JPH08145923A - Method for detecting blister on mortar surface - Google Patents

Method for detecting blister on mortar surface

Info

Publication number
JPH08145923A
JPH08145923A JP30417594A JP30417594A JPH08145923A JP H08145923 A JPH08145923 A JP H08145923A JP 30417594 A JP30417594 A JP 30417594A JP 30417594 A JP30417594 A JP 30417594A JP H08145923 A JPH08145923 A JP H08145923A
Authority
JP
Japan
Prior art keywords
mortar
temperature
layer
concrete
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30417594A
Other languages
Japanese (ja)
Inventor
Susumu Yamashita
晋 山下
Takehiko Takasaki
武彦 高崎
Ryuichi Hamamoto
龍一 浜本
Kenji Nishimura
健次 西村
Emi Sato
恵美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Navitas Co Ltd
Nippon Steel Corp
Original Assignee
Navitas Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Navitas Co Ltd, Nippon Steel Corp filed Critical Navitas Co Ltd
Priority to JP30417594A priority Critical patent/JPH08145923A/en
Publication of JPH08145923A publication Critical patent/JPH08145923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE: To detect blisters on a mortar layer applied to a concrete wall by an infrared camera. CONSTITUTION: Low-temperature volatile liquid 3 is painted and sprayed on the outer surface of the layer of mortar 1, and a very thin layer of the outer surface of the mortar 1 is cooled quickly. Thereafter the change of surface temperature of the mortar 1 is observed as an infrared camera color distribution heat image. At the time of quick cooling it is substantially uniform temperature, thereafter at some point the surface temperature of a sound part 6 does not change, but a blister part 5 indicates phenomenon for producing color change by increasing temperature. An existing position of a mortar-floated part 5 an be accurately searchedwith the phenomenon without any skill.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、モルタル表面壁におけ
るモルタル層の浮き部を、赤外線カメラによって測定し
た該モルタル層の表面の温度分布から探査する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a floating portion of a mortar layer on a mortar surface wall from the temperature distribution on the surface of the mortar layer measured by an infrared camera.

【0002】[0002]

【従来の技術】モルタルが付着してなるコンクリート壁
は経時変化を来たし、老朽初期段階においては、モルタ
ル層がコンクリート表面から離れ、モルタル層とコンク
リート表面との間に空気層が介在する箇所が部分的に発
生する。更に、老朽が進行するとそのような空気層が介
在した箇所が増加しまたその箇所の面積も拡大する。遂
にはモルタル層がコンクリート壁表面から剥離して落下
し、人身事故を招くこととなり、極めて危険な状態に陥
ることとなる。従って、モルタル層がコンクリート表面
から剥離して落下する前に、その落下防止策を施すこと
が必要である。モルタル層表面は、太陽からの照射熱を
吸収して、全面に亘って、その表面温度が上昇するが、
モルタル層がコンクリート表面から浮いている部分(浮
き部という。)の表面温度は、前述の如くモルタル層と
コンクリート層との境界部に前記空気層が存在するた
め、浮きがない部分(以下、密着部という。)の表面温
度に比して概ね高くなるという現象が現れる。モルタル
層が付着してなるコンクリート壁において、浮き部の範
囲を確認する方法として、従来から用いられる方法とし
て、赤外線カメラを用いてモルタル表面を撮影した色分
布熱画像による診断方法がある。これは、コンクリート
表面の温度分布を、例えば特公平3−59215号公報
に示されるように、赤外線カメラを用いて色分布熱画像
として写し出し、その画像の高温色域を劣化部とする探
査方法に準じた方法である。
2. Description of the Related Art A concrete wall to which mortar adheres changes over time, and at the initial stage of aging, the mortar layer separates from the concrete surface, and there is a portion where an air layer is present between the mortar layer and the concrete surface. Occurring in a sudden way. Further, as aging progresses, the number of places where such an air layer is interposed increases and the area of that place also increases. Eventually, the mortar layer peels off from the concrete wall surface and falls, leading to personal injury and falling into an extremely dangerous state. Therefore, before the mortar layer peels off from the concrete surface and falls, it is necessary to take measures for preventing the fall. The surface of the mortar layer absorbs the irradiation heat from the sun, and the surface temperature rises over the entire surface.
The surface temperature of the part where the mortar layer floats from the concrete surface (floating part) is the same as the above because the air layer exists at the boundary between the mortar layer and the concrete layer, so there is no part that does not float (hereinafter referred to as “adhesion”). The phenomenon that the temperature is generally higher than the surface temperature of the part) appears. As a method for confirming the range of the floating portion in the concrete wall to which the mortar layer is attached, a conventionally used method is a diagnostic method using a color distribution thermal image obtained by photographing the mortar surface with an infrared camera. This is an exploration method in which the temperature distribution on the concrete surface is projected as a color distribution thermal image using an infrared camera as shown in, for example, Japanese Patent Publication No. 3-59215, and the high temperature color gamut of the image is used as the deteriorated portion. It is a similar method.

