JPH04296645A - Defect detecting method - Google Patents

Defect detecting method

Info

Publication number
JPH04296645A
JPH04296645A JP6308991A JP6308991A JPH04296645A JP H04296645 A JPH04296645 A JP H04296645A JP 6308991 A JP6308991 A JP 6308991A JP 6308991 A JP6308991 A JP 6308991A JP H04296645 A JPH04296645 A JP H04296645A
Authority
JP
Japan
Prior art keywords
image
defect
thermal image
displayed
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6308991A
Other languages
Japanese (ja)
Inventor
Yasuo Matsui
松井 靖雄
Toshiyasu Nakayuki
仲行 敏安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP6308991A priority Critical patent/JPH04296645A/en
Publication of JPH04296645A publication Critical patent/JPH04296645A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect faraway defect with high accuracy and high S/N by a light spot irradiating an object to be inspected, taking a thermal image at the irradiated position by an infrared image device, and giving differentiating treatment to the obtained thermal image signal or, after differentiating treatment, giving differential treatment to the differentiated reference thermal image signal. CONSTITUTION:A light spot (infrared ray) is radiated onto the surface of an object to be inspected. A thermal image at radiated position is taken by an infrared image device (infrared camera), and a differentiating treatment is given to the image focused. The differentiated image is displayed on a CRT. On the CRT screen, contours of defects and light spots are clearly displayed, and the form and size of light spots, heating area, presence of defect in the heating area, and form and size of defects can be detected visually. Also reference thermal image free from defect is pre-taken, the differentiating image of the thermal image signal is memorized. Then the differential image between the memorized image and the differentiated image is displayed on the CRT and a defect is judged by comparing the difference between the displayed image and the obtained differentiated image, to detect the defect securely.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、欠陥検出方法、とく
にビル、橋等の大型構造物あるいは屋外電気設備、プラ
ント設備の保全等を目的にして、欠陥検出を行う方法に
関するものであり、遠距離から被検査物を加熱すること
ができ、遠距離から赤外線映像装置により被検査物の表
面温度を計測することで高精度な欠陥検出ができる。
[Industrial Application Field] This invention relates to a defect detection method, and particularly to a method for detecting defects for the purpose of maintaining large structures such as buildings and bridges, outdoor electrical equipment, and plant equipment. The inspection object can be heated from a distance, and defects can be detected with high precision by measuring the surface temperature of the inspection object from a long distance using an infrared imaging device.

【0002】0002

【従来の技術】図3は例えば文献(1988年NATO
 ASI Series,Vol.F44 )に掲載さ
れた従来の欠陥検出方法に用いる装置に関する構成図で
ある。図4は図3に示されたモデルの表面温度の計算結
果である。図において、1は赤外線映像装置、2は加熱
ヒータ、3は積層材であり、アルミ31、エポキシ32
、及び発泡材33よりなる。4は積層材内部にある欠陥
である。
[Prior Art] Figure 3 shows, for example, the literature (1988 NATO
ASI Series, Vol. FIG. 44 is a configuration diagram of a device used in a conventional defect detection method published in 2003. FIG. 4 shows calculation results of the surface temperature of the model shown in FIG. 3. In the figure, 1 is an infrared imaging device, 2 is a heater, and 3 is a laminated material, including aluminum 31 and epoxy 32.
, and foam material 33. 4 is a defect inside the laminated material.

