JP7007128B2 - Deterioration detection method - Google Patents

Deterioration detection method Download PDF

Info

Publication number
JP7007128B2
JP7007128B2 JP2017147149A JP2017147149A JP7007128B2 JP 7007128 B2 JP7007128 B2 JP 7007128B2 JP 2017147149 A JP2017147149 A JP 2017147149A JP 2017147149 A JP2017147149 A JP 2017147149A JP 7007128 B2 JP7007128 B2 JP 7007128B2
Authority
JP
Japan
Prior art keywords
surface layer
layer portion
temperature
distribution equipment
power distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017147149A
Other languages
Japanese (ja)
Other versions
JP2019027903A (en
Inventor
顕守 松尾
哲志 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2017147149A priority Critical patent/JP7007128B2/en
Publication of JP2019027903A publication Critical patent/JP2019027903A/en
Application granted granted Critical
Publication of JP7007128B2 publication Critical patent/JP7007128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、劣化検出方法に関し、さらに詳しくは、赤外線サーモグラフィ装置により被検物の表層部を撮影し、該撮影した被検物の表層部熱画像に基づいて、被検物の表層部における劣化箇所を特定する劣化検出方法に関する。 The present invention relates to a deterioration detection method, and more particularly, the surface layer portion of the test object is photographed by an infrared thermography device, and the deterioration in the surface layer portion of the test object is based on the photographed surface thermal image of the test object. The present invention relates to a deterioration detection method for specifying a location.

従来、絶縁材料からなる部品等の劣化検出方法として、例えば、パッシブサーモグラフィ法、アクティブサーモグラフィ法、浸透探傷試験等が一般に知られている。このパッシブサーモグラフィ法は、被検物の発熱等の熱変化を熱画像として異常部を検知する方法である(例えば、特許文献1参照)。また、アクティブサーモグラフィ法は、自ら熱を発生しない被検物に、外部から刺激(例えば、加熱、応力負荷による発熱、電磁気的な負荷による発熱等)を付加することで、熱応答の違いにより健全部と異常部を判定する方法である(例えば、特許文献2、3参照)。さらに、浸透探傷試験は、被検物に浸透液を塗布し、現像処理を行うことで、表面欠陥(例えば、クラック、ピンホール等)を検出する方法である。 Conventionally, as a deterioration detection method for parts made of an insulating material, for example, a passive thermography method, an active thermography method, a penetrant inspection test and the like are generally known. This passive thermography method is a method of detecting an abnormal portion by using a thermal image such as heat generation of a test object as a thermal image (see, for example, Patent Document 1). In addition, the active thermography method applies external stimuli (for example, heat generation due to heating, stress load, heat generation due to electromagnetic load, etc.) to the subject that does not generate heat by itself, and is sound due to the difference in heat response. This is a method for determining a portion and an abnormal portion (see, for example, Patent Documents 2 and 3). Further, the penetrant inspection is a method of detecting surface defects (for example, cracks, pinholes, etc.) by applying a penetrant to a test object and performing a developing process.

特開2014-238393号公報Japanese Unexamined Patent Publication No. 2014-238393 特開2016-156733号公報Japanese Unexamined Patent Publication No. 2016-156733 特開2010-210270号公報Japanese Unexamined Patent Publication No. 2010-21270

配電設備をはじめとして多くの設備・構造物は、高度経済成長期に大量施設され、近年の経済成長の停滞から設備更新サイクルが長期化している。例えば配電設備に用いられる絶縁材料からなる配電設備用部品においては、磁器のクラック(ひび割れ)や有機絶縁物のトラッキングによる表面汚損部等、表面に現れる劣化箇所の位置を特定して、その結果に基づいて設備更新することが望まれている。 Many facilities and structures, including power distribution facilities, are mass-equipped during the period of high economic growth, and the equipment renewal cycle has been prolonged due to the stagnation of economic growth in recent years. For example, in power distribution equipment parts made of insulating materials used for power distribution equipment, the positions of deteriorated parts appearing on the surface such as cracks in porcelain and surface stains due to tracking of organic insulators are specified, and the results are obtained. It is hoped that the equipment will be renewed based on this.

しかし、上記パッシブサーモグラフィ法では、配電設備用部品が発熱現象を示す状況では適用可能であるが、自ら発熱しない配電設備用部品には適用できない。また、上記アクティブサーモグラフィ法では、高所に設置され、かつ活線である配電設備に適用する場合、遠隔操作で加熱する必要がある。また、配電設備用部品において有機絶縁物のトラッキングによる表面汚損部に関しては熱変化を引き起こせないので検出できない。さらに、上記浸透探傷試験では、浸透液、現像液などの残留物質の影響が懸念される。なお、このような配電設備用部品以外の設備用部品や製品においても、表面に現れる劣化箇所の位置を正確に特定することが望まれている。 However, although the above passive thermography method can be applied in a situation where a component for distribution equipment shows a heat generation phenomenon, it cannot be applied to a component for distribution equipment that does not generate heat by itself. Further, in the above-mentioned active thermography method, when it is installed in a high place and applied to a distribution facility which is a live line, it is necessary to heat it by remote control. Further, in the parts for distribution equipment, the surface-stained portion due to the tracking of the organic insulating material cannot be detected because it cannot cause a thermal change. Further, in the penetrant inspection test, there is a concern about the influence of residual substances such as penetrants and developers. It is desired to accurately identify the position of the deteriorated portion appearing on the surface of equipment parts and products other than such power distribution equipment parts.

本発明は、上記現状に鑑みてなされたものであり、被検物の表層部に現れる劣化箇所の位置を正確に特定することができる劣化検出方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned current situation, and an object of the present invention is to provide a deterioration detection method capable of accurately specifying the position of a deterioration portion appearing on the surface layer of a test object.

上記問題を解決するために、請求項1に記載の発明は、赤外線サーモグラフィ装置により被検物の表層部を撮影し、該撮影した前記被検物の表層部熱画像に基づいて、前記被検物の表層部における劣化箇所を特定する方法において、前記被検物の表層部温度で気化することが可能な液体で表層部を濡らすか、若しくは前記被検物の表層部温度で気化することが可能な液化ガスを表層部へ噴霧する熱負荷付与ステップと、前記熱負荷付与ステップと同時に又は前記熱負荷付与ステップの後に、前記赤外線サーモグラフィ装置により撮影された前記表層部熱画像に基づいて前記被検物の表層部の温度変化を経時的に計測する温度観測ステップと、を含み、前記温度観測ステップにより計測された前記被検物の表層部の温度分布において、周辺部に比べて温度低下が生じている部位を劣化箇所と判断することを要旨とする。
請求項2に記載の発明は、請求項1記載の発明において、前記液体は、水又はアルコールであることを要旨とする。
請求項3に記載の発明は、請求項1記載の発明において、前記液化ガスは、沸点が-20℃以下の圧縮された液化ガスであることを要旨とする。
請求項4に記載の発明は、請求項1乃至3のいずれか一項に記載の発明において、前記熱負荷付与ステップの前に又は前記熱負荷付与ステップと同時に前記被検物の表層部を加熱する加熱ステップを含むことを要旨とする。
請求項5に記載の発明は、請求項1乃至4のいずれか一項に記載の発明において、前記温度観測ステップの最中に前記被検物の表層部に対して送風を行う送風ステップを含むことを要旨とする。
請求項6に記載の発明は、請求項1乃至5のいずれか一項に記載の発明において、前記熱負荷付与ステップは、前記被検物の表層部に前記液体を噴霧又は塗布することにより、若しくは前記被検物の表層部を前記液体に浸漬することにより、前記液体で表層部を濡らすことを要旨とする。
請求項7に記載の発明は、請求項1乃至6のいずれか一項に記載の発明において、前記被検物は、絶縁材料からなる配電設備用部品であることを要旨とする。
請求項8に記載の発明は、請求項7記載の発明において、前記劣化箇所は、前記配電設備用部品に生じたクラック及びトラッキングによる表面汚損部のうちの少なくとも1つであることを要旨とする。
In order to solve the above problem, in the invention according to claim 1, the surface layer portion of the subject is photographed by an infrared thermography device, and the subject is examined based on the photographed surface thermal image of the subject. In the method of identifying the deteriorated portion on the surface layer of the object, the surface layer may be wetted with a liquid that can be vaporized at the surface temperature of the subject, or vaporized at the surface temperature of the subject. The surface layer thermal image taken by the infrared thermography apparatus is used as the basis for the heat load application step of spraying a possible liquefied gas onto the surface layer portion, and at the same time as the heat load application step or after the heat load application step. Including the temperature observation step of measuring the temperature change of the surface layer portion of the inspection object over time, the temperature distribution of the surface layer portion of the inspection object measured by the temperature observation step has a temperature decrease as compared with the peripheral portion. The gist is to judge the affected part as a deteriorated part.
The invention according to claim 2 is the invention according to claim 1, wherein the liquid is water or alcohol.
The invention according to claim 3 is the gist of the invention according to claim 1, wherein the liquefied gas is a compressed liquefied gas having a boiling point of −20 ° C. or lower.
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the surface layer portion of the test object is heated before the heat load applying step or at the same time as the heat load applying step. The gist is to include a heating step to be performed.
The invention according to claim 5 includes, in the invention according to any one of claims 1 to 4, a blowing step in which air is blown to the surface layer portion of the subject during the temperature observation step. The gist is that.
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the heat load applying step is performed by spraying or applying the liquid to the surface layer portion of the test object. Alternatively, the gist is to wet the surface layer portion with the liquid by immersing the surface layer portion of the test object in the liquid.
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the test object is a component for power distribution equipment made of an insulating material.
The invention according to claim 8 is characterized in that, in the invention according to claim 7, the deteriorated portion is at least one of a crack generated in the component for distribution equipment and a surface-stained portion due to tracking. ..