【0003】その診断方法によれば、その画像の高温色
域をモルタルの浮き部とするものである。しかし、モル
タル層表面の温度として表示されるモルタル壁の外面温
度は、表面汚れによって生じる放射黒度の上昇、表面塗
装膜が浮いている場合に、該塗装膜とモルタル層表面と
の間に生じた空気膜、モルタル層の厚さ不足等の要因、
または、これらの要因の結合によって、これらの要因が
ない場合に比して高くなる。従って、密着部の外表面温
度についても、前述の要因があれば高く表れるため、浮
き部に表示された温度域と類似することがある。また、
モルタル壁の外表面の温度は、その外表面が風にさらさ
れると、抜熱されて降下するので、風が吹くたびにモル
タル表面の温度分布を表示してなる前述の熱画像の色分
布は、浮き部も、浮いていない部分も刻々変化する。し
かも、自然現象下で、無風又は無風に近い状態が現出す
るのはまれである。従って、赤外線カメラによる色分布
熱画像中の高温色部から浮き部の所在を判定するには、
相当の高度な熟練を要する。このことは、赤外線カメラ
による浮き部の所在位置の探査方法があまり普及してい
ない所以であった。赤外線カメラによる浮き部の所在位
置の探査方法については、一般に行われている打音によ
るそれとは異なり、足場を要せず、地表から判定できる
ので、熟練を要せず簡易に、しかも、精度良く探査でき
る方法の確立が熱望されていた。
According to the diagnostic method, the high temperature color gamut of the image is used as the mortar floating portion. However, the outer surface temperature of the mortar wall, which is displayed as the temperature of the surface of the mortar layer, is increased between the surface of the mortar layer and the surface of the mortar layer when the radiation blackness increases due to surface contamination and the surface coating film is floating. Air film, factors such as insufficient thickness of the mortar layer,
Or, due to the combination of these factors, it is higher than it would be without these factors. Therefore, the outer surface temperature of the close contact portion also appears high if the above-mentioned factors are present, and may be similar to the temperature range displayed on the floating portion. Also,
Since the temperature of the outer surface of the mortar wall is removed by heat when the outer surface is exposed to the wind, the temperature distribution of the above-mentioned thermal image that displays the temperature distribution of the mortar surface each time the wind blows is , The floating part and the non-floating part change every moment. Moreover, it is rare that a windless state or a state close to a windless state appears under a natural phenomenon. Therefore, to determine the location of the floating part from the high temperature color part in the color distribution thermal image by the infrared camera,
Requires considerable skill. This was the reason why the method of searching the location of the floating portion using an infrared camera was not widely used. The method of exploring the location of the floating part using an infrared camera is different from the method of hitting sound that is generally used. There was a strong desire to establish a method for exploration.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前述の事情
に鑑み、浮き部をモルタル層部に存在する表面汚れ、塗
装膜の浮き、モルタル層の厚さのバラツキ、及びモルタ
ル表面に沿って吹く風があっても簡易に、しかも、精度
良く判定することができる浮き部の所在位置の判定方法
を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, the present invention provides a method in which the floating portion is present on the mortar layer portion due to surface contamination, the coating film floating, the mortar layer thickness variation, and the mortar surface. It is an object of the present invention to provide a method for determining the location of a floating portion, which can be easily and accurately determined even if there is a blowing wind.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
の、本発明の要旨は、(1)コンクリートにモルタル層
を塗着した壁表面に、蒸発液を塗布した後、該壁表面温
度を測定し、前記モルタル層のコンクリートからの浮き
の有無を判定することを特徴とするモルタル浮き部の探
査方法、(2)コンクリートにモルタル層を塗着した壁
表面に、蒸発液を塗布して壁全表面を抜熱し、該壁表面
温度を赤外線センサーで測定して壁面の温度差を求め、
温度の高い部分をモルタル層のコンクリートからの浮き
部と判定することを特徴とするモルタル浮き部の探査方
法、である。
Means for Solving the Problems The gist of the present invention for solving the above problems is as follows: (1) After applying an evaporating liquid to a wall surface obtained by applying concrete to a mortar layer, the temperature of the wall surface is adjusted. A method for exploring a mortar floating portion, characterized by measuring and determining whether or not the mortar layer floats from the concrete, (2) a wall obtained by applying an evaporation liquid to the wall surface of the concrete coated with the mortar layer. Heat the entire surface, measure the wall surface temperature with an infrared sensor to determine the temperature difference of the wall surface,
A method for exploring a mortar floating portion, characterized in that a portion having a high temperature is determined to be a floating portion of the mortar layer from concrete.

【0006】[0006]

【作用】本発明において、コンクリートにモルタル層を
塗着した壁表面に、蒸発液を塗布した後、該壁表面温度
を測定し、前記モルタル層のコンクリートからの浮きの
有無を判定し、モルタル浮き部を探査する。コンクリー
トにモルタル層を塗着した壁表面に、蒸発液を塗布して
壁全表面を抜熱し、該壁表面温度を赤外線センサーで測
定して壁面の温度差を求め、温度の高い部分をモルタル
層のコンクリートからの浮き部と判定し、モルタル浮き
部を探査する。
In the present invention, after the evaporation liquid is applied to the wall surface where the mortar layer is applied to the concrete, the temperature of the wall surface is measured to determine whether or not the mortar layer is floating from the concrete, and the mortar floating Explore the department. On the wall surface where concrete is coated with mortar layer, evaporating liquid is applied to remove heat from the entire wall surface, the temperature of the wall surface is measured with an infrared sensor to obtain the temperature difference between the wall surfaces, and the mortar layer is used for the high temperature portion. The mortar floating part is searched by judging it as the floating part from the concrete.

