JP7006900B2 - Input / collection system for multiple underwater vehicles - Google Patents

Input / collection system for multiple underwater vehicles Download PDF

Info

Publication number
JP7006900B2
JP7006900B2 JP2017072283A JP2017072283A JP7006900B2 JP 7006900 B2 JP7006900 B2 JP 7006900B2 JP 2017072283 A JP2017072283 A JP 2017072283A JP 2017072283 A JP2017072283 A JP 2017072283A JP 7006900 B2 JP7006900 B2 JP 7006900B2
Authority
JP
Japan
Prior art keywords
underwater
water
control means
underwater vehicle
underwater vehicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017072283A
Other languages
Japanese (ja)
Other versions
JP2018172075A (en
Inventor
岡秀 金
裕幸 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017072283A priority Critical patent/JP7006900B2/en
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to PCT/JP2018/013772 priority patent/WO2018181958A1/en
Priority to US16/498,981 priority patent/US11774962B2/en
Priority to KR1020197027469A priority patent/KR102497993B1/en
Priority to EP18774212.7A priority patent/EP3604112A4/en
Priority to CN201880021293.8A priority patent/CN110475712B/en
Publication of JP2018172075A publication Critical patent/JP2018172075A/en
Priority to JP2021210035A priority patent/JP7248343B2/en
Application granted granted Critical
Publication of JP7006900B2 publication Critical patent/JP7006900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、水底探査等の調査作業を行う複数の水中航走体の投入・揚収システムに関する。 The present invention relates to a system for inputting and unloading a plurality of underwater vehicles for conducting survey work such as bottom exploration.

海洋や湖沼等において、調査水域に水中航走体を投入して水底探査等の調査作業を行う場合、水上に位置する船舶や水中に配置された装置が水中航走体に対する制御を行っている。
例えば特許文献1には、母船とケーブル接続された水中ステーションを海中に配設し、音響トランスポンダを探査地点近くの海底に配置し、複数の無索式無人潜水艇を水中ステーション及び音響トランスポンダと超音波信号を用いて通信させすることで誘導し、必要に応じて無索式無人潜水艇を水中ステーションにドッキングさせて充電又は電池交換と探査データの吸い上げを行う技術が開示されている。
また、特許文献2には、第1トランスポンダ、第1受波器及び第2受波器を備えた水中ステーションを母船から海中に吊り下げ、海底に第2トランスポンダを設置し、探査用の自律型無人航走体に第3トランスポンダ及び第3受波器を設け、水中ステーションは第2トランスポンダの信号を第1受波器で受信することによって定点保持を図り、自律型無人航走体は、探査中は第2トランスポンダの信号を第3受波器で受信することによって自航し、動力が減少すると第1トランスポンダの信号を第3受波器で受信することによって水中ステーションに向かって航走し、水中ステーションは第3トランスポンダの信号を第2受波器で受信することによって自律型無人航走を収容するための姿勢制御を行う技術が開示されている。
また、特許文献3には、水上に位置する母船に送波器を設け、探査用の無人潜水機に受波器を設け、母船から無人潜水機に制御信号を送る水中音響通信において、画素信号のハフ変換を利用して伝送誤りを補正する技術が開示されている。
また、特許文献4には、母船と水中航走体との間における通信を中継する自走中継器を観察領域の水面近傍に配置し、自走中継器と母船との間の通信は電波通信で行い、自走中継器と水中航走体との間の通信は音響通信で行うことによって、水平方向の通信可能距離を向上させる技術が開示されている。
When conducting survey work such as bottom exploration by throwing an underwater vehicle into the survey water area in the ocean or lake, a ship located on the water or a device placed underwater controls the underwater vehicle. ..
For example, in Patent Document 1, an underwater station cable-connected to the mother ship is arranged in the sea, an acoustic transponder is arranged on the seabed near the exploration point, and a plurality of unsearched unmanned submersibles are superposed with the underwater station and the acoustic transponder. Disclosed is a technique for guiding by communicating using a sonic signal and, if necessary, docking an unsearched unmanned submersible to an underwater station for charging or battery replacement and sucking up exploration data.
Further, in Patent Document 2, an underwater station equipped with a first transponder, a first receiver and a second receiver is suspended from the mother ship into the sea, and a second transponder is installed on the seabed, which is an autonomous type for exploration. The unmanned underwater vehicle is provided with a third transponder and a third receiver, and the underwater station tries to maintain a fixed point by receiving the signal of the second transponder at the first receiver, and the autonomous underwater vehicle explores. The inside sails toward the underwater station by receiving the signal of the 2nd transponder at the 3rd receiver and sailing toward the underwater station by receiving the signal of the 1st transponder at the 3rd receiver when the power decreases. , The underwater station discloses a technique of performing attitude control for accommodating autonomous unmanned navigation by receiving a signal of a third transponder by a second receiver.
Further, in Patent Document 3, a transmitter is provided on the mother ship located on the water, a receiver is provided on the unmanned submersible for exploration, and a pixel signal is used in underwater acoustic communication in which a control signal is sent from the mother ship to the unmanned submersible. A technique for correcting a transmission error by utilizing the Hough transform of the above is disclosed.
Further, in Patent Document 4, a self-propelled repeater that relays communication between the mother ship and the underwater vehicle is arranged near the water surface in the observation area, and communication between the self-propelled repeater and the mother ship is radio wave communication. Disclosed is a technique for improving the communication range in the horizontal direction by performing communication between the self-propelled repeater and the underwater vehicle by acoustic communication.

