JP7007666B2 - Luminous body and method for manufacturing the luminous body - Google Patents

Luminous body and method for manufacturing the luminous body Download PDF

Info

Publication number
JP7007666B2
JP7007666B2 JP2017180019A JP2017180019A JP7007666B2 JP 7007666 B2 JP7007666 B2 JP 7007666B2 JP 2017180019 A JP2017180019 A JP 2017180019A JP 2017180019 A JP2017180019 A JP 2017180019A JP 7007666 B2 JP7007666 B2 JP 7007666B2
Authority
JP
Japan
Prior art keywords
illuminant
crucible
light
melt
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017180019A
Other languages
Japanese (ja)
Other versions
JP2019056038A (en
Inventor
敏郎 古滝
弘倫 斎藤
文弥 堀越
真行 宮崎
圭 鎌田
彰 吉川
俊介 黒澤
有為 横田
育宏 庄子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Tohoku University NUC
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Adamant Namiki Precision Jewel Co Ltd filed Critical Tohoku University NUC
Priority to JP2017180019A priority Critical patent/JP7007666B2/en
Publication of JP2019056038A publication Critical patent/JP2019056038A/en
Application granted granted Critical
Publication of JP7007666B2 publication Critical patent/JP7007666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Description

本発明は、発光体及び発光体の製造方法に関する。 The present invention relates to a light emitter and a method for producing the light emitter.

シンチレータ等の発光体は、ガンマ線、X線、α線、β線、中性子線等を検出するフォトン検出器或いは放射線検出器に用いられる。これら検出器は、陽電子放射断層撮影(PET)装置やX線CT等の医療画像装置、高エネルギー物理用の各種放射線計測装置、資源探査装置等への幅広い応用が期待される。 A light emitter such as a scintillator is used in a photon detector or a radiation detector that detects gamma rays, X-rays, α rays, β rays, neutron rays and the like. These detectors are expected to be widely applied to positron emission tomography (PET) equipment, medical imaging equipment such as X-ray CT, various radiation measurement equipment for high-energy physics, resource exploration equipment, and the like.

これら検出器に用いられる発光体の一例として、例えば特許文献1に示すガーネット構造を有する発光体が開示されている。 As an example of a light emitting body used in these detectors, for example, a light emitting body having a garnet structure shown in Patent Document 1 is disclosed.

特許文献1には、Ce3+の4f5d準位からの発光を用いたガーネット構造を持つ発光体及びその製法が開示されている。発光体は、一般式CexRE3-xM5+yO12+3y/2(但し、0.0001≦x≦0.3、0≦y≦0.5或いは0≦y≦-0.5、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Gd、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する。またその発光体の製法として、チョクラルスキー(CZ:Czochralski)法やEFG(Edge-defined Film-fed. Growth)法が開示されている。 Patent Document 1 discloses a light emitter having a garnet structure using light emission from the 4f5d level of Ce 3+ and a method for producing the same. The illuminant is the general formula Ce x RE 3-x M 5 + y O 12 + 3y / 2 (where 0.0001 ≤ x ≤ 0.3, 0 ≤ y ≤ 0.5 or 0 ≤ y ≤ -0.5, M is Al, Lu, A garnet structure represented by one or more selected from Ga, Sc, and RE is one or more selected from La, Pr, Gd, Tb, Yb, Y, Lu). Have. Further, as a method for producing the luminous body, a Czochralski (CZ: Czochralski) method and an EFG (Edge-defined Film-fed. Growth) method are disclosed.

また、これらの発光体を高エネルギー物理検出器用途に使用する際、特性として20放射長が望まれている事が、例えば非特許文献1に開示されている。 Further, when these light emitters are used for high energy physical detector applications, it is disclosed in Non-Patent Document 1, for example, that a radiation length of 20 is desired as a characteristic.

国際公開第2015/166999号International Publication No. 2015/166999

M. Niiyama、「Hadron physics with GeV photons at SPring-8/LEPS II」、2014、EPJ Web of Conferences 73、08001、p.3M. Niiyama, "Hadron physics with GeV photons at SPring-8 / LEPS II", 2014, EPJ Web of Conferences 73, 08001, p.3

しかしCZ法では原料の融液に対する結晶化率が低く、発光体の量産には適さなかった。更に、融液中の対流による原子の拡散で、結晶成長が進行するに伴い高濃度の融液が残り、成長形成される発光体の結晶組成に変動が生じていた。例えば、発光中心元素となるCeの偏析係数は0.05~0.3程度と小さく、結晶成長に従いCe濃度が上昇し、結晶引き上げ方向で発光量の変動が生じて、発光体の歩留まり低下を招いていた。 However, the CZ method has a low crystallization rate with respect to the melt of the raw material, and is not suitable for mass production of illuminants. Further, due to the diffusion of atoms by convection in the melt, a high-concentration melt remains as the crystal growth progresses, and the crystal composition of the luminescent material to be grown and formed fluctuates. For example, the segregation coefficient of Ce, which is the central element of light emission, is as small as about 0.05 to 0.3, and the Ce concentration increases as the crystal grows, causing fluctuations in the amount of light emitted in the direction of crystal pulling, resulting in a decrease in the yield of the illuminant.

また前記20放射長と云う特性を有する発光体を、EFG法に於いて如何にして作製するかと云う具体的な技術内容の開示は無く、未だ実現されてもいない。 Further, there is no disclosure of specific technical contents such as how to produce a light emitting body having a characteristic of 20 radiation length in the EFG method, and it has not been realized yet.

本発明は、上記課題に鑑みてなされたものであり、長手方向に亘って均一な発光量で発光させることが可能となり、20放射長と云う特性を実現出来る発光体とその製造方法を提供する。 The present invention has been made in view of the above problems, and provides a light emitting body capable of emitting light with a uniform amount of light emitted over the longitudinal direction and realizing a characteristic of 20 radiation lengths and a method for manufacturing the same. ..

前記課題は、以下の本発明により解決される。即ち本発明の発光体の製造方法は、坩堝をMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種で形成し、スリットを有すると共に、幅方向が平行に配置されたダイを坩堝に収容し、雰囲気ガスにアルゴンガスを用い、カーボン製のヒータと断熱材を用いると共に、断熱材で、坩堝とヒータとダイを取り囲み、坩堝に発光体の原料を投入してヒータで加熱し、発光体の原料を坩堝内で溶融して融液を用意し、スリットを介してスリット上部に融液溜まりを形成し、そのスリット上部の融液に種結晶を接触させて種結晶を引き上げることで、単結晶から成り、主面と280mm以上の長手方向の寸法を有し、Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子を、5000ppm以下(但し0ppmは含まない)含有している発光体を成長させる事を特徴とする。
The above problems are solved by the following invention. That is, in the method for producing a light emitting body of the present invention, a crucible is formed of at least one of Mo, W, Ir, Re, Ru, Pt, and Rh, and a die having a slit and arranged in parallel in the width direction is used as a crucible. Atomic gas is used as the atmosphere gas, a carbon heater and a heat insulating material are used, and the heat insulating material surrounds the crucible, the heater and the die, and the raw material of the luminescent material is put into the crucible and heated by the heater . By melting the raw material of the illuminant in a crucible to prepare a melt, a melt pool is formed in the upper part of the slit through the slit, and the seed crystal is brought into contact with the melt in the upper part of the slit to pull up the seed crystal. , It consists of a single crystal, has a main surface and a longitudinal dimension of 280 mm or more , and contains at least one atom of Mo, W, Ir, Re, Ru, Pt, and Rh at 5000 ppm or less (but does not include 0 ppm). It is characterized by growing the contained luminescent material.

本発明の発光体の製造方法の一実施形態は、組成式が(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)で表されるガーネット構造を発光体が有し、Ce又はMgの少なくとも1種が長手方向に分布している事が好ましい。 In one embodiment of the method for producing a luminescent material of the present invention, the composition formula is (Ce, Mg) x R 3-x M 5 O 12 (where 0.0001 ≤ x ≤ 0.3, R is La, Pr, Gd, Tb, The illuminant has a garnet structure represented by one or more selected from Yb, Y, Lu, and M is one or more selected from Al, Lu, Ga, Sc), and at least Ce or Mg. It is preferable that one species is distributed in the longitudinal direction.

本発明に係る発光体及び発光体の製造方法に依れば、発光体をその長手方向に亘って、均一な発光量で発光させる事が出来る。従って、20放射長の特性を実現する事が可能となる。 According to the light emitting body and the method for producing a light emitting body according to the present invention, the light emitting body can be made to emit light with a uniform amount of light emitted over the longitudinal direction thereof. Therefore, it is possible to realize the characteristic of 20 radiation length.

