JP2019056038A - Illuminant and method for manufacturing the same - Google Patents

Illuminant and method for manufacturing the same Download PDF

Info

Publication number
JP2019056038A
JP2019056038A JP2017180019A JP2017180019A JP2019056038A JP 2019056038 A JP2019056038 A JP 2019056038A JP 2017180019 A JP2017180019 A JP 2017180019A JP 2017180019 A JP2017180019 A JP 2017180019A JP 2019056038 A JP2019056038 A JP 2019056038A
Authority
JP
Japan
Prior art keywords
light
light emitter
crucible
melt
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017180019A
Other languages
Japanese (ja)
Other versions
JP7007666B2 (en
Inventor
古滝 敏郎
Toshiro Furutaki
敏郎 古滝
弘倫 斎藤
Hirotomo Saito
弘倫 斎藤
文弥 堀越
Fumiya Horikoshi
文弥 堀越
真行 宮崎
Masayuki Miyazaki
真行 宮崎
圭 鎌田
Kei Kamata
圭 鎌田
吉川 彰
Akira Yoshikawa
彰 吉川
俊介 黒澤
Shunsuke Kurosawa
俊介 黒澤
有為 横田
Yui Yokota
有為 横田
育宏 庄子
Yasuhiro Shoji
育宏 庄子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Tohoku University NUC
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Adamant Namiki Precision Jewel Co Ltd filed Critical Tohoku University NUC
Priority to JP2017180019A priority Critical patent/JP7007666B2/en
Publication of JP2019056038A publication Critical patent/JP2019056038A/en
Application granted granted Critical
Publication of JP7007666B2 publication Critical patent/JP7007666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Luminescent Compositions (AREA)

Abstract

To provide a light emitting body capable of emitting light at the uniform amount of light emission in the longitudinal direction and achieving the characteristic of 20 emission length, and a method for manufacturing the same.SOLUTION: The light emitting body consisting of a single crystal manufactured by the EFG method has a size of 280 mm or more in the longitudinal direction. The method for manufacturing the light emitting body comprises: storing dies having a slit and having a width direction arranged in parallel in a crucible; inputting and heating the raw material of the light emitting body in the crucible to prepare a melt; forming a melt pool in an upper portion of the slit; and pulling a seed crystal. A composition formula is represented by (Ce, Mg)RMO(0.0001≤x≤0.3; R is one or more kinds selected from La, Pr, Gd, Tb, Yb, Y and Lu; and M is one or more kinds selected from Al, Lu, Ga and Sc); at least one kind of Ce and Mg is distributed in the longitudinal direction; and at least one kind of atoms selected from Mo, W, Ir, Re, Ru, Pt and Rh are included at 5000 ppm or less.SELECTED DRAWING: Figure 1

Description

本発明は、発光体及び発光体の製造方法に関する。   The present invention relates to a light emitter and a method for manufacturing the light emitter.

シンチレータ等の発光体は、ガンマ線、X線、α線、β線、中性子線等を検出するフォトン検出器或いは放射線検出器に用いられる。これら検出器は、陽電子放射断層撮影(PET)装置やX線CT等の医療画像装置、高エネルギー物理用の各種放射線計測装置、資源探査装置等への幅広い応用が期待される。   Light emitters such as scintillators are used in photon detectors or radiation detectors that detect gamma rays, X-rays, α rays, β rays, neutron rays, and the like. These detectors are expected to be widely applied to positron emission tomography (PET) devices, medical imaging devices such as X-ray CT, various radiation measuring devices for high energy physics, and resource exploration devices.

これら検出器に用いられる発光体の一例として、例えば特許文献1に示すガーネット構造を有する発光体が開示されている。   As an example of the light emitter used in these detectors, for example, a light emitter having a garnet structure shown in Patent Document 1 is disclosed.

特許文献1には、Ce3+の4f5d準位からの発光を用いたガーネット構造を持つ発光体及びその製法が開示されている。発光体は、一般式CexRE3-xM5+yO12+3y/2(但し、0.0001≦x≦0.3、0≦y≦0.5或いは0≦y≦-0.5、MはAl、Lu、Ga、Scから選ばれた1種又は2種以上、及びREはLa、Pr、Gd、Tb、Yb、Y、Luから選ばれた1種または2種以上である)で表されるガーネット構造を有する。またその発光体の製法として、チョクラルスキー(CZ:Czochralski)法やEFG(Edge-defined Film-fed. Growth)法が開示されている。 Patent Document 1 discloses a light-emitting body having a garnet structure using light emission from the 4f5d level of Ce 3+ and a manufacturing method thereof. The illuminant has the general formula Ce x RE 3-x M 5 + y O 12 + 3y / 2 (where 0.0001 ≦ x ≦ 0.3, 0 ≦ y ≦ 0.5 or 0 ≦ y ≦ −0.5, M is Al, Lu, 1 or 2 or more types selected from Ga and Sc, and RE is one or more types selected from La, Pr, Gd, Tb, Yb, Y, and Lu). Have. In addition, as a method for producing the light emitter, a Czochralski (CZ) method and an Edge-defined Film-fed. Growth (EFG) method are disclosed.

また、これらの発光体を高エネルギー物理検出器用途に使用する際、特性として20放射長が望まれている事が、例えば非特許文献1に開示されている。   Further, for example, Non-Patent Document 1 discloses that when these light emitters are used for high energy physical detectors, a 20 radiation length is desired as a characteristic.

国際公開第2015/166999号International Publication No. 2015/166999

M. Niiyama、「Hadron physics with GeV photons at SPring-8/LEPS II」、2014、EPJ Web of Conferences 73、08001、p.3M. Niiyama, “Hadron physics with GeV photons at SPring-8 / LEPS II”, 2014, EPJ Web of Conferences 73, 08001, p.3

しかしCZ法では原料の融液に対する結晶化率が低く、発光体の量産には適さなかった。更に、融液中の対流による原子の拡散で、結晶成長が進行するに伴い高濃度の融液が残り、成長形成される発光体の結晶組成に変動が生じていた。例えば、発光中心元素となるCeの偏析係数は0.05〜0.3程度と小さく、結晶成長に従いCe濃度が上昇し、結晶引き上げ方向で発光量の変動が生じて、発光体の歩留まり低下を招いていた。   However, the CZ method has a low crystallization rate of the raw material melt, and is not suitable for mass production of phosphors. Furthermore, due to the diffusion of atoms by convection in the melt, as the crystal growth proceeds, a high-concentration melt remains, and the crystal composition of the luminescent material formed by growth has changed. For example, the segregation coefficient of Ce, which is the luminescent center element, is as small as about 0.05 to 0.3, the Ce concentration increases with crystal growth, and the amount of light emission varies in the crystal pulling direction, leading to a decrease in yield of the light emitters.

また前記20放射長と云う特性を有する発光体を、EFG法に於いて如何にして作製するかと云う具体的な技術内容の開示は無く、未だ実現されてもいない。   Further, there is no disclosure of specific technical contents on how to produce the luminous body having the characteristic of 20 radiation length by the EFG method, and it has not been realized yet.

本発明は、上記課題に鑑みてなされたものであり、長手方向に亘って均一な発光量で発光させることが可能となり、20放射長と云う特性を実現出来る発光体とその製造方法を提供する。   The present invention has been made in view of the above problems, and provides a light emitter capable of emitting light with a uniform light emission amount in the longitudinal direction and capable of realizing a characteristic of 20 radiation length and a method for manufacturing the same. .

前記課題は、以下の本発明により解決される。即ち本発明の発光体は、単結晶から成り、長手方向の寸法を有し、その寸法が280mm以上である事を特徴とする。   The above problems are solved by the present invention described below. That is, the light-emitting body of the present invention is made of a single crystal, has a longitudinal dimension, and the dimension is 280 mm or more.

本発明の発光体の一実施形態は、組成式が(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)で表されるガーネット構造を有し、Ce又はMgの少なくとも1種が長手方向に分布している事が好ましい。 In one embodiment of the light emitter of the present invention, the composition formula is (Ce, Mg) x R 3-x M 5 O 12 (where 0.0001 ≦ x ≦ 0.3, R is La, Pr, Gd, Tb, Yb, Y , Lu, and M is at least one selected from Al, Lu, Ga, Sc), and at least one of Ce or Mg is in the longitudinal direction. It is preferable that they are distributed.

本発明の発光体の他の実施形態は、Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子を、5000ppm以下(但し0ppmは含まない)含有している事が好ましい。   Another embodiment of the light emitter of the present invention preferably contains at least one atom of Mo, W, Ir, Re, Ru, Pt, and Rh of 5000 ppm or less (but not including 0 ppm).

また本発明の発光体の製造方法は、スリットを有すると共に、幅方向が平行に配置されたダイを坩堝に収容し、坩堝に発光体の原料を投入して加熱し、発光体の原料を坩堝内で溶融して融液を用意し、スリットを介してスリット上部に融液溜まりを形成し、そのスリット上部の融液に種結晶を接触させて種結晶を引き上げることで、単結晶から成り、主面と280mm以上の長手方向の寸法を有する発光体を成長させる事を特徴とする。   In the method for manufacturing a light emitter according to the present invention, a die having a slit and arranged in parallel in the width direction is accommodated in a crucible, the raw material of the light emitter is put into the crucible and heated, and the raw material of the light emitter is Prepare a melt by melting in the inside, form a pool of melt at the top of the slit through the slit, and contact the seed crystal with the melt at the top of the slit to pull up the seed crystal, consisting of a single crystal, It is characterized by growing a light emitting body having a main surface and a longitudinal dimension of 280 mm or more.