本発明の劣化検出方法によると、被検物の表層部(表面)温度で気化することが可能な液体で表層部を濡らすか、若しくは被検物の表層部温度で気化することが可能な液化ガスを表層部へ噴霧する熱負荷付与ステップと、熱負荷付与ステップと同時に又は前記熱負荷付与ステップの後に、前記赤外線サーモグラフィ装置により撮影された前記表層部熱画像に基づいて前記被検物の表層部の温度変化を経時的に計測する温度観測ステップと、を含む。そして、前記温度観測ステップにより計測された前記被検物の表層部の温度分布において、周辺部に比べて温度低下が生じている部位を劣化箇所と判断する。これにより、被検物の表層部に劣化箇所が存在する場合、熱負荷付与ステップにおいて、液体で表層部を濡らすか、若しくは液化ガスを表層部へ噴霧することにより、健全部では、液体又は気化ガスがすみやかに気化して温度変化が緩和するのに対し、劣化箇所では、液体が滞留し気化が継続することで冷却されるか、若しくは液化ガスの気化により劣化箇所の空隙が冷却されて、温度低下が比較的長い時間継続する。そのため、温度観測ステップにより計測された被検物の表層部の温度において、劣化箇所では、健全部に比べて大きな温度低下が認められ、被検物の表層部に現れている劣化箇所の位置を正確に特定することができる。
また、前記液体が、水又はアルコールである場合は、被検物の表層部への残留液体を無くすことができる。
また、前記液化ガスが、沸点が-20℃以下の圧縮された液化ガスである場合は、被検物の表層部への残留液化ガスを無くすことができる。
また、前記熱負荷付与ステップの前に又は前記熱負荷付与ステップと同時に前記被検物の表層部を加熱する加熱ステップを含む場合は、被検物の表層部での液体又は液化ガスの気化が促進されるため、劣化箇所では健全部に比べて更に大きく温度低下する。
また、前記温度観測ステップの最中に前記被検物の表層部に対して送風を行う送風ステップを含む場合は、被検物の表層部での液体又は液化ガスの気化が促進されるため、劣化箇所では健全部に比べて更に大きく温度低下する。
また、前記熱負荷付与ステップが、前記被検物の表層部に前記液体を噴霧又は塗布することにより、若しくは前記被検物の表層部を前記液体に浸漬することにより、前記液体で表層部を濡らす場合は、被検物の表層部を液体で効果的に濡らすことができる。
また、前記被検物が、絶縁材料からなる配電設備用部品である場合は、配電設備用部品の表層部に現れる劣化箇所の位置を正確に特定できる。
さらに、前記劣化部が、前記配電設備用部品に生じたクラック及びトラッキングによる表面汚損部のうちの少なくとも1つである場合は、配電設備用部品に生じたクラック及び/又はトラッキングによる表面汚損部を検出できる。
According to the deterioration detection method of the present invention, the surface layer portion is wetted with a liquid that can be vaporized at the surface layer portion (surface) temperature of the test object, or liquefaction that can be vaporized at the surface layer portion temperature of the test object. The surface layer of the subject based on the surface layer thermal image taken by the infrared thermography apparatus at the same time as the heat load applying step of spraying the gas onto the surface layer portion and the heat load applying step or after the heat load applying step. Includes a temperature observation step that measures the temperature change of the unit over time. Then, in the temperature distribution of the surface layer portion of the subject measured by the temperature observation step, the portion where the temperature is lower than the peripheral portion is determined to be a deteriorated portion. As a result, if there is a deteriorated part on the surface layer of the test object, the surface layer is wet with a liquid or liquefied gas is sprayed onto the surface layer in the heat load applying step, so that the healthy part is liquid or vaporized. While the gas is quickly vaporized and the temperature change is mitigated, in the deteriorated part, the liquid stays and is cooled by the continuous vaporization, or the voids in the deteriorated part are cooled by the vaporization of the liquefied gas. The temperature drop continues for a relatively long time. Therefore, in the temperature of the surface layer of the test object measured by the temperature observation step, a large temperature drop was observed in the deteriorated part compared to the healthy part, and the position of the deteriorated part appearing on the surface layer of the test object was determined. It can be identified accurately.
Further, when the liquid is water or alcohol, the residual liquid on the surface layer portion of the test object can be eliminated.
Further, when the liquefied gas is a compressed liquefied gas having a boiling point of −20 ° C. or lower, the residual liquefied gas on the surface layer portion of the test object can be eliminated.
Further, when the heating step of heating the surface layer portion of the test object is included before the heat load application step or at the same time as the heat load application step, the vaporization of the liquid or liquefied gas at the surface layer portion of the test object is performed. Since it is promoted, the temperature of the deteriorated part is further lowered as compared with that of the healthy part.
Further, when the air blowing step for blowing air to the surface layer portion of the test object is included in the temperature observation step, the vaporization of the liquid or liquefied gas on the surface layer portion of the test object is promoted. In the deteriorated part, the temperature drops even more than in the healthy part.
Further, in the heat load applying step, the surface layer portion is coated with the liquid by spraying or applying the liquid to the surface layer portion of the test object, or by immersing the surface layer portion of the test object in the liquid. When wetting, the surface layer of the subject can be effectively wetted with a liquid.
Further, when the test object is a component for distribution equipment made of an insulating material, the position of a deteriorated portion appearing on the surface layer portion of the component for distribution equipment can be accurately specified.
Further, when the deteriorated portion is at least one of the cracks generated in the distribution equipment component and the surface contamination portion due to tracking, the crack and / or the surface contamination portion due to tracking generated in the distribution equipment component is removed. Can be detected.

本発明について、本発明による典型的な実施形態の非限定的な例を挙げ、言及された複数の図面を参照しつつ以下の詳細な記述にて更に説明するが、同様の参照符号は図面のいくつかの図を通して同様の部品を示す。
実施例及び参考例に係る劣化検出方法を説明するための説明図であり、(a)は被検物の表層部を加熱する加熱ステップを示し、(b)は被検物の表層部に液体又は液化ガスを噴霧する熱負荷付与ステップとともに、被検物の表層部を赤外線サーモグラフィ装置で計測する温度観測ステップを示す。 他の実施例及び参考例に係る劣化検出方法を説明するための説明図であり、(a)は被検物の表層部を加熱する加熱ステップとともに水浸漬する熱負荷付与ステップを示し、(b)は被検物の表層部を赤外線サーモグラフィ装置で計測する温度観測ステップを示す。 液体又は液化ガスの気化による被検物の表層部の温度変化を説明するための説明図であり、(a)は液体又は液化ガスを被検物の表層部に噴霧した状態を示し、(b)は液体又は液化ガスの気化状態を示す。 上記被検物の例を説明するための説明図であり、(a)は高圧カットアウトを示し、(b)は高圧引下線を示す。 実施例1-4及び参考例1-3に係る劣化検出方法(被検物;高圧カットアウト)の評価結果を示す表である。 実施例5-9及び参考例4、5に係る劣化検出方法(被検物;高圧引下線)の評価結果を示す表である。 実施例1に係る劣化検出方法(エタノール噴霧)で撮影された表層部熱画像の一例を示す。 実施例2に係る劣化検出方法(液化ガス噴霧)で撮影された表層部熱画像の一例を示す。 実施例3に係る劣化検出方法(水浸漬で送風無し)で撮影された表層部熱画像の一例を示す。 実施例4に係る劣化検出方法(水浸漬で送風有り)で撮影された表層部熱画像の一例を示す。 実施例5に係る劣化検出方法(エタノール噴霧)で撮影された表層部熱画像の一例を示す。 実施例6に係る劣化検出方法(水蒸気噴霧)で撮影された表層部熱画像の一例を示す。 実施例7に係る劣化検出方法(水噴霧で送風有り)で撮影された表層部熱画像の一例を示す。 実施例8に係る劣化検出方法(水浸漬で送風無し)で撮影された表層部熱画像の一例を示す。 実施例9に係る劣化検出方法(水浸漬で送風有り)で撮影された表層部熱画像の一例を示す。
The present invention will be further described in the following detailed description with reference to the plurality of references mentioned with reference to non-limiting examples of typical embodiments according to the invention, although similar reference numerals are in the drawings. Similar parts are shown through several figures.
It is explanatory drawing for demonstrating the deterioration detection method which concerns on Example and a reference example, (a) shows the heating step which heats the surface layer part of a test object, (b) is a liquid on the surface layer part of a test object. Alternatively, the temperature observation step of measuring the surface layer portion of the test object with an infrared thermography device is shown together with the heat load applying step of spraying the liquefied gas. It is explanatory drawing for demonstrating the deterioration detection method which concerns on other Example and a reference example, (a) shows the heating step which heats the surface layer part of a test object, and also shows the heat load application step of immersing in water together with (b). ) Indicates a temperature observation step in which the surface layer of the subject is measured by an infrared thermography device. It is explanatory drawing for demonstrating the temperature change of the surface layer part of a test object by vaporization of a liquid or liquefied gas, (a) shows the state which sprayed liquid or liquefied gas on the surface layer part of a test object, (b). ) Indicates the vaporized state of the liquid or the liquefied gas. It is explanatory drawing for demonstrating the example of the said subject, (a) shows a high voltage cutout, (b) shows a high voltage underline. It is a table which shows the evaluation result of the deterioration detection method (subject; high voltage cutout) which concerns on Example 1-4 and Reference Example 1-3. It is a table which shows the evaluation result of the deterioration detection method (subject; high voltage underline) which concerns on Example 5-9 and Reference Example 4, 5. An example of a surface thermal image taken by the deterioration detection method (ethanol spray) according to Example 1 is shown. An example of a surface thermal image taken by the deterioration detection method (liquefied gas spray) according to the second embodiment is shown. An example of a surface thermal image taken by the deterioration detection method according to Example 3 (immersed in water without blowing air) is shown. An example of a surface thermal image taken by the deterioration detection method according to Example 4 (with air blown by immersion in water) is shown. An example of a surface thermal image taken by the deterioration detection method (ethanol spray) according to Example 5 is shown. An example of a surface thermal image taken by the deterioration detection method (steam spray) according to Example 6 is shown. An example of a surface thermal image taken by the deterioration detection method according to Example 7 (with air blown by water spraying) is shown. An example of a surface thermal image taken by the deterioration detection method according to Example 8 (immersed in water without blowing air) is shown. An example of a surface thermal image taken by the deterioration detection method according to Example 9 (with air blown by immersion in water) is shown.

本実施形態に係る劣化検出方法は、例えば、図1及び図2に示すように、赤外線サーモグラフィ装置(7)により被検物(1A、1B)の表層部(表面)(2)を撮影し、該撮影した被検物の表層部熱画像に基づいて、被検物の表層部における劣化箇所(3A、3B)を特定する方法において、被検物の表層部温度で気化することが可能な液体(11)で表層部を濡らすか、若しくは被検物の表層部温度で気化することが可能な液化ガス(12)を表層部へ噴霧する熱負荷付与ステップと、熱負荷付与ステップと同時に又は熱負荷付与ステップの後に、赤外線サーモグラフィ装置(7)により撮影された表層部熱画像に基づいて被検物(1A、1B)の表層部(2)の温度変化を経時的に計測する温度観測ステップと、を含む。そして、例えば、図3に示すように、温度観測ステップにより計測された被検物(1A、1B)の表層部の温度分布において、周辺部に比べて温度低下が生じている部位を劣化箇所(3A、3B)と判断する。 In the deterioration detection method according to the present embodiment, for example, as shown in FIGS. 1 and 2, the surface layer portion (surface) (2) of the test object (1A, 1B) is photographed by the infrared thermography device (7). A liquid that can be vaporized at the surface temperature of the subject in the method of identifying the deteriorated portion (3A, 3B) in the surface of the subject based on the photographed thermal image of the surface of the subject. At the same time as or at the same time as the heat load applying step, the heat load applying step of spraying the liquefied gas (12) capable of wetting the surface layer portion in (11) or vaporizing at the surface layer temperature of the test object onto the surface layer portion, or heat. After the load application step, a temperature observation step of measuring the temperature change of the surface layer (2) of the test object (1A, 1B) over time based on the surface thermal image taken by the infrared thermography device (7). ,including. Then, for example, as shown in FIG. 3, in the temperature distribution of the surface layer portion of the test object (1A, 1B) measured by the temperature observation step, the portion where the temperature is lowered as compared with the peripheral portion is a deteriorated portion (deteriorated portion). It is judged as 3A, 3B).