【0003】次に動作について説明する。図3より、積
層材3は紙面の右側方法から左側方に一定速度で移動す
る。加熱ヒータ2によって積層材3の表面が加熱され、
赤外線映像装置1によって積層材3の表面温度が測定さ
れる。加熱ヒータ2と赤外線映像装置1を図3に示す様
に配置することで、積層材3の内部にある欠陥4を熱画
像として検出することができる。図4は、内部欠陥が有
る場合(曲線B)と無い場合(曲線A)の表面温度の相
違を計算機シミュレーションによって求めたものである
。欠陥部の表面温度が上昇していることが明らかであり
、これをもって欠陥の存在を判定することができる。 欠陥画像を高S/Nで検出するためには、正常画像と欠
陥画像の差をとる差分画像処理が通常よく行われる。さ
らに欠陥画像を明瞭にするためには、2値化処理が行わ
れる。
Next, the operation will be explained. From FIG. 3, the laminated material 3 moves from the right side of the page to the left side at a constant speed. The surface of the laminated material 3 is heated by the heater 2,
The surface temperature of the laminated material 3 is measured by the infrared imaging device 1 . By arranging the heater 2 and the infrared imaging device 1 as shown in FIG. 3, defects 4 inside the laminated material 3 can be detected as a thermal image. FIG. 4 shows the difference in surface temperature between the case where there is an internal defect (curve B) and the case where there is no internal defect (curve A), determined by computer simulation. It is clear that the surface temperature of the defective portion has increased, and from this it is possible to determine the presence of a defect. In order to detect a defective image with a high S/N ratio, differential image processing that takes the difference between a normal image and a defective image is usually performed. In order to further clarify the defect image, binarization processing is performed.

【0004】0004

【発明が解決しようとする課題】従来の欠陥検出方法は
以上のようになされており、画像処理すなわち信号処理
方式は高精度、高S/Nを得るために重要な技術である
。ところが上記の差分処理では、図4に示す様に温度上
昇位置と欠陥位置が正確に対応していないため、欠陥部
を大きめに判定する欠点があった。さらに正常部と欠陥
部の熱画像は積層材の同一場所についての画像ではない
。したがってS/Nにとって不利となる問題点があった
。なお、特開昭60−213854号公報に示された非
破壊内部検査方法において、差分処理を施さない1 画
像から欠陥検出を精度良く行う方式が述べられているが
、その内容は等温度曲線を描き、その像を解析すること
が基本であることから、上記欠陥部を大きめに判定する
欠点は避けられない。また加熱方式ではないために、高
S/Nは期待できない。このように従来の赤外線映像装
置による欠陥検出方式は、欠陥の大きさを精度良く測定
できない、あるいは差分処理を施すために2画像必要と
なることや、S/Nを悪化させる等の欠点があった。ま
た、赤外線を用いて検査を行うので、検査領域が肉眼で
はわからず、検査領域の不確かさが生じるという問題点
もあった。
The conventional defect detection method is performed as described above, and image processing, that is, signal processing method is an important technique for obtaining high precision and high S/N. However, in the above-mentioned difference processing, since the temperature increase position and the defect position do not correspond accurately as shown in FIG. 4, there is a drawback that the defect part is determined to be larger. Furthermore, the thermal images of the normal and defective areas are not images of the same location in the laminate. Therefore, there was a problem that was disadvantageous in terms of S/N. In addition, in the non-destructive internal inspection method disclosed in Japanese Patent Application Laid-Open No. 60-213854, a method for accurately detecting defects from one image without performing differential processing is described, but the content is based on the method of detecting defects using isothermal curves. Since it is basic to draw and analyze the image, the drawback of judging the defective part as being larger is unavoidable. Furthermore, since it is not a heating method, high S/N cannot be expected. As described above, conventional defect detection methods using infrared imaging devices have drawbacks such as not being able to accurately measure the size of defects, requiring two images to perform differential processing, and worsening the S/N ratio. Ta. Furthermore, since the inspection is performed using infrared rays, the inspection area cannot be seen with the naked eye, resulting in the problem of uncertainty in the inspection area.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、従来に比べ高精度、高S/Nな
欠陥検出方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a defect detection method with higher accuracy and higher S/N than conventional methods.

【0006】[0006]

【課題を解決するための手段】この発明に係わる欠陥検
出方法は、被検査物に光スポットを照射して、照射位置
の熱画像を赤外線映像装置により撮像し、得られた熱画
像信号を微分処理、あるいは微分処理後に基準熱画像信
号を微分処理したもので差分処理し、欠陥を判定するよ
うにしたものである。
[Means for Solving the Problems] A defect detection method according to the present invention irradiates an object to be inspected with a light spot, captures a thermal image of the irradiated position with an infrared imaging device, and differentiates the obtained thermal image signal. After processing or differential processing, the reference thermal image signal is subjected to differential processing and differential processing is performed to determine defects.