本発明の発光体の製造方法の一実施形態は、組成式が(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)で表されるガーネット構造を発光体が有し、Ce又はMgの少なくとも1種が長手方向に分布している事が好ましい。 In one embodiment of the method for producing a luminescent material of the present invention, the composition formula is (Ce, Mg) x R 3-x M 5 O 12 (where 0.0001 ≦ x ≦ 0.3, R is La, Pr, Gd, Tb, The luminescent material has a garnet structure represented by at least one selected from Yb, Y, and Lu, and M is one or more selected from Al, Lu, Ga, and Sc. It is preferable that one kind is distributed in the longitudinal direction.

本発明の発光体の製造方法の他の実施形態は、発光体が、Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子を、5000ppm以下(但し0ppmは含まない)含有している事が好ましい。   In another embodiment of the method for producing a luminescent material of the present invention, the luminescent material contains at least one atom of Mo, W, Ir, Re, Ru, Pt, and Rh of 5000 ppm or less (but not including 0 ppm). It is preferable that

本発明に係る発光体及び発光体の製造方法に依れば、発光体をその長手方向に亘って、均一な発光量で発光させる事が出来る。従って、20放射長の特性を実現する事が可能となる。   According to the illuminant and the method for producing the illuminant according to the present invention, the illuminant can emit light with a uniform amount of light emission along the longitudinal direction. Therefore, it is possible to realize a characteristic of 20 radiation lengths.

更に、本発明では発光体の組成式を(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)とし、EFG法で成長させる事でCe又はMgの少なくとも1種を発光体の長手方向に分布させると共に、発光体の製造時に使用する坩堝の形成材料をMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種とし、それら形成材料の原子を5000ppm以下(但し0ppmは含まない)で発光体に含有させる。このような組成や原子含有量の設定により、均一な発光量で発光して20放射長の特性が実現可能な発光体を、EFG法により製造する事が出来る。 Further, in the present invention, the composition formula of the luminescent material is (Ce, Mg) x R 3-x M 5 O 12 (where 0.0001 ≦ x ≦ 0.3, R is determined from La, Pr, Gd, Tb, Yb, Y, Lu. 1 or more selected, and M is one or more selected from Al, Lu, Ga, Sc), and at least one of Ce or Mg is distributed in the longitudinal direction of the light emitter by growing by EFG method In addition, the crucible forming material used at the time of manufacturing the light emitter is at least one of Mo, W, Ir, Re, Ru, Pt, and Rh, and the atoms of these forming materials are 5000 ppm or less (however, 0 ppm is not included) It is made to contain in a light-emitting body. By setting the composition and atomic content in this way, a light emitter capable of emitting light with a uniform light emission amount and realizing the characteristics of 20 emission lengths can be manufactured by the EFG method.

本発明の実施形態及び実施例に係る発光体を模式的に示す斜視図である。It is a perspective view which shows typically the light-emitting body which concerns on embodiment and an Example of this invention. 本発明の実施形態及び実施例に係る、EFG法による発光体の製造装置を概略して模式的に示す構成図である。It is a block diagram which shows schematically the manufacturing apparatus of the light-emitting body by the EFG method based on embodiment and the Example of this invention. (a)本発明の実施形態及び実施例に係る、ダイの一例を模式的に示す平面図である。(b)同図(a)の正面図である。(c)同図(a)の側面図である。(a) It is a top view which shows typically an example of die | dye based on embodiment and the Example of this invention. (b) It is a front view of the figure (a). (c) It is a side view of the same figure (a). 本発明の実施形態及び実施例に係る種結晶の一例を示す説明図である。It is explanatory drawing which shows an example of the seed crystal which concerns on embodiment and an Example of this invention. 本発明の実施形態及び実施例における、種結晶と仕切り板との位置関係を模式的に示す斜視図である。It is a perspective view which shows typically the positional relationship of a seed crystal and a partition plate in embodiment and the Example of this invention. (a)本発明の実施形態及び実施例における、種結晶と仕切り板との位置関係を模式的に示す正面図である。(b)本発明の実施形態及び実施例における、種結晶の一部を溶融する様子を示す正面図である。(a) It is a front view which shows typically the positional relationship of a seed crystal and a partition plate in embodiment and the Example of this invention. (b) It is a front view which shows a mode that a part of seed crystal is fuse | melted in the embodiment and Example of this invention. 本発明の実施形態及び実施例において、発光体が成長する様子を模式的に示す斜視図である。In embodiment and the Example of this invention, it is a perspective view which shows typically a mode that a light-emitting body grows. EFG法により得られる、本発明の実施形態及び実施例に係る複数の発光体を部分的且つ模式的に示す斜視図である。It is a perspective view which shows the some light-emitting body based on embodiment and Example of this invention obtained by EFG method partially and typically.

本実施の形態の第一の特徴は、単結晶から成り、長手方向の寸法を有し、その寸法が280mm以上である発光体としたことである。   The first feature of the present embodiment is that the light-emitting body is made of a single crystal, has a longitudinal dimension, and the dimension is 280 mm or more.

第二の特徴は、組成式が(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)で表されるガーネット構造を有し、Ce又はMgの少なくとも1種が、長手方向に分布している発光体としたことである。 The second feature is that the composition formula is (Ce, Mg) x R 3−x M 5 O 12 (where 0.0001 ≦ x ≦ 0.3, R is selected from La, Pr, Gd, Tb, Yb, Y, Lu) 1 or more, and M is one or more selected from Al, Lu, Ga, and Sc), and at least one of Ce or Mg is distributed in the longitudinal direction. This is a light emitter.

第三の特徴は、Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子を、5000ppm以下(但し0ppmは含まない)含有している発光体としたことである。   The third feature is that the light emitter contains at least one atom of Mo, W, Ir, Re, Ru, Pt, and Rh in an amount of 5000 ppm or less (excluding 0 ppm).

第四の特徴は、スリットを有すると共に、幅方向が平行に配置されたダイを坩堝に収容し、坩堝に発光体の原料を投入して加熱し、発光体の原料を坩堝内で溶融して融液を用意し、スリットを介してスリット上部に融液溜まりを形成し、そのスリット上部の融液に種結晶を接触させて種結晶を引き上げることで、単結晶から成り、主面と280mm以上の長手方向の寸法を有する発光体を成長させる発光体の製造方法としたことである。   The fourth feature is that a die having slits and arranged in parallel in the width direction is accommodated in a crucible, and the raw material of the luminous body is put into the crucible and heated, and the raw material of the luminous body is melted in the crucible. Prepare a melt, form a melt pool at the top of the slit through the slit, and bring the seed crystal into contact with the melt at the top of the slit to raise the seed crystal. It is that it was set as the manufacturing method of the light-emitting body which grows the light-emitting body which has the dimension of the longitudinal direction.

第五の特徴は、組成式が(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)で表されるガーネット構造を発光体が有し、Ce又はMgの少なくとも1種が、長手方向に分布している発光体の製造方法としたことである。 The fifth feature is that the composition formula is (Ce, Mg) x R 3-x M 5 O 12 (where 0.0001 ≦ x ≦ 0.3, R is selected from La, Pr, Gd, Tb, Yb, Y, Lu) The illuminant has a garnet structure represented by one or more, and M is one or more selected from Al, Lu, Ga, and Sc, and at least one of Ce or Mg is distributed in the longitudinal direction. This is a manufacturing method of the luminous body.

第六の特徴は、発光体が、Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子を、5000ppm以下(但し0ppmは含まない)含有している発光体の製造方法としたことである。   A sixth feature is a method for producing a luminescent material, wherein the luminescent material contains at least one atom of Mo, W, Ir, Re, Ru, Pt, and Rh of 5000 ppm or less (but not including 0 ppm). It is that.

これらの発光体及び発光体の製造方法に依れば、発光体をその長手方向に亘って均一な発光量で発光させる事が出来る。従って、20放射長の特性を実現する事が可能となる。   According to these illuminants and the method for producing the illuminant, the illuminant can emit light with a uniform light emission amount in the longitudinal direction. Therefore, it is possible to realize a characteristic of 20 radiation lengths.

なお本発明において均一な発光量とは、発光体の長手方向の全長に亘る発光量の変動が±10%の範囲内の状態を指す。   In the present invention, the uniform light emission amount means a state in which the variation of the light emission amount over the entire length in the longitudinal direction of the light emitter is within a range of ± 10%.

第七の特徴は、発光体がAs-grown単結晶である発光体及び発光体の製造方法としたことである。   The seventh feature is that the light emitter is an As-grown single crystal and a method for manufacturing the light emitter.