上記被検物(1A、1B)の種類、用途、材質等は特に問わない。この被検物としては、例えば、絶縁材料からなる配電設備用部品(例えば、図4等参照)、配電設備以外の設備に用いられる部品や製品等が挙げられる。この配電設備部品としては、例えば、高圧カットアウト、高圧ピン碍子等の磁器製の部品や高圧引下線等の有機絶縁物で電線を被覆した部品などが挙げられる。さらに、被検物として配電設備用部品を採用する場合、例えば、配電設備用部品は、配電設備から取り外された状態で劣化箇所の特定が行われてもよいし、高所に設置された状態(即ち、自然環境内に配置された状態)のままで劣化箇所の特定が行われてもよい。 The type, use, material, etc. of the test object (1A, 1B) are not particularly limited. Examples of the test object include parts for distribution equipment made of an insulating material (for example, see FIG. 4 and the like), parts and products used for equipment other than distribution equipment, and the like. Examples of the power distribution equipment parts include porcelain parts such as high-voltage cutouts and high-voltage pin insulators, and parts whose electric wires are covered with an organic insulator such as high-voltage underline. Further, when the distribution equipment parts are adopted as the test object, for example, the distribution equipment parts may be identified as deteriorated parts in a state of being removed from the distribution equipment, or may be installed in a high place. (That is, the deteriorated part may be specified while it is placed in the natural environment).

上記液体(11)の種類等は特に問わない。この液体としては、例えば、水、アルコール、水蒸気等が挙げられる。これらのうち、取扱い性及び気化熱の大きさ(吸熱性)の観点から、水であることが好ましい。この水としては、例えば、後述のように被検物が雨中に曝されていることを考慮して雨水を利用することができる。また、被検物の表層部への濡れ性の観点から、アルコールであることが好ましい。このアルコールとしては、例えば、メタノール、エタノール、プロパノール、ブタノール等が挙げられる。これらのうち、作業環境性の観点から、エタノールであることが好ましい。さらに、上記液化ガス(12)の種類等は特に問わない。この液化ガスは、例えば、沸点が-20℃以下の圧縮された液化ガスであることができる。なお、液化ガスの沸点は、通常、-100℃以上である。 The type of the liquid (11) is not particularly limited. Examples of this liquid include water, alcohol, water vapor and the like. Of these, water is preferable from the viewpoint of handleability and the magnitude of heat of vaporization (endothermic). As this water, for example, rainwater can be used in consideration of the fact that the subject is exposed to the rain, as will be described later. Further, from the viewpoint of wettability to the surface layer portion of the test object, alcohol is preferable. Examples of this alcohol include methanol, ethanol, propanol, butanol and the like. Of these, ethanol is preferable from the viewpoint of work environment. Further, the type of the liquefied gas (12) and the like are not particularly limited. This liquefied gas can be, for example, a compressed liquefied gas having a boiling point of −20 ° C. or lower. The boiling point of the liquefied gas is usually −100 ° C. or higher.

上記熱負荷付与ステップの熱負荷形態、タイミング等は特に問わない。この熱負荷付与ステップとしては、例えば、被検物(1A、1B)の表層部(2)に液体(11)を噴霧又は塗布することにより液体で表層部を濡らすA形態(例えば、図1(b)等参照)、被検物(1A、1B)の表層部(2)を液体(11)に浸漬することにより液体で表層部を濡らすB形態(例えば、図2(a)等参照)が挙げられる。このB形態は、例えば、水槽内の液体中に被検物の表層部を浸漬して行われてもよいし、自然環境内に設置された被検物の表層部を雨中に曝すことで行われてもよい。 The heat load form, timing, etc. of the heat load application step are not particularly limited. As this heat load applying step, for example, the A form (for example, FIG. 1 (for example)) in which the surface layer portion (2) of the test object (1A, 1B) is sprayed or coated with the liquid (11) to wet the surface layer portion with the liquid. b) etc.), the B form (for example, see FIG. 2A etc.) in which the surface layer portion (2) of the test object (1A, 1B) is immersed in the liquid (11) to wet the surface layer portion with the liquid. Can be mentioned. This B form may be performed, for example, by immersing the surface layer portion of the test object in the liquid in the water tank, or by exposing the surface layer portion of the test object installed in the natural environment to the rain. You may be broken.

上記被検物(1A、1B)の表層部(2)に劣化箇所(3A、3B)が存在する場合、例えば、図3に示すように、熱負荷付与ステップにおいて、液体(11)で表層部を濡らすか、若しくは液化ガス(12)を表層部へ噴霧することにより、健全部(14)では、液体(11)又は気化ガス(12)がすみやかに気化して温度変化が緩和するのに対し、劣化箇所(3A、3B)では、液体(11)が滞留し気化が継続することで冷却されるか、若しくは液化ガス(12)の気化により劣化箇所(3A、3B)の空隙が冷却されて、温度低下が比較的長い時間継続する。そのため、熱負荷付与後に被検物(1A、1B)の表層部(2)の温度分布の変化を経時的に計測すれば、劣化箇所(3A、3B)では健全部(14)に比べて大きな温度低下が認められ、被検物(1A、1B)の表層部(2)に現れている劣化箇所(3A、3B)の位置を正確に特定することができる。 When the deteriorated portion (3A, 3B) is present on the surface layer portion (2) of the test object (1A, 1B), for example, as shown in FIG. 3, in the heat load applying step, the surface layer portion of the liquid (11). In the healthy part (14), the liquid (11) or the vaporized gas (12) is quickly vaporized and the temperature change is alleviated by wetting or spraying the liquefied gas (12) on the surface layer part. At the deteriorated part (3A, 3B), the liquid (11) stays and is cooled by the continuous vaporization, or the void of the deteriorated part (3A, 3B) is cooled by the vaporization of the liquefied gas (12). , The temperature drop continues for a relatively long time. Therefore, if the change in the temperature distribution of the surface layer portion (2) of the test object (1A, 1B) is measured over time after the heat load is applied, the deteriorated portion (3A, 3B) is larger than the healthy portion (14). The temperature drop is observed, and the position of the deteriorated portion (3A, 3B) appearing on the surface layer portion (2) of the test object (1A, 1B) can be accurately specified.

上記温度観測ステップの温度観測形態、タイミング等は特に問わない。この温度観測ステップでは、通常、撮影された表層部熱画像の温度分布において、周辺部に比べて所定値以上の温度低下が認められる際に、温度低下が認められた部位を劣化箇所(3A、3B)と判断する。この所定値としては、例えば、0.1℃以上(好ましくは0.2℃以上)が挙げられる。ただし、赤外線サーモグラフィの検出感度によっては、0.1℃以下の温度低下でも劣化箇所の検出が可能になる。なお、上記温度低下は、通常、10℃以下である。劣化箇所(3A、3B)を判断するタイミング(例えば、熱負荷付与ステップ後の経過時間)は、被検物(1A、1B)の材料・形状・大きさ、熱負荷の方法、検出すべき劣化の種類等に応じて、適宜設定される。
また、温度観測ステップにおいて被検物(1A、1B)の表層部の温度変化の勾配等を計測することにより、例えば、周辺部に比べて単位時間当たりの温度低下が急速に生じている部位を劣化箇所(3A、3B)と判断することもできる。
The temperature observation form, timing, etc. of the above temperature observation step are not particularly limited. In this temperature observation step, when a temperature drop of a predetermined value or more is usually observed in the temperature distribution of the surface layer thermal image taken, the portion where the temperature drop is observed is a deteriorated portion (3A, 3A, 3B) is judged. Examples of the predetermined value include 0.1 ° C. or higher (preferably 0.2 ° C. or higher). However, depending on the detection sensitivity of infrared thermography, it is possible to detect the deteriorated portion even if the temperature drops by 0.1 ° C or less. The temperature drop is usually 10 ° C. or lower. The timing for determining the deterioration location (3A, 3B) (for example, the elapsed time after the heat load application step) is the material, shape, size of the test object (1A, 1B), the heat load method, and the deterioration to be detected. It is set appropriately according to the type and the like.
Further, by measuring the gradient of the temperature change of the surface layer portion of the test object (1A, 1B) in the temperature observation step, for example, a portion where the temperature drops rapidly per unit time as compared with the peripheral portion can be observed. It can also be determined as a deteriorated part (3A, 3B).

本実施形態に係る劣化検出方法としては、例えば、上記熱負荷付与ステップの前に又は熱負荷付与ステップと同時に被検物(1A、1B)の表層部(2)を加熱する加熱ステップを有する形態(例えば、図1(a)及び図2(a)等参照)が挙げられる。この加熱ステップの加熱形態、タイミング等は特に問わない。この加熱ステップは、例えば、ホットプレート(ヒータ)、熱風ブロア、エアコンディショナ等の加熱手段で行われてもよいし、水槽内の温度制御された水中に被検物の表層部を浸漬することで行われてもよいし、自然環境内に設置された被検物の表層部に対して日射及び/又は大気気温が作用することで行われてもよい。 The deterioration detection method according to the present embodiment includes, for example, a heating step for heating the surface layer portion (2) of the test object (1A, 1B) before or at the same time as the heat load applying step. (See, for example, FIGS. 1 (a) and 2 (a), etc.). The heating form, timing, etc. of this heating step are not particularly limited. This heating step may be performed by a heating means such as a hot plate (heater), a hot air blower, an air conditioner, or the like, or the surface layer portion of the test object is immersed in temperature-controlled water in a water tank. It may be carried out in the natural environment, or it may be carried out by the action of solar radiation and / or air temperature on the surface layer of the subject installed in the natural environment.

