(A1+A2)で得られる流量だけ前記一方のスクリュ式圧縮機の処理量を増大させるとともに、B×A2/(A1+A2)で得られる流量が前記第1バイパス流路から前記貯槽接続流路へと戻るように、前記第1バイパス弁の開度を大きくし、
B×A1/(A1+A2)で得られる流量だけ前記他方のスクリュ式圧縮機の処理量を増大させるとともに、B×A1/(A1+A2)で得られる流量が前記第2バイパス流路から前記貯槽接続流路へと戻るように、前記第2バイパス弁の開度を大きくする、請求項1に記載の圧縮機ユニット。
The compression unit of the first compressor is composed of two screw type compressors arranged in parallel with each other.
The first bypass flow path in which the bypass means returns the target gas discharged from one of the two screw type compressors from the demand destination connection flow path to the storage tank connection flow path, and The target gas discharged from the first bypass valve provided in the first bypass flow path and the other screw type compressor of the two screw type compressors is sent from the demand destination connection flow path to the storage tank connection flow path. Includes a second bypass flow path back to and a second bypass valve provided in the second bypass flow path.
Assuming that the processing amount of the one screw type compressor is A1, the processing amount of the other screw type compressor is A2, and the flow rate corresponding to the required flow rate is B.
The control unit
In the start preparation control,
The processing amount of the one screw compressor is increased by the flow rate obtained by B × A2 / (A1 + A2), and the flow rate obtained by B × A2 / (A1 + A2) is the flow rate obtained from the first bypass flow path to the storage tank connection flow. Increase the opening of the first bypass valve so that it returns to the road.
The processing amount of the other screw compressor is increased by the flow rate obtained by B × A1 / (A1 + A2), and the flow rate obtained by B × A1 / (A1 + A2) is the flow rate connected to the storage tank from the second bypass flow path. The compressor unit according to claim 1, wherein the opening degree of the second bypass valve is increased so as to return to the road.
前記第1圧縮機が、
前記起動準備制御において前記圧縮部の処理量を増大可能な、前記圧縮部の回転数調整手段、または、前記圧縮部の容量調整手段を備える、請求項1ないし3の何れか1項に記載の圧縮機ユニット。
The first compressor
The invention according to any one of claims 1 to 3, further comprising a means for adjusting the rotation speed of the compression unit or a means for adjusting the capacity of the compression unit, which can increase the processing amount of the compression unit in the start-up preparation control. Compressor unit.
船舶に設けられた貯槽から液化ガスのボイルオフガスである対象ガスを貯槽接続流路を介して吸入して需要先接続流路に吐出するスクリュ圧縮機であって、
前記貯槽接続流路に接続されて前記対象ガスを圧縮するスクリュ式の圧縮部と、
前記需要先接続流路及び前記貯槽接続流路を接続するバイパス流路と、前記バイパス流路に設けられたバイパス弁と、を含み、前記需要先接続流路から前記貯槽接続流路へと対象ガスの少なくとも一部を戻すバイパス手段と、
制御部と、を備え、
前記制御部は、
前記圧縮部の駆動中に、前記需要先接続流路から分岐し再液化設備に繋がる再液化設備接続流路に設けられた第2圧縮機を起動するための指令を受けると、前記第2圧縮機の作動によって前記第2圧縮機が処理することとなる対象ガスの必要流量に相当する流量分だけ前記圧縮部の処理量を増大させるとともに、増大させた処理量に相当する流量が前記貯槽接続流路に戻るように前記バイパス弁の開度を大きくする起動準備制御を実行し、
前記起動準備制御の実行の後に、前記第2圧縮機を起動する起動許可信号を出力するとともに、前記起動準備制御で大きくなった前記バイパス弁の開度を所定開度小さくする起動制御を実行するように構成されている、スクリュ圧縮機。
A screw compressor that sucks in the target gas, which is a boil-off gas of liquefied gas, from a storage tank provided on a ship through the storage tank connection flow path and discharges it to the demand destination connection flow path.
A screw-type compression unit that is connected to the storage tank connection flow path and compresses the target gas,
A bypass flow path connecting the demand destination connection flow path and the storage tank connection flow path, and a bypass valve provided in the bypass flow path are included, and the target is from the demand destination connection flow path to the storage tank connection flow path. Bypass means to return at least part of the gas,
With a control unit,
The control unit