【0007】[0007]

【実施例】本発明の実施例を図面を参照して説明する。
図2は、厚さBのモルタル1が付着してなるコンクリー
ト2壁における、その壁の断面図、並びにモルタル1表
面が太陽からの照射熱を吸収したときのある時点におけ
る、その壁内の温度勾配近似のグラフを示す。図2中、
1はモルタルを、2はコンクリートを、7はモルタル1
とコンクリート2とが付着接合してなる境界を、Bはモ
ルタル1の厚さを、T0 はモルタル1側の大気温度を、
TK0 はコンクリート2に付着接合してなるモルタル1
表面温度を、TK1 は境界7の温度を、T3 はコンクリ
ート2の反モルタル側の表面及び内部温度を、T4 はコ
ンクリート2側の大気温度を示す。尚、モルタル1の表
面が太陽から照射熱を吸収し始める前のコンクリート2
の内部の温度分布は、コンクリート2が前日の日中にモ
ルタル1を介して吸収した熱を夜間に放射したため、全
厚さ方向に亘って均一な温度T3 になっており、また、
コンクリート側大気温度T4 は、夜間及び日中とも変化
しないことを前提としたものである。従って、コンクリ
ート2の内部温度は、モルタル1側からの入熱によって
上昇している。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 2 is a cross-sectional view of a concrete 2 wall formed by adhering a mortar 1 having a thickness B, and the temperature inside the wall at a certain point when the surface of the mortar 1 absorbs the irradiation heat from the sun. The graph of a gradient approximation is shown. In FIG.
1 is mortar, 2 is concrete, 7 is mortar 1
B is the thickness of the mortar 1, T 0 is the atmospheric temperature on the mortar 1 side,
TK 0 is mortar 1 that is adhered and joined to concrete 2
The surface temperature, TK 1 is the temperature of the boundary 7, T 3 is the surface and internal temperature of the concrete 2 on the anti-mortar side, and T 4 is the atmospheric temperature of the concrete 2 side. In addition, the concrete 2 before the surface of the mortar 1 starts to absorb the irradiation heat from the sun
As for the temperature distribution inside the, since the concrete 2 radiated the heat absorbed through the mortar 1 during the day of the previous day at night, the temperature T 3 was uniform over the entire thickness direction, and
The concrete-side atmospheric temperature T 4 is based on the assumption that it does not change at night and during the day. Therefore, the internal temperature of the concrete 2 is raised by the heat input from the mortar 1 side.