本実施形態に係る劣化検出方法としては、例えば、上記温度観測ステップの最中に被検物(1A、1B)の表層部(2)に対して送風を行う送風ステップを有する形態(例えば、図1(b)及び図2(b)等参照)が挙げられる。この送風ステップの送風形態、タイミング等は特に問わない。この送風ステップは、例えば、ブロア、エアコンディショナ等の送風手段で行われてもよいし、自然環境内に設置された被検物の表面に対して自然風が作用することで行われてもよい。また、送風ステップは、例えば、温度観測ステップの前に開始されて温度観測ステップで継続して行われることができる。 As a deterioration detection method according to the present embodiment, for example, a mode having a blowing step for blowing air to the surface layer portion (2) of the test object (1A, 1B) during the temperature observation step (for example, FIG. 1 (b) and FIG. 2 (b) and the like). The blowing form, timing, etc. of this blowing step are not particularly limited. This blowing step may be performed by, for example, a blowing means such as a blower or an air conditioner, or may be performed by the action of natural wind on the surface of the subject installed in the natural environment. good. Further, the blast step can be started before the temperature observation step and continued in the temperature observation step, for example.

なお、上記実施形態で記載した各構成の括弧内の符号は、後述する実施例に記載の具体的構成との対応関係を示すものである。 The reference numerals in parentheses of each configuration described in the above-described embodiment indicate the correspondence with the specific configurations described in the examples described later.

以下、図面を用いて実施例及び参考例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples and Reference Examples.

本実施例及び参考例に係る劣化検出方法は、図1及び図2に示すように、被検物1A、1Bの表層部温度で気化することが可能な液体11で表層部2を濡らすか、若しくは被検物1A、1Bの表層部温度で気化することが可能な液化ガス12を表層部2へ噴霧する熱負荷付与ステップ(図1(b)及び図2(a)参照)と、熱負荷付与ステップと同時に又は熱負荷付与ステップの後に、赤外線サーモグラフィ装置7により撮影された表層部熱画像(図7~図15参照)に基づいて被検物1A、1Bの表層部2の温度変化を経時的に計測する温度観測ステップ(図1(b)及び図2(b)参照)と、を含んでいる。 In the deterioration detection method according to the present embodiment and the reference example, as shown in FIGS. 1 and 2, the surface layer portion 2 is wetted with a liquid 11 that can be vaporized at the surface layer portion temperature of the test objects 1A and 1B. Alternatively, a heat load applying step (see FIGS. 1B and 2A) for spraying the liquefied gas 12 that can be vaporized at the surface temperature of the test objects 1A and 1B onto the surface layer 2 and a heat load. At the same time as the application step or after the heat load application step, the temperature change of the surface layer 2 of the test objects 1A and 1B is changed over time based on the surface thermal images (see FIGS. 7 to 15) taken by the infrared thermography apparatus 7. It includes a temperature observation step (see FIGS. 1 (b) and 2 (b)) for measuring the temperature.

そして、温度観測ステップにより計測された被検物1A、1Bの表層部2の温度分布において、周辺部に比べて温度低下が生じている部分を劣化箇所3A、3Bと判断する。具体的に、図3(a)に示すように、被検物1A、1Bの表層部2に劣化箇所3A、3Bが存在する場合、熱負荷付与ステップにおいて、液体11で表層部2を濡らすか、若しくは液化ガス12を表層部2へ噴霧することにより、例えば、図3(b)に示すように、健全部14では、液体11又は気化ガス12がすみやかに気化して温度変化が緩和するのに対し、劣化箇所3A、3Bでは、液体11が滞留し気化が継続することで冷却されるか、若しくは液化ガス12の気化により劣化箇所3A、3Bの空隙が冷却されて、温度低下が比較的長い時間継続する。そのため、温度観測ステップにより計測された被検物の表層部の温度において、劣化箇所3A、3Bでは、健全部14に比べて大きな温度低下が認められ、被検物1A、1Bの表層部2に現れている劣化箇所3A、3Bの位置を正確に特定することができる。 Then, in the temperature distribution of the surface layer portion 2 of the test objects 1A and 1B measured by the temperature observation step, the portion where the temperature is lowered as compared with the peripheral portion is determined to be the deteriorated portion 3A and 3B. Specifically, as shown in FIG. 3A, when the deteriorated portions 3A and 3B are present on the surface layer portions 2 of the test objects 1A and 1B, whether the surface layer portion 2 is wetted with the liquid 11 in the heat load applying step. Or, by spraying the liquefied gas 12 onto the surface layer portion 2, for example, as shown in FIG. 3 (b), in the healthy portion 14, the liquid 11 or the vaporized gas 12 is quickly vaporized and the temperature change is alleviated. On the other hand, in the deteriorated parts 3A and 3B, the liquid 11 stays and is cooled by the continuous vaporization, or the voids of the deteriorated parts 3A and 3B are cooled by the vaporization of the liquefied gas 12, and the temperature is relatively lowered. Continue for a long time. Therefore, in the temperature of the surface layer portion of the test object measured by the temperature observation step, a large temperature drop was observed in the deteriorated portions 3A and 3B as compared with the sound portion 14, and the surface layer portions 2 of the test objects 1A and 1B were found to have a large temperature drop. The positions of the deteriorated parts 3A and 3B that appear can be accurately specified.

また、本実施例及び参考例に係る劣化検出方法は、熱負荷付与ステップの前に又は熱負荷付与ステップと同時に被検物1A、1Bの表層部2を加熱する加熱ステップを含んでいる。具体的に、図1(a)に示すように、被検物1A、1Bは、熱負荷付与ステップの前に、ホットプレート4aの加熱により表層部2が所定の温度となるように加熱される。また、図2(a)に示すように、熱負荷付与ステップと同時に、ホットプレート4bの加熱により温度制御された水槽5中の水により表層部2が所定の温度となるように加熱される。なお、被検物1A、1Bの表層部温度が30℃未満のものは、ホットプレート4a、4bを作動させずエアコンディショナの制御等により所定の温度とされる。 Further, the deterioration detection method according to the present embodiment and the reference example includes a heating step of heating the surface layer portions 2 of the test objects 1A and 1B before the heat load applying step or at the same time as the heat load applying step. Specifically, as shown in FIG. 1A, the test objects 1A and 1B are heated so that the surface layer portion 2 reaches a predetermined temperature by heating the hot plate 4a before the heat load applying step. .. Further, as shown in FIG. 2A, at the same time as the heat load applying step, the surface layer portion 2 is heated to a predetermined temperature by the water in the water tank 5 whose temperature is controlled by heating the hot plate 4b. When the surface temperature of the test objects 1A and 1B is less than 30 ° C., the hot plates 4a and 4b are not operated and the temperature is set to a predetermined temperature by controlling the air conditioner or the like.

また、本実施例4、7、9及び参考例3に係る劣化検出方法(図5及び図6参照)は、温度観測ステップの最中に被検物1A、1Bの表層部に対して送風を行う送風ステップを含んでいる。具体的に、図1(b)及び図2(b)に示すように、温度観測ステップの最中に、ブロア9により被検物1A、1Bの表層部に対して送風(熱線式風速計(Testo425)で測定した風速;0.6~1.0m/sec)が行われる。 Further, in the deterioration detection method (see FIGS. 5 and 6) according to Examples 4, 7, 9 and Reference Example 3, air is blown to the surface layer portions of the test objects 1A and 1B during the temperature observation step. Includes ventilation steps to be performed. Specifically, as shown in FIGS. 1 (b) and 2 (b), during the temperature observation step, the blower 9 blows air to the surface layers of the objects 1A and 1B (heat ray anemometer (heat ray type anemometer). The wind speed measured by Test425); 0.6 to 1.0 m / sec) is performed.

なお、本実施例及び参考例に係る劣化検出方法では、赤外線サーモグラフィ装置7と被検物との距離をおよそ30~40mmとした。この赤外線サーモグラフィ装置7として、検出する波長が8~14μmであり、320×240画素を有する赤外線サーモグラフィカメラを使用した。さらに、本実施例及び参考例に係る劣化検出方法による評価結果(図5及び図6参照)においては、「○」は劣化部を明瞭に検出可能であることを示し、「△」は劣化部での温度差を検出可能であることを示し、「×」は劣化部を検出困難であることを示す。なお、見かけ上温度上昇している現象により劣化部を検出できる場合には、本発明とは異なるメカニズムであるため、「△」の塗りつぶし記号「▲」で示す。 In the deterioration detection method according to the present embodiment and the reference example, the distance between the infrared thermography device 7 and the test object was set to about 30 to 40 mm. As the infrared thermography device 7, an infrared thermography camera having a wavelength of 8 to 14 μm to be detected and having 320 × 240 pixels was used. Further, in the evaluation results (see FIGS. 5 and 6) by the deterioration detection method according to the present embodiment and the reference example, “◯” indicates that the deteriorated portion can be clearly detected, and “Δ” indicates the deteriorated portion. Indicates that the temperature difference in the above can be detected, and "x" indicates that it is difficult to detect the deteriorated portion. If the deteriorated portion can be detected due to the phenomenon that the temperature is apparently rising, the mechanism is different from that of the present invention, and therefore, it is indicated by the fill symbol “▲” of “Δ”.

(1)実施例1-4及び参考例1-3
以下に、実施例1-4及び参考例1-3に係る劣化検出方法について図5を用いて説明する。なお、本実施例及び参考例では、被検物として、絶縁材料からなる配電設備用部品である高圧カットアウト1A(図4(a)参照)を採用した。この高圧カットアウト1Aでは、通常、劣化箇所として磁器のクラック(ひび割れ)3Aが生じる。
(1) Example 1-4 and Reference Example 1-3
Hereinafter, the deterioration detection method according to Examples 1-4 and Reference Example 1-3 will be described with reference to FIG. In this example and the reference example, a high-voltage cutout 1A (see FIG. 4A), which is a component for distribution equipment made of an insulating material, was adopted as a test object. In this high-voltage cutout 1A, porcelain cracks 3A usually occur as deterioration points.

<参考例1>
参考例1の劣化検出方法では、図1に示すように、予めホットプレート4aで被検物1Aの表層部2を所定の温度となるように加熱し(加熱ステップ)、その後、被検物1Aの表層部2に水11を噴霧するとともに(熱負荷付与ステップ)、赤外線サーモグラフィ装置7により撮影された表層部熱画像に基づいて被検物1Aの表層部2の温度変化を経時的に計測した(温度観測ステップ)。その結果、赤外線サーモグラフィ装置7により撮影された表層部熱画像では、劣化箇所3Aを検出できなかった。その理由として、水は被検物1Aに対して濡れにくいので効率良く劣化箇所3Aに浸透しなかったことが挙げられる。
<Reference example 1>
In the deterioration detection method of Reference Example 1, as shown in FIG. 1, the surface layer portion 2 of the test object 1A is preheated to a predetermined temperature with a hot plate 4a (heating step), and then the test object 1A is heated. Water 11 was sprayed onto the surface layer portion 2 of the above (heat load applying step), and the temperature change of the surface layer portion 2 of the subject 1A was measured over time based on the surface layer portion thermal image taken by the infrared thermography device 7. (Temperature observation step). As a result, the deteriorated portion 3A could not be detected in the surface thermal image taken by the infrared thermography apparatus 7. The reason is that water does not easily permeate the deteriorated portion 3A because it is difficult to get wet with the test object 1A.