これらの発光体及び発光体の製造方法に依れば、長手方向に280mm以上の寸法を有するように発光体を結晶成長させると共に、研削または研磨などの表面加工を施す必要が無いので、発光体の表面加工の工程削減が達成出来る。更に、発光体に於ける研削代又は研磨代が不要となるので、原料に対する結晶化率の向上と、量産性への適応、及び発光体の歩留まり向上が可能となる。   According to these light emitters and the method of manufacturing the light emitter, it is not necessary to grow the crystal of the light emitter so as to have a dimension of 280 mm or more in the longitudinal direction and to perform surface processing such as grinding or polishing. Reduction of the surface processing process can be achieved. Furthermore, since there is no need for grinding or polishing in the light emitter, it is possible to improve the crystallization rate of the raw material, adapt to mass productivity, and improve the yield of the light emitter.

なお本発明においてAs-grown単結晶とは、結晶成長された状態のままで研削または研磨などの表面加工が施こされていない単結晶を指す。   In the present invention, the As-grown single crystal refers to a single crystal that has not been subjected to surface processing such as grinding or polishing while the crystal is grown.

以下、図1を参照して本実施形態に係る発光体を説明する。本発明における発光体2は、図1に示すように長手方向(長さL方向)の寸法を有し、平面方向の形状が長方形であり、具体的な寸法として幅Wが10mm程度、厚さTが2mm程度、前記長手方向の寸法である長さLが280mm以上のサイズの単結晶から成る。幅Wが10mm程度及び厚さT=2mm程度が、放射線検出器用として汎用性が高く、結晶成長後の研磨代を皆無とする事が出来るため、望ましい。なお長さLの上限値は特に無く、任意に設定可能であるが、放射線検出器用途の場合、放射線のエネルギーが高ければ高いほど必要な長さは長くなる。例えば8GeVの放射線を吸収する場合20放射長で280mm程度が目安となる。   Hereinafter, the light emitter according to the present embodiment will be described with reference to FIG. The light-emitting body 2 in the present invention has dimensions in the longitudinal direction (length L direction) as shown in FIG. 1, has a rectangular shape in the plane direction, and has a specific width W of about 10 mm and a thickness. T consists of a single crystal having a size of about 2 mm and a length L which is a dimension in the longitudinal direction of 280 mm or more. A width W of about 10 mm and a thickness T of about 2 mm are desirable because they are highly versatile for use in radiation detectors and can eliminate the polishing allowance after crystal growth. The upper limit of the length L is not particularly limited and can be arbitrarily set. However, in the case of a radiation detector, the required length increases as the radiation energy increases. For example, in the case of absorbing 8 GeV radiation, about 280 mm is a guide for 20 radiation lengths.

本発明の実施の形態の発光体2は、組成式が(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)で表されるガーネット構造を有する。更に、Ce又はMgの少なくとも1種が、長手方向に分布している。 Light emitter and second embodiments of the present invention, composition formula (Ce, Mg) x R 3 -x M 5 O 12 ( where, 0.0001 ≦ x ≦ 0.3, R is La, Pr, Gd, Tb, Yb, 1 or more selected from Y and Lu, and M is one or more selected from Al, Lu, Ga and Sc). Furthermore, at least one of Ce or Mg is distributed in the longitudinal direction.

更に発光体2は、Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子を、5000ppm以下(但し0ppmは含まない)含有している。   Further, the luminous body 2 contains 5000 ppm or less (excluding 0 ppm) of at least one atom of Mo, W, Ir, Re, Ru, Pt, and Rh.

このような組成や原子含有量の設定により、254nm〜365nmの紫外線領域の光が照射された時に、発光体2はCe3+の4f5d準位からの発光が可能となる。更に発光体2は、前記組成や原子含有量の設定により、発光体2をその長手方向に亘って、均一な発光量で発光させる事が出来る。 With such composition and atomic content settings, the light emitter 2 can emit light from the 4f5d level of Ce 3+ when irradiated with light in the ultraviolet region of 254 nm to 365 nm. Furthermore, the light emitter 2 can cause the light emitter 2 to emit light with a uniform light emission amount in the longitudinal direction by setting the composition and the atomic content.

更に、長さLを280mm以上に長大化して設定しても、その長さLに亘って20放射長の特性を実現する事が出来る。   Further, even if the length L is set to be longer than 280 mm, a characteristic of 20 radiation lengths can be realized over the length L.

なお本発明において、均一な発光量とは、発光体2の長手方向の全長(長さL)に亘る発光量の変動が±10%の範囲内である状態を指す。この状態となるように、Ce又はMgの1種又は2種と、5000ppm以下(但し0ppmは含まない)のMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子とを、長手方向に亘って分布させる。   In the present invention, the uniform light emission amount refers to a state in which the variation in the light emission amount over the entire length in the longitudinal direction (length L) of the light emitter 2 is within a range of ± 10%. In order to be in this state, one or two of Ce or Mg and at least one atom of Mo, W, Ir, Re, Ru, Pt, Rh of 5000 ppm or less (excluding 0 ppm), Distribute over the longitudinal direction.

Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子の含有量が5000ppmを超えたり、Ce又はMgと、Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子の長手方向の分布が偏って長さLに亘る発光量の変動が±10%の範囲未満又は範囲を超えると、280mm以上と云う長大な長さLに亘って均一な発光量が得られなくなる。従って、20放射長の特性も実現不可能となる。   The content of at least one of Mo, W, Ir, Re, Ru, Pt, and Rh exceeds 5000 ppm, or Ce or Mg, and at least one of Mo, W, Ir, Re, Ru, Pt, and Rh When the distribution in the longitudinal direction of the atoms is uneven and the fluctuation of the light emission amount over the length L is less than ± 10% or exceeds the range, a uniform light emission amount is obtained over the long length L of 280 mm or more. It becomes impossible. Therefore, the characteristic of 20 radiation length cannot be realized.

更に発光体2は、As-grown単結晶である事が好ましい。As-grown単結晶とは、結晶成長された状態のままで研削または研磨などの表面加工が施こされていない単結晶を指す。発光体2をAs-grown単結晶で形成する事により、長手方向に280mm以上の寸法を有するように結晶成長させた発光体2に、研削または研磨などの表面加工を施す必要が無いので、発光体2の表面加工の工程削減が達成出来る。更に、発光体2に於ける研削代又は研磨代が不要となるので、原料に対する結晶化率の向上と、量産性への適応、及び発光体2の歩留まり向上が可能となる。また発光体2は、所望の主面2aを有する   Furthermore, the light emitter 2 is preferably an As-grown single crystal. As-grown single crystal refers to a single crystal that has not been subjected to surface processing such as grinding or polishing in a crystal-grown state. By forming the illuminant 2 with an As-grown single crystal, it is not necessary to perform surface processing such as grinding or polishing on the illuminant 2 that has been grown to have a dimension of 280 mm or more in the longitudinal direction. Reduction of the surface processing of the body 2 can be achieved. Furthermore, since the grinding allowance or polishing allowance in the light emitter 2 is not required, it is possible to improve the crystallization rate with respect to the raw material, adapt to mass productivity, and improve the yield of the light emitter 2. The light emitter 2 has a desired main surface 2a.

発光体2が使用される放射線検査装置としては、資源探査用検出器、高エネルギー物理用検出器、環境放射能検出器、ガンマカメラや医用画像処理装置等が挙げられる。医用画像処理装置の例としては、陽電子放射断層撮影(PET)装置、X線CT、SPECT、PEM装置などの用途が好適である。PETの態様としては、二次元型、三次元型、タイム・オブ・フライト(TOF)型、深さ検出(DOI)型が好ましい。更に、これらを組み合わせて使用しても構わない。また、発光体2は大型ハドロン衝突型加速器や熱量計にも使用可能である。   Examples of the radiation inspection apparatus in which the illuminant 2 is used include a resource exploration detector, a high energy physics detector, an environmental radioactivity detector, a gamma camera, a medical image processing apparatus, and the like. As examples of the medical image processing apparatus, applications such as a positron emission tomography (PET) apparatus, an X-ray CT, a SPECT, and a PEM apparatus are preferable. As a form of PET, a two-dimensional type, a three-dimensional type, a time-of-flight (TOF) type, and a depth detection (DOI) type are preferable. Further, these may be used in combination. The light emitter 2 can also be used for a large hadron collision accelerator and a calorimeter.

次に、本発明の実施形態に係る発光体2の製造装置について、図2から図8を参照しながら説明する。なお、前記発光体2の説明と重複する箇所や内容に関しては、説明を簡略化又は省略する。   Next, the manufacturing apparatus of the light emitter 2 according to the embodiment of the present invention will be described with reference to FIGS. In addition, about the location and content which overlap with description of the said light-emitting body 2, description is simplified or abbreviate | omitted.

図2に示すように、発光体の製造装置1は、発光体2を育成する育成容器3と、育成した発光体2を引き上げる引き上げ容器4とから構成され、EFG法により発光体2を育成成長する。   As shown in FIG. 2, the luminous body manufacturing apparatus 1 includes a growth container 3 for growing the luminous body 2 and a pulling container 4 for raising the grown luminous body 2, and grows and grows the luminous body 2 by the EFG method. To do.