【0008】図1は、図2のコンクリート2壁におい
て、その壁を構成してなる厚さBのモルタル1がコンク
リート2表面から離れて浮きあがり、モルタル1とコン
クリート2との間に空気層4が介在している場合の壁の
断面図、並びに、図2と同じ時点における、その壁内の
温度勾配の近似グラフを示す。図1中、TU0 は浮き部
のモルタル1の大気側表面温度を、TU1 はその浮き部
のモルタル1のコンクリート2側表面温度を、TU2
その浮いているモルタル1側のコンクリート2表面温度
を、T3 はコンクリート2の反空気層4側の表面及び内
部温度を示す。尚、図2中、5は浮き部のモルタル1の
層を、及び破線で示した温度勾配グラスは図1における
近似温度勾配グラフを示す。また6は、密着部のモルタ
ル1の層を示す。モルタル1が、浮き部のモルタル1の
層5の太陽から吸収した照射熱による壁表面における単
位面積当りの蓄熱量は、モルタル1とコンクリート2と
の間に空気層4が介在しているため、空気層4がない場
合に、即ち、密着部のモルタル1の層6に比して多い。
即ち、浮き部のモルタル1の層5の蓄熱量が、密着部の
モルタル1の層6のそれよりも大きいのは、空気層4が
断熱効果を発揮することによる。従って、浮き部のモル
タル1の層5の大気側表面温度TU0 は、密着部のモル
タル1の層6の大気側表面温度TK0 より高く、また浮
き部のモルタル1の層5のコンクリート2側温度TU1
は密着部のモルタル1の層6のその温度TK1 より高
い。モルタル1の層の浮き部の所在位置の探査をしよう
とするモルタル1の表面が太陽熱を吸収して、その表面
温度が昇温した状態、即ち、図1及び図2において、蒸
発液3を該モルタル1壁に塗布、吹付等をして、蒸発液
3の適当な薄膜厚さの略均一な薄被膜を該モルタル1の
表面に作り、該モルタル1の大気側表面の極浅部を急冷
する。
FIG. 1 shows that in the concrete 2 wall of FIG. 2, a mortar 1 having a thickness B and constituting the wall floats away from the surface of the concrete 2 and an air layer 4 is formed between the mortar 1 and the concrete 2. 3 shows a cross-sectional view of a wall in the case of intervening, and an approximate graph of a temperature gradient in the wall at the same time point as in FIG. 2. In FIG. 1, TU 0 is the surface temperature of the floating mortar 1 on the atmosphere side, TU 1 is the surface temperature of the mortar 1 on the concrete 2 side, and TU 2 is the surface of the floating mortar 1 on the concrete 2 side. The temperature, T 3 indicates the surface and the internal temperature of the concrete 2 on the side opposite to the air layer 4. In FIG. 2, 5 indicates the layer of the mortar 1 in the floating portion, and the temperature gradient glass shown by the broken line shows the approximate temperature gradient graph in FIG. Further, 6 indicates a layer of the mortar 1 in the close contact portion. The amount of heat stored per unit area on the wall surface of the mortar 1 due to the irradiation heat absorbed from the sun in the layer 5 of the mortar 1 in the floating portion is because the air layer 4 is interposed between the mortar 1 and the concrete 2. When there is no air layer 4, that is, the number is larger than that of the layer 6 of the mortar 1 in the close contact portion.
That is, the amount of heat stored in the layer 5 of the mortar 1 in the floating portion is larger than that in the layer 6 of the mortar 1 in the contact portion because the air layer 4 exerts a heat insulating effect. Therefore, the atmosphere-side surface temperature TU 0 of the layer 5 of the mortar 1 in the floating portion is higher than the atmosphere-side surface temperature TK 0 of the layer 6 of the mortar 1 in the contact portion, and the concrete 2 side of the layer 5 of the mortar 1 in the floating portion. Temperature TU 1
Is higher than the temperature TK 1 of the layer 6 of the mortar 1 in the close contact part. The surface of the mortar 1 which is to be searched for the location of the floating portion of the layer of the mortar 1 absorbs solar heat and the surface temperature thereof rises, that is, in FIG. 1 and FIG. The wall of the mortar 1 is coated, sprayed, etc. to form a thin film of the evaporated liquid 3 having an appropriate uniform thickness on the surface of the mortar 1, and the extremely shallow portion of the surface of the mortar 1 on the atmosphere side is rapidly cooled. .

【0009】図3及び図4は、前述の如く、蒸発液3を
塗布、吹付等してモルタル1の大気側表面層の極浅部を
急冷したときの壁内の温度勾配の近似グラフを示す。急
冷されたモルタル1の大気側表面温度は、蒸発液3の揮
発環境における、ある定まった温度近くまで一旦降温す
る。TRは、前述の一旦降温したときのある時点の温度
を示す。急冷直後においては、極浅部の急冷直前のモル
タル1の表面及び極浅部の蓄熱量その他の性状の影響を
受けるため、急冷後、揮発中のモルタル表面温度は、一
定温度とはならない。しかし、その後ある時点において
は、同時急冷されたモルタル1の表面は、その全域に亘
って略均一温度になり、そのときの温度をTRとする。
前述の急冷後においては、浮き部のモルタル1の層5の
単位表面積当りの蓄熱量は、密着部のモルタル1の層6
の単位表面積当りの蓄熱量より大きいので、浮き部のモ
ルタル1の層5の表面の蒸発液3が気化終了直後におい
て、密着部のモルタル1の層6の表面の蒸発液3が未だ
残在している状態が生じる。
3 and 4 show approximate graphs of the temperature gradient in the wall when the extremely shallow portion of the surface layer on the atmosphere side of the mortar 1 is rapidly cooled by applying and spraying the evaporating liquid 3 as described above. . The surface temperature of the rapidly cooled mortar 1 on the atmosphere side is once lowered to near a certain fixed temperature in the volatile environment of the evaporating liquid 3. TR indicates the temperature at a certain point when the temperature is once lowered. Immediately after the rapid cooling, the surface temperature of the mortar 1 immediately before the rapid cooling of the ultra-shallow part and the properties of the ultra-shallow part and other properties are affected, and therefore the surface temperature of the mortar during volatilization after the rapid cooling does not become a constant temperature. However, at a certain point after that, the surface of the mortar 1 that has been simultaneously quenched has a substantially uniform temperature over the entire area, and the temperature at that time is defined as TR.
After the above-mentioned rapid cooling, the heat storage amount per unit surface area of the layer 5 of the mortar 1 in the floating portion is equal to that of the layer 6 of the mortar 1 in the close contact portion.
Since the amount of heat storage per unit surface area of is greater than the amount of heat storage per unit surface area, the evaporation liquid 3 on the surface of the layer 5 of the mortar 1 in the floating portion is still left immediately after the vaporization is completed. A situation occurs.