<実施例1>
実施例1の劣化検出方法では、図1に示すように、予めホットプレート4aで被検物1Aの表層部2を所定の温度となるように加熱し(加熱ステップ)、その後、被検物1Aの表層部2にエタノール11を噴霧するとともに(熱負荷付与ステップ)、赤外線サーモグラフィ装置7により撮影された表層部熱画像に基づいて被検物1Aの表層部2の温度変化を経時的に計測した(温度観測ステップ)。その結果、赤外線サーモグラフィ装置7により撮影された表層部熱画像(図7参照;被検物1Aの表層部温度30℃の例)では、被検物1Aの表層部温度が20~35℃の範囲で劣化箇所3Aを明瞭にとらえることができた(図7中の丸囲み部Pを参照)。また、被検物1Aの表層部温度が40℃、50℃の場合には、劣化箇所3Aを検出できるが、20~35℃の時のようにシャープな像として検出できない。
<Example 1>
In the deterioration detection method of Example 1, as shown in FIG. 1, the surface layer portion 2 of the test object 1A is preheated to a predetermined temperature with a hot plate 4a (heating step), and then the test object 1A is heated. In addition to spraying ethanol 11 on the surface layer portion 2 of the above (heat load applying step), the temperature change of the surface layer portion 2 of the subject 1A was measured over time based on the surface layer portion thermal image taken by the infrared thermography device 7. (Temperature observation step). As a result, in the surface thermal image taken by the infrared thermography apparatus 7 (see FIG. 7; an example of the surface temperature of the subject 1A at 30 ° C.), the surface temperature of the subject 1A is in the range of 20 to 35 ° C. The deteriorated portion 3A could be clearly grasped in (see the circled portion P in FIG. 7). Further, when the surface temperature of the test object 1A is 40 ° C. and 50 ° C., the deteriorated portion 3A can be detected, but it cannot be detected as a sharp image as in the case of 20 to 35 ° C.

<実施例2>
実施例2の劣化検出方法では、図1に示すように、予めホットプレート4aで被検物1Aの表層部2を所定の温度となるように加熱し(加熱ステップ)、その後、被検物1Aの表層部2に液化ガス12(具体的に、沸点が-20℃以下の圧縮された液化ガス12)を噴霧するとともに(熱負荷付与ステップ)、赤外線サーモグラフィ装置7により撮影された表層部熱画像に基づいて被検物1Aの表層部2の温度変化を経時的に計測した(温度観測ステップ)。その結果、赤外線サーモグラフィ装置7により撮影された表層部熱画像(図8参照;被検物の表層部温度10℃;1/60秒ごとに採取した画像サンプリングの例)では、いずれの初期表層部温度の場合も、液化ガスの噴霧中にわずかに劣化箇所3Aを検出できた(図8中の丸囲み部Pを参照)。
<Example 2>
In the deterioration detection method of Example 2, as shown in FIG. 1, the surface layer portion 2 of the test object 1A is preheated to a predetermined temperature with a hot plate 4a (heating step), and then the test object 1A is heated. A surface layer thermal image taken by an infrared thermography device 7 while spraying a liquefied gas 12 (specifically, a compressed liquefied gas 12 having a boiling point of −20 ° C. or lower) onto the surface layer portion 2 of the above (heat load applying step). The temperature change of the surface layer portion 2 of the test object 1A was measured over time based on the above (temperature observation step). As a result, in the surface thermal image taken by the infrared thermography apparatus 7 (see FIG. 8; surface temperature of the subject at 10 ° C; an example of image sampling taken every 1/60 second), any of the initial surface layers. In the case of temperature as well, the slightly deteriorated portion 3A could be detected during the spraying of the liquefied gas (see the circled portion P in FIG. 8).

<参考例2>
参考例2の劣化検出方法では、図1に示すように、予めホットプレート4aで被検物1Aの表層部2を所定の温度となるように加熱し(加熱ステップ)、その後、被検物1Aの表層部2に水蒸気11を噴霧するとともに(熱負荷付与ステップ)、赤外線サーモグラフィ装置7により撮影された表層部熱画像に基づいて被検物1Aの表層部2の温度変化を経時的に計測した(温度観測ステップ)。その結果、赤外線サーモグラフィ装置7により撮影された表層部熱画像では、水蒸気噴霧中に温度低下を観測することによって劣化箇所3Aの位置を特定することができなかった。
<Reference example 2>
In the deterioration detection method of Reference Example 2, as shown in FIG. 1, the surface layer portion 2 of the test object 1A is preheated to a predetermined temperature with a hot plate 4a (heating step), and then the test object 1A is heated. The temperature change of the surface layer 2 of the subject 1A was measured over time based on the surface thermal image taken by the infrared thermography device 7 while spraying the steam 11 on the surface layer 2 of the subject 1A (heat load applying step). (Temperature observation step). As a result, in the surface thermal image taken by the infrared thermography apparatus 7, the position of the deteriorated portion 3A could not be specified by observing the temperature decrease during the steam spraying.

<参考例3>
参考例3の劣化検出方法では、図1に示すように、予めホットプレート4aで被検物1Aの表層部2を所定の温度となるように加熱し(加熱ステップ)、その後、被検物1Aの表層部2に水11を噴霧するとともに(熱負荷付与ステップ)、被検物1Aの表層部2に対してブロア9で送風を行いつつ(送風ステップ)、赤外線サーモグラフィ装置7により撮影された表層部熱画像に基づいて被検物1Aの表層部2の温度変化を経時的に計測した(温度観測ステップ)。その結果、赤外線サーモグラフィ装置7により撮影された表層部熱画像では、劣化箇所3Aの検出には至らなかった。
<Reference example 3>
In the deterioration detection method of Reference Example 3, as shown in FIG. 1, the surface layer portion 2 of the test object 1A is preheated to a predetermined temperature with a hot plate 4a (heating step), and then the test object 1A is heated. The surface layer photographed by the infrared thermography device 7 while spraying water 11 on the surface layer portion 2 of the above (heat load applying step) and blowing air to the surface layer portion 2 of the subject 1A with a blower 9 (blowing step). The temperature change of the surface layer portion 2 of the subject 1A was measured over time based on the thermographic image (temperature observation step). As a result, in the surface thermal image taken by the infrared thermography apparatus 7, the deteriorated portion 3A could not be detected.

<実施例3>
実施例3の劣化検出方法では、図2に示すように、ホットプレート4bで加熱された水槽5内の水中に被検物1Aの表層部2を所定の温度となるように水浸漬し(加熱ステップ・熱負荷付与ステップ)、その後、水槽5内から被検物1Aを取り出して、赤外線サーモグラフィ装置7により撮影された表層部熱画像に基づいて被検物1Aの表層部2の温度変化を経時的に計測した(温度観測ステップ)。その結果、赤外線サーモグラフィ装置7により撮影された表層部熱画像(図9参照;被検物の表層部温度45℃の例)では、被検物1Aの表層部温度が45℃、50℃の場合、劣化箇所3Aの位置で僅かな温度低下が認められた(図9中の丸囲み部Pを参照)。ただし、被検物1Aの表層部温度が40℃以下では、ほとんど劣化箇所3Aを検出できなかった。
<Example 3>
In the deterioration detection method of Example 3, as shown in FIG. 2, the surface layer portion 2 of the subject 1A is immersed in water in the water tank 5 heated by the hot plate 4b so as to have a predetermined temperature (heating). Step ・ Heat load application step), after that, the subject 1A is taken out from the water tank 5, and the temperature change of the surface layer 2 of the subject 1A is changed over time based on the surface thermal image taken by the infrared thermography device 7. Measured (temperature observation step). As a result, in the surface thermal image taken by the infrared thermography apparatus 7 (see FIG. 9; an example of the surface temperature of the subject 1A), the surface temperature of the subject 1A is 45 ° C and 50 ° C. , A slight temperature drop was observed at the position of the deteriorated portion 3A (see the circled portion P in FIG. 9). However, when the surface temperature of the test object 1A was 40 ° C. or lower, the deteriorated portion 3A could hardly be detected.

<実施例4>
実施例4の劣化検出方法では、図2に示すように、ホットプレート4bで加熱された水槽5内の水中に被検物1Aの表層部2を所定の温度となるように水浸漬し(加熱ステップ・熱負荷付与ステップ)、その後、水槽5から被検物1Aを取り出して、被検物1Aの表層部2に対してブロア9で送風を行いつつ(送風ステップ)、赤外線サーモグラフィ装置7により撮影された表層部熱画像に基づいて被検物1Aの表層部2の温度変化を経時的に計測した(温度観測ステップ)。その結果、赤外線サーモグラフィ装置7により撮影された表層部熱画像では、被検物1Aの表層部温度が15℃、20℃の場合、劣化箇所3Aの位置で僅かな温度低下が認められた。また、被検物1Aの表層部温度が25℃以上(図10参照;被検物の表層部温度30℃の例)では、劣化箇所3Aが明確に検出された(図10中の丸囲み部Pを参照)。
<Example 4>
In the deterioration detection method of Example 4, as shown in FIG. 2, the surface layer portion 2 of the subject 1A is immersed in water in the water tank 5 heated by the hot plate 4b so as to have a predetermined temperature (heating). Step ・ Heat load application step), after that, the test object 1A is taken out from the water tank 5, and the image is taken by the infrared thermography device 7 while blowing air to the surface layer portion 2 of the test object 1A with the blower 9 (blower step). The temperature change of the surface layer 2 of the subject 1A was measured over time based on the surface thermal image obtained (temperature observation step). As a result, in the surface thermal image taken by the infrared thermography apparatus 7, when the surface temperature of the subject 1A was 15 ° C. and 20 ° C., a slight temperature decrease was observed at the position of the deteriorated portion 3A. Further, when the surface temperature of the subject 1A was 25 ° C. or higher (see FIG. 10; an example of the surface temperature of the subject 1A of 30 ° C.), the deteriorated portion 3A was clearly detected (circled portion in FIG. 10). See P).