【0007】[0007]

【作用】この発明における信号処置方式は微分処理を用
いたものであるので、光スポット形状は寸法、即ち加熱
面積が特定でき、検査領域が明確になる。さらに欠陥の
大きさが高精度に検出できる。また、1画像から欠陥が
精度よく検出でき、さらに加熱方式であるので高S/N
となる。
[Operation] Since the signal processing method according to the present invention uses differential processing, the dimensions of the light spot shape, that is, the heated area can be specified, and the inspection area can be clearly defined. Furthermore, the size of defects can be detected with high precision. In addition, defects can be detected with high accuracy from a single image, and since it uses a heating method, the S/N is high.
becomes.

【0008】また、微分処理後に基準熱画像信号を微分
処理したもので差分処理すれば、2画像用いることによ
る不利は生じるが、欠陥が明確に判定できる。
[0008]Furthermore, if the reference thermal image signal is subjected to differential processing after differential processing and then differential processing is performed, defects can be clearly determined, although there is a disadvantage due to the use of two images.

【0009】[0009]

【実施例】実施例1.以下、この発明の実施例について
説明する。図1はこの発明の欠陥検出方法を説明する説
明図であり、赤外線映像装置(図示しない)によって得
られるであろう表面温度パターンおよび信号処理後の温
度パターンを示す。この温度パターンは計算機シミュレ
ーションによって得たものである。図において、5は被
検査物、6は光スポット、71、72は各々、欠陥4が
有る場合、無い場合の被検査物の表面温度パターン、7
3は表面温度パターン71からパターン72を差し引い
た差分温度パターン、74、75は各々表面温度パター
ン71、72のそれぞれの微分温度パターンである。光
スポット6の照射によって被検査物5の表面が加熱され
る。熱は熱伝導によって被検査物5の内部に拡散する。 内部に欠陥4が有る場合と無い場合では拡散状態が異な
る。その結果、被検査物5の表面温度が違ってくる。と
ころで、赤外線映像装置によって測定された温度パター
ンがパターン71であったとして、欠陥の存在を判定で
きるかどうか疑問である。温度パターン71に高低が存
在することから、異常であることは認められるが、欠陥
の存在を断定することは難しいし、欠陥の大きさを判定
することはできない。また差分温度パターン73からは
、欠陥の存在は判定できるが、欠陥の大きさを判定する
ことは極めて困難である。 ところが微分温度パターン74によると、欠陥と光スポ
ットの端部でピークを示すことが明かであり、欠陥部に
ついては、欠陥が無い場合の微分温度パターン75とは
相違が明白である。この様に、測定された熱画像を微分
処理することで加熱領域を特定でき、加熱領域内での欠
陥の有無、欠陥形状寸法を判定できる。
[Example] Example 1. Examples of the present invention will be described below. FIG. 1 is an explanatory diagram for explaining the defect detection method of the present invention, showing a surface temperature pattern that would be obtained by an infrared imaging device (not shown) and a temperature pattern after signal processing. This temperature pattern was obtained by computer simulation. In the figure, 5 is the object to be inspected, 6 is the light spot, 71 and 72 are the surface temperature patterns of the object to be inspected with and without defect 4, respectively.
3 is a differential temperature pattern obtained by subtracting pattern 72 from surface temperature pattern 71, and 74 and 75 are differential temperature patterns of surface temperature patterns 71 and 72, respectively. The surface of the object to be inspected 5 is heated by the irradiation of the light spot 6. The heat diffuses into the interior of the object to be inspected 5 by thermal conduction. The diffusion state differs depending on whether there is a defect 4 inside or not. As a result, the surface temperature of the object to be inspected 5 differs. By the way, even if the temperature pattern measured by the infrared imaging device is pattern 71, it is doubtful whether the presence of a defect can be determined. Since there are high and low temperature patterns in the temperature pattern 71, it is recognized that there is an abnormality, but it is difficult to determine the existence of a defect, and the size of the defect cannot be determined. Further, although the presence of a defect can be determined from the differential temperature pattern 73, it is extremely difficult to determine the size of the defect. However, it is clear that the differential temperature pattern 74 shows a peak at the edge of the defect and the light spot, and the difference in the defect area from the differential temperature pattern 75 when there is no defect is obvious. In this way, by performing differential processing on the measured thermal image, the heated region can be identified, and the presence or absence of a defect within the heated region and the shape and size of the defect can be determined.