【0010】図5は、前述の如く、低温揮発液3が浮き
部のモルタル1の層5の表面においては気化終了し、密
着部のモルタル1の層6の表面において気化未了で残存
しているときの壁内温度勾配の近似グラフを示す。その
時の密着部のモルタル1の層6の表面の温度は、蒸発液
3の揮発環境におけるある略均一温度TRであるのに対
し、浮き部のモルタル1の層5の表面の温度TTは、既
に蒸発液3の揮発分が揮発して無くなり、該略均一温度
TRよりも高く、しかも更なる昇温の途上にある。従っ
て、浮き部のモルタル1の層5の表面の蒸発液3が揮発
した直後に赤外線センサー(赤外線カメラ)を用いてモ
ルタル1表面の温度分布を熱画像として表示すれば、密
着部のモルタル1の層6の表面は、まだ低温揮発液3が
揮発中であるために、略均一な温度であるのに対し、浮
き部のモルタル1の層5の表面は密着部のモルタル1の
層6の表面より表面温度が高く表示される。また、モル
タル1の表面に蒸発液3を塗布、吹付等を施す前におい
ては、密着部において、浮き部と同様に表面温度が高く
なる部分が所在するという現象が生じるが、このような
現象はモルタル1表面が汚れて放射黒度が大きく成って
いる部分、モルタル1表面が塗布されていてその塗装膜
が浮いて、該塗装膜とモルタル1との間に薄い空気層が
存在している部分、モルタル1厚さが周囲のモルタル1
厚さより薄い部分等に発生する。
In FIG. 5, as described above, the low-temperature volatile liquid 3 has completely vaporized on the surface of the layer 5 of the mortar 1 in the floating portion, and has remained unvaporized on the surface of the layer 6 of the mortar 1 in the close contact portion. An approximate graph of the temperature gradient in the wall when the temperature is present is shown. The temperature of the surface of the layer 6 of the mortar 1 at the contact portion at that time is a substantially uniform temperature TR in the volatile environment of the evaporating liquid 3, whereas the temperature TT of the surface of the layer 5 of the mortar 1 at the floating portion is already The volatile components of the evaporating liquid 3 have volatilized and disappeared, and are higher than the substantially uniform temperature TR, and are in the process of further heating. Therefore, if the temperature distribution of the surface of the mortar 1 is displayed as a thermal image using the infrared sensor (infrared camera) immediately after the evaporation liquid 3 on the surface of the layer 5 of the mortar 1 in the floating portion is volatilized, The surface of the layer 6 has a substantially uniform temperature because the low-temperature volatile liquid 3 is still evaporating, whereas the surface of the layer 5 of the mortar 1 in the floating portion is the surface of the layer 6 of the mortar 1 in the close contact portion. The surface temperature is displayed higher. In addition, before applying the evaporating liquid 3 to the surface of the mortar 1 or spraying the same, there is a phenomenon in which there is a portion where the surface temperature becomes high in the contact portion as in the floating portion. The portion where the surface of the mortar 1 is dirty and the radiation blackness is large, and the portion where the surface of the mortar 1 is applied and the coating film thereof floats and a thin air layer exists between the coating film and the mortar 1. , Mortar 1 Thickness of surrounding mortar 1
It occurs in parts thinner than the thickness.

【0011】しかしながら、密着部のモルタル1の層6
の表面は低温揮発液3で覆われているため、表面汚れに
よる輻射黒度の変化による影響をうけず、表面汚れも、
塗装被膜もその下層の空気層も極めて薄いため、該塗装
膜も、該空気層も、薄く施工されたモルタル1の層の表
面も、略均一な温度になっている。このため、モルタル
1が密着部において表面温度が部分的に高くなることが
ない。従って、表面温度が前記略均一な温度よりも高く
表示された範囲はモルタル1が浮いている範囲であると
いうことである。このように、適当な薄膜厚さの蒸発液
3をモルタル1の層の表面に施すことによって、前述の
如く、モルタル1の層表面の汚れ、塗装膜の浮き、モル
タル1の層の厚さ不足、及び風等によって影響されるこ
となく、モルタル1の浮き部の温度が該蒸発液が早く蒸
発し終わるため密着部の温度より高くなる現象が生じ
る。その状況を赤外線カメラによる熱画像として写し出
すことにより、モルタル1層の浮いている範囲を探査で
きる。上記熱画像の撮影を少なくとも蒸発液3を塗布し
た直後から連続的に行うと、一旦全表面の温度が略均一
となった後、浮き部の温度が高くなり密着部と温度差を
生じることが、容易にとらえられ、より正確な浮き部の
探査ができる。また、その探査は、通常の赤外線カメラ
による色分布熱画像を用いて行うことができる。そし
て、その色分布熱画像は高温色域と低温色域の2色域に
大別できるものであるから、高温色域をモルタルが浮い
ている範囲であることが、容易に判定できる。
However, the layer 6 of the mortar 1 in the close contact portion
Since the surface of is covered with low-temperature volatile liquid 3, it is not affected by the change in radiation blackness due to surface contamination, and surface contamination is also
Since the coating film and the air layer therebelow are extremely thin, the coating film, the air layer, and the surface of the thinly applied layer of the mortar 1 have substantially uniform temperatures. Therefore, the surface temperature of the mortar 1 does not locally increase at the contact portion. Therefore, the range in which the surface temperature is displayed higher than the substantially uniform temperature is the range in which the mortar 1 is floating. As described above, by applying the evaporation liquid 3 having an appropriate thin film thickness to the surface of the layer of the mortar 1, as described above, the surface of the layer of the mortar 1 becomes dirty, the coating film floats, and the thickness of the layer of the mortar 1 is insufficient. There is a phenomenon that the temperature of the floating portion of the mortar 1 becomes higher than the temperature of the contact portion because the evaporation liquid finishes evaporating quickly without being affected by the wind and the like. By projecting the situation as a thermal image by an infrared camera, it is possible to search the floating range of one layer of mortar. If the thermal images are continuously taken at least immediately after the evaporation liquid 3 is applied, the temperature of the entire surface once becomes substantially uniform, and then the temperature of the floating portion becomes high, which may cause a temperature difference with the close contact portion. , It is easy to catch and more accurate exploration of the floating part can be performed. Further, the exploration can be performed using a color distribution thermal image obtained by an ordinary infrared camera. Since the color distribution thermal image can be roughly divided into two color gamuts, a high temperature color gamut and a low temperature color gamut, it can be easily determined that the high temperature color gamut is a range in which the mortar is floating.