なお、上記実施例3、4(水浸漬)は、高所に設置されたままの配電設備用部品が雨水に曝された後には劣化箇所に十分な水分が浸透すると考えられため、これを模擬するために行った。特に、実施例4(水浸漬後に送風有り)は、配電設備用部品が雨水に曝された後に僅かな風が発生することで水分の蒸発が促進されることが期待されるため、これを模擬するために行った。 In the above Examples 3 and 4 (immersion in water), it is considered that sufficient water permeates the deteriorated part after the parts for the power distribution equipment installed in the high place are exposed to rainwater, so this is simulated. I went to do it. In particular, in Example 4 (with air blown after immersion in water), it is expected that the evaporation of water will be promoted by the generation of a slight wind after the parts for distribution equipment are exposed to rainwater, so this is simulated. Went to do.

以上より、高圧カットアウト1Aのように水との濡れ性が悪い材料の劣化箇所(クラック)3Aの検出については、高圧カットアウト1Aの表層部2にエタノール11を噴霧すること、もしくは高圧カットアウト1Aの表層部2を水浸漬した後に送風を行うことが有効である。一方、水と濡れ性のよい材質の被検物の場合には、エタノールと同様に水噴霧することで劣化箇所の検出が可能であることは本原理から明らかである。さらに、液化ガス12を用いた場合、何れの表層部温度域でも劣化箇所3Aが検出可能と考えられるため、エタノール噴霧や水浸漬が適用できない表層部温度が15℃以下の低い温度で有効と考えられる。 From the above, for the detection of the deteriorated part (crack) 3A of a material having poor wettability with water such as the high pressure cutout 1A, ethanol 11 is sprayed on the surface layer portion 2 of the high pressure cutout 1A, or the high pressure cutout is made. It is effective to blow air after immersing the surface layer portion 2 of 1A in water. On the other hand, in the case of a test object made of a material having good wettability with water, it is clear from this principle that the deteriorated portion can be detected by spraying with water in the same manner as ethanol. Further, when the liquefied gas 12 is used, it is considered that the deteriorated portion 3A can be detected in any surface layer temperature range, so that it is considered effective at a low surface temperature of 15 ° C. or lower to which ethanol spraying or water immersion cannot be applied. Be done.

(2)実施例5-9及び参考例4、5
次に、実施例5-9及び参考例4、5に係る劣化検出方法について図6を用いて説明する。なお、本実施例及び参考例では、被検物として、絶縁材料からなる配電設備用部品である高圧引下線1B(図4(b)参照)を採用した。この高圧引下線1Bでは、通常、劣化箇所として、有機絶縁物のトラッキングによる表面汚損部3Bが生じる。
(2) Examples 5-9 and Reference Examples 4, 5
Next, the deterioration detection methods according to Examples 5-9 and Reference Examples 4 and 5 will be described with reference to FIG. In this example and the reference example, a high-voltage underline 1B (see FIG. 4B), which is a component for distribution equipment made of an insulating material, was adopted as a test object. In this high-voltage underline 1B, a surface-stained portion 3B due to tracking of an organic insulator usually occurs as a deteriorated portion.

<参考例4>
参考例4の劣化検出方法では、図1に示すように、予めホットプレート4aで被検物1Bの表層部2を所定の温度となるように加熱し(加熱ステップ)、その後、被検物1Bの表層部2に水11を噴霧するとともに(熱負荷付与ステップ)、赤外線サーモグラフィ装置7により撮影された表層部熱画像に基づいて被検物の表層部2の温度変化を経時的に計測した(温度観測ステップ)。その結果、赤外線サーモグラフィ装置7により撮影された表層部熱画像では、被検物1Bの表層部温度が5~50℃の場合、劣化箇所3Bを検出することができなかった。その理由として、水は被検物1Bに対して濡れにくいので効率良く劣化箇所に広がらなかったことが挙げられる。
<Reference example 4>
In the deterioration detection method of Reference Example 4, as shown in FIG. 1, the surface layer portion 2 of the test object 1B is preheated to a predetermined temperature with the hot plate 4a (heating step), and then the test object 1B is heated. Water 11 was sprayed onto the surface layer 2 of the subject (heat load applying step), and the temperature change of the surface layer 2 of the subject was measured over time based on the surface thermal image taken by the infrared thermography device 7 (heat load applying step). Temperature observation step). As a result, in the surface thermal image taken by the infrared thermography apparatus 7, when the surface temperature of the subject 1B was 5 to 50 ° C., the deteriorated portion 3B could not be detected. The reason is that water does not easily spread to the deteriorated part because it is difficult to get wet with the test object 1B.

<実施例5>
実施例5の劣化検出方法では、図1に示すように、予めホットプレート4aで被検物1Bの表層部2を所定の温度となるように加熱し(加熱ステップ)、その後、被検物1Bの表層部2にエタノール11を噴霧するとともに(熱負荷付与ステップ)、赤外線サーモグラフィ装置7により撮影された表層部熱画像に基づいて被検物1Bの表層部2の温度変化を経時的に計測した(温度観測ステップ)。その結果、赤外線サーモグラフィ装置7により撮影された表層部熱画像(図11参照;被検物の表層部温度30℃の例)では、被検物1Bの表層部温度が25℃以上の場合に劣化箇所3Bを明瞭にとられることができた(図11中の丸囲み部Pを参照)。
<Example 5>
In the deterioration detection method of Example 5, as shown in FIG. 1, the surface layer portion 2 of the test object 1B is preheated to a predetermined temperature with a hot plate 4a (heating step), and then the test object 1B is heated. In addition to spraying ethanol 11 on the surface layer portion 2 of the above (heat load applying step), the temperature change of the surface layer portion 2 of the subject 1B was measured over time based on the surface layer portion thermal image taken by the infrared thermography device 7. (Temperature observation step). As a result, in the surface thermal image taken by the infrared thermography apparatus 7 (see FIG. 11; an example of the surface temperature of the subject 1B), the deterioration occurs when the surface temperature of the subject 1B is 25 ° C or higher. The portion 3B could be clearly taken (see the circled portion P in FIG. 11).

<参考例5>
参考例5の劣化検出方法では、図1に示すように、予めホットプレート4aで被検物1Bの表層部2を所定の温度となるように加熱し(加熱ステップ)、その後、被検物1Bの表層部2に液化ガス12(具体的に、沸点が-20℃以下の圧縮された液化ガス12)を噴霧するとともに(熱負荷付与ステップ)、赤外線サーモグラフィ装置7により撮影された表層部熱画像に基づいて被検物1Bの表層部2の温度変化を経時的に計測した(温度観測ステップ)。その結果、赤外線サーモグラフィ装置7により撮影された表層部熱画像(1/60秒ごとに採取した画像サンプリング)では、噴霧中の画像や噴霧後放置後の画像からは劣化箇所3Bを検出できなかった。
<Reference example 5>
In the deterioration detection method of Reference Example 5, as shown in FIG. 1, the surface layer portion 2 of the test object 1B is preheated to a predetermined temperature with the hot plate 4a (heating step), and then the test object 1B is heated. A surface layer thermal image taken by an infrared thermography device 7 while spraying a liquefied gas 12 (specifically, a compressed liquefied gas 12 having a boiling point of −20 ° C. or lower) onto the surface layer portion 2 of the above (heat load applying step). The temperature change of the surface layer portion 2 of the test object 1B was measured over time based on the above (temperature observation step). As a result, in the surface thermal image (image sampling taken every 1/60 second) taken by the infrared thermography apparatus 7, the deteriorated portion 3B could not be detected from the image during spraying or the image after being left after spraying. ..

<実施例6>
実施例6の劣化検出方法では、図1に示すように、予めホットプレート4aで被検物1Bの表層部2を所定の温度となるように加熱し(加熱ステップ)、その後、被検物1Bの表層部2に水蒸気11を噴霧するとともに(熱負荷付与ステップ)、赤外線サーモグラフィ装置7により撮影された表層部熱画像に基づいて被検物1Bの表層部2の温度変化を経時的に計測した(温度観測ステップ)。その結果、赤外線サーモグラフィ装置7により撮影された表層部熱画像(図12参照;被検物の表層部温度30℃の例)では、水蒸気を噴霧することで均一に液膜を形成するため、参考例4(水噴霧)の濡れ性の問題が解決され、健全部に比べて多くの水が集まることで温度低下をもたらし劣化箇所3Bを判別できた(図12中の丸囲み部Pを参照)。
<Example 6>
In the deterioration detection method of Example 6, as shown in FIG. 1, the surface layer portion 2 of the test object 1B is preheated to a predetermined temperature with a hot plate 4a (heating step), and then the test object 1B is heated. In addition to spraying steam 11 on the surface layer portion 2 of the above (heat load applying step), the temperature change of the surface layer portion 2 of the subject 1B was measured over time based on the surface layer portion thermal image taken by the infrared thermography device 7. (Temperature observation step). As a result, in the surface thermal image taken by the infrared thermography apparatus 7 (see FIG. 12; an example of the surface temperature of the subject at 30 ° C.), a liquid film is uniformly formed by spraying water vapor, which is a reference. The problem of wettability in Example 4 (water spray) was solved, and more water was collected than in the healthy part, which caused a temperature drop and was able to identify the deteriorated part 3B (see the circled part P in FIG. 12). ..

<実施例7>
実施例7の劣化検出方法では、図1に示すように、予めホットプレート4aで被検物1Bの表層部2を所定の温度となるように加熱し(加熱ステップ)、その後、被検物1Bの表層部2に水11を噴霧するとともに(熱負荷付与ステップ)、被検物1Bの表層部2に対してブロア9で送風を行いつつ(送風ステップ)、赤外線サーモグラフィ装置7により撮影された表層部熱画像に基づいて被検物1Bの表層部2の温度変化を経時的に計測した(温度観測ステップ)。その結果、赤外線サーモグラフィ装置7により撮影された表層部熱画像(図13参照;被検物の表層部温度30℃の例)では、送風が無い場合に比べ顕著な温度低下が認められた。そして、被検物1Bの表層部温度が30℃の場合に、劣化箇所3Bの位置で温度低下をもたらし劣化箇所3Bを判別できた(図13中の丸囲み部Pを参照)。
<Example 7>
In the deterioration detection method of Example 7, as shown in FIG. 1, the surface layer portion 2 of the test object 1B is preheated to a predetermined temperature with the hot plate 4a (heating step), and then the test object 1B is heated. The surface layer photographed by the infrared thermography device 7 while spraying water 11 on the surface layer portion 2 of the above (heat load applying step) and blowing air to the surface layer portion 2 of the subject 1B with a blower 9 (blowing step). The temperature change of the surface layer portion 2 of the subject 1B was measured over time based on the thermographic image (temperature observation step). As a result, in the surface thermal image taken by the infrared thermography apparatus 7 (see FIG. 13; an example of the surface temperature of the subject at 30 ° C.), a remarkable temperature decrease was observed as compared with the case where there was no ventilation. Then, when the surface layer temperature of the test object 1B was 30 ° C., the temperature dropped at the position of the deteriorated portion 3B, and the deteriorated portion 3B could be discriminated (see the circled portion P in FIG. 13).