特開平3-266794号公報Japanese Unexamined Patent Publication No. 3-266794 特開2003-26090号公報Japanese Unexamined Patent Publication No. 2003-26090 特開平5-147583号公報Japanese Unexamined Patent Publication No. 5-147583 特開2001-308766号公報Japanese Unexamined Patent Publication No. 2001-308766

ところで、水中航走体は速度が遅いため1台だけでは広い水域を調査するのに時間がかかるが、エネルギー消費の面などから水中航走体の速度を上げるのには限界がある。そこで、広い水域を効率よく調査するために複数の水中航走体を投入することが考えられる。しかし、複数の水中航走体を用いて調査を行う場合は、1台の水中航走体を用いて調査を行う場合に比べて投入及び揚収作業に時間がかかる。また、水中航走体の投入及び揚収作業は、専用の設備を備えた専用船を用いて行うのが一般的であり、専用船のスケジュールが空くのを待つ必要があるため、水底探査の計画が希望通りに進まないといった課題がある。
特許文献1記載の発明は、水中ステーションや複数の無索式無人潜水艇の投入・揚収作業を効率よく安全に行うことについて開示するものではない。また、母船と水中ステーションがケーブルで接続されているため、母船や水中ステーションの移動が制限される。
特許文献2記載の発明は、水中ステーションや複数の自律型無人航走体の投入・揚収作業を効率よく安全に行うことについて開示するものではない。また、水中ステーションが母船から吊り下げられているため、母船や水中ステーションの移動が制限される。
特許文献3記載の発明は、水中音響通信が水面や海底の反射音の影響を受けやすいことを考慮し、伝送誤りを含んでいても正しい制御信号を推定することで無人潜水機が無制御状態に陥ることを防止しようとするものである。しかし、複数の無人潜水機の投入・揚収作業を効率よく安全に行うことについて開示するものではない。
特許文献4記載の発明は、自走中継器が自己の現在位置情報と水中航走体の現在位置情報とに基づいて水平移動の要否を判断し、水中航走体との通信状態を維持することが記載されている。また、水中航走体を複数投入することができる旨の記載がある。しかし、自走中継器や水中航走体の投入・揚収作業を効率よく安全に行うことについて開示するものではない。
By the way, since the speed of the underwater vehicle is slow, it takes time to investigate a wide water area with only one unit, but there is a limit to increasing the speed of the underwater vehicle from the viewpoint of energy consumption. Therefore, it is conceivable to introduce a plurality of underwater vehicles in order to efficiently investigate a wide water area. However, when conducting a survey using a plurality of underwater vehicles, it takes more time for loading and unloading work than when conducting a survey using one underwater vehicle. In addition, the loading and unloading work of the underwater vehicle is generally performed using a dedicated ship equipped with dedicated equipment, and it is necessary to wait for the schedule of the dedicated ship to become available. There is a problem that the plan does not go as desired.
The invention described in Patent Document 1 does not disclose efficient and safe loading and unloading work of an underwater station or a plurality of uncrewed unmanned submersibles. In addition, since the mother ship and the underwater station are connected by a cable, the movement of the mother ship and the underwater station is restricted.
The invention described in Patent Document 2 does not disclose efficient and safe loading / unloading work of an underwater station or a plurality of autonomous unmanned underwater vehicles. In addition, since the underwater station is suspended from the mother ship, the movement of the mother ship and the underwater station is restricted.
The invention described in Patent Document 3 considers that underwater acoustic communication is easily affected by the reflected sound of the water surface and the seabed, and estimates the correct control signal even if it includes a transmission error, so that the unmanned submersible is in an uncontrolled state. It is an attempt to prevent falling into. However, it does not disclose how to efficiently and safely carry out the loading and unloading work of multiple unmanned submersibles.
In the invention described in Patent Document 4, the self-propelled repeater determines whether or not horizontal movement is necessary based on its own current position information and the current position information of the underwater vehicle, and maintains a communication state with the underwater vehicle. It is stated that it should be done. In addition, there is a description that multiple underwater vehicles can be introduced. However, it does not disclose how to efficiently and safely carry out the loading and unloading work of self-propelled repeaters and underwater vehicles.