【0012】尚、蒸発液3としては、水等、常温以下で
蒸発するものであればよい。そして、特にエチルアルコ
ール、メチルアルコール、ベンジン、エチルエーテル、
メチルエーテル等の低温揮発液の使用が安定した効果が
得られ望ましい。また、LPGガス等の高圧液体を減圧
することによって、気化したガスに発泡液剤を混入さ
せ、そのガス圧で吹き付けたものを低温揮発液として使
用しても良い。気化したガスは、体積膨張により温度が
降下するため、そのガスを包含した発泡液剤も冷却され
る。従って、モルタル1表面に付着した、前記発泡液剤
は、モルタル1表面を冷却することとなる。尚、低温揮
発液は、必ずしも前述のものに拘泥するものではなく、
モルタル1表面の表層を急冷し得るものであれば良い。
The evaporating liquid 3 may be water or the like that evaporates at room temperature or lower. And especially ethyl alcohol, methyl alcohol, benzine, ethyl ether,
It is desirable to use a low temperature volatile liquid such as methyl ether because a stable effect can be obtained. Further, by depressurizing a high-pressure liquid such as LPG gas, a foaming liquid agent is mixed in the vaporized gas, and a gas sprayed at the gas pressure may be used as the low-temperature volatile liquid. Since the temperature of the vaporized gas drops due to the volume expansion, the foaming liquid agent containing the gas is also cooled. Therefore, the foaming liquid agent attached to the surface of the mortar 1 cools the surface of the mortar 1. The low-temperature volatile liquid is not necessarily limited to the one described above,
Any material that can rapidly cool the surface layer of the mortar 1 surface may be used.

【0013】[0013]

【発明の効果】本発明によって、次のような効果を奏す
る。モルタルが付着してなるコンクリート壁における、
モルタルの浮き部の所在位置の探査対象範囲に、本発明
のモルタルの浮き部の所在位置の判定方法を用いること
によって、モルタルの浮き部の所在位置を簡易に精度良
く判定することができる。また、モルタルの浮き部の所
在位置の探査対象範囲が地表から高い場合であっても、
その探査対象範囲に、低温揮発液を塗布、吹付等をする
ことにより、モルタルの浮き範囲は地表に設置した赤外
線カメラによる熱画像を介して、容易に探査されること
となった。
The present invention has the following effects. On a concrete wall with mortar attached,
By using the method for determining the location of the floating portion of the mortar in the search target range of the location of the floating portion of the mortar, the location of the floating portion of the mortar can be easily and accurately determined. In addition, even if the exploration target range of the location of the floating part of the mortar is higher than the ground surface,
By applying low temperature volatile liquid and spraying on the target area, the floating area of mortar can be easily searched through the thermal image from the infrared camera installed on the ground surface.

【0014】尚、地表から高い位置にあるモルタル表面
への低温揮発液の塗布、吹付等は、作業床を自在に昇降
できる高所作業車のその作業床から施したり、あるい
は、先端部に塗布用ハケ、若しくは吹付ノズルを設けた
長竿を地表から操作して施すことができる。従って、モ
ルタルが付着してなるコンクリート壁を有する建造物に
ついては、その表面のモルタルの経時変化による浮き部
の発生を地表から簡易に探査できることとなったため、
モルタルがコンクリート壁表面から剥離して落下する前
にその落下防止策を講じることができるようになった。
このため、コンクリート壁からモルタルが剥離落下する
ことによる人身事故等を容易に未然に防止することがで
きるようになった。
The low-temperature volatile liquid is applied or sprayed onto the surface of the mortar located at a high position above the surface of the earth, by applying it from the working floor of an aerial work vehicle that can freely move up and down, or by applying it to the tip. It can be applied by operating from the surface of the ground, or a long rod provided with a spray nozzle. Therefore, for a building with a concrete wall to which mortar adheres, it has become possible to easily search from the ground surface for the occurrence of floating portions due to the temporal change of mortar on the surface,
It is now possible to take measures to prevent the mortar from falling off from the surface of the concrete wall and falling.
Therefore, it has become possible to easily prevent a personal injury or the like due to the mortar peeling off from the concrete wall.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、浮き部の断面図およびモルタル層、空
気層、コンクリート層の各層の温度勾配の近似グラフを
示す。
FIG. 1 shows a cross-sectional view of a floating portion and an approximate graph of temperature gradients in each layer of a mortar layer, an air layer, and a concrete layer.