育成容器3は、坩堝5、坩堝駆動部6、ヒータ7、電極8、ダイ9、及び断熱材10を備える。坩堝5はMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種以上で形成する。これら材料の中でもMoがCr等の不純物をICP分析レベル以下まで低減出来る為、好ましい。この坩堝5の中で原料を溶融する。坩堝駆動部6は、坩堝5をその鉛直方向を軸として回転させる。ヒータ7は坩堝5を加熱する。また、電極8はヒータ7を通電する。ダイ9は坩堝5内に設置され、発光体2を引き上げる際の融液21の液面形状を決定する。また断熱材10は、坩堝5とヒータ7とダイ9を取り囲んでいる。ヒータ7及び断熱材10は、共にカーボン製とする。   The growth container 3 includes a crucible 5, a crucible drive unit 6, a heater 7, an electrode 8, a die 9, and a heat insulating material 10. The crucible 5 is formed of at least one of Mo, W, Ir, Re, Ru, Pt, and Rh. Among these materials, Mo is preferable because impurities such as Cr can be reduced to an ICP analysis level or lower. The raw material is melted in the crucible 5. The crucible drive unit 6 rotates the crucible 5 with the vertical direction as an axis. The heater 7 heats the crucible 5. The electrode 8 energizes the heater 7. The die 9 is installed in the crucible 5 and determines the liquid surface shape of the melt 21 when the light emitter 2 is pulled up. The heat insulating material 10 surrounds the crucible 5, the heater 7 and the die 9. Both the heater 7 and the heat insulating material 10 are made of carbon.

更に育成容器3は、雰囲気ガス導入口11と排気口12を備える。雰囲気ガス導入口11は、雰囲気ガスとしてアルゴンガスを育成容器3内に導入するための導入口であり、坩堝5やヒータ7、及びダイ9の酸化消耗を防止する。一方、排気口12は育成容器3内を排気するために備えられる。   Further, the growth vessel 3 includes an atmospheric gas inlet 11 and an exhaust port 12. The atmosphere gas introduction port 11 is an introduction port for introducing argon gas as the atmosphere gas into the growth vessel 3 and prevents oxidation of the crucible 5, the heater 7, and the die 9. On the other hand, the exhaust port 12 is provided for exhausting the inside of the growth vessel 3.

引き上げ容器4は、シャフト13、シャフト駆動部14、ゲートバルブ15、及び基板出入口16を備え、種結晶17から育成成長した複数の平板形状の発光体2を引き上げる。シャフト13は種結晶17を保持する。またシャフト駆動部14は、シャフト13を坩堝5に向けて昇降させると共に、その昇降方向を軸としてシャフト13を回転させる。ゲートバルブ15は育成容器3と引き上げ容器4とを仕切る。また基板出入口16は、種結晶17を出し入れする。   The pulling container 4 includes a shaft 13, a shaft driving unit 14, a gate valve 15, and a substrate inlet / outlet 16, and pulls up a plurality of flat plate-shaped light emitters 2 grown and grown from the seed crystal 17. The shaft 13 holds a seed crystal 17. Further, the shaft driving unit 14 moves the shaft 13 up and down toward the crucible 5 and rotates the shaft 13 around the lifting direction. The gate valve 15 partitions the growth container 3 and the lifting container 4. The substrate entrance / exit 16 takes in and out the seed crystal 17.

なお製造装置1は図示されない制御部も有しており、この制御部により坩堝駆動部6及びシャフト駆動部14の回転を制御する。   The manufacturing apparatus 1 also has a control unit (not shown), and the rotation of the crucible drive unit 6 and the shaft drive unit 14 is controlled by this control unit.

ダイ9はMo製であり、図3に示すように多数の仕切り板18を有する。図3ではダイの一例として、仕切り板18が30枚であり、ダイ9が15個形成されている場合を示している。仕切り板18は同一の平板形状を有し、微小間隙(スリット)19を形成するように互いに平行に配置されて、1つのダイ9を形成している。スリット19は、ダイ9のほぼ全幅に亘って設けられる。また複数のダイ9は同一形状を有すると共に、その幅方向が互いに平行となるように所定の間隔で並列に配置されているため、複数のスリット19が設けられることとなる。各仕切り板18の上部は斜面30が形成されており、互いの斜面30が外側に向くように配置されることで開口部20が形成されている。またスリット19は融液21を毛細管現象によって、各ダイ9の下端から開口部20に上昇させる役割を有している。   The die 9 is made of Mo and has a number of partition plates 18 as shown in FIG. As an example of the die, FIG. 3 shows a case where there are 30 partition plates 18 and 15 dies 9 are formed. The partition plates 18 have the same flat plate shape and are arranged in parallel to each other so as to form a minute gap (slit) 19 to form one die 9. The slit 19 is provided over almost the entire width of the die 9. Further, since the plurality of dies 9 have the same shape and are arranged in parallel at a predetermined interval so that the width directions thereof are parallel to each other, a plurality of slits 19 are provided. A slope 30 is formed on the upper part of each partition plate 18, and the opening 20 is formed by arranging the slopes 30 so as to face outward. The slit 19 has a role of raising the melt 21 from the lower end of each die 9 to the opening 20 by capillary action.

ダイ9の幅WDは、前記発光体2の幅Wに合わせて設定される。本実施形態ではW値よりWD=10mmと設定する。スリットの幅TSは、発光体2の厚さT以下に設定する   The width WD of the die 9 is set in accordance with the width W of the light emitter 2. In the present embodiment, WD = 10 mm is set from the W value. The slit width TS is set to be equal to or less than the thickness T of the light emitter 2.

坩堝5内に投入される原料は、坩堝5の温度上昇に基づいて溶融(原料メルト)し、融液21となる。原料は、発光体2の組成式で表される原子を含む化合物である。出発原料として、酸化物原料が使用可能であるが、発光体2をシンチレータ用単結晶として使用する場合、99.99%以上(4N以上)の高純度原料を用いることが特に好ましい。製造の際には、これらの出発原料を、融液21形成時に目的組成となるように秤量、混合したものを用いる。これらの原料は、目的とする組成以外の不純物が極力少ない(例えば1ppm以下)ものが特に好ましい。   The raw material charged into the crucible 5 is melted (raw material melt) based on the temperature rise of the crucible 5 to become a melt 21. The raw material is a compound containing atoms represented by the composition formula of the luminous body 2. An oxide raw material can be used as a starting material. However, when the phosphor 2 is used as a single crystal for a scintillator, it is particularly preferable to use a high-purity raw material of 99.99% or more (4N or more). At the time of production, these starting materials are weighed and mixed so as to have a target composition when the melt 21 is formed. These raw materials are particularly preferably those having as few impurities as possible (for example, 1 ppm or less) other than the target composition.

この融液21の一部は、ダイ9のスリット19に侵入し、前記のように毛細管現象に基づいてスリット19内を上昇し開口部20から露出して、開口部20で融液溜まり22(図6(b)参照)が形成される。EFG法では、融液溜まり22で形成される融液面の形状に従って、発光体2が成長する。図3に示したダイ9では、融液面の形状は細長い長方形となるので、平板形状の発光体2が製造される。   A part of the melt 21 enters the slit 19 of the die 9, as described above, rises in the slit 19 based on the capillary phenomenon, and is exposed from the opening 20. The melt pool 22 ( 6 (b)) is formed. In the EFG method, the light emitter 2 grows according to the shape of the melt surface formed by the melt reservoir 22. In the die 9 shown in FIG. 3, since the shape of the melt surface is an elongated rectangle, the flat plate-shaped light emitter 2 is manufactured.

次に、種結晶17について説明する。図2、図4〜図6に示すように本実施形態では、種結晶17としては、発光体2の組成と同等ないしは近いものを使用することが好ましい。具体的には、組成式が(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)で表されるガーネット構造を有し、Ce又はMgの少なくとも1種を含む単結晶を種結晶17とする。 Next, the seed crystal 17 will be described. As shown in FIGS. 2 and 4 to 6, in the present embodiment, as the seed crystal 17, it is preferable to use a seed crystal 17 that is the same as or close to the composition of the light emitter 2. Specifically, the composition formula is (Ce, Mg) x R 3-x M 5 O 12 (where 0.0001 ≦ x ≦ 0.3, R was selected from La, Pr, Gd, Tb, Yb, Y, Lu) 1 or more, and M is one or more selected from Al, Lu, Ga, and Sc), and a single crystal containing at least one of Ce or Mg is used as a seed crystal 17. .

種結晶17としては、平板形状の基板を用いる。更に、種結晶17の平面方向とダイ9の幅方向は、互いに90°の角度で以て直交となるように、種結晶17が配置される。また、種結晶17と発光体2も90°の角度で以て直交するので、図2では発光体2の側面を示している。種結晶17の平面方向と仕切り板18の幅方向との位置関係を垂直にする(種結晶17を仕切り板18と交叉させる)ことにより、融液21と種結晶17との接触面積を最小にすることが可能となる。従って、種結晶17の接触部分が融液21と馴染み易くなり、発光体2での結晶欠陥の発生が低減又は解消される。   As the seed crystal 17, a flat substrate is used. Further, the seed crystal 17 is arranged so that the planar direction of the seed crystal 17 and the width direction of the die 9 are perpendicular to each other at an angle of 90 °. Further, since the seed crystal 17 and the light emitter 2 are orthogonal to each other at an angle of 90 °, the side surface of the light emitter 2 is shown in FIG. By making the positional relationship between the planar direction of the seed crystal 17 and the width direction of the partition plate 18 perpendicular (by crossing the seed crystal 17 with the partition plate 18), the contact area between the melt 21 and the seed crystal 17 is minimized. It becomes possible to do. Therefore, the contact portion of the seed crystal 17 becomes easy to become familiar with the melt 21, and the occurrence of crystal defects in the light emitter 2 is reduced or eliminated.