そこで本発明は、複数の水中航走体を展開・運用して水底探査等の調査作業を行うにあたって、水中航走体の投入及び揚収作業を効率よく安全に行うことができる複数の水中航走体の投入・揚収システムを提供することを目的とする Therefore, according to the present invention, when deploying and operating a plurality of underwater vehicles to carry out investigation work such as underwater bottom exploration, the present invention can efficiently and safely perform the loading and unloading work of the underwater vehicles. The purpose is to provide an input / collection system for underwater vehicles .

求項記載に対応した複数の水中航走体の投入・揚収システムは、母船に搭載される水中航走体の投入・揚収システムであって、投入・揚収設備と、複数の水中航走体を管制する水面の近傍を移動可能な水上管制手段を載置する水上管制手段用載置台と、複数の水中航走体を載置する水中航走体用載置台と、水上管制手段用載置台と水中航走体用載置台の投入・揚収設備との位置関係を入れ替える入替手段とを備えたことを特徴とする。
請求項に記載の本発明によれば、水上管制手段及び複数の水中航走体を安定して載置、入れ替え、投入及び揚収作業をスムーズに行うことができる。
The input / collection system for a plurality of underwater vehicles according to claim 1 is an input / collection system for an underwater vehicle mounted on a mother ship, and includes a plurality of input / collection facilities. A mounting table for water control means that mounts water control means that can move near the surface of the water that controls the underwater vehicle, a mounting table for underwater navigation that mounts multiple underwater navigation bodies, and water control. It is characterized by being equipped with a replacement means for exchanging the positional relationship between the mounting table for means and the loading / unloading equipment for the underwater vehicle.
According to the first aspect of the present invention, the surface control means and the plurality of underwater vehicles can be stably placed, replaced, loaded and collected smoothly.

請求項記載の本発明は、複数の水中航走体の探査深度を設定する設定手段をさらに備えたことを特徴とする。
請求項に記載の本発明によれば、複数の水中航走体の探査深度をオペレーター又は設定手段により設定することができる。
The present invention according to claim 2 is further provided with a setting means for setting the exploration depth of a plurality of underwater vehicles.
According to the second aspect of the present invention, the exploration depth of a plurality of underwater vehicles can be set by an operator or a setting means.

請求項記載の本発明は、設定された複数の水中航走体の投入順序及び/又は揚収順序を表示する表示手段をさらに備えたことを特徴とする。
請求項に記載の本発明によれば、複数の水中航走体の投入順序又は揚収順序の間違いを防止できる。これにより作業の効率及び安全性が向上する。
The present invention according to claim 3 is further provided with a display means for displaying the input order and / or the collection order of a plurality of set underwater vehicles.
According to the third aspect of the present invention, it is possible to prevent an error in the input order or the unloading order of a plurality of underwater vehicles. This improves work efficiency and safety.

請求項記載の本発明は、投入・揚収設備は、水上管制手段を進水・揚収する機能を有していることを特徴とする。
請求項に記載の本発明によれば、水中航走体と水上管制手段を同じ設備を用いて進水、投入及び揚収することができる。
The present invention according to claim 4 is characterized in that the loading / unloading equipment has a function of launching / unloading water control means.
According to the fourth aspect of the present invention, the underwater vehicle and the surface control means can be launched, loaded and unloaded using the same equipment.

請求項記載の本発明は、母船は一般船であり、投入・揚収設備は一般船に装備されているクレーンを含む設備であることを特徴とする。
請求項に記載の本発明によれば、母船に専用船のみならず一般船を用いて水中航走体による水底探査を行うことができるため、専用船のスケジュールに左右されることなく水底探査を行うことができる
The present invention according to claim 5 is characterized in that the mother ship is a general ship and the loading / unloading facility is a facility including a crane equipped on the general ship.
According to the fifth aspect of the present invention, since it is possible to perform water bottom exploration by an underwater vehicle using not only a dedicated ship but also a general ship as the mother ship, the water bottom exploration is not affected by the schedule of the dedicated ship. Can be done .