<実施例8>
実施例8の劣化検出方法では、図2に示すように、ホットプレート4bで加熱された水槽5内の水中に被検物1Bの表層部2を所定の温度となるように水浸漬し(加熱ステップ・熱負荷付与ステップ)、その後、水槽5から被検物1Bを取り出して、赤外線サーモグラフィ装置7により撮影された表層部熱画像に基づいて被検物1Bの表層部2の温度変化を経時的に計測した(温度観測ステップ)。その結果、赤外線サーモグラフィ装置7により撮影された表層部熱画像(図14参照;被検物の表層部温度40℃の例)では、被検物1Bの表層部温度が40℃以上で劣化箇所3Bを検出することができた(図14中の丸囲み部Pを参照)。
<Example 8>
In the deterioration detection method of Example 8, as shown in FIG. 2, the surface layer portion 2 of the subject 1B is immersed in water in the water tank 5 heated by the hot plate 4b so as to have a predetermined temperature (heating). Step ・ Heat load application step), after that, the subject 1B is taken out from the water tank 5, and the temperature change of the surface layer 2 of the subject 1B is changed over time based on the surface thermal image taken by the infrared thermography device 7. Measured in (temperature observation step). As a result, in the surface thermal image taken by the infrared thermography apparatus 7 (see FIG. 14; an example of the surface temperature of the subject 1B being 40 ° C.), the surface temperature of the subject 1B is 40 ° C. or higher and the deteriorated portion 3B. Was able to be detected (see the circled portion P in FIG. 14).

<実施例9>
実施例9の劣化検出方法では、図2に示すように、ホットプレート4bで加熱された水槽5内の水中に被検物1Bの表層部2を所定の温度となるように水浸漬し(加熱ステップ・熱負荷付与ステップ)、その後、水槽5から被検物1Bを取り出して、被検物1Bの表層部2に対してブロア9で送風を行いつつ(送風ステップ)、赤外線サーモグラフィ装置7により撮影された表層部熱画像に基づいて被検物1Bの表層部2の温度変化を経時的に計測した(温度観測ステップ)。その結果、赤外線サーモグラフィ装置7により撮影された表層部熱画像(図15参照;被検物の表層部温度30℃の例)では、被検物1Bの表層部温度が15℃以上で劣化箇所3Bを検出することができた(図15中の丸囲み部Pを参照)。
<Example 9>
In the deterioration detection method of Example 9, as shown in FIG. 2, the surface layer portion 2 of the subject 1B is immersed in water in the water tank 5 heated by the hot plate 4b so as to have a predetermined temperature (heating). Step ・ Heat load application step), after that, the test object 1B is taken out from the water tank 5, and the image is taken by the infrared thermography device 7 while blowing air to the surface layer portion 2 of the test object 1B with the blower 9 (blower step). The temperature change of the surface layer 2 of the subject 1B was measured over time based on the surface thermal image obtained (temperature observation step). As a result, in the surface thermal image taken by the infrared thermography apparatus 7 (see FIG. 15; an example of the surface temperature of the test object at 30 ° C.), the surface temperature of the test object 1B is 15 ° C. or higher and the deteriorated portion 3B. Was able to be detected (see the circled portion P in FIG. 15).

なお、上記実施例8、9(水浸漬)は、高所に設置されたままの配電設備用部品が雨水に長期曝された後には劣化箇所に十分な水分が浸透すると考えられため、これを模擬するために行った。特に、実施例9(水浸漬後に送風有り)は、配電設備用部品が雨水にさらされた後に僅かな風が発生することで水分の蒸発が促進されることが期待されるため、これを模擬するために行った。 In the above Examples 8 and 9 (immersion in water), it is considered that sufficient water permeates into the deteriorated part after the parts for the power distribution equipment installed in the high place are exposed to rainwater for a long period of time. I went to imitate. In particular, in Example 9 (with air blown after immersion in water), it is expected that the evaporation of water will be promoted by the generation of a slight wind after the parts for distribution equipment are exposed to rainwater, so this is simulated. Went to do.

以上より、高圧引下線1Bの劣化箇所(トラッキングによる表面汚損部)3Bの検出については、高圧引下線1Bの表層部2にエタノール11を噴霧すること、もしくは高圧引下線1Bの表層部2を水浸漬した後に送風を行うことが有効である。特に、表層部温度が20~50℃の高圧引下線1Bの表層部2にエタノール11を噴霧することが有効である。さらに、高圧引下線1Bの表層部2を水浸漬した後に、表層部温度が15~50℃の高圧引下線1Bの表層部2に対して送風を行うことが有効である。 From the above, for the detection of the deteriorated part (surface stain part by tracking) 3B of the high-voltage underline 1B, ethanol 11 is sprayed on the surface layer 2 of the high-voltage underline 1B, or the surface layer 2 of the high-voltage underline 1B is watered. It is effective to blow air after soaking. In particular, it is effective to spray ethanol 11 on the surface layer 2 of the high-voltage underline 1B having a surface temperature of 20 to 50 ° C. Further, it is effective to immerse the surface layer portion 2 of the high-voltage pull-down line 1B in water and then blow air to the surface layer portion 2 of the high-voltage pull-down line 1B having a surface layer temperature of 15 to 50 ° C.

本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形または変更が可能である。 The present invention is not limited to the embodiments detailed above, and various modifications or modifications can be made within the scope of the claims of the present invention.

本発明は、赤外線サーモグラフィ装置により撮影された被検物の表層部熱画像に基づいて、被検物の表層部における劣化箇所を特定する技術として広く利用される。 INDUSTRIAL APPLICABILITY The present invention is widely used as a technique for identifying a deteriorated portion on the surface layer of a test object based on a thermal image of the surface layer of the test object taken by an infrared thermography apparatus.

1A;高圧カットアウト(被検物)、1B;高圧引下線(被検物)、2;表層部、3A;クラック(劣化箇所)、3B;トラッキング汚損部(劣化箇所)、7;赤外線サーモグラフィ装置、11;液体、12;液化ガス。 1A; High-voltage cutout (subject), 1B; High-voltage underline (subject), 2; Surface layer, 3A; Crack (deteriorated part), 3B; Tracking stain (deteriorated part), 7; Infrared thermography device , 11; liquid, 12; liquefied gas.

Claims (7)