【0010】図2はこの発明の一実施例による欠陥検出
方法を示すフローチャートであり、ステップS1で、検
査面Nを決定し、ステップS2でこの検査面Nに光スポ
ット(赤外線)を照射する。ステップS3では、赤外線
映像装置(赤外線カメラ)で検査面Nの熱画像をとり、
ステップS4で、この撮像画像に対し、微分処理を行な
う。この微分画像をステップS5で、CRTに表示し、
画面より、目視で欠陥を判定する(ステップS6)。即
ち、画面には欠陥と光スポットの輪かくが明確に表示さ
れ、光スポットの形状寸法、及び加熱領域、並びに加熱
領域内に存在する欠陥の有無、及び欠陥の形状寸法等が
検出できる。ステップS7ではN+1を新たな検査面と
して光スポット位置を移動し、同様の動作を、検査面が
N=M(M:検査終了面)となるまでくり返す(ステッ
プS8)。
FIG. 2 is a flowchart showing a defect detection method according to an embodiment of the present invention. In step S1, an inspection surface N is determined, and in step S2, a light spot (infrared rays) is irradiated onto this inspection surface N. In step S3, a thermal image of the inspection surface N is taken with an infrared imaging device (infrared camera),
In step S4, differential processing is performed on this captured image. This differential image is displayed on the CRT in step S5,
Defects are visually determined from the screen (step S6). That is, the circle of the defect and the light spot is clearly displayed on the screen, and the shape and size of the light spot, the heated area, the presence or absence of a defect existing in the heated area, the shape and size of the defect, etc. can be detected. In step S7, the light spot position is moved using N+1 as a new inspection surface, and the same operation is repeated until the inspection surface becomes N=M (M: inspection end surface) (step S8).

【0011】実施例2.なお、上記実施例のステップS
6は、予め欠陥のない基準熱画像を撮像し、この熱画像
信号の微分画像を記憶しておき、この基準微分画像とス
テップS4で得られた微分画像との差分画像をCRTに
表示して、ステップS5で表示された微分画像との違い
から欠陥を判定するようにしてもよく、欠陥がより明白
に表示される。
Example 2. Note that step S in the above embodiment
In Step 6, a reference thermal image without defects is captured in advance, a differential image of this thermal image signal is stored, and a difference image between this reference differential image and the differential image obtained in step S4 is displayed on a CRT. , the defect may be determined based on the difference from the differential image displayed in step S5, and the defect is displayed more clearly.

【0012】0012

【発明の効果】以上のように、この発明によれば被検査
物に光スポットを照射して、照射位置の熱画像を赤外線
映像装置により撮像し、得られた熱画像信号を微分処理
、あるいは微分処理後に基準熱画像信号を微分処理した
もので差分処理し、欠陥を判定するようにしたので、高
精度、高S/Nな欠陥画像を得ることができる。また加
熱領域が把握できることから、検査場所を特定でき、検
査時間の短縮が可能となる。
As described above, according to the present invention, an object to be inspected is irradiated with a light spot, a thermal image of the irradiated position is taken by an infrared imaging device, and the obtained thermal image signal is subjected to differential processing or After the differential processing, the differential processing of the reference thermal image signal is performed to perform differential processing to determine a defect, so that a defect image with high accuracy and high S/N can be obtained. In addition, since the heating area can be determined, the inspection location can be specified and the inspection time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の欠陥検出方法を説明する説明図であ
る。
FIG. 1 is an explanatory diagram illustrating a defect detection method of the present invention.

【図2】この発明の一実施例による欠陥検出方法を示す
フローチャートである
FIG. 2 is a flowchart showing a defect detection method according to an embodiment of the present invention.