更に、本発明では発光体の組成式を(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)とし、EFG法で成長させる事でCe又はMgの少なくとも1種を発光体の長手方向に分布させると共に、発光体の製造時に使用する坩堝の形成材料をMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種とし、それら形成材料の原子を5000ppm以下(但し0ppmは含まない)で発光体に含有させる。このような組成や原子含有量の設定により、均一な発光量で発光して20放射長の特性が実現可能な発光体を、EFG法により製造する事が出来る。 Further, in the present invention, the composition formula of the illuminant is (Ce, Mg) x R 3-x M 5 O 12 (where 0.0001 ≤ x ≤ 0.3, R is from La, Pr, Gd, Tb, Yb, Y, Lu. One or more selected species, M is one or more selected from Al, Lu, Ga, Sc), and at least one species of Ce or Mg is distributed in the longitudinal direction of the illuminant by growing by the EFG method. At least one of Mo, W, Ir, Re, Ru, Pt, and Rh is used as the material for forming the lantern used in the production of the luminous body, and the atom of the forming material is 5000 ppm or less (however, 0 ppm is not included). It is contained in the illuminant. By setting such a composition and atomic content, it is possible to produce a luminescent material that emits light with a uniform luminescence amount and can realize a characteristic of 20 radiation lengths by the EFG method.

本発明の実施形態及び実施例に係る発光体を模式的に示す斜視図である。It is a perspective view which shows typically the light emitting body which concerns on Embodiment and Example of this invention. 本発明の実施形態及び実施例に係る、EFG法による発光体の製造装置を概略して模式的に示す構成図である。It is a block diagram which shows schematicly schematicly the manufacturing apparatus of the light emitting body by the EFG method which concerns on Embodiment and Example of this invention. (a)本発明の実施形態及び実施例に係る、ダイの一例を模式的に示す平面図である。(b)同図(a)の正面図である。(c)同図(a)の側面図である。(a) It is a top view which shows an example of the die which concerns on Embodiment and Example of this invention. (b) It is a front view of the figure (a). (c) It is a side view of the figure (a). 本発明の実施形態及び実施例に係る種結晶の一例を示す説明図である。It is explanatory drawing which shows an example of the seed crystal which concerns on Embodiment and Example of this invention. 本発明の実施形態及び実施例における、種結晶と仕切り板との位置関係を模式的に示す斜視図である。It is a perspective view which shows typically the positional relationship between a seed crystal and a partition plate in Embodiment and Example of this invention. (a)本発明の実施形態及び実施例における、種結晶と仕切り板との位置関係を模式的に示す正面図である。(b)本発明の実施形態及び実施例における、種結晶の一部を溶融する様子を示す正面図である。(a) It is a front view which shows typically the positional relationship between a seed crystal and a partition plate in Embodiment and Example of this invention. (b) It is a front view which shows the state which a part of the seed crystal is melted in Embodiment and Example of this invention. 本発明の実施形態及び実施例において、発光体が成長する様子を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing how a light emitting body grows in the embodiments and examples of the present invention. EFG法により得られる、本発明の実施形態及び実施例に係る複数の発光体を部分的且つ模式的に示す斜視図である。It is a perspective view partially and schematically showing a plurality of light emitters according to an embodiment and an embodiment of the present invention obtained by the EFG method.

本実施の形態の第一の特徴は、単結晶から成り、長手方向の寸法を有し、その寸法が280mm以上である発光体としたことである。 The first feature of this embodiment is that the light emitter is made of a single crystal, has a dimension in the longitudinal direction, and the dimension is 280 mm or more.

第二の特徴は、組成式が(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)で表されるガーネット構造を有し、Ce又はMgの少なくとも1種が、長手方向に分布している発光体としたことである。 The second feature is that the composition formula is (Ce, Mg) x R 3-x M 5 O 12 (however, 0.0001 ≤ x ≤ 0.3, R is selected from La, Pr, Gd, Tb, Yb, Y, Lu. It has a garnet structure represented by one or more species, M is one or more species selected from Al, Lu, Ga, Sc), and at least one species of Ce or Mg is distributed in the longitudinal direction. It was made into a illuminant.

第三の特徴は、Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子を、5000ppm以下(但し0ppmは含まない)含有している発光体としたことである。 The third feature is that the illuminant contains at least one atom of Mo, W, Ir, Re, Ru, Pt, and Rh in an amount of 5000 ppm or less (however, 0 ppm is not included).

第四の特徴は、坩堝をMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種で形成し、スリットを有すると共に、幅方向が平行に配置されたダイを坩堝に収容し、雰囲気ガスにアルゴンガスを用い、カーボン製のヒータと断熱材を用いると共に、断熱材で、坩堝とヒータとダイを取り囲み、坩堝に発光体の原料を投入してヒータで加熱し、発光体の原料を坩堝内で溶融して融液を用意し、スリットを介してスリット上部に融液溜まりを形成し、そのスリット上部の融液に種結晶を接触させて種結晶を引き上げることで、単結晶から成り、主面と280mm以上の長手方向の寸法を有し、Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子を、5000ppm以下(但し0ppmは含まない)含有している発光体を成長させる発光体の製造方法としたことである。
The fourth feature is that the crucible is formed of at least one of Mo, W, Ir, Re, Ru, Pt, and Rh, has a slit, and the dies arranged in parallel in the width direction are housed in the crucible, and the atmosphere . Argon gas is used as the gas, a carbon heater and a heat insulating material are used, and the heat insulating material surrounds the crucible, the heater, and the die . It consists of a single crystal by melting in a crucible to prepare a melt, forming a melt pool on the upper part of the slit through the slit, and contacting the seed crystal with the melt on the upper part of the slit to pull up the seed crystal. Emissions that have a longitudinal dimension of 280 mm or more with the main surface and contain at least one atom of Mo, W, Ir, Re, Ru, Pt, Rh of 5000 ppm or less (but not including 0 ppm). It is a method of manufacturing a crucible that grows the body.

第五の特徴は、組成式が(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)で表されるガーネット構造を発光体が有し、Ce又はMgの少なくとも1種が、長手方向に分布している発光体の製造方法としたことである。 The fifth feature is that the composition formula is (Ce, Mg) x R 3-x M 5 O 12 (however, 0.0001 ≤ x ≤ 0.3, R is selected from La, Pr, Gd, Tb, Yb, Y, Lu. The illuminant has a garnet structure represented by (1 or more, M is one or more selected from Al, Lu, Ga, Sc), and at least one of Ce or Mg is distributed in the longitudinal direction. This is the method of manufacturing the luminous body.

これらの発光体及び発光体の製造方法に依れば、発光体をその長手方向に亘って均一な発光量で発光させる事が出来る。従って、20放射長の特性を実現する事が可能となる。 According to these light-emitting bodies and the method for producing the light-emitting body, the light-emitting body can be made to emit light with a uniform amount of light emission over the longitudinal direction thereof. Therefore, it is possible to realize the characteristic of 20 radiation length.

なお本発明において均一な発光量とは、発光体の長手方向の全長に亘る発光量の変動が±10%の範囲内の状態を指す。 In the present invention, the uniform light emission amount refers to a state in which the fluctuation of the light emission amount over the entire length in the longitudinal direction of the light emitter is within the range of ± 10%.

の特徴は、発光体がAs-grown単結晶である発光体及び発光体の製造方法としたことである。
The sixth feature is that the illuminant is an As-grown single crystal and a method for producing the illuminant.

これらの発光体及び発光体の製造方法に依れば、長手方向に280mm以上の寸法を有するように発光体を結晶成長させると共に、研削または研磨などの表面加工を施す必要が無いので、発光体の表面加工の工程削減が達成出来る。更に、発光体に於ける研削代又は研磨代が不要となるので、原料に対する結晶化率の向上と、量産性への適応、及び発光体の歩留まり向上が可能となる。 According to these light-emitting bodies and the method for manufacturing the light-emitting body, it is not necessary to grow the light-emitting body into crystals so as to have a dimension of 280 mm or more in the longitudinal direction, and it is not necessary to perform surface treatment such as grinding or polishing. The reduction of the surface processing process can be achieved. Further, since the grinding allowance or the polishing allowance in the light emitting body is not required, it is possible to improve the crystallization rate with respect to the raw material, adapt to mass productivity, and improve the yield of the light emitting body.

なお本発明においてAs-grown単結晶とは、結晶成長された状態のままで研削または研磨などの表面加工が施こされていない単結晶を指す。 In the present invention, the As-grown single crystal refers to a single crystal that has not been subjected to surface treatment such as grinding or polishing while the crystal has been grown.