While driving the compression unit, when a command is received to start the second compressor provided in the reliquefaction facility connection flow path that branches from the demand destination connection flow path and is connected to the reliquefaction facility, the second compression is performed. The processing amount of the compression unit is increased by the flow rate corresponding to the required flow rate of the target gas to be processed by the second compressor due to the operation of the machine, and the flow rate corresponding to the increased processing amount is connected to the storage tank. The start preparation control for increasing the opening degree of the bypass valve so as to return to the flow path is executed, and the start preparation control is executed.
After the execution of the start preparation control, a start permission signal for starting the second compressor is output, and a start control for reducing the opening degree of the bypass valve increased by the start preparation control by a predetermined opening degree is executed. A screw compressor that is configured to.
船舶に設けられた貯槽から液化ガスのボイルオフガスである対象ガスを回収してその少なくとも一部を需要先に供給する圧縮機ユニットの運転方法であって、
前記圧縮機ユニットは、前記貯槽から貯槽接続流路を介して対象ガスを吸入して需要先接続流路に対象ガスを吐出する第1圧縮機と、前記需要先接続流路から分岐して再液化設備に繋がる再液化設備接続流路に設けられたレシプロ式の第2圧縮機と、を備え、
前記第1圧縮機が、前記貯槽接続流路に接続されて前記対象ガスを圧縮するスクリュ式の圧縮部と、前記需要先接続流路と前記貯槽接続流路とを接続するバイパス流路と、前記バイパス流路に設けられたバイパス弁と、を有し、
前記運転方法には、
前記第1圧縮機の前記圧縮部を駆動する駆動ステップと、
前記圧縮部の駆動中における前記第2圧縮機の起動に際し、前記第2圧縮機の作動によって前記第2圧縮機が処理することとなる対象ガスの必要流量に相当する流量分だけ前記圧縮部の処理量を増大させるとともに、増大させた処理量に相当する流量が前記貯槽接続流路に戻るように前記バイパス弁の開度を大きくする起動準備ステップと、
前記起動準備ステップの後に、前記第2圧縮機を起動するとともに、前記起動準備ステップにおいて大きくなった前記バイパス弁の開度を所定開度小さくする起動ステップと、が含まれる、圧縮機ユニットの運転方法。
It is a method of operating a compressor unit that recovers the target gas, which is a boil-off gas of liquefied gas, from a storage tank provided in a ship and supplies at least a part of it to a demand destination.
The compressor unit is branched from the first compressor that sucks the target gas from the storage tank through the storage tank connection flow path and discharges the target gas to the demand destination connection flow path, and branches from the demand destination connection flow path. It is equipped with a reciprocating type second compressor installed in the reliquefaction equipment connection flow path connected to the liquefaction equipment.
A screw-type compression unit in which the first compressor is connected to the storage tank connection flow path to compress the target gas, a bypass flow path connecting the demand destination connection flow path and the storage tank connection flow path, and the like. It has a bypass valve provided in the bypass flow path, and has
The above-mentioned operation method includes
A drive step for driving the compression unit of the first compressor,
When the second compressor is started while the compression unit is being driven, the compression unit has a flow rate corresponding to the required flow rate of the target gas to be processed by the second compressor due to the operation of the second compressor. A start-up preparation step in which the opening degree of the bypass valve is increased so that the processing amount is increased and the flow rate corresponding to the increased processing amount returns to the storage tank connection flow path.
The operation of the compressor unit includes, after the start-up preparation step, a start-up step of starting the second compressor and reducing the opening degree of the bypass valve increased in the start-up preparation step by a predetermined opening degree. Method.
JP2021140820A 2021-08-31 2021-08-31 How to operate the compressor unit, screw compressor and compressor unit Active JP7009669B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021140820A JP7009669B1 (en) 2021-08-31 2021-08-31 How to operate the compressor unit, screw compressor and compressor unit
KR1020220033389A KR102425480B1 (en) 2021-08-31 2022-03-17 Compressor unit, screw compressor, and operating method of compressor unit
CN202210390494.3A CN114688001B (en) 2021-08-31 2022-04-14 Compressor unit, screw compressor, and method for operating compressor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021140820A JP7009669B1 (en) 2021-08-31 2021-08-31 How to operate the compressor unit, screw compressor and compressor unit