【図2】密着部の断面図、及びモルタル層、コンクリー
ト層の各層の温度勾配グラフを示し、並びに、浮き部即
ち図1の場合のモルタル層、空気層、コンクリート層の
各層の温度勾配の近似グラフを示す。
FIG. 2 shows a cross-sectional view of a close contact portion and a temperature gradient graph of each layer of a mortar layer and a concrete layer, and an approximation of temperature gradients of a floating portion, that is, each layer of a mortar layer, an air layer, and a concrete layer in the case of FIG. A graph is shown.

【図3】図1のモルタル表面に塗布、吹付等した低温揮
発液が残存しているときのモルタル層、空気層、コンク
リート層の各層の温度勾配の近似グラフを示す。
FIG. 3 is an approximate graph of temperature gradients of each layer of a mortar layer, an air layer, and a concrete layer when a low-temperature volatile liquid applied or sprayed on the mortar surface of FIG. 1 remains.

【図4】モルタル全表面に低温揮発液が残存している場
合の密着部、及び浮き部のモルタル層、空気層、コンク
リート層の各層の温度勾配の近似グラフを示す。
FIG. 4 is an approximate graph of temperature gradients of the mortar layer, the air layer, and the concrete layer in the contact portion and the floating portion when the low-temperature volatile liquid remains on the entire surface of the mortar.

【図5】図4において、浮き部の低温揮発液が揮発完了
し、密着部の表面には、低温揮発液が残存しているとき
のモルタル層、空気層、コンクリート層の各層の温度勾
配の近似グラフを増す。
FIG. 5 shows the temperature gradient of each layer of the mortar layer, the air layer and the concrete layer when the low temperature volatile liquid in the floating portion is completely vaporized and the low temperature volatile liquid remains on the surface of the contact portion. Increase the approximation graph.

【符号の説明】[Explanation of symbols]

1 モルタル 2 コンクリート 3 蒸発液 4 空気層 5 浮いているモルタル層(浮き部) 6 浮いていないモルタル層(密着部) 7 境界 B モルタルの厚さ T0 大気温度 TU0 大気側のモルタル表面温度 TU1 コンクリート側のモルタル表面温度 TU2 モルタル側のコンクリート表面温度 T3 室内側のコンクリート表面温度 T4 室内温度 TK0 大気側のモルタル表面温度 TK1 モルタルとコンクリートとの境界温度 TR 低温揮発液が揮発している最中の大気側のモルタ
ル表面温度 TT 低温揮発液の揮発後の大気側のモルタル表面温度
1 Mortar 2 Concrete 3 Evaporated liquid 4 Air layer 5 Floating mortar layer (floating part) 6 Non-floating mortar layer (adhesive part) 7 Boundary B Mortar thickness T 0 Atmospheric temperature TU 0 Atmospheric surface mortar surface temperature TU 1 Mortar surface temperature on concrete side TU 2 Concrete surface temperature on mortar side T 3 Concrete surface temperature on indoor side T 4 Room temperature TK 0 Mortar surface temperature on atmosphere side TK 1 Boundary temperature between mortar and concrete TR Low temperature volatile liquid volatilizes Surface temperature of mortar on the air side during operation TT Surface temperature of mortar on the air side after volatilization of low-temperature volatile liquid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜本 龍一 福岡県北九州市八幡東区川淵町9番27号 太平工業株式会社八幡支店内 (72)発明者 西村 健次 福岡県北九州市八幡東区川淵町9番27号 太平工業株式会社八幡支店内 (72)発明者 佐藤 恵美 福岡県北九州市八幡東区川淵町9番27号 太平工業株式会社八幡支店内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryuichi Hamamoto 9-27 Kawabuchicho, Yawatahigashi-ku, Kitakyushu City, Fukuoka Prefecture Taihei Kogyo Co., Ltd. Yawata Branch (72) Kenji Nishimura Kawabuchi-cho, Hachimanto-ku, Kitakyushu, Fukuoka Prefecture 9-27 No. 27 Taihei Kogyo Co., Ltd. Yawata Branch (72) Inventor Emi Satomi Kobuchicho 9-27 Kawabuchicho, Kitakyushu, Kitakyushu City Fukuoka Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コンクリートにモルタル層を塗着した壁
表面に、蒸発液を塗布した後、該壁表面温度を測定し、
前記モルタル層のコンクリートからの浮きの有無を判定
することを特徴とするモルタル浮き部の探査方法。
1. A wall surface obtained by applying a mortar layer to concrete is coated with an evaporation liquid, and then the wall surface temperature is measured.
A method of exploring a mortar floating portion, characterized by determining whether or not the mortar layer floats from concrete.
【請求項2】 コンクリートにモルタル層を塗着した壁
表面に、蒸発液を塗布して壁全表面を抜熱し、該壁表面
温度を赤外線センサーで測定して壁面の温度差を求め、
温度の高い部分をモルタル層のコンクリートからの浮き
部と判定することを特徴とするモルタル浮き部の探査方
法。
2. A wall surface of concrete coated with a mortar layer is coated with an evaporation liquid to remove heat from the entire wall surface, and the wall surface temperature is measured by an infrared sensor to obtain a temperature difference between the wall surfaces,
A method for exploring a mortar floating portion, characterized in that a portion having a high temperature is determined as a floating portion of the mortar layer from concrete.
JP30417594A 1994-11-15 1994-11-15 Method for detecting blister on mortar surface Pending JPH08145923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30417594A JPH08145923A (en) 1994-11-15 1994-11-15 Method for detecting blister on mortar surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30417594A JPH08145923A (en) 1994-11-15 1994-11-15 Method for detecting blister on mortar surface