以下、図1を参照して本実施形態に係る発光体を説明する。本発明における発光体2は、図1に示すように長手方向(長さL方向)の寸法を有し、平面方向の形状が長方形であり、具体的な寸法として幅Wが10mm程度、厚さTが2mm程度、前記長手方向の寸法である長さLが280mm以上のサイズの単結晶から成る。幅Wが10mm程度及び厚さT=2mm程度が、放射線検出器用として汎用性が高く、結晶成長後の研磨代を皆無とする事が出来るため、望ましい。なお長さLの上限値は特に無く、任意に設定可能であるが、放射線検出器用途の場合、放射線のエネルギーが高ければ高いほど必要な長さは長くなる。例えば8GeVの放射線を吸収する場合20放射長で280mm程度が目安となる。 Hereinafter, the light emitting body according to the present embodiment will be described with reference to FIG. As shown in FIG. 1, the light emitter 2 in the present invention has dimensions in the longitudinal direction (length L direction), has a rectangular shape in the plane direction, and has a specific dimension such as a width W of about 10 mm and a thickness. It is composed of a single crystal having a T of about 2 mm and a length L of 280 mm or more, which is the dimension in the longitudinal direction. A width W of about 10 mm and a thickness T = 2 mm are desirable because they are highly versatile for radiation detectors and can eliminate the polishing allowance after crystal growth. The upper limit of the length L is not particularly limited and can be set arbitrarily, but in the case of a radiation detector application, the higher the radiation energy, the longer the required length. For example, when absorbing 8 GeV radiation, the standard is about 280 mm with a radiation length of 20.

本発明の実施の形態の発光体2は、組成式が(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)で表されるガーネット構造を有する。更に、Ce又はMgの少なくとも1種が、長手方向に分布している。 The illuminant 2 according to the embodiment of the present invention has a composition formula (Ce, Mg) x R 3-x M 5 O 12 (where 0.0001 ≤ x ≤ 0.3, R is La, Pr, Gd, Tb, Yb, It has a garnet structure represented by one or more selected from Y and Lu, and M is one or more selected from Al, Lu, Ga, Sc). Furthermore, at least one species of Ce or Mg is distributed in the longitudinal direction.

更に発光体2は、Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子を、5000ppm以下(但し0ppmは含まない)含有している。 Further, the illuminant 2 contains at least one atom of Mo, W, Ir, Re, Ru, Pt, and Rh in an amount of 5000 ppm or less (however, 0 ppm is not included).

このような組成や原子含有量の設定により、254nm~365nmの紫外線領域の光が照射された時に、発光体2はCe3+の4f5d準位からの発光が可能となる。更に発光体2は、前記組成や原子含有量の設定により、発光体2をその長手方向に亘って、均一な発光量で発光させる事が出来る。 By setting the composition and the atomic content in this way, the illuminant 2 can emit light from the 4f5d level of Ce 3+ when irradiated with light in the ultraviolet region of 254 nm to 365 nm. Further, the light emitting body 2 can emit light with a uniform light emitting amount over the longitudinal direction thereof by setting the composition and the atomic content.

更に、長さLを280mm以上に長大化して設定しても、その長さLに亘って20放射長の特性を実現する事が出来る。 Further, even if the length L is increased to 280 mm or more and set, the characteristic of 20 radiation lengths can be realized over the length L.

なお本発明において、均一な発光量とは、発光体2の長手方向の全長(長さL)に亘る発光量の変動が±10%の範囲内である状態を指す。この状態となるように、Ce又はMgの1種又は2種と、5000ppm以下(但し0ppmは含まない)のMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子とを、長手方向に亘って分布させる。 In the present invention, the uniform light emission amount means a state in which the fluctuation of the light emission amount over the total length (length L) in the longitudinal direction of the light emitting body 2 is within the range of ± 10%. In order to achieve this state, one or two kinds of Ce or Mg and at least one kind of atom of Mo, W, Ir, Re, Ru, Pt, Rh of 5000 ppm or less (but not including 0 ppm) are added. Distribute over the longitudinal direction.

Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子の含有量が5000ppmを超えたり、Ce又はMgと、Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子の長手方向の分布が偏って長さLに亘る発光量の変動が±10%の範囲未満又は範囲を超えると、280mm以上と云う長大な長さLに亘って均一な発光量が得られなくなる。従って、20放射長の特性も実現不可能となる。 The content of at least one atom of Mo, W, Ir, Re, Ru, Pt, Rh exceeds 5000 ppm, or Ce or Mg and at least one of Mo, W, Ir, Re, Ru, Pt, Rh. If the distribution of the atoms in the longitudinal direction is biased and the fluctuation of the amount of light emitted over the length L is less than or exceeds the range of ± 10%, a uniform amount of light emitted over the long length L of 280 mm or more is obtained. I can't. Therefore, the characteristic of 20 radiation length is also unrealizable.

更に発光体2は、As-grown単結晶である事が好ましい。As-grown単結晶とは、結晶成長された状態のままで研削または研磨などの表面加工が施こされていない単結晶を指す。発光体2をAs-grown単結晶で形成する事により、長手方向に280mm以上の寸法を有するように結晶成長させた発光体2に、研削または研磨などの表面加工を施す必要が無いので、発光体2の表面加工の工程削減が達成出来る。更に、発光体2に於ける研削代又は研磨代が不要となるので、原料に対する結晶化率の向上と、量産性への適応、及び発光体2の歩留まり向上が可能となる。また発光体2は、所望の主面2aを有する Further, the illuminant 2 is preferably an As-grown single crystal. As-grown single crystal refers to a single crystal that has not been subjected to surface treatment such as grinding or polishing while it is in a crystal-grown state. By forming the illuminant 2 with an As-grown single crystal, it is not necessary to perform surface treatment such as grinding or polishing on the illuminant 2 whose crystal has been grown so as to have a dimension of 280 mm or more in the longitudinal direction. The reduction of the surface processing process of the body 2 can be achieved. Further, since the grinding allowance or the polishing allowance in the light emitting body 2 is not required, it is possible to improve the crystallization rate with respect to the raw material, adapt to mass productivity, and improve the yield of the light emitting body 2. Further, the illuminant 2 has a desired main surface 2a.

発光体2が使用される放射線検査装置としては、資源探査用検出器、高エネルギー物理用検出器、環境放射能検出器、ガンマカメラや医用画像処理装置等が挙げられる。医用画像処理装置の例としては、陽電子放射断層撮影(PET)装置、X線CT、SPECT、PEM装置などの用途が好適である。PETの態様としては、二次元型、三次元型、タイム・オブ・フライト(TOF)型、深さ検出(DOI)型が好ましい。更に、これらを組み合わせて使用しても構わない。また、発光体2は大型ハドロン衝突型加速器や熱量計にも使用可能である。 Examples of the radiation inspection device in which the illuminant 2 is used include a detector for resource exploration, a detector for high energy physics, an environmental radioactivity detector, a gamma camera, a medical image processing device, and the like. As an example of a medical image processing device, applications such as a positron emission tomography (PET) device, an X-ray CT, SPECT, and a PEM device are suitable. Two-dimensional type, three-dimensional type, time-of-flight (TOF) type, and depth detection (DOI) type are preferable as PET embodiments. Further, these may be used in combination. The light emitter 2 can also be used for a large Hadron collider and a calorimeter.

次に、本発明の実施形態に係る発光体2の製造装置について、図2から図8を参照しながら説明する。なお、前記発光体2の説明と重複する箇所や内容に関しては、説明を簡略化又は省略する。 Next, the apparatus for manufacturing the light emitting body 2 according to the embodiment of the present invention will be described with reference to FIGS. 2 to 8. The description of the parts and contents that overlap with the description of the light emitting body 2 will be simplified or omitted.

図2に示すように、発光体の製造装置1は、発光体2を育成する育成容器3と、育成した発光体2を引き上げる引き上げ容器4とから構成され、EFG法により発光体2を育成成長する。 As shown in FIG. 2, the illuminant manufacturing apparatus 1 is composed of a growth container 3 for growing the illuminant 2 and a pull-up container 4 for pulling up the illuminant 2 that has been cultivated, and grows and grows the illuminant 2 by the EFG method. do.

育成容器3は、坩堝5、坩堝駆動部6、ヒータ7、電極8、ダイ9、及び断熱材10を備える。坩堝5はMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種以上で形成する。これら材料の中でもMoがCr等の不純物をICP分析レベル以下まで低減出来る為、好ましい。この坩堝5の中で原料を溶融する。坩堝駆動部6は、坩堝5をその鉛直方向を軸として回転させる。ヒータ7は坩堝5を加熱する。また、電極8はヒータ7を通電する。ダイ9は坩堝5内に設置され、発光体2を引き上げる際の融液21の液面形状を決定する。また断熱材10は、坩堝5とヒータ7とダイ9を取り囲んでいる。ヒータ7及び断熱材10は、共にカーボン製とする。 The growing container 3 includes a crucible 5, a crucible drive unit 6, a heater 7, an electrode 8, a die 9, and a heat insulating material 10. The crucible 5 is formed by at least one of Mo, W, Ir, Re, Ru, Pt, and Rh. Among these materials, Mo is preferable because it can reduce impurities such as Cr to the ICP analysis level or lower. The raw material is melted in this crucible 5. The crucible drive unit 6 rotates the crucible 5 about its vertical direction. The heater 7 heats the crucible 5. Further, the electrode 8 energizes the heater 7. The die 9 is installed in the crucible 5 and determines the liquid level shape of the melt 21 when the light emitting body 2 is pulled up. Further, the heat insulating material 10 surrounds the crucible 5, the heater 7, and the die 9. Both the heater 7 and the heat insulating material 10 are made of carbon.