【図3】従来の欠陥検出方法に用いる装置を示す構成図
である。
FIG. 3 is a configuration diagram showing an apparatus used in a conventional defect detection method.

【図4】従来の欠陥検出方法に係わる被検査物の表面温
度を示す特性図である。
FIG. 4 is a characteristic diagram showing the surface temperature of an object to be inspected in a conventional defect detection method.

【符号の説明】[Explanation of symbols]

1  赤外線 4  欠陥 5  被検査物 6  光スポット 1 Infrared rays 4 Defects 5 Object to be inspected 6. Light spot

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  被検査物に光スポットを照射するステ
ップ、照射位置の熱画像を赤外線映像装置によって撮像
するステップ、及び上記赤外線映像装置によって得られ
た熱画像信号を微分処理、あるいは微分処理後に基準熱
画像信号を微分処置したもので差分処理し、欠陥を判定
するステップを施す欠陥検出方法。
Claim 1: A step of irradiating a light spot onto an object to be inspected, a step of capturing a thermal image of the irradiation position with an infrared imaging device, and differential processing of the thermal image signal obtained by the infrared imaging device, or after differential processing. A defect detection method that performs differential processing using a differentially processed reference thermal image signal to determine defects.
JP6308991A 1991-03-27 1991-03-27 Defect detecting method Pending JPH04296645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6308991A JPH04296645A (en) 1991-03-27 1991-03-27 Defect detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6308991A JPH04296645A (en) 1991-03-27 1991-03-27 Defect detecting method

Publications (1)

Publication Number Publication Date
JPH04296645A true JPH04296645A (en) 1992-10-21

Family

ID=13219248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6308991A Pending JPH04296645A (en) 1991-03-27 1991-03-27 Defect detecting method

Country Status (1)

Country Link
JP (1) JPH04296645A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131255A (en) * 1998-10-22 2000-05-12 Hitachi Cable Ltd Method and device for detecting flaw in material
JP2019027903A (en) * 2017-07-28 2019-02-21 中部電力株式会社 Degradation detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131255A (en) * 1998-10-22 2000-05-12 Hitachi Cable Ltd Method and device for detecting flaw in material
JP2019027903A (en) * 2017-07-28 2019-02-21 中部電力株式会社 Degradation detection method

Similar Documents

Publication Publication Date Title
US10094794B2 (en) Characterization of wrinkles and periodic variations in material using infrared thermography
EP2350627B1 (en) Method for detecting defect in material and system for the method
US7724925B2 (en) System for generating thermographic images using thermographic signal reconstruction
US6517238B2 (en) Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection
US8203606B2 (en) Gradient image processing
US20110299752A1 (en) Method for implementing depth deconvolution algorithm for enhanced thermal tomography 3d imaging
Schlichting et al. Efficient data evaluation for thermographic crack detection
JPH03267745A (en) Surface property detecting method
Grys New thermal contrast definition for defect characterization by active thermography
JP5494566B2 (en) Defect detection method for steel
JP2010071722A (en) Method and device for inspecting unevenness flaws
JPH09152322A (en) Method and device for surface quality inspection
JP2017062181A (en) Surface flaw checkup apparatus, and surface flaw checkup method
JPH04296645A (en) Defect detecting method
Venegas et al. Projected thermal diffusivity analysis for thermographic nondestructive inspections
JP2005172664A (en) Method and device for determining soundness of concrete structure by infrared method
JPH11314114A (en) Device for detecting position of seam part of electric resistance welded tube
JP2016142567A (en) Inspection method and device
JPS618610A (en) Apparatus for inspecting steel sheet surface
JPS5981544A (en) Detecting method of internal defect
Venegas et al. Development of Virtual Illumination Functions for Thermographic NDT
JPH0273139A (en) Surface defect checking device
Zong et al. Quantitative detection of subsurface defects by pulse-heating infrared thermography
Deng et al. The infrared diagnostic technology of power transmission devices and experimental study
Shepard et al. Systems-based approach to thermographic NDE