また種結晶17は、基板保持具に確実に固定出来る基板形状とする。   The seed crystal 17 has a substrate shape that can be securely fixed to the substrate holder.

次に、前記製造装置1を使用した発光体2の製造方法を説明する。最初に発光体2の原料粉末(純度99.99%)をダイ9が収納された坩堝5に所定量投入して充填する。   Next, the manufacturing method of the light emitter 2 using the manufacturing apparatus 1 will be described. First, a predetermined amount of raw material powder (purity: 99.99%) of the luminous body 2 is charged into a crucible 5 in which a die 9 is housed and filled.

続いて、坩堝5やヒータ7若しくはダイ9を酸化消耗させないために、育成容器3内をアルゴンガスで置換し、酸素濃度を所定値以下とする。   Subsequently, in order not to oxidize the crucible 5, the heater 7 or the die 9, the inside of the growth vessel 3 is replaced with argon gas, and the oxygen concentration is set to a predetermined value or less.

次に、ヒータ7で加熱して坩堝5を所定の温度とし、原料粉末を溶融する。発光体2の原料の融点は2000℃以上(2150℃程度)なので、坩堝5の加熱温度はその融点以上の温度に設定する。加熱後しばらくすると原料粉末が溶融して、融液21が用意される。更に融液21の一部はダイ9のスリット19を毛細管現象により上昇してダイ9の表面に達し、スリット19上部に融液溜まり22が形成される。   Next, the crucible 5 is heated to a predetermined temperature by the heater 7 to melt the raw material powder. Since the melting point of the raw material of the luminous body 2 is 2000 ° C. or higher (about 2150 ° C.), the heating temperature of the crucible 5 is set to a temperature higher than the melting point. After a while after heating, the raw material powder melts and a melt 21 is prepared. Further, a part of the melt 21 rises through the slit 19 of the die 9 by capillary action to reach the surface of the die 9, and a melt pool 22 is formed on the slit 19.

次に図5及び図6に示すように、スリット19上部の融液溜まり22の幅方向に対して垂直な角度に種結晶17を保持しつつ降下させ、種結晶17を融液溜まり22の融液面に接触させる。なお、種結晶17は、予め基板出入口16から引き上げ容器4内に導入しておく。図5ではスリット19や開口部20の見易さを優先するため、融液21と融液溜まり22の図示を省略している。   Next, as shown in FIGS. 5 and 6, the seed crystal 17 is lowered while holding the seed crystal 17 at an angle perpendicular to the width direction of the melt reservoir 22 above the slit 19, so that the seed crystal 17 is melted in the melt reservoir 22. Touch the liquid surface. The seed crystal 17 is previously introduced into the pulling container 4 from the substrate entrance 16. In FIG. 5, the melt 21 and the melt reservoir 22 are not shown in order to prioritize the visibility of the slit 19 and the opening 20.

図5は、種結晶17と仕切り板18との位置関係を示した図である。前記の通り、種結晶17の平面方向を仕切り板18の幅方向と直交させることにより、種結晶17と融液21との接触面積を小さくすることが可能となる。従って、種結晶17の接触部分が融液21となじみ、育成成長される発光体2に結晶欠陥が生じにくくなる。よって、発光体2の歩留まりを向上させることが出来る。   FIG. 5 is a diagram showing the positional relationship between the seed crystal 17 and the partition plate 18. As described above, the contact area between the seed crystal 17 and the melt 21 can be reduced by making the plane direction of the seed crystal 17 orthogonal to the width direction of the partition plate 18. Therefore, the contact portion of the seed crystal 17 becomes compatible with the melt 21, and crystal defects are less likely to occur in the light-emitting body 2 that is grown and grown. Therefore, the yield of the light emitters 2 can be improved.

種結晶17を融液面に接触させる際に、種結晶17の下部を仕切り板18の上部に接触させて溶融しても良い。図6(b)は、種結晶17の一部を溶融する様子を示した図である。このように種結晶17の一部を溶融することで、種結晶17と融液21との温度差を速やかに解消ことができ、発光体2での結晶欠陥の発生を更に低減することが可能となる。   When the seed crystal 17 is brought into contact with the melt surface, the lower part of the seed crystal 17 may be brought into contact with the upper part of the partition plate 18 and melted. FIG. 6B is a diagram showing a state in which a part of the seed crystal 17 is melted. By melting part of the seed crystal 17 in this way, the temperature difference between the seed crystal 17 and the melt 21 can be quickly eliminated, and the occurrence of crystal defects in the light emitter 2 can be further reduced. It becomes.

続いてシャフト13により基板保持具を所定の上昇速度で引き上げて、種結晶17の引き上げを開始し、図7に示すように発光体2を形成する。図7は発光体2が成長する様子を示した説明図である。以上によりダイ9の幅WD(即ち、発光体2の幅W)で以て発光体2を成長させ、発光体2を所定の速度で所定の長さ(長さL)まで引き上げて、平板形状の発光体2を得る。   Subsequently, the substrate holder is pulled up by the shaft 13 at a predetermined ascent rate, and the pulling up of the seed crystal 17 is started to form the light emitter 2 as shown in FIG. FIG. 7 is an explanatory view showing how the light emitter 2 grows. As described above, the light emitter 2 is grown with the width WD of the die 9 (that is, the width W of the light emitter 2), and the light emitter 2 is pulled up to a predetermined length (length L) at a predetermined speed to form a flat plate shape. The luminous body 2 is obtained.

この後、得られた発光体2を冷却し、ゲートバルブ15を空け、引き上げ容器4側に移動して、基板出入口16から取り出す。得られた平板形状の発光体2の外観を図8に示す。   Thereafter, the obtained light-emitting body 2 is cooled, the gate valve 15 is opened, moved to the lifting container 4 side, and taken out from the substrate inlet / outlet 16. The external appearance of the obtained flat light-emitting body 2 is shown in FIG.

なお、発光体2は、図2、図5〜図8に示すように共通の種結晶17から同時に複数結晶成長させることが、一枚当たりの発光体2の製造コストを下げることが可能となり好ましい。同時に複数の発光体2を製造する際は、複数のダイ9を坩堝5に収容すると共に、各ダイ9の各々の幅方向を平行に配置する。種結晶17を引き上げることで、所望の主面2aと長手方向の寸法Lを有し、複数の発光体2をAs-grown単結晶として作製することが可能となる。   As shown in FIGS. 2 and 5 to 8, it is preferable to grow a plurality of crystals of the light emitter 2 from the common seed crystal 17 at the same time because the manufacturing cost of the light emitter 2 per sheet can be reduced. . When simultaneously manufacturing a plurality of light emitters 2, a plurality of dies 9 are accommodated in the crucible 5 and the width directions of the dies 9 are arranged in parallel. By pulling up the seed crystal 17, it is possible to produce a plurality of light emitters 2 as As-grown single crystals having a desired principal surface 2a and a longitudinal dimension L.

種結晶17、及び仕切り板18を含めたダイ9は、精密に位置決めする必要がある。よって図2に示したように製造装置1は、ダイ9を設置する坩堝5を回転する坩堝駆動部6、及びその回転を制御する制御部(図示せず)が設けられている。またシャフト13に関しても、シャフト13を回転するシャフト駆動部14、及びその回転を制御する制御部(図示せず)が設けられている。即ち、ダイ9に対する種結晶17の位置決めは、制御部によりシャフト13又は坩堝5を回転させて調整する。   The die 9 including the seed crystal 17 and the partition plate 18 needs to be positioned precisely. Therefore, as shown in FIG. 2, the manufacturing apparatus 1 is provided with a crucible driving unit 6 that rotates the crucible 5 in which the die 9 is installed, and a control unit (not shown) that controls the rotation. The shaft 13 is also provided with a shaft drive unit 14 that rotates the shaft 13 and a control unit (not shown) that controls the rotation thereof. That is, the positioning of the seed crystal 17 with respect to the die 9 is adjusted by rotating the shaft 13 or the crucible 5 by the control unit.

なお、種結晶17の結晶面28を任意に設定することで、発光体2の主面2aの面方向も任意に変更することが可能となる。   In addition, it is possible to arbitrarily change the surface direction of the main surface 2a of the light emitter 2 by arbitrarily setting the crystal plane 28 of the seed crystal 17.

発光体2の引き上げ速度は、種結晶17の引き上げ開始による結晶成長開示時から、所望の長さLで以て結晶成長が終了するまでの間、一定に設定することが幅W/厚さTの変動比が抑えられるので好ましい。   The pulling speed of the luminous body 2 can be set constant from the time when the crystal growth is started by starting the pulling of the seed crystal 17 until the crystal growth is completed with the desired length L. The width W / thickness T This is preferable because the fluctuation ratio of is suppressed.