更に育成容器3は、雰囲気ガス導入口11と排気口12を備える。雰囲気ガス導入口11は、雰囲気ガスとしてアルゴンガスを育成容器3内に導入するための導入口であり、坩堝5やヒータ7、及びダイ9の酸化消耗を防止する。一方、排気口12は育成容器3内を排気するために備えられる。 Further, the growing container 3 includes an atmospheric gas introduction port 11 and an exhaust port 12. The atmosphere gas introduction port 11 is an introduction port for introducing argon gas as an atmosphere gas into the growing container 3, and prevents the crucible 5, the heater 7, and the die 9 from being consumed by oxidation. On the other hand, the exhaust port 12 is provided for exhausting the inside of the growing container 3.

引き上げ容器4は、シャフト13、シャフト駆動部14、ゲートバルブ15、及び基板出入口16を備え、種結晶17から育成成長した複数の平板形状の発光体2を引き上げる。シャフト13は種結晶17を保持する。またシャフト駆動部14は、シャフト13を坩堝5に向けて昇降させると共に、その昇降方向を軸としてシャフト13を回転させる。ゲートバルブ15は育成容器3と引き上げ容器4とを仕切る。また基板出入口16は、種結晶17を出し入れする。 The pull-up container 4 includes a shaft 13, a shaft drive unit 14, a gate valve 15, and a substrate entrance / exit 16, and pulls up a plurality of flat plate-shaped light emitters 2 grown and grown from the seed crystal 17. The shaft 13 holds the seed crystal 17. Further, the shaft drive unit 14 raises and lowers the shaft 13 toward the crucible 5, and rotates the shaft 13 about the raising and lowering direction. The gate valve 15 separates the growing container 3 and the pulling container 4. Further, the substrate inlet / outlet 16 takes in and out the seed crystal 17.

なお製造装置1は図示されない制御部も有しており、この制御部により坩堝駆動部6及びシャフト駆動部14の回転を制御する。 The manufacturing apparatus 1 also has a control unit (not shown), which controls the rotation of the crucible drive unit 6 and the shaft drive unit 14.

ダイ9はMo製であり、図3に示すように多数の仕切り板18を有する。図3ではダイの一例として、仕切り板18が30枚であり、ダイ9が15個形成されている場合を示している。仕切り板18は同一の平板形状を有し、微小間隙(スリット)19を形成するように互いに平行に配置されて、1つのダイ9を形成している。スリット19は、ダイ9のほぼ全幅に亘って設けられる。また複数のダイ9は同一形状を有すると共に、その幅方向が互いに平行となるように所定の間隔で並列に配置されているため、複数のスリット19が設けられることとなる。各仕切り板18の上部は斜面30が形成されており、互いの斜面30が外側に向くように配置されることで開口部20が形成されている。またスリット19は融液21を毛細管現象によって、各ダイ9の下端から開口部20に上昇させる役割を有している。 The die 9 is made of Mo and has a large number of dividers 18 as shown in FIG. FIG. 3 shows a case where 30 partition plates 18 are formed and 15 dies 9 are formed as an example of dies. The partition plates 18 have the same flat plate shape and are arranged in parallel with each other so as to form a minute gap (slit) 19 to form one die 9. The slit 19 is provided over almost the entire width of the die 9. Further, since the plurality of dies 9 have the same shape and are arranged in parallel at predetermined intervals so that their width directions are parallel to each other, a plurality of slits 19 are provided. A slope 30 is formed on the upper portion of each partition plate 18, and an opening 20 is formed by arranging the slopes 30 so as to face outward. Further, the slit 19 has a role of raising the melt 21 from the lower end of each die 9 to the opening 20 by the capillary phenomenon.

ダイ9の幅WDは、前記発光体2の幅Wに合わせて設定される。本実施形態ではW値よりWD=10mmと設定する。スリットの幅TSは、発光体2の厚さT以下に設定する The width WD of the die 9 is set according to the width W of the light emitter 2. In this embodiment, WD = 10 mm is set from the W value. The width TS of the slit is set to be equal to or less than the thickness T of the light emitter 2.

坩堝5内に投入される原料は、坩堝5の温度上昇に基づいて溶融(原料メルト)し、融液21となる。原料は、発光体2の組成式で表される原子を含む化合物である。出発原料として、酸化物原料が使用可能であるが、発光体2をシンチレータ用単結晶として使用する場合、99.99%以上(4N以上)の高純度原料を用いることが特に好ましい。製造の際には、これらの出発原料を、融液21形成時に目的組成となるように秤量、混合したものを用いる。これらの原料は、目的とする組成以外の不純物が極力少ない(例えば1ppm以下)ものが特に好ましい。 The raw material charged into the crucible 5 melts (raw material melt) based on the temperature rise of the crucible 5 to become the melt 21. The raw material is a compound containing an atom represented by the composition formula of the light emitter 2. An oxide raw material can be used as a starting material, but when the illuminant 2 is used as a single crystal for a scintillator, it is particularly preferable to use a high-purity raw material of 99.99% or more (4N or more). At the time of production, these starting materials are weighed and mixed so as to have the desired composition at the time of forming the melt 21. It is particularly preferable that these raw materials have as few impurities as possible (for example, 1 ppm or less) other than the target composition.

この融液21の一部は、ダイ9のスリット19に侵入し、前記のように毛細管現象に基づいてスリット19内を上昇し開口部20から露出して、開口部20で融液溜まり22(図6(b)参照)が形成される。EFG法では、融液溜まり22で形成される融液面の形状に従って、発光体2が成長する。図3に示したダイ9では、融液面の形状は細長い長方形となるので、平板形状の発光体2が製造される。 A part of the melt 21 invades the slit 19 of the die 9, rises in the slit 19 based on the capillary phenomenon as described above, is exposed from the opening 20, and the melt pool 22 (in the opening 20). (See FIG. 6 (b)) is formed. In the EFG method, the illuminant 2 grows according to the shape of the melt surface formed by the melt pool 22. In the die 9 shown in FIG. 3, since the shape of the melt surface is an elongated rectangle, a flat plate-shaped light emitter 2 is manufactured.

次に、種結晶17について説明する。図2、図4~図6に示すように本実施形態では、種結晶17としては、発光体2の組成と同等ないしは近いものを使用することが好ましい。具体的には、組成式が(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)で表されるガーネット構造を有し、Ce又はMgの少なくとも1種を含む単結晶を種結晶17とする。 Next, the seed crystal 17 will be described. As shown in FIGS. 2 and 4 to 6, in the present embodiment, it is preferable to use a seed crystal 17 having the same or similar composition as that of the light emitter 2. Specifically, the composition formula was (Ce, Mg) x R 3-x M 5 O 12 (however, 0.0001 ≤ x ≤ 0.3, R was selected from La, Pr, Gd, Tb, Yb, Y, Lu. A single crystal having a garnet structure represented by one or more kinds, M is one or more kinds selected from Al, Lu, Ga, Sc) and containing at least one kind of Ce or Mg is referred to as a seed crystal 17. ..

種結晶17としては、平板形状の基板を用いる。更に、種結晶17の平面方向とダイ9の幅方向は、互いに90°の角度で以て直交となるように、種結晶17が配置される。また、種結晶17と発光体2も90°の角度で以て直交するので、図2では発光体2の側面を示している。種結晶17の平面方向と仕切り板18の幅方向との位置関係を垂直にする(種結晶17を仕切り板18と交叉させる)ことにより、融液21と種結晶17との接触面積を最小にすることが可能となる。従って、種結晶17の接触部分が融液21と馴染み易くなり、発光体2での結晶欠陥の発生が低減又は解消される。 As the seed crystal 17, a flat plate-shaped substrate is used. Further, the seed crystal 17 is arranged so that the plane direction of the seed crystal 17 and the width direction of the die 9 are orthogonal to each other at an angle of 90 °. Further, since the seed crystal 17 and the illuminant 2 are also orthogonal to each other at an angle of 90 °, the side surface of the illuminant 2 is shown in FIG. By making the positional relationship between the plane direction of the seed crystal 17 and the width direction of the partition plate 18 vertical (crossing the seed crystal 17 with the partition plate 18), the contact area between the melt 21 and the seed crystal 17 is minimized. It becomes possible to do. Therefore, the contact portion of the seed crystal 17 becomes easily compatible with the melt 21, and the occurrence of crystal defects in the light emitter 2 is reduced or eliminated.