赤外線サーモグラフィ装置により絶縁材料からなる配電設備用部品の表層部を撮影し、該撮影した前記配電設備用部品の表層部熱画像に基づいて、前記配電設備用部品の表層部における劣化箇所を特定する方法において、
前記配電設備用部品の表層部温度で気化することが可能な液体としてアルコールを前記配電設備用部品の表層部に噴霧又は塗布することで表層部を濡らす熱負荷付与ステップと、
前記熱負荷付与ステップの前に又は前記熱負荷付与ステップと同時に前記配電設備用部品の表層部を加熱する加熱ステップと、
前記熱負荷付与ステップと同時に又は前記熱負荷付与ステップの後に、前記赤外線サーモグラフィ装置により撮影された前記表層部熱画像に基づいて前記配電設備用部品の表層部の温度変化を経時的に計測する温度観測ステップと、を含み、
前記温度観測ステップにより計測された前記配電設備用部品20~35℃の表層部の温度分布において、周辺部に比べて温度低下が生じている部位を劣化箇所と判断することを特徴とする劣化検出方法。
An infrared thermography device is used to photograph the surface layer portion of a power distribution equipment component made of an insulating material , and the deteriorated portion on the surface layer portion of the power distribution equipment component is identified based on the photographed surface thermal image of the power distribution equipment component. In the method
A heat load applying step that wets the surface layer portion by spraying or applying alcohol as a liquid that can be vaporized at the surface layer portion temperature of the power distribution equipment component to the surface layer portion of the power distribution equipment component .
A heating step that heats the surface layer portion of the power distribution equipment component before or at the same time as the heat load applying step.
Temperature at which the temperature change of the surface layer portion of the power distribution equipment component is measured over time based on the surface layer portion thermal image taken by the infrared thermography device at the same time as the heat load applying step or after the heat load applying step. Including observation steps,
Deterioration characterized in that, in the temperature distribution of the surface layer portion of the power distribution equipment component measured by the temperature observation step at 20 to 35 ° C., the portion where the temperature is lower than the peripheral portion is determined as the deteriorated portion. Detection method.
赤外線サーモグラフィ装置により絶縁材料からなる配電設備用部品の表層部を撮影し、該撮影した前記配電設備用部品の表層部熱画像に基づいて、前記配電設備用部品の表層部における劣化箇所を特定する方法において、An infrared thermography device is used to photograph the surface layer portion of a power distribution equipment component made of an insulating material, and the deteriorated portion on the surface layer portion of the power distribution equipment component is identified based on the photographed surface thermal image of the power distribution equipment component. In the method
前記配電設備用部品の表層部温度で気化することが可能な液体として水に前記配電設備用部品の表層部を浸漬することで表層部を濡らす熱負荷付与ステップと、A heat load applying step of immersing the surface layer portion of the power distribution equipment component in water as a liquid that can be vaporized at the temperature of the surface layer portion of the power distribution equipment component to wet the surface layer portion.
前記熱負荷付与ステップの前に又は前記熱負荷付与ステップと同時に前記配電設備用部品の表層部を加熱する加熱ステップと、A heating step that heats the surface layer portion of the power distribution equipment component before or at the same time as the heat load applying step.
前記熱負荷付与ステップと同時に又は前記熱負荷付与ステップの後に、前記赤外線サーモグラフィ装置により撮影された前記表層部熱画像に基づいて前記配電設備用部品の表層部の温度変化を経時的に計測する温度観測ステップと、Temperature at which the temperature change of the surface layer portion of the power distribution equipment component is measured over time based on the surface layer portion thermal image taken by the infrared thermography apparatus at the same time as the heat load applying step or after the heat load applying step. Observation steps and
前記温度観測ステップの最中に前記配電設備用部品の表層部に対して送風を行う送風ステップと、を含み、Including the blowing step of blowing air to the surface layer portion of the distribution equipment component during the temperature observation step.
前記温度観測ステップにより計測された前記配電設備用部品の25℃以上の表層部の温度分布において、周辺部に比べて温度低下が生じている部位を劣化箇所と判断することを特徴とする劣化検出方法。Deterioration detection characterized in that, in the temperature distribution of the surface layer portion of the power distribution equipment component measured by the temperature observation step at 25 ° C. or higher, a portion where the temperature is lower than that of the peripheral portion is determined as a deteriorated portion. Method.
赤外線サーモグラフィ装置により絶縁材料からなる配電設備用部品の表層部を撮影し、該撮影した前記配電設備用部品の表層部熱画像に基づいて、前記配電設備用部品の表層部における劣化箇所を特定する方法において、An infrared thermography device is used to photograph the surface layer portion of a power distribution equipment component made of an insulating material, and the deteriorated portion on the surface layer portion of the power distribution equipment component is identified based on the photographed surface thermal image of the power distribution equipment component. In the method
前記配電設備用部品の表層部温度で気化することが可能な液体としてアルコールを前記配電設備用部品の表層部に噴霧又は塗布することで表層部を濡らす熱負荷付与ステップと、A heat load applying step that wets the surface layer portion by spraying or applying alcohol as a liquid that can be vaporized at the surface layer portion temperature of the power distribution equipment component to the surface layer portion of the power distribution equipment component.
前記熱負荷付与ステップの前に又は前記熱負荷付与ステップと同時に前記配電設備用部品の表層部を加熱する加熱ステップと、A heating step that heats the surface layer portion of the power distribution equipment component before or at the same time as the heat load applying step.
前記熱負荷付与ステップと同時に又は前記熱負荷付与ステップの後に、前記赤外線サーモグラフィ装置により撮影された前記表層部熱画像に基づいて前記配電設備用部品の表層部の温度変化を経時的に計測する温度観測ステップと、を含み、Temperature at which the temperature change of the surface layer portion of the power distribution equipment component is measured over time based on the surface layer portion thermal image taken by the infrared thermography apparatus at the same time as the heat load applying step or after the heat load applying step. Including observation steps,
前記温度観測ステップにより計測された前記配電設備用部品の25℃以上の表層部の温度分布において、周辺部に比べて温度低下が生じている部位を劣化箇所と判断することを特徴とする劣化検出方法。Deterioration detection characterized in that, in the temperature distribution of the surface layer portion of the power distribution equipment component measured by the temperature observation step at 25 ° C. or higher, a portion where the temperature is lower than that of the peripheral portion is determined as a deteriorated portion. Method.
赤外線サーモグラフィ装置により絶縁材料からなる配電設備用部品の表層部を撮影し、該撮影した前記配電設備用部品の表層部熱画像に基づいて、前記配電設備用部品の表層部における劣化箇所を特定する方法において、An infrared thermography device is used to photograph the surface layer portion of a power distribution equipment component made of an insulating material, and the deteriorated portion on the surface layer portion of the power distribution equipment component is identified based on the photographed surface thermal image of the power distribution equipment component. In the method
前記配電設備用部品の表層部温度で気化することが可能な液体として水に前記配電設備用部品の表層部を浸漬することで表層部を濡らす熱負荷付与ステップと、A heat load applying step of immersing the surface layer portion of the power distribution equipment component in water as a liquid that can be vaporized at the temperature of the surface layer portion of the power distribution equipment component to wet the surface layer portion.
前記熱負荷付与ステップの前に又は前記熱負荷付与ステップと同時に前記配電設備用部品の表層部を加熱する加熱ステップと、A heating step that heats the surface layer portion of the power distribution equipment component before or at the same time as the heat load applying step.
前記熱負荷付与ステップと同時に又は前記熱負荷付与ステップの後に、前記赤外線サーモグラフィ装置により撮影された前記表層部熱画像に基づいて前記配電設備用部品の表層部の温度変化を経時的に計測する温度観測ステップと、を含み、Temperature at which the temperature change of the surface layer portion of the power distribution equipment component is measured over time based on the surface layer portion thermal image taken by the infrared thermography apparatus at the same time as the heat load applying step or after the heat load applying step. Including observation steps,
前記温度観測ステップにより計測された前記配電設備用部品の40℃以上の表層部の温度分布において、周辺部に比べて温度低下が生じている部位を劣化箇所と判断することを特徴とする劣化検出方法。Deterioration detection characterized in that, in the temperature distribution of the surface layer portion of the power distribution equipment component measured by the temperature observation step at 40 ° C. or higher, a portion where the temperature is lower than that of the peripheral portion is determined as a deteriorated portion. Method.
赤外線サーモグラフィ装置により絶縁材料からなる配電設備用部品の表層部を撮影し、該撮影した前記配電設備用部品の表層部熱画像に基づいて、前記配電設備用部品の表層部における劣化箇所を特定する方法において、An infrared thermography device is used to photograph the surface layer portion of a power distribution equipment component made of an insulating material, and the deteriorated portion on the surface layer portion of the power distribution equipment component is identified based on the photographed surface thermal image of the power distribution equipment component. In the method
前記配電設備用部品の表層部温度で気化することが可能な液体として水に前記配電設備用部品の表層部を浸漬することで表層部を濡らす熱負荷付与ステップと、A heat load applying step of immersing the surface layer portion of the power distribution equipment component in water as a liquid that can be vaporized at the temperature of the surface layer portion of the power distribution equipment component to wet the surface layer portion.
前記熱負荷付与ステップの前に又は前記熱負荷付与ステップと同時に前記配電設備用部品の表層部を加熱する加熱ステップと、A heating step that heats the surface layer portion of the power distribution equipment component before or at the same time as the heat load applying step.
前記熱負荷付与ステップと同時に又は前記熱負荷付与ステップの後に、前記赤外線サーモグラフィ装置により撮影された前記表層部熱画像に基づいて前記配電設備用部品の表層部の温度変化を経時的に計測する温度観測ステップと、Temperature at which the temperature change of the surface layer portion of the power distribution equipment component is measured over time based on the surface layer portion thermal image taken by the infrared thermography apparatus at the same time as the heat load applying step or after the heat load applying step. Observation steps and
前記温度観測ステップの最中に前記配電設備用部品の表層部に対して送風を行う送風ステップと、を含み、Including the blowing step of blowing air to the surface layer portion of the distribution equipment component during the temperature observation step.
前記温度観測ステップにより計測された前記配電設備用部品の15℃以上の表層部の温度分布において、周辺部に比べて温度低下が生じている部位を劣化箇所と判断することを特徴とする劣化検出方法。Deterioration detection characterized in that, in the temperature distribution of the surface layer portion of the power distribution equipment component measured by the temperature observation step at 15 ° C. or higher, the portion where the temperature is lower than the peripheral portion is determined as the deteriorated portion. Method.
前記劣化箇所は、前記配電設備用部品に生じたクラックである請求項1又は2に記載の劣化検出方法。The deterioration detection method according to claim 1 or 2, wherein the deteriorated portion is a crack generated in the power distribution equipment component. 前記劣化箇所は、前記配電設備用部品に生じたトラッキングによる表面汚損部である請求項3乃至5のいずれか一項に記載の劣化検出方法。The deterioration detection method according to any one of claims 3 to 5, wherein the deteriorated portion is a surface-stained portion due to tracking generated in the power distribution equipment component.
JP2017147149A 2017-07-28 2017-07-28 Deterioration detection method Active JP7007128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017147149A JP7007128B2 (en) 2017-07-28 2017-07-28 Deterioration detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017147149A JP7007128B2 (en) 2017-07-28 2017-07-28 Deterioration detection method

Publications (2)

Publication Number Publication Date
JP2019027903A JP2019027903A (en) 2019-02-21
JP7007128B2 true JP7007128B2 (en) 2022-01-24

Family

ID=65478145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017147149A Active JP7007128B2 (en) 2017-07-28 2017-07-28 Deterioration detection method

Country Status (1)

Country Link
JP (1) JP7007128B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283452A (en) 2004-03-30 2005-10-13 Nohmi Bosai Ltd Tire damage detection system
US20110007774A1 (en) 2009-07-07 2011-01-13 Clifford Hatcher Thermography Inspection of Surface Discontinuities

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295148A (en) * 1988-05-20 1989-11-28 Nkk Corp Detection of crack of object surface
JPH04296645A (en) * 1991-03-27 1992-10-21 Mitsubishi Denki Bill Techno Service Kk Defect detecting method
JPH08145923A (en) * 1994-11-15 1996-06-07 Nippon Steel Corp Method for detecting blister on mortar surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283452A (en) 2004-03-30 2005-10-13 Nohmi Bosai Ltd Tire damage detection system
US20110007774A1 (en) 2009-07-07 2011-01-13 Clifford Hatcher Thermography Inspection of Surface Discontinuities

Also Published As

Publication number Publication date
JP2019027903A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
Pontes et al. Effect of pattern geometry on bubble dynamics and heat transfer on biphilic surfaces
JP6814166B2 (en) Method of coating the surface of metal strip and metal strip coating device
JP4849592B2 (en) Apparatus and method for estimating leakage current generated in insulator
KR102404004B1 (en) Processing system and methods for calibrating workpiece process, validating workpiece manufacturing process and processing workpiece at elevated temperature
CN110455857A (en) The method that heating conduction is influenced for assessing the aging of containment surface covering
JP2019178997A (en) In-situ observation device and observation method of atmospheric corrosion
JP7007128B2 (en) Deterioration detection method
DE102013011149A1 (en) Measuring apparatus, method for inspecting plaque deposits on a plaque probe, incinerator and method of operating such an incinerator
BOUBAULTI et al. Study of the aging of a solar absorber material following the evolution of its thermoradiative and thermophysical properties.
JP5011215B2 (en) Non-contact dimension measuring method and apparatus
JP2017072516A (en) Defect inspection method
CN106644908A (en) Method and device for evaluating durability of cable and protective sleeve in hygrothermal environment
US20200357113A1 (en) Method for inspecting the coating of an electronic component
CN110849884A (en) Method and system for detecting bonding defects inside composite insulator
Serianni et al. Test of 1D carbon-carbon composite prototype tiles for the SPIDER diagnostic calorimeter
Grosso et al. Evaluating quality of adhesive joints in glass-fiber plastic piping by using active thermal NDT
JP2016102703A (en) Nondestructive inspection method and nondestructive inspection apparatus for peeling in coating layer
Keo et al. Development of an infrared thermography method with CO2 laser excitation, applied to defect detection in CFRP
JP5497720B2 (en) Sample surface temperature sensor and corrosion tester using the sensor
Golovin et al. New ways of detecting cracks, delaminations, and other defects in materials and objects via high frame-rate thermal imaging
US20170025316A1 (en) Method for determining a bonding connection in a component arrangement and test apparatus
CN111830794A (en) Immersion liquid thermal effect evaluation device, calibration device and evaluation method of lithography machine
KR20090131199A (en) Method for discriminating the reusable of gas turbine bucket by infrared thermography
CN110512608A (en) Concrete anticracking apparatus and method based on distribution type fiber-optic
Basheer et al. A thermographic approach for surface crack depth evaluation through 3D finite element modeling

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220106

R150 Certificate of patent or registration of utility model

Ref document number: 7007128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150