本発明では、坩堝5の形成材料をMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種とする事で、EFG法による発光体2の引き上げ成長を行いながら、坩堝5から融液21を介してそのまま発光体2にMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子を含有させる事が出来る。但し、含有量は前記の通り5000ppm以下(但し0ppmは含まない)とする必要がある。   In the present invention, the material for forming the crucible 5 is at least one of Mo, W, Ir, Re, Ru, Pt, and Rh. Through 21, the light-emitting body 2 can contain at least one atom of Mo, W, Ir, Re, Ru, Pt, and Rh as it is. However, the content must be 5000 ppm or less (excluding 0 ppm) as described above.

そこで本発明では、雰囲気ガスにアルゴンガスを用いると共に、ヒータ7と断熱材10を共にカーボン製とした。このような構成により、育成容器3内の雰囲気が還元性となり、雰囲気と坩堝5形成材料との反応が抑えられ、発光体2への坩堝5形成材料の含有量も抑制可能となる事を、本出願人は検証の末、見出した。本発明ではEFG法を採用しているので、融液21は毛細管現象によりスリット19を介して各ダイ9の下端から開口部20まで上昇される。本発明では更に雰囲気と坩堝5形成材料との反応を抑えた状態で、スリット19を介して薄く融液21を上昇して供給しているので、融液溜まり22を常に均一な組成と濃度で形成する事が可能となる。よって、融液溜まり22からの引き上げ成長により、5000ppm以下と云う含有量と、長さLに亘る均一な発光量の形成が実現可能となった。更にCe又はMgに関しても、融液溜まり22の均一な組成と濃度形成により、前記長手方向での均一な発光量の形成が図れる。   Therefore, in the present invention, argon gas is used as the atmospheric gas, and both the heater 7 and the heat insulating material 10 are made of carbon. With such a configuration, the atmosphere in the growth vessel 3 becomes reducible, the reaction between the atmosphere and the crucible 5 forming material is suppressed, and the content of the crucible 5 forming material in the light emitter 2 can also be suppressed. The applicant found out after verification. Since the EFG method is adopted in the present invention, the melt 21 is raised from the lower end of each die 9 to the opening 20 through the slit 19 by capillary action. In the present invention, since the melt 21 is thinly raised and supplied through the slit 19 in a state in which the reaction between the atmosphere and the crucible 5 forming material is suppressed, the melt reservoir 22 is always kept in a uniform composition and concentration. It becomes possible to form. Therefore, the pulling growth from the melt reservoir 22 made it possible to realize the formation of a content of 5000 ppm or less and a uniform light emission amount over the length L. Further, with regard to Ce or Mg, a uniform light emission amount in the longitudinal direction can be formed by forming the melt reservoir 22 with a uniform composition and concentration.

その検証過程に於いて雰囲気ガスを窒素雰囲気としたEFG法により検証も行った。しかしこの場合は例えばMoと窒素が反応してしまい、その反応により発光体2への坩堝5形成材料の含有が促進された。その結果、発光体2へのMo含有量が5000ppmを超えてしまい、20放射長の特性が実現出来なかった。   In the verification process, verification was also performed by the EFG method in which the atmosphere gas was a nitrogen atmosphere. However, in this case, for example, Mo reacts with nitrogen, and the reaction promotes the inclusion of the crucible 5 forming material in the luminous body 2. As a result, the Mo content in the luminous body 2 exceeded 5000 ppm, and the characteristics of 20 radiation length could not be realized.

更に、発光体2の組成式を(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)とし、EFG法で成長させる事でCe又はMgの少なくとも1種を発光体2の長手方向に分布させると共に、発光体2の製造時に使用する坩堝5の形成材料をMo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種とし、それら形成材料の原子を5000ppm以下(但し0ppmは含まない)で発光体2に含有させる。このような組成や原子含有量の設定により、均一な発光量で発光して20放射長の特性が実現可能な発光体2を、EFG法により製造する事が出来る。 Further, the composition formula of the luminous body 2 is (Ce, Mg) x R 3 -x M 5 O 12 (where 0.0001 ≦ x ≦ 0.3, R is selected from La, Pr, Gd, Tb, Yb, Y, Lu) 1 or more, and M is one or more selected from Al, Lu, Ga, and Sc), and at least one of Ce or Mg is distributed in the longitudinal direction of the light emitter 2 by growing by EFG method. At the same time, the material for forming the crucible 5 used for manufacturing the light emitter 2 is at least one of Mo, W, Ir, Re, Ru, Pt, and Rh, and the atoms of these materials are 5000 ppm or less (however, 0 ppm is not included) In the luminous body 2 is contained. By setting the composition and the atomic content as described above, the light emitter 2 capable of emitting light with a uniform light emission amount and realizing the characteristics of 20 emission lengths can be manufactured by the EFG method.

更に、前記組成や原子含有量の設定により、発光体2は発光量60000フォトン/MeV未満の特性も実現する事が可能となる。   Furthermore, by setting the composition and the atomic content, the light emitter 2 can also realize characteristics with a light emission amount of less than 60000 photons / MeV.

なお本発明は、前述の実施形態に限定するものでは無く、その技術的思想の範囲から逸脱しない範囲の構成による変更が可能である。   In addition, this invention is not limited to the above-mentioned embodiment, The change by the structure of the range which does not deviate from the range of the technical idea is possible.

以下に本発明に係る各実施例を説明するが、本発明は以下の実施例にのみ限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

以下、本発明に係る実施例1及び実施例2の発光体とその製造方法を説明する。本実施例に係る発光体の製造装置として、図2に示すEFG法による製造装置1を用いた。坩堝5の形成材料はMo製とし、雰囲気ガスにアルゴンガスを用いると共に、ヒータ7と断熱材10を共にカーボン製とした。   Hereinafter, the light emitters according to the first and second embodiments and the manufacturing method thereof according to the present invention will be described. As the light emitting device manufacturing apparatus according to this example, the manufacturing apparatus 1 by the EFG method shown in FIG. 2 was used. The material for forming the crucible 5 was made of Mo, argon gas was used as the atmospheric gas, and both the heater 7 and the heat insulating material 10 were made of carbon.

引き上げ成長させる発光体は単結晶でその組成式は、実施例1と実施例2で共にCe0.05Lu2.95Al5O12とし、EFG法で引き上げ成長させる事でCeを発光体の長手方向(長さL方向)に亘って分布させた。 The phosphor to be grown by growth is a single crystal, and the composition formula is Ce 0.05 Lu 2.95 Al 5 O 12 in both Example 1 and Example 2, and Ce is grown in the longitudinal direction (long) by the EFG method. (L direction).

発光体は、図1に示すように長手方向の寸法を有し、平面方向の形状を長方形とした。幅Wは実施例1が10mmに設定すると共に、実施例2は8mmとした。厚さTは実施例1が2mmに設定すると共に、実施例2は8mmとした。更に長さLは、2つの実施例で共に280mmに設定した。   As shown in FIG. 1, the light emitter has a dimension in the longitudinal direction and a rectangular shape in the planar direction. The width W was set to 10 mm in Example 1 and 8 mm in Example 2. The thickness T was set to 2 mm in Example 1 and 8 mm in Example 2. Furthermore, the length L was set to 280 mm in both examples.

引き上げた成長させた後の発光体には、何れも研削または研磨などの表面加工は施さず、As-grown単結晶とし、Mo含有量を測定した。Mo含有量の測定は、ICP-AESにより行った。その結果、実施例1は221ppm、実施例2は13ppmであった。   None of the light-emitting bodies after the pulled growth was subjected to surface processing such as grinding or polishing, and the As-grown single crystal was used, and the Mo content was measured. The Mo content was measured by ICP-AES. As a result, Example 1 was 221 ppm and Example 2 was 13 ppm.

一方比較例1及び比較例2として、図2に示すEFG法による製造装置1を用いて、発光体を作製した。2つの比較例が前記各実施例と異なる点は、雰囲気ガスを窒素雰囲気とした点のみであり、その他では比較例1は実施例1と同一とし、比較例2は実施例2と同一とした。引き上げた成長させた発光体のMo含有量を測定した結果、比較例1は5005ppm、比較例2は5011ppmであった。   On the other hand, as Comparative Example 1 and Comparative Example 2, a light emitter was manufactured using the manufacturing apparatus 1 by the EFG method shown in FIG. The only difference between the two comparative examples from the previous examples is that the atmosphere gas was changed to a nitrogen atmosphere. Otherwise, Comparative Example 1 was the same as Example 1, and Comparative Example 2 was the same as Example 2. . As a result of measuring the Mo content of the grown phosphor that was pulled up, Comparative Example 1 was 5005 ppm, and Comparative Example 2 was 5011 ppm.

各実施例1、2及び各比較例1、2の発光体に、共に254nm〜365nmの紫外線領域の光を照射して、20放射長の特性の実現有無を確認した。その結果、実施例1及び2では20放射長が達成されている事が確認された。一方、比較例1及び2では20放射長が達成されていない事が確認された。   The light emitters of Examples 1 and 2 and Comparative Examples 1 and 2 were both irradiated with light in the ultraviolet region of 254 nm to 365 nm, and it was confirmed whether or not the 20 radiation length characteristic was realized. As a result, it was confirmed that 20 radiation lengths were achieved in Examples 1 and 2. On the other hand, in Comparative Examples 1 and 2, it was confirmed that 20 radiation length was not achieved.