また種結晶17は、基板保持具に確実に固定出来る基板形状とする。 The seed crystal 17 has a substrate shape that can be securely fixed to the substrate holder.

次に、前記製造装置1を使用した発光体2の製造方法を説明する。最初に発光体2の原料粉末(純度99.99%)をダイ9が収納された坩堝5に所定量投入して充填する。 Next, a method of manufacturing the light emitting body 2 using the manufacturing apparatus 1 will be described. First, a predetermined amount of the raw material powder (purity 99.99%) of the illuminant 2 is charged into the crucible 5 containing the die 9 and filled.

続いて、坩堝5やヒータ7若しくはダイ9を酸化消耗させないために、育成容器3内をアルゴンガスで置換し、酸素濃度を所定値以下とする。 Subsequently, in order not to oxidatively consume the crucible 5, the heater 7, or the die 9, the inside of the growing container 3 is replaced with argon gas, and the oxygen concentration is set to a predetermined value or less.

次に、ヒータ7で加熱して坩堝5を所定の温度とし、原料粉末を溶融する。発光体2の原料の融点は2000℃以上(2150℃程度)なので、坩堝5の加熱温度はその融点以上の温度に設定する。加熱後しばらくすると原料粉末が溶融して、融液21が用意される。更に融液21の一部はダイ9のスリット19を毛細管現象により上昇してダイ9の表面に達し、スリット19上部に融液溜まり22が形成される。 Next, the crucible 5 is heated to a predetermined temperature by heating with the heater 7, and the raw material powder is melted. Since the melting point of the raw material of the illuminant 2 is 2000 ° C. or higher (about 2150 ° C.), the heating temperature of the crucible 5 is set to a temperature equal to or higher than the melting point. After a while after heating, the raw material powder melts and the melt 21 is prepared. Further, a part of the melt 21 rises through the slit 19 of the die 9 due to the capillary phenomenon and reaches the surface of the die 9, and a melt pool 22 is formed on the upper portion of the slit 19.

次に図5及び図6に示すように、スリット19上部の融液溜まり22の幅方向に対して垂直な角度に種結晶17を保持しつつ降下させ、種結晶17を融液溜まり22の融液面に接触させる。なお、種結晶17は、予め基板出入口16から引き上げ容器4内に導入しておく。図5ではスリット19や開口部20の見易さを優先するため、融液21と融液溜まり22の図示を省略している。 Next, as shown in FIGS. 5 and 6, the seed crystal 17 is lowered while being held at an angle perpendicular to the width direction of the melt pool 22 above the slit 19, and the seed crystal 17 is melted in the melt pool 22. Contact the liquid surface. The seed crystal 17 is introduced into the pulling container 4 from the substrate entrance / exit 16 in advance. In FIG. 5, the melt 21 and the melt pool 22 are not shown in order to give priority to the visibility of the slit 19 and the opening 20.

図5は、種結晶17と仕切り板18との位置関係を示した図である。前記の通り、種結晶17の平面方向を仕切り板18の幅方向と直交させることにより、種結晶17と融液21との接触面積を小さくすることが可能となる。従って、種結晶17の接触部分が融液21となじみ、育成成長される発光体2に結晶欠陥が生じにくくなる。よって、発光体2の歩留まりを向上させることが出来る。 FIG. 5 is a diagram showing the positional relationship between the seed crystal 17 and the partition plate 18. As described above, by making the plane direction of the seed crystal 17 orthogonal to the width direction of the partition plate 18, it is possible to reduce the contact area between the seed crystal 17 and the melt 21. Therefore, the contact portion of the seed crystal 17 becomes familiar with the melt 21, and crystal defects are less likely to occur in the luminescent material 2 that is grown and grown. Therefore, the yield of the light emitting body 2 can be improved.

種結晶17を融液面に接触させる際に、種結晶17の下部を仕切り板18の上部に接触させて溶融しても良い。図6(b)は、種結晶17の一部を溶融する様子を示した図である。このように種結晶17の一部を溶融することで、種結晶17と融液21との温度差を速やかに解消ことができ、発光体2での結晶欠陥の発生を更に低減することが可能となる。 When the seed crystal 17 is brought into contact with the melt surface, the lower part of the seed crystal 17 may be brought into contact with the upper part of the partition plate 18 to be melted. FIG. 6B is a diagram showing how a part of the seed crystal 17 is melted. By melting a part of the seed crystal 17 in this way, the temperature difference between the seed crystal 17 and the melt 21 can be quickly eliminated, and the occurrence of crystal defects in the illuminant 2 can be further reduced. It becomes.

続いてシャフト13により基板保持具を所定の上昇速度で引き上げて、種結晶17の引き上げを開始し、図7に示すように発光体2を形成する。図7は発光体2が成長する様子を示した説明図である。以上によりダイ9の幅WD(即ち、発光体2の幅W)で以て発光体2を成長させ、発光体2を所定の速度で所定の長さ(長さL)まで引き上げて、平板形状の発光体2を得る。 Subsequently, the substrate holder is pulled up by the shaft 13 at a predetermined ascending speed to start pulling up the seed crystal 17, and the illuminant 2 is formed as shown in FIG. FIG. 7 is an explanatory diagram showing how the light emitting body 2 grows. As described above, the light emitting body 2 is grown by the width WD of the die 9 (that is, the width W of the light emitting body 2), and the light emitting body 2 is pulled up to a predetermined length (length L) at a predetermined speed to form a flat plate shape. 2 is obtained.

この後、得られた発光体2を冷却し、ゲートバルブ15を空け、引き上げ容器4側に移動して、基板出入口16から取り出す。得られた平板形状の発光体2の外観を図8に示す。 After that, the obtained illuminant 2 is cooled, the gate valve 15 is opened, the gate valve 15 is moved to the pulling container 4, and the light emitter 2 is taken out from the substrate entrance / exit 16. The appearance of the obtained flat plate-shaped light emitter 2 is shown in FIG.

なお、発光体2は、図2、図5~図8に示すように共通の種結晶17から同時に複数結晶成長させることが、一枚当たりの発光体2の製造コストを下げることが可能となり好ましい。同時に複数の発光体2を製造する際は、複数のダイ9を坩堝5に収容すると共に、各ダイ9の各々の幅方向を平行に配置する。種結晶17を引き上げることで、所望の主面2aと長手方向の寸法Lを有し、複数の発光体2をAs-grown単結晶として作製することが可能となる。 As shown in FIGS. 2 and 5 to 8, it is preferable to grow a plurality of light emitters 2 from the common seed crystal 17 at the same time because the manufacturing cost of the light emitter 2 per sheet can be reduced. .. When manufacturing a plurality of light emitters 2 at the same time, the plurality of dies 9 are housed in the crucible 5, and the width directions of the dies 9 are arranged in parallel. By pulling up the seed crystal 17, it is possible to prepare a plurality of illuminants 2 as an As-grown single crystal having a desired main surface 2a and a dimension L in the longitudinal direction.

種結晶17、及び仕切り板18を含めたダイ9は、精密に位置決めする必要がある。よって図2に示したように製造装置1は、ダイ9を設置する坩堝5を回転する坩堝駆動部6、及びその回転を制御する制御部(図示せず)が設けられている。またシャフト13に関しても、シャフト13を回転するシャフト駆動部14、及びその回転を制御する制御部(図示せず)が設けられている。即ち、ダイ9に対する種結晶17の位置決めは、制御部によりシャフト13又は坩堝5を回転させて調整する。 The die 9 including the seed crystal 17 and the partition plate 18 needs to be precisely positioned. Therefore, as shown in FIG. 2, the manufacturing apparatus 1 is provided with a crucible drive unit 6 for rotating the crucible 5 on which the die 9 is installed, and a control unit (not shown) for controlling the rotation thereof. Further, the shaft 13 is also provided with a shaft drive unit 14 that rotates the shaft 13 and a control unit (not shown) that controls the rotation thereof. That is, the positioning of the seed crystal 17 with respect to the die 9 is adjusted by rotating the shaft 13 or the crucible 5 by the control unit.

なお、種結晶17の結晶面28を任意に設定することで、発光体2の主面2aの面方向も任意に変更することが可能となる。 By arbitrarily setting the crystal plane 28 of the seed crystal 17, the plane direction of the main surface 2a of the light emitter 2 can also be arbitrarily changed.