発明の複数の水中航走体の投入・揚収システムによれば、水上管制手段及び複数の水中航走体を安定して載置、入れ替え、投入及び揚収作業をスムーズに行うことができる。 According to the loading / unloading system for a plurality of underwater vehicles of the present invention, the surface control means and the plurality of underwater vehicles can be stably placed, replaced, loaded and unloaded smoothly. ..

また、複数の水中航走体の探査深度を設定する設定手段をさらに備えた場合には、複数の水中航走体の探査深度をオペレーター又は設定手段により設定することができる。 Further, when the setting means for setting the exploration depth of the plurality of underwater vehicles is further provided, the exploration depths of the plurality of underwater vehicles can be set by the operator or the setting means.

また、設定された複数の水中航走体の投入順序及び/又は揚収順序を表示する表示手段をさらに備えた場合には、複数の水中航走体の投入順序又は揚収順序の間違いを防止できる。これにより作業の効率及び安全性が向上する。 Further, when a display means for displaying the input order and / or the unloading order of the plurality of set underwater vehicles is further provided, it is possible to prevent an error in the input order or the unloading order of the plurality of underwater vehicles. can. This improves work efficiency and safety.

また、投入・揚収設備が、水上管制手段を進水・揚収する機能を有している場合には、水中航走体と水上管制手段を同じ設備を用いて進水、投入及び揚収することができる。 If the loading / unloading equipment has the function of launching / unloading the water control means, the underwater vehicle and the water control means can be launched, loaded and unloaded using the same equipment. can do.

また、母船が一般船であり、投入・揚収設備が一般船に装備されているクレーンを含む設備である場合には、母船に専用船のみならず一般船を用いて水中航走体による水底探査を行うことができるため、専用船のスケジュールに左右されることなく水底探査を行うことができる。 In addition, if the mother ship is a general ship and the loading and unloading equipment is equipment including a crane equipped on the general ship, not only the dedicated ship but also the general ship is used as the mother ship and the bottom of the water is operated by the underwater vehicle. Since it is possible to carry out exploration, it is possible to carry out underwater exploration without being influenced by the schedule of the dedicated ship.

本発明の実施形態による複数の水中航走体の運用システムの概略構成図Schematic configuration diagram of the operation system of a plurality of underwater vehicles according to the embodiment of the present invention. 同水中航走体の外観斜視図External perspective view of the underwater vehicle 同水上管制手段及び複数の水中航走体の載置状態を示す図The figure which shows the mounting state of the same surface control means and a plurality of underwater vehicles. 同水中航走体の揚収作業を示す図The figure which shows the collection work of the underwater vehicle 同投入・揚収システムの概略構成図Schematic configuration diagram of the input / collection system 同水中航走体の制御ブロック図Control block diagram of the underwater vehicle 同水中航走体の制御フロー図Control flow diagram of the underwater vehicle 同水上管制手段の制御ブロック図Control block diagram of the water control means 同水上管制手段の制御フロー図Control flow diagram of the water control means

以下に、本発明の実施形態による複数の水中航走体の投入方法、揚収方法、及び複数の水中航走体の投入・揚収システムについて説明する。 Hereinafter, a method for loading and unloading a plurality of underwater vehicles and a system for loading and unloading a plurality of underwater vehicles according to the embodiment of the present invention will be described.

図1は複数の水中航走体の運用システムの概略構成図、図2は水中航走体の外観斜視図である。
図1では、海洋や湖沼等において、調査水域に1台の水上管制手段20を進水させ、複数の水中航走体30を投入し、水底を探査することにより鉱物資源やエネルギー資源等の調査作業を行う状態を示している。水上管制手段20及び水中航走体30は、母船(支援船)10に積載して調査水域まで運搬してきたものである。
水上管制手段20及び水中航走体30は無人かつ無索で自律航走するロボットであり、水面の近傍に配置された水上管制手段20が、電波の届かない水中で調査作業を行う複数の水中航走体30に対して音響信号を利用した管制を行っている。
FIG. 1 is a schematic configuration diagram of an operation system of a plurality of underwater vehicles, and FIG. 2 is an external perspective view of the underwater vehicle.
In FIG. 1, in the ocean, lakes and marshes, one surface control means 20 is launched in the survey water area, a plurality of underwater vehicles 30 are introduced, and the bottom of the water is explored to investigate mineral resources and energy resources. Shows the state in which work is performed. The surface control means 20 and the underwater vehicle 30 are loaded on the mother ship (support ship) 10 and transported to the survey water area.
The surface control means 20 and the underwater vehicle 30 are robots that autonomously navigate unmanned and unsearched, and the surface control means 20 arranged near the surface of the water conducts investigation work in water where radio waves do not reach. Control using an acoustic signal is performed on the middle navigation body 30.