次に、本発明に係る実施例3の発光体とその製造方法を説明する。実施例3に係る発光体の製造装置として、図2に示すEFG法による製造装置1を用いた。坩堝5の形成材料はMo製とし、雰囲気ガスにアルゴンガスを用いると共に、ヒータ7と断熱材10を共にカーボン製とした。   Next, the light emitter of Example 3 and the method for manufacturing the same according to the present invention will be described. As the light emitting device manufacturing apparatus according to Example 3, the manufacturing apparatus 1 by the EFG method shown in FIG. 2 was used. The material for forming the crucible 5 was made of Mo, argon gas was used as the atmospheric gas, and both the heater 7 and the heat insulating material 10 were made of carbon.

引き上げ成長させる発光体は単結晶でその組成式は、Mg0.0006Ce0.0294Lu2.97Al5O12とし、EFG法で引き上げ成長させる事でMgとCeを発光体の長手方向(長さL方向)に亘って分布させた。 The phosphor to be grown is a single crystal and its composition formula is Mg 0.0006 Ce 0.0294 Lu 2.97 Al 5 O 12, and Mg and Ce are grown in the longitudinal direction (length L direction) of the phosphor by pulling and growing by the EFG method. Distributed over.

発光体は、図1に示すように長手方向の寸法を有し、平面方向の形状を長方形とした。幅Wは10mm、厚さTは2mm、長さLは300mmに設定した。   As shown in FIG. 1, the light emitter has a dimension in the longitudinal direction and a rectangular shape in the planar direction. The width W was set to 10 mm, the thickness T was set to 2 mm, and the length L was set to 300 mm.

引き上げた成長させた後の発光体には、研削または研磨などの表面加工は施さず、As-grown単結晶とした。   The light-emitting body after the pulled growth was not subjected to surface processing such as grinding or polishing, and was made as an As-grown single crystal.

一方比較例3として、CZ(Czochralski)法により単結晶から成る発光体を作製した。比較例3が実施例3と異なる点は、発光体の作製方法がEFG法かCZ法かという点であり、発光体の組成式や幅W,厚さT,長さLは同一とした。   On the other hand, as Comparative Example 3, a light-emitting body made of a single crystal was produced by the CZ (Czochralski) method. The difference between Comparative Example 3 and Example 3 is that the method for producing the light emitter is the EFG method or the CZ method, and the composition formula, width W, thickness T, and length L of the light emitter are the same.

実施例3及び比較例3の発光体に、共に254nm〜365nmの紫外線領域の光を照射して、長さLに亘る発光量(フォトン/MeV)の変動を確認した。同時に、長さLに亘るCe濃度(mol%)及びMg濃度(mol%)の変動もICP-AESにより確認した。   The light emitters of Example 3 and Comparative Example 3 were both irradiated with light in the ultraviolet region of 254 nm to 365 nm, and fluctuations in the light emission amount (photon / MeV) over the length L were confirmed. At the same time, changes in Ce concentration (mol%) and Mg concentration (mol%) over the length L were also confirmed by ICP-AES.

その結果、どちらの発光体も長さL=300mmに亘って、発光量60000フォトン/MeV未満の特性を有する事が確認された。しかしながら、比較例3では、発光体端部からL=10mm部分での発光量30000フォトン/MeV、L=100mm部分での発光量27000フォトン/MeV、L=200mm部分での発光量15000フォトン/MeV、L=300mm部分での発光量9000フォトン/MeVであった。以上の結果から、比較例3では発光体の長手方向の全長に亘る発光量の変動が±10%の範囲内に収まらず、長手方向に亘って均一な発光量が実現できていない事が確認された。   As a result, it was confirmed that both of the illuminants had characteristics with a light emission amount of less than 60000 photons / MeV over a length L = 300 mm. However, in Comparative Example 3, the light emission amount is 30000 photons / MeV at the L = 10 mm portion from the end of the light emitter, the light emission amount is 27000 photons / MeV at the L = 100 mm portion, and the light emission amount is 15000 photons / MeV at the L = 200 mm portion. , L = 300 photons / MeV at 300 mm. From the above results, in Comparative Example 3, it was confirmed that the variation of the light emission amount over the entire length in the longitudinal direction of the light emitter was not within ± 10%, and a uniform light emission amount could not be realized in the longitudinal direction. It was done.

一方、実施例3では発光体端部からL=10mm部分での発光量30500フォトン/MeV、L=100mm部分での発光量30200フォトン/MeV、L=200mm部分での発光量29500フォトン/MeV、L=300mm部分での発光量30400フォトン/MeVであった。以上の結果から、実施例3では発光体の長手方向の全長に亘る発光量の変動が±10%の範囲内に収まっており、長手方向に亘って均一な発光量が実現できている事が確認された。   On the other hand, in Example 3, the light emission amount 30500 photons / MeV at the L = 10 mm portion from the end of the light emitter, the light emission amount 30200 photons / MeV at the L = 100 mm portion, the light emission amount 29500 photons / MeV at the L = 200 mm portion, The light emission amount at L = 300 mm portion was 30400 photons / MeV. From the above results, in Example 3, the variation in the light emission amount over the entire length in the longitudinal direction of the light emitter is within a range of ± 10%, and a uniform light emission amount in the longitudinal direction can be realized. confirmed.

また、実施例3に於けるCe濃度及びMg濃度の変動は、発光体端部からL=10mm部分でCe濃度0.99mol%,Mg濃度0.022mol%、L=100mm部分でCe濃度1.00mol%,Mg濃度0.022mol%、L=200mm部分でCe濃度1.01mol%,Mg濃度0.022mol%、L=300mm部分でCe濃度1.01mol%,Mg濃度0.022mol%であった。   Further, the Ce concentration and the Mg concentration in Example 3 are as follows: Ce concentration is 0.99 mol%, Mg concentration is 0.022 mol%, L concentration is 0.022 mol%, and Ce concentration is 1.00 mol% at the L = 100 mm portion from the edge of the light emitter. The Mg concentration was 0.022 mol%, the L concentration was 200 mm, the Ce concentration was 1.01 mol%, the Mg concentration was 0.022 mol%, the L concentration was 300 mm, the Ce concentration was 1.01 mol%, and the Mg concentration was 0.022 mol%.

一方、比較例3に於けるCe濃度及びMg濃度の変動は、発光体端部からL=10mm部分でCe濃度0.12mol%,Mg濃度0.002mol%、L=100mm部分でCe濃度0.24mol%,Mg濃度0.005mol%、L=200mm部分でCe濃度0.68mol%,Mg濃度0.009mol%、L=300mm部分でCe濃度2.20mol%,Mg濃度0.029mol%であった。   On the other hand, the changes in Ce concentration and Mg concentration in Comparative Example 3 were Ce concentration of 0.12 mol%, Mg concentration of 0.002 mol% at L = 10 mm portion from the edge of the light emitter, Ce concentration of 0.24 mol% at L = 100 mm portion, The Mg concentration was 0.005 mol%, the L concentration was 200 mm, the Ce concentration was 0.68 mol%, the Mg concentration was 0.009 mol%, the L concentration was 300 mm, the Ce concentration was 2.20 mol%, and the Mg concentration was 0.029 mol%.

以上の結果から、長手方向に亘るCe濃度の変動値及びMg濃度の変動値は、共に比較例3の方が実施例3よりも大きい事が確認された。   From the above results, it was confirmed that both the variation value of Ce concentration and the variation value of Mg concentration in the longitudinal direction were larger in Comparative Example 3 than in Example 3.

1 発光体の製造装置
2 発光体
2a 主面
3 育成容器
4 引き上げ容器
5 坩堝
6 坩堝駆動部
7 ヒータ
8 電極
9 ダイ
10 断熱材
11 雰囲気ガス導入口
12 排気口
13 シャフト
14 シャフト駆動部
15 ゲートバルブ
16 基板出入口
17 種結晶
18 仕切り板
19 スリット
20 開口部
21 融液
22 融液溜まり
28 結晶面
30 斜面
L 発光体の長さ
W 発光体の幅
T 発光体の厚さ
TS スリットの幅
WD ダイの幅
DESCRIPTION OF SYMBOLS 1 Light-emitting body manufacturing apparatus 2 Light-emitting body
2a Main surface 3 Growth vessel 4 Lifting vessel 5 Crucible 6 Crucible drive 7 Heater 8 Electrode 9 Die
10 Insulation
11 Atmospheric gas inlet
12 Exhaust vent
13 Shaft
14 Shaft drive
15 Gate valve
16 Board entry / exit
17 seed crystals
18 Partition plate
19 Slit
20 opening
21 Melt
22 Melt pool
28 crystal plane
30 Slope L Length of illuminant W Width of illuminant T Thickness of illuminant
TS slit width
WD die width

Claims (8)