発光体2の引き上げ速度は、種結晶17の引き上げ開始による結晶成長開示時から、所望の長さLで以て結晶成長が終了するまでの間、一定に設定することが幅W/厚さTの変動比が抑えられるので好ましい。 The pulling speed of the illuminant 2 can be set to a constant width W / thickness T from the time when the crystal growth is disclosed by the start of pulling the seed crystal 17 to the end of the crystal growth with the desired length L. It is preferable because the fluctuation ratio of is suppressed.

本発明では、坩堝5の形成材料をMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種とする事で、EFG法による発光体2の引き上げ成長を行いながら、坩堝5から融液21を介してそのまま発光体2にMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子を含有させる事が出来る。但し、含有量は前記の通り5000ppm以下(但し0ppmは含まない)とする必要がある。 In the present invention, by using at least one of Mo, W, Ir, Re, Ru, Pt, and Rh as the forming material of the crucible 5, the melt is melted from the crucible 5 while the illuminant 2 is pulled up and grown by the EFG method. The illuminant 2 can contain at least one atom of Mo, W, Ir, Re, Ru, Pt, and Rh as it is via 21. However, the content should be 5000 ppm or less (however, 0 ppm is not included) as described above.

そこで本発明では、雰囲気ガスにアルゴンガスを用いると共に、ヒータ7と断熱材10を共にカーボン製とした。このような構成により、育成容器3内の雰囲気が還元性となり、雰囲気と坩堝5形成材料との反応が抑えられ、発光体2への坩堝5形成材料の含有量も抑制可能となる事を、本出願人は検証の末、見出した。本発明ではEFG法を採用しているので、融液21は毛細管現象によりスリット19を介して各ダイ9の下端から開口部20まで上昇される。本発明では更に雰囲気と坩堝5形成材料との反応を抑えた状態で、スリット19を介して薄く融液21を上昇して供給しているので、融液溜まり22を常に均一な組成と濃度で形成する事が可能となる。よって、融液溜まり22からの引き上げ成長により、5000ppm以下と云う含有量と、長さLに亘る均一な発光量の形成が実現可能となった。更にCe又はMgに関しても、融液溜まり22の均一な組成と濃度形成により、前記長手方向での均一な発光量の形成が図れる。 Therefore, in the present invention, argon gas is used as the atmosphere gas, and the heater 7 and the heat insulating material 10 are both made of carbon. With such a configuration, the atmosphere in the growing container 3 becomes reducible, the reaction between the atmosphere and the crucible 5 forming material can be suppressed, and the content of the crucible 5 forming material in the light emitting body 2 can also be suppressed. The applicant has found it after verification. Since the EFG method is adopted in the present invention, the melt 21 is raised from the lower end of each die 9 to the opening 20 through the slit 19 by the capillary phenomenon. In the present invention, the melt 21 is thinly raised and supplied through the slit 19 in a state where the reaction between the atmosphere and the crucible 5 forming material is further suppressed, so that the melt pool 22 is always provided with a uniform composition and concentration. It becomes possible to form. Therefore, it has become possible to form a content of 5000 ppm or less and a uniform luminescence amount over the length L by pulling up the growth from the melt pool 22. Further, with respect to Ce or Mg, the uniform composition and concentration formation of the melt pool 22 enables the formation of a uniform light emission amount in the longitudinal direction.

その検証過程に於いて雰囲気ガスを窒素雰囲気としたEFG法により検証も行った。しかしこの場合は例えばMoと窒素が反応してしまい、その反応により発光体2への坩堝5形成材料の含有が促進された。その結果、発光体2へのMo含有量が5000ppmを超えてしまい、20放射長の特性が実現出来なかった。 In the verification process, verification was also performed by the EFG method in which the atmosphere gas was a nitrogen atmosphere. However, in this case, for example, Mo and nitrogen react with each other, and the reaction promotes the inclusion of the crucible 5 forming material in the illuminant 2. As a result, the Mo content in the light emitter 2 exceeded 5000 ppm, and the characteristic of 20 radiation length could not be realized.

更に、発光体2の組成式を(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)とし、EFG法で成長させる事でCe又はMgの少なくとも1種を発光体2の長手方向に分布させると共に、発光体2の製造時に使用する坩堝5の形成材料をMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種とし、それら形成材料の原子を5000ppm以下(但し0ppmは含まない)で発光体2に含有させる。このような組成や原子含有量の設定により、均一な発光量で発光して20放射長の特性が実現可能な発光体2を、EFG法により製造する事が出来る。 Furthermore, the composition formula of the illuminant 2 is selected from (Ce, Mg) x R 3-x M 5 O 12 (where 0.0001 ≤ x ≤ 0.3, R is La, Pr, Gd, Tb, Yb, Y, Lu. At least one species, M is one or more species selected from Al, Lu, Ga, Sc), and at least one species of Ce or Mg is distributed in the longitudinal direction of the illuminant 2 by growing by the EFG method. At least one of Mo, W, Ir, Re, Ru, Pt, and Rh is used as the forming material of the sword 5 used in the production of the illuminant 2, and the atom of the forming material is 5000 ppm or less (however, 0 ppm is not included). It is contained in the light emitting body 2. By setting the composition and the atomic content in this way, it is possible to produce a light emitter 2 capable of emitting light with a uniform amount of light emission and realizing a characteristic of 20 radiation lengths by the EFG method.

更に、前記組成や原子含有量の設定により、発光体2は発光量60000フォトン/MeV未満の特性も実現する事が可能となる。 Further, by setting the composition and the atomic content, the light emitting body 2 can realize the characteristics of the light emitting amount of less than 60,000 photons / MeV.

なお本発明は、前述の実施形態に限定するものでは無く、その技術的思想の範囲から逸脱しない範囲の構成による変更が可能である。 The present invention is not limited to the above-described embodiment, and can be modified by a configuration within a range that does not deviate from the scope of the technical idea.

以下に本発明に係る各実施例を説明するが、本発明は以下の実施例にのみ限定されるものではない。 Each embodiment of the present invention will be described below, but the present invention is not limited to the following examples.

以下、本発明に係る実施例1及び実施例2の発光体とその製造方法を説明する。本実施例に係る発光体の製造装置として、図2に示すEFG法による製造装置1を用いた。坩堝5の形成材料はMo製とし、雰囲気ガスにアルゴンガスを用いると共に、ヒータ7と断熱材10を共にカーボン製とした。 Hereinafter, the light emitters of Examples 1 and 2 and the method for producing the same according to the present invention will be described. As the luminescent material manufacturing apparatus according to this embodiment, the manufacturing apparatus 1 by the EFG method shown in FIG. 2 was used. The material for forming the crucible 5 was made of Mo, argon gas was used as the atmosphere gas, and both the heater 7 and the heat insulating material 10 were made of carbon.

引き上げ成長させる発光体は単結晶でその組成式は、実施例1と実施例2で共にCe0.05Lu2.95Al5O12とし、EFG法で引き上げ成長させる事でCeを発光体の長手方向(長さL方向)に亘って分布させた。 The illuminant to be pulled up and grown is a single crystal, and its composition formula is Ce 0.05 Lu 2.95 Al 5 O 12 in both Example 1 and Example 2, and Ce is grown in the longitudinal direction (length) of the illuminant by pulling up and growing by the EFG method. It was distributed over the L direction).

発光体は、図1に示すように長手方向の寸法を有し、平面方向の形状を長方形とした。幅Wは実施例1が10mmに設定すると共に、実施例2は8mmとした。厚さTは実施例1が2mmに設定すると共に、実施例2は8mmとした。更に長さLは、2つの実施例で共に280mmに設定した。 As shown in FIG. 1, the illuminant has dimensions in the longitudinal direction, and the shape in the plane direction is rectangular. The width W was set to 10 mm in Example 1 and 8 mm in Example 2. The thickness T was set to 2 mm in Example 1 and 8 mm in Example 2. Further, the length L was set to 280 mm in both of the two examples.

引き上げた成長させた後の発光体には、何れも研削または研磨などの表面加工は施さず、As-grown単結晶とし、Mo含有量を測定した。Mo含有量の測定は、ICP-AESにより行った。その結果、実施例1は221ppm、実施例2は13ppmであった。 The light-emitting body after being pulled up and grown was not subjected to surface treatment such as grinding or polishing, and was made into an As-grown single crystal, and the Mo content was measured. The Mo content was measured by ICP-AES. As a result, Example 1 was 221 ppm and Example 2 was 13 ppm.