Publications (2)

Publication Number Publication Date
JP7009669B1 true JP7009669B1 (en) 2022-01-25
JP2023034531A JP2023034531A (en) 2023-03-13

Family

ID=80629664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021140820A Active JP7009669B1 (en) 2021-08-31 2021-08-31 How to operate the compressor unit, screw compressor and compressor unit

Country Status (3)

Country Link
JP (1) JP7009669B1 (en)
KR (1) KR102425480B1 (en)
CN (1) CN114688001B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988904A (en) * 1972-12-11 1974-08-26
JP6756065B1 (en) * 2020-06-29 2020-09-16 株式会社神戸製鋼所 Compressor unit stop control method and compressor unit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119644A (en) * 1993-10-29 1995-05-09 Hitachi Ltd Compressor equipment and method and system for controlling number of combination of compressors
JP4271046B2 (en) * 2004-01-26 2009-06-03 株式会社日立産機システム Compressor unit
JP2008175111A (en) * 2007-01-17 2008-07-31 Daikin Ind Ltd Compressor
US10724462B2 (en) * 2012-04-20 2020-07-28 General Electric Company System and method for a compressor
JP2015059534A (en) * 2013-09-19 2015-03-30 三井精機工業株式会社 Compressor
JP6595765B2 (en) * 2014-12-25 2019-10-23 三井精機工業株式会社 compressor
KR101765390B1 (en) * 2015-04-07 2017-08-07 현대중공업 주식회사 Treatment system of liquefied natural gas
US20160319810A1 (en) * 2015-04-30 2016-11-03 Atlas Copco Comptec, Llc Gas handling system and method for efficiently managing changes in gaseous conditions
SG11201710001XA (en) * 2015-06-02 2018-01-30 Daewoo Shipbuilding & Marine Ship
JP6793052B2 (en) * 2017-02-06 2020-12-02 株式会社神戸製鋼所 Boil-off gas recovery system
KR102296311B1 (en) * 2017-10-16 2021-08-30 한국조선해양 주식회사 Gas Treatment System, Vessel having the Gas Treatment System and FSRU Vessel having the Gas Treatment System

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988904A (en) * 1972-12-11 1974-08-26
JP6756065B1 (en) * 2020-06-29 2020-09-16 株式会社神戸製鋼所 Compressor unit stop control method and compressor unit

Also Published As

Publication number Publication date
CN114688001A (en) 2022-07-01
CN114688001B (en) 2022-11-08
JP2023034531A (en) 2023-03-13
KR102425480B1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
CN107848608B (en) Ship, and system and method for processing boil-off gas of ship
US11300355B2 (en) Boil-off gas supply device
CN107848609B (en) Ship, and system and method for processing boil-off gas of ship
KR20160112148A (en) Compressor system
JP7009669B1 (en) How to operate the compressor unit, screw compressor and compressor unit
JP5778356B2 (en) BOG processing equipment and BOG processing method
CN112096469A (en) Starting method, device, equipment and storage medium of recompression power generation system
KR102342035B1 (en) Compressor unit
JP2019055617A (en) Boil-off gas processing system
JP6922113B1 (en) Compressor unit, compressor unit control program and control method
JP6668566B2 (en) Fuel gas supply system, ship, and fuel gas supply method
KR102355150B1 (en) Compressor unit and program for controlling compressor unit
JP2016124388A (en) Liquefied gas carrying vessel
JP2006316687A (en) Pressure feed method of fluid, pressure feed device, fuel gas supply device and relay station of gas transportation line
JP6672544B2 (en) Fuel gas supply system and fuel gas supply method
WO2016059996A1 (en) Bog compression equipment and reciprocating compressor control method
JP4467409B2 (en) Engine-driven compressor operation control method and engine-driven compressor
JP2024094963A (en) Liquefied hydrogen equipment and its operation method
JPH0942598A (en) Processing system and processing method for vaporized gas of liquefied gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210921

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220112

R150 Certificate of patent or registration of utility model

Ref document number: 7009669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150