単結晶から成り、長手方向の寸法を有し、その寸法が280mm以上である発光体。   A light-emitting body made of a single crystal and having a dimension in the longitudinal direction and having a dimension of 280 mm or more. 組成式が(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)で表されるガーネット構造を有し、
Ce又はMgの少なくとも1種が前記長手方向に分布している請求項1に記載の発光体。
Composition formula is (Ce, Mg) x R 3-x M 5 O 12 (where 0.0001 ≦ x ≦ 0.3, R is one or more selected from La, Pr, Gd, Tb, Yb, Y, Lu, M Is one or more selected from Al, Lu, Ga, and Sc).
The light-emitting body according to claim 1, wherein at least one of Ce and Mg is distributed in the longitudinal direction.
Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子を、5000ppm以下(但し0ppmは含まない)含有している請求項1又は2に記載の発光体。   The light emitter according to claim 1 or 2, containing at least one atom of Mo, W, Ir, Re, Ru, Pt, and Rh in an amount of 5000 ppm or less (excluding 0 ppm). 前記発光体がAs-grown単結晶である請求項1〜3の何れかに記載の発光体。   The luminescent material according to claim 1, wherein the luminescent material is an As-grown single crystal. スリットを有すると共に、幅方向が平行に配置されたダイを坩堝に収容し、
坩堝に発光体の原料を投入して加熱し、発光体の原料を坩堝内で溶融して融液を用意し、
スリットを介してスリット上部に融液溜まりを形成し、
そのスリット上部の融液に種結晶を接触させて種結晶を引き上げることで、単結晶から成り、主面と280mm以上の長手方向の寸法を有する発光体を成長させる発光体の製造方法。
A die having a slit and arranged in parallel in the width direction is housed in a crucible,
The raw material of the luminous body is put into a crucible and heated, and the raw material of the luminous body is melted in the crucible to prepare a melt,
A melt pool is formed at the upper part of the slit through the slit,
A method of manufacturing a light emitting body, in which a seed crystal is brought into contact with the melt above the slit and the seed crystal is pulled up to grow a light emitting body made of a single crystal and having a major surface and a longitudinal dimension of 280 mm or more.
組成式が(Ce,Mg)xR3-xM5O12(但し、0.0001≦x≦0.3、RはLa, Pr, Gd, Tb, Yb, Y, Luから選ばれた1種以上、MはAl, Lu, Ga, Scから選ばれた1種以上である)で表されるガーネット構造を前記発光体が有し、
Ce又はMgの少なくとも1種が前記長手方向に分布している請求項5に記載の発光体の製造方法。
Composition formula is (Ce, Mg) x R 3-x M 5 O 12 (where 0.0001 ≦ x ≦ 0.3, R is one or more selected from La, Pr, Gd, Tb, Yb, Y, Lu, M Is one or more selected from Al, Lu, Ga, and Sc), and the light emitter has a garnet structure represented by:
The manufacturing method of the light-emitting body according to claim 5, wherein at least one of Ce and Mg is distributed in the longitudinal direction.
前記発光体が、Mo、W、Ir、Re、Ru、Pt、Rhの少なくとも1種の原子を、5000ppm以下(但し0ppmは含まない)含有している請求項5又は6に記載の発光体の製造方法。   The phosphor according to claim 5 or 6, wherein the phosphor contains 5000 ppm or less (excluding 0 ppm) of at least one atom of Mo, W, Ir, Re, Ru, Pt, and Rh. Production method. 前記発光体がAs-grown単結晶である請求項5〜7の何れかに記載の発光体の製造方法。   The method of manufacturing a light emitter according to claim 5, wherein the light emitter is an As-grown single crystal.
JP2017180019A 2017-09-20 2017-09-20 Luminous body and method for manufacturing the luminous body Active JP7007666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017180019A JP7007666B2 (en) 2017-09-20 2017-09-20 Luminous body and method for manufacturing the luminous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017180019A JP7007666B2 (en) 2017-09-20 2017-09-20 Luminous body and method for manufacturing the luminous body

Publications (2)

Publication Number Publication Date
JP2019056038A true JP2019056038A (en) 2019-04-11
JP7007666B2 JP7007666B2 (en) 2022-02-10

Family

ID=66107033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017180019A Active JP7007666B2 (en) 2017-09-20 2017-09-20 Luminous body and method for manufacturing the luminous body

Country Status (1)

Country Link
JP (1) JP7007666B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181618A1 (en) * 2018-03-23 2019-09-26 Tdk株式会社 Phosphor and light-generating device
JP2020090629A (en) * 2018-12-06 2020-06-11 パナソニックIpマネジメント株式会社 Phosphor and semiconductor light-emitting device using the same
JP2021059686A (en) * 2019-10-09 2021-04-15 パナソニックIpマネジメント株式会社 Phosphor and semiconductor light emitting device using the same
WO2021079793A1 (en) * 2019-10-25 2021-04-29 アダマンド並木精密宝石株式会社 Ceramic composite and production method for ceramic composite
WO2022163604A1 (en) * 2021-01-27 2022-08-04 アダマンド並木精密宝石株式会社 Light emitter, wristwatch, and method for manufacturing light emitter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024549A (en) * 2006-07-21 2008-02-07 Tohoku Univ Method and apparatus for manufacturing single crystal
JP4465481B2 (en) * 2000-05-10 2010-05-19 並木精密宝石株式会社 Single crystal material manufacturing method, seed substrate, die, and single crystal material manufacturing apparatus
JP2016524316A (en) * 2013-04-22 2016-08-12 クライツール スポル.エス アール.オー.Crytur Spol.S R.O. White light-emitting diode having single-crystal phosphor and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465481B2 (en) * 2000-05-10 2010-05-19 並木精密宝石株式会社 Single crystal material manufacturing method, seed substrate, die, and single crystal material manufacturing apparatus
JP2008024549A (en) * 2006-07-21 2008-02-07 Tohoku Univ Method and apparatus for manufacturing single crystal
JP2016524316A (en) * 2013-04-22 2016-08-12 クライツール スポル.エス アール.オー.Crytur Spol.S R.O. White light-emitting diode having single-crystal phosphor and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181618A1 (en) * 2018-03-23 2019-09-26 Tdk株式会社 Phosphor and light-generating device
JPWO2019181618A1 (en) * 2018-03-23 2021-03-25 Tdk株式会社 Fluorescent material and light source device
US11634630B2 (en) 2018-03-23 2023-04-25 Tdk Corporation Phosphor and light source device
JP2020090629A (en) * 2018-12-06 2020-06-11 パナソニックIpマネジメント株式会社 Phosphor and semiconductor light-emitting device using the same
JP2021059686A (en) * 2019-10-09 2021-04-15 パナソニックIpマネジメント株式会社 Phosphor and semiconductor light emitting device using the same
WO2021079793A1 (en) * 2019-10-25 2021-04-29 アダマンド並木精密宝石株式会社 Ceramic composite and production method for ceramic composite
WO2022163604A1 (en) * 2021-01-27 2022-08-04 アダマンド並木精密宝石株式会社 Light emitter, wristwatch, and method for manufacturing light emitter

Also Published As

Publication number Publication date
JP7007666B2 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
JP7007666B2 (en) Luminous body and method for manufacturing the luminous body
JP4760236B2 (en) Single crystal heat treatment method
JP4770337B2 (en) Single crystal heat treatment method
EP3592825B1 (en) Garnet scintillator co-doped with monovalent ion
JP2007016197A (en) Single crystal for scintillator and its production process
US8778225B2 (en) Iodide single crystal, production process thereof, and scintillator comprising iodide single crystal
CN113529168A (en) Li+Zero-dimensional perovskite structure doped metal halide scintillation crystal and preparation method and application thereof
Vaněček et al. Advanced halide scintillators: From the bulk to nano
JP6011835B1 (en) Scintillator
CN117552106B (en) Rare earth-based zero-dimensional perovskite halide scintillation monocrystal as well as preparation method and application thereof
US20120080645A1 (en) Suppression Of Crystal Growth Instabilities During Production Of Rare-Earth Oxyorthosilicate Crystals
CN105908257B (en) Calcium ytterbium ion is co-doped with YAG fast flashing crystal and preparation method thereof
CN106048725B (en) Silicon ytterbium ion is co-doped with YAG fast flashing crystal and preparation method thereof
US8496851B2 (en) Scintillation materials in single crystalline, polycrystalline and ceramic form
US20050161638A1 (en) Luminous material for scintillator comprising single crystal of yb mixed crystal oxide
JP4993284B2 (en) Manufacturing method of scintillator single crystal and single crystal for scintillator
CN101092746B (en) Combined different valence ions doped crystal of lead tungstate with high light yield, and prepartion method
Sarukura et al. Czochralski growth of oxides and fluorides
JP5365720B2 (en) Single crystal for scintillator and method for producing the same
JP5293602B2 (en) Single crystal scintillator material and manufacturing method thereof
CN115216840B (en) Method for preparing lithium thallium co-doped sodium iodide scintillation crystal by ion compensation method
JP5055910B2 (en) Single crystal heat treatment method
CN106048724A (en) Sodium, barium and ytterbium ion co-doped YAG ultrafast scintillation crystal and preparation method thereof
Seth et al. The effect of pre-irradiation annealing on the thermoluminescence of LiF: Mg, Cu, P phosphor grown by EFG technique
JP2018070769A (en) Scintillator crystal, heat treatment method for manufacturing scintillator crystal and manufacturing method of scintillator crystal

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211223

R150 Certificate of patent or registration of utility model

Ref document number: 7007666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350