一方比較例1及び比較例2として、図2に示すEFG法による製造装置1を用いて、発光体を作製した。2つの比較例が前記各実施例と異なる点は、雰囲気ガスを窒素雰囲気とした点のみであり、その他では比較例1は実施例1と同一とし、比較例2は実施例2と同一とした。引き上げた成長させた発光体のMo含有量を測定した結果、比較例1は5005ppm、比較例2は5011ppmであった。 On the other hand, as Comparative Example 1 and Comparative Example 2, a light emitting body was produced by using the manufacturing apparatus 1 by the EFG method shown in FIG. The only difference between the two comparative examples from the above-mentioned Examples is that the atmosphere gas is a nitrogen atmosphere. In other cases, Comparative Example 1 is the same as Example 1 and Comparative Example 2 is the same as Example 2. .. As a result of measuring the Mo content of the raised and grown illuminant, it was 5005 ppm in Comparative Example 1 and 5011 ppm in Comparative Example 2.

各実施例1、2及び各比較例1、2の発光体に、共に254nm~365nmの紫外線領域の光を照射して、20放射長の特性の実現有無を確認した。その結果、実施例1及び2では20放射長が達成されている事が確認された。一方、比較例1及び2では20放射長が達成されていない事が確認された。 The light emitters of Examples 1 and 2 and Comparative Examples 1 and 2 were both irradiated with light in the ultraviolet region of 254 nm to 365 nm, and it was confirmed whether or not the characteristics of 20 radiation lengths were realized. As a result, it was confirmed that 20 radiation lengths were achieved in Examples 1 and 2. On the other hand, it was confirmed that 20 radiation lengths were not achieved in Comparative Examples 1 and 2.

次に、本発明に係る実施例3の発光体とその製造方法を説明する。実施例3に係る発光体の製造装置として、図2に示すEFG法による製造装置1を用いた。坩堝5の形成材料はMo製とし、雰囲気ガスにアルゴンガスを用いると共に、ヒータ7と断熱材10を共にカーボン製とした。 Next, the light emitting body of Example 3 according to the present invention and a method for producing the same will be described. As the illuminant manufacturing apparatus according to the third embodiment, the manufacturing apparatus 1 by the EFG method shown in FIG. 2 was used. The material for forming the crucible 5 was made of Mo, argon gas was used as the atmosphere gas, and both the heater 7 and the heat insulating material 10 were made of carbon.

引き上げ成長させる発光体は単結晶でその組成式は、Mg0.0006Ce0.0294Lu2.97Al5O12とし、EFG法で引き上げ成長させる事でMgとCeを発光体の長手方向(長さL方向)に亘って分布させた。 The illuminant to be pulled up and grown is a single crystal, and its composition formula is Mg 0.0006 Ce 0.0294 Lu 2.97 Al 5 O 12 , and by pulling up and growing by the EFG method, Mg and Ce are grown in the longitudinal direction (length L direction) of the illuminant. It was distributed over.

発光体は、図1に示すように長手方向の寸法を有し、平面方向の形状を長方形とした。幅Wは10mm、厚さTは2mm、長さLは300mmに設定した。 As shown in FIG. 1, the illuminant has dimensions in the longitudinal direction, and the shape in the plane direction is rectangular. The width W was set to 10 mm, the thickness T was set to 2 mm, and the length L was set to 300 mm.

引き上げた成長させた後の発光体には、研削または研磨などの表面加工は施さず、As-grown単結晶とした。 The illuminant after being pulled up and grown was not subjected to surface treatment such as grinding or polishing, and was made into an As-grown single crystal.

一方比較例3として、CZ(Czochralski)法により単結晶から成る発光体を作製した。比較例3が実施例3と異なる点は、発光体の作製方法がEFG法かCZ法かという点であり、発光体の組成式や幅W,厚さT,長さLは同一とした。 On the other hand, as Comparative Example 3, a luminescent material made of a single crystal was produced by the CZ (Czochralski) method. The difference between Comparative Example 3 and Example 3 is whether the method for producing the illuminant is the EFG method or the CZ method, and the composition formula, width W, thickness T, and length L of the illuminant are the same.

実施例3及び比較例3の発光体に、共に254nm~365nmの紫外線領域の光を照射して、長さLに亘る発光量(フォトン/MeV)の変動を確認した。同時に、長さLに亘るCe濃度(mol%)及びMg濃度(mol%)の変動もICP-AESにより確認した。 The light emitters of Example 3 and Comparative Example 3 were both irradiated with light in the ultraviolet region of 254 nm to 365 nm, and fluctuations in the amount of light emitted (photons / MeV) over the length L were confirmed. At the same time, fluctuations in Ce concentration (mol%) and Mg concentration (mol%) over length L were also confirmed by ICP-AES.

その結果、どちらの発光体も長さL=300mmに亘って、発光量60000フォトン/MeV未満の特性を有する事が確認された。しかしながら、比較例3では、発光体端部からL=10mm部分での発光量30000フォトン/MeV、L=100mm部分での発光量27000フォトン/MeV、L=200mm部分での発光量15000フォトン/MeV、L=300mm部分での発光量9000フォトン/MeVであった。以上の結果から、比較例3では発光体の長手方向の全長に亘る発光量の変動が±10%の範囲内に収まらず、長手方向に亘って均一な発光量が実現できていない事が確認された。 As a result, it was confirmed that both light emitters had a characteristic of a light emission amount of less than 60,000 photons / MeV over a length L = 300 mm. However, in Comparative Example 3, the amount of light emitted from the end of the illuminant at L = 10 mm is 30,000 photons / MeV, the amount of light emitted at L = 100 mm is 27,000 photons / MeV, and the amount of light emitted at L = 200 mm is 15,000 photons / MeV. The amount of light emitted at L = 300 mm was 9000 photons / MeV. From the above results, it was confirmed that in Comparative Example 3, the variation in the amount of light emitted over the entire length of the illuminant in the longitudinal direction was not within the range of ± 10%, and a uniform amount of light emitted in the longitudinal direction could not be realized. Was done.

一方、実施例3では発光体端部からL=10mm部分での発光量30500フォトン/MeV、L=100mm部分での発光量30200フォトン/MeV、L=200mm部分での発光量29500フォトン/MeV、L=300mm部分での発光量30400フォトン/MeVであった。以上の結果から、実施例3では発光体の長手方向の全長に亘る発光量の変動が±10%の範囲内に収まっており、長手方向に亘って均一な発光量が実現できている事が確認された。 On the other hand, in Example 3, the amount of light emitted from the end of the illuminant at L = 10 mm is 30500 photons / MeV, the amount of light emitted at L = 100 mm is 30200 photons / MeV, and the amount of light emitted at L = 200 mm is 29500 photons / MeV. The amount of light emitted at L = 300 mm was 30400 photons / MeV. From the above results, in Example 3, the variation in the amount of light emitted over the entire length of the light emitter in the longitudinal direction is within the range of ± 10%, and a uniform amount of light emitted can be realized in the longitudinal direction. confirmed.

また、実施例3に於けるCe濃度及びMg濃度の変動は、発光体端部からL=10mm部分でCe濃度0.99mol%,Mg濃度0.022mol%、L=100mm部分でCe濃度1.00mol%,Mg濃度0.022mol%、L=200mm部分でCe濃度1.01mol%,Mg濃度0.022mol%、L=300mm部分でCe濃度1.01mol%,Mg濃度0.022mol%であった。 The fluctuations in the Ce concentration and the Mg concentration in Example 3 were as follows: Ce concentration 0.99 mol% at L = 10 mm portion, Mg concentration 0.022 mol%, Ce concentration 1.00 mol% at L = 100 mm portion, and so on. The Mg concentration was 0.022 mol%, the Ce concentration was 1.01 mol% and the Mg concentration was 0.022 mol% at the L = 200 mm portion, and the Ce concentration was 1.01 mol% and the Mg concentration was 0.022 mol% at the L = 300 mm portion.

一方、比較例3に於けるCe濃度及びMg濃度の変動は、発光体端部からL=10mm部分でCe濃度0.12mol%,Mg濃度0.002mol%、L=100mm部分でCe濃度0.24mol%,Mg濃度0.005mol%、L=200mm部分でCe濃度0.68mol%,Mg濃度0.009mol%、L=300mm部分でCe濃度2.20mol%,Mg濃度0.029mol%であった。 On the other hand, the fluctuations in the Ce concentration and the Mg concentration in Comparative Example 3 were such that the Ce concentration was 0.12 mol% at the portion L = 10 mm from the end of the illuminant, the Mg concentration was 0.002 mol%, and the Ce concentration was 0.24 mol% at the portion L = 100 mm. The Mg concentration was 0.005 mol%, the Ce concentration was 0.68 mol% and the Mg concentration was 0.009 mol% at the L = 200 mm portion, and the Ce concentration was 2.20 mol% and the Mg concentration was 0.029 mol% at the L = 300 mm portion.

以上の結果から、長手方向に亘るCe濃度の変動値及びMg濃度の変動値は、共に比較例3の方が実施例3よりも大きい事が確認された。 From the above results, it was confirmed that the fluctuation value of the Ce concentration and the fluctuation value of the Mg concentration in the longitudinal direction were both larger in Comparative Example 3 than in Example 3.