Publications (1)

Publication Number Publication Date
JPH08145923A true JPH08145923A (en) 1996-06-07

Family

ID=17929950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30417594A Pending JPH08145923A (en) 1994-11-15 1994-11-15 Method for detecting blister on mortar surface

Country Status (1)

Country Link
JP (1) JPH08145923A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327888A (en) * 2006-06-08 2007-12-20 Ever Kk Moisture-content inspection method of wall part of building
JP2019027903A (en) * 2017-07-28 2019-02-21 中部電力株式会社 Degradation detection method
CN111076694A (en) * 2020-01-03 2020-04-28 广东韶钢松山股份有限公司 Method for judging air gap of blast furnace packing layer
JP2020165655A (en) * 2019-03-28 2020-10-08 東京電力ホールディングス株式会社 Detection method for floating of concrete

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327888A (en) * 2006-06-08 2007-12-20 Ever Kk Moisture-content inspection method of wall part of building
JP2019027903A (en) * 2017-07-28 2019-02-21 中部電力株式会社 Degradation detection method
JP2020165655A (en) * 2019-03-28 2020-10-08 東京電力ホールディングス株式会社 Detection method for floating of concrete
CN111076694A (en) * 2020-01-03 2020-04-28 广东韶钢松山股份有限公司 Method for judging air gap of blast furnace packing layer
CN111076694B (en) * 2020-01-03 2021-06-25 广东韶钢松山股份有限公司 Method for judging air gap of blast furnace packing layer

Similar Documents

Publication Publication Date Title
EP2056934B1 (en) Dynamic cooling of human skin using a nontoxic cryogen with no ozone depletion and minimal global warming potential
Schulz et al. Development of a sensitive experimental set-up for LIF fuel wall film measurements in a pressure vessel
ATE10512T1 (en) DEVICE FOR COATING SUBSTRATES USING HIGH POWER CATHODE SPRAYING AND SPRAYING CATHODE FOR THIS DEVICE.
Hsieh et al. Spray cooling characteristics of water and R-134a. Part II: transient cooling
Mathew et al. Thermal-magnetic relation in a sunspot and a map of its Wilson depression
JPH08145923A (en) Method for detecting blister on mortar surface
Ando et al. Freezing of micrometer-sized liquid droplets of pure water evaporatively cooled in a vacuum
Chandler et al. The circumstellar envelopes around three protostars in Taurus
Moreau et al. Influence of the coating thickness on the cooling rates of plasma-sprayed particles impinging on a substrate
Feist et al. Phosphor thermometry in an electron beam physical vapour deposition produced thermal barrier coating doped with dysprosium
Wang et al. Temperature-based analysis of droplet cooling and freezing on femtosecond laser textured surfaces
Hubner et al. Pressure-sensitive paint measurements in a shock tube
Ohmi et al. Effect of TSP layer thickness on global heat transfer measurement in hypersonic flow
Aizawa et al. Laser-induced phosphorescence thermography of combustion chamber wall of diesel engine
Covington et al. Free-jet expansions from laser-vaporized planar surfaces
Schorn et al. A compact thermal lithium‐beam source using a solid Al/Li alloy for Li sublimation
Hsu et al. An experimental investigation of Li and SF6 wick combustion
Delchambre et al. Effect of micrometric hot spots on surface temperature measurement and flux calculation in the middle and long infrared
Pugnaghi et al. Estimation of SO 2 abundance in the eruption plume of Mt. Etna using two MIVIS thermal infrared channels: a case study from the Sicily-1997 Campaign
Klotz et al. An upper limit of gaseous water abundance in Chamaeleon-MMS1 as observed with ODIN
Starr et al. Applied Physics Lab Kennedy Space Center: Recent Contributions
Zhestkov et al. Windtunnel catalyticity evaluation for thermoprotective elements
Norfleet et al. Development of an Aeroballistic Range Capability for Testing Re-Entry Materials
Batani et al. Problems of measurement of dense plasma heating in laser shock-wave compression
Jejcic et al. Mapping of prominence plasma parameters from eclipse observations

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000509