1 発光体の製造装置
2 発光体
2a 主面
3 育成容器
4 引き上げ容器
5 坩堝
6 坩堝駆動部
7 ヒータ
8 電極
9 ダイ
10 断熱材
11 雰囲気ガス導入口
12 排気口
13 シャフト
14 シャフト駆動部
15 ゲートバルブ
16 基板出入口
17 種結晶
18 仕切り板
19 スリット
20 開口部
21 融液
22 融液溜まり
28 結晶面
30 斜面
L 発光体の長さ
W 発光体の幅
T 発光体の厚さ
TS スリットの幅
WD ダイの幅
1 Luminous body manufacturing equipment 2 Luminescent body
2a Main surface 3 Growing container 4 Pulling container 5 Crucible 6 Crucible drive 7 Heater 8 Electrode 9 Die
10 Insulation
11 Atmospheric gas inlet
12 Exhaust port
13 shaft
14 Shaft drive
15 Gate valve
16 Board doorway
17 seed crystals
18 divider
19 slit
20 openings
21 Melt
22 Melt pool
28 Crystal plane
30 Slope L Length of illuminant W Width of illuminant T Thickness of illuminant
TS slit width
WD die width

Claims (3)

坩堝をMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種で形成し、A crucible is formed with at least one of Mo, W, Ir, Re, Ru, Pt, and Rh.
スリットを有すると共に、幅方向が平行に配置されたダイを坩堝に収容し、Dies that have slits and are arranged in parallel in the width direction are housed in a crucible.
雰囲気ガスにアルゴンガスを用い、カーボン製のヒータと断熱材を用いると共に、断熱材で、坩堝とヒータとダイを取り囲み、Argon gas is used as the atmosphere gas, a carbon heater and heat insulating material are used, and the heat insulating material surrounds the crucible, the heater, and the die.
坩堝に発光体の原料を投入してヒータで加熱し、発光体の原料を坩堝内で溶融して融液を用意し、The raw material of the illuminant is put into the crucible and heated by a heater, and the raw material of the illuminant is melted in the crucible to prepare a melt.
スリットを介してスリット上部に融液溜まりを形成し、A melt pool is formed on the upper part of the slit through the slit,
そのスリット上部の融液に種結晶を接触させて種結晶を引き上げることで、単結晶から成り、主面と280mm以上の長手方向の寸法を有し、Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子を、5000ppm以下(但し0ppmは含まない)含有している発光体を成長させる発光体の製造方法。By contacting the seed crystal with the melt on the upper part of the slit and pulling up the seed crystal, it is composed of a single crystal and has a longitudinal dimension of 280 mm or more with the main surface, Mo, W, Ir, Re, Ru, Pt. , A method for producing a luminescent material for growing a luminescent material containing at least one atom of Rh in an amount of 5000 ppm or less (however, 0 ppm is not included).
組成式が(Ce,Mg)The composition formula is (Ce, Mg) xx x RR 3-x3-x MM 5Five OO 1212 (但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)で表されるガーネット構造を前記発光体が有し、(However, 0.0001 ≤ x ≤ 0.3, R is one or more selected from La, Pr, Gd, Tb, Yb, Y, Lu, and M is one or more selected from Al, Lu, Ga, Sc. The illuminant has a garnet structure represented by).
Ce又はMgの少なくとも1種が前記長手方向に分布している請求項1に記載の発光体の製造方法。The method for producing a luminescent material according to claim 1, wherein at least one of Ce or Mg is distributed in the longitudinal direction.
前記発光体がAs-grown単結晶である請求項1又は2の何れかに記載の発光体の製造方法。The method for producing a luminescent material according to any one of claims 1 or 2, wherein the luminescent material is an As-grown single crystal.
JP2017180019A 2017-09-20 2017-09-20 Luminous body and method for manufacturing the luminous body Active JP7007666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017180019A JP7007666B2 (en) 2017-09-20 2017-09-20 Luminous body and method for manufacturing the luminous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017180019A JP7007666B2 (en) 2017-09-20 2017-09-20 Luminous body and method for manufacturing the luminous body

Publications (2)

Publication Number Publication Date
JP2019056038A JP2019056038A (en) 2019-04-11
JP7007666B2 true JP7007666B2 (en) 2022-02-10

Family

ID=66107033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017180019A Active JP7007666B2 (en) 2017-09-20 2017-09-20 Luminous body and method for manufacturing the luminous body

Country Status (1)

Country Link
JP (1) JP7007666B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886319A (en) * 2018-03-23 2020-11-03 Tdk株式会社 Phosphor and light source device
JP2020090629A (en) * 2018-12-06 2020-06-11 パナソニックIpマネジメント株式会社 Phosphor and semiconductor light-emitting device using the same
JP2021059686A (en) * 2019-10-09 2021-04-15 パナソニックIpマネジメント株式会社 Phosphor and semiconductor light emitting device using the same
WO2021079793A1 (en) * 2019-10-25 2021-04-29 アダマンド並木精密宝石株式会社 Ceramic composite and production method for ceramic composite
WO2022163604A1 (en) * 2021-01-27 2022-08-04 アダマンド並木精密宝石株式会社 Light emitter, wristwatch, and method for manufacturing light emitter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024549A (en) 2006-07-21 2008-02-07 Tohoku Univ Method and apparatus for manufacturing single crystal
JP4465481B2 (en) 2000-05-10 2010-05-19 並木精密宝石株式会社 Single crystal material manufacturing method, seed substrate, die, and single crystal material manufacturing apparatus
JP2016524316A (en) 2013-04-22 2016-08-12 クライツール スポル.エス アール.オー.Crytur Spol.S R.O. White light-emitting diode having single-crystal phosphor and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465481B2 (en) 2000-05-10 2010-05-19 並木精密宝石株式会社 Single crystal material manufacturing method, seed substrate, die, and single crystal material manufacturing apparatus
JP2008024549A (en) 2006-07-21 2008-02-07 Tohoku Univ Method and apparatus for manufacturing single crystal
JP2016524316A (en) 2013-04-22 2016-08-12 クライツール スポル.エス アール.オー.Crytur Spol.S R.O. White light-emitting diode having single-crystal phosphor and method for manufacturing the same

Also Published As

Publication number Publication date
JP2019056038A (en) 2019-04-11

Similar Documents

Publication Publication Date Title
JP7007666B2 (en) Luminous body and method for manufacturing the luminous body
JP4760236B2 (en) Single crystal heat treatment method
US8394195B2 (en) Rare-earth oxyorthosilicate scintillator crystals and method of making rare-earth oxyorthosilicate scintillator crystals
RU2670919C9 (en) Phosphor and radiation detector
EP2386620B1 (en) Chloride scintillator for radiation detection
JP4770337B2 (en) Single crystal heat treatment method
CN105062477B (en) Scintillator and its manufacture method
EP3592825B1 (en) Garnet scintillator co-doped with monovalent ion
Yoshikawa et al. Czochralski growth and properties of scintillating crystals
EP2387040A2 (en) Iodide scintillator for radiation detection
US8778225B2 (en) Iodide single crystal, production process thereof, and scintillator comprising iodide single crystal
CN113529168A (en) Li+Zero-dimensional perovskite structure doped metal halide scintillation crystal and preparation method and application thereof
Vaněček et al. Advanced halide scintillators: From the bulk to nano
JP6011835B1 (en) Scintillator
JP2006016251A (en) METHOD FOR MANUFACTURING Lu3Al5O12 CRYSTAL MATERIAL FOR DETECTING RADIATION
US7060982B2 (en) Fluoride single crystal for detecting radiation, scintillator and radiation detector using the single crystal, and method for detecting radiation
CN111850685A (en) Gallium oxide scintillation crystal with fast attenuation and high light output and preparation method thereof
JP4993284B2 (en) Manufacturing method of scintillator single crystal and single crystal for scintillator
JP2003277191A (en) LIGHT-EMITTING MATERIAL FOR SCINTILLATOR, COMPRISING Yb MIXED CRYSTAL OXIDE SINGLE CRYSTAL
Král et al. Growth and Luminescence Properties of ${\rm Eu}\!\!:\!\!{\rm SrI} _ {2} $ Single Crystals Prepared by Modified Micro-Pulling-Down Method
Sarukura et al. Czochralski growth of oxides and fluorides
JP5365720B2 (en) Single crystal for scintillator and method for producing the same
JP5055910B2 (en) Single crystal heat treatment method
Yokota et al. Effects of Ca/Sr ratio control on optical and scintillation properties of Eu-doped Li (Ca, Sr) AlF6 single crystals
JP5293602B2 (en) Single crystal scintillator material and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211223

R150 Certificate of patent or registration of utility model

Ref document number: 7007666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350