水上管制手段20には、洋上中継器(ASV:Autonomous Surface Vehicle)を用いている。水上管制手段20は、端部が半球面となった筒型の本体20aと、本体20aの上面に延設された垂直翼20bとを備える。母船10から調査水域に進水させた水上管制手段20は、本体20aが水中に没して垂直翼20bの上部が水面上に突き出た半潜水状態で用いられる。垂直翼20bの上部には、GPS等の自己位置把握手段21と、衛星通信アンテナ及び無線LANアンテナ等の海上通信手段22が搭載されている。水上管制手段20は、自己位置把握手段21を用いてGNSS(全地球航法衛星システム)衛星1からのGNSS信号を受信することにより、自己の位置を把握できる。また、海上通信手段22を用いて母船10との通信を行うことができる。
また、本体20aの後部には舵及びプロペラを有する移動手段23が設けられており、移動手段23によって水面の近傍を移動することができる。
また、本体20aの下面には、音響測位手段24及び通信手段25が設けられている。通信手段25は、音波を送信する送波器と音波を受信する受波器とを有する。水上管制手段20は、音響測位手段24を用いて水中航走体30の位置を測定すると共に、通信手段25を用いて水中航走体30と音響信号による双方向通信を行い、水中航走体30を管制している。水上管制手段20から水中に向けて発信される音響信号が到達し易いのは、水上管制手段20を頂点とした略円錐状の範囲であるため、この略円錐状の範囲を水上管制手段20が管制する管制領域Xとしている。
An offshore repeater (ASV: Autonomy Surface Vehicle) is used as the water control means 20. The water control means 20 includes a tubular main body 20a having a hemispherical end and a vertical wing 20b extending on the upper surface of the main body 20a. The surface control means 20 launched from the mother ship 10 into the survey water area is used in a semi-submersible state in which the main body 20a is submerged in water and the upper portion of the vertical wing 20b protrudes above the water surface. A self-position grasping means 21 such as GPS and a maritime communication means 22 such as a satellite communication antenna and a wireless LAN antenna are mounted on the upper portion of the vertical wing 20b. The surface control means 20 can grasp its own position by receiving the GNSS signal from the GNSS (Global Navigation Satellite System) satellite 1 by using the self-position grasping means 21. Further, it is possible to communicate with the mother ship 10 by using the maritime communication means 22.
Further, a moving means 23 having a rudder and a propeller is provided at the rear portion of the main body 20a, and the moving means 23 can move in the vicinity of the water surface.
Further, an acoustic positioning means 24 and a communication means 25 are provided on the lower surface of the main body 20a. The communication means 25 has a transmitter for transmitting sound waves and a receiver for receiving sound waves. The water control means 20 measures the position of the underwater vehicle 30 by using the acoustic positioning means 24, and also performs bidirectional communication with the underwater vehicle 30 by the acoustic signal using the communication means 25, and the underwater vehicle. It controls 30. Since the acoustic signal transmitted from the water control means 20 toward the water is easily reachable in a substantially conical range with the water control means 20 as the apex, the water control means 20 covers this substantially conical range. The control area X to be controlled is set.

水中航走体30には、水上管制手段20との接続にケーブルを用いずに水中を自律的に航走する無索自律無人型の航走体(AUV:Autonomous Underwater Vehicle)を用いている。水上管制手段20は複数の水中航走体30を音響信号を用いて管制するため、水上管制手段20にケーブル用の設備を設ける必要が無く、また、ケーブルが絡んだり、ケーブルによって水上管制手段20の移動が制限されたりすることがない。
図1では、複数の水中航走体30を、1台の第1水中航走体30Aと、2台の第2水中航走体30Bとした場合を示している。第1水中航走体30A及び第2水中航走体30Bには、舵、推進器及びバラスト(重り)などの航走手段(潜航手段)31が設けられており、この航走手段31によって水中を航走及び潜航することができる。また、水中航走体30には、自機の位置の測定に用いる自機測位手段32と、水上管制手段20との音響信号による双方向通信に用いる通信手段33と、水上管制手段20の音響測位手段24から発せられる信号に対して返答を行う音響トランスポンダ(図示無し)が設けられている。通信手段33は、音波を送信する送波器と音波を受信する受波器とを有する。水中航走体30は、水上管制手段20による測位が所定回数失敗した場合や、水上管制手段20との通信に所定回数失敗した場合などは、緊急浮上させて母船10に回収することができる。
ホバリング型の第1水中航走体30Aは、第2水中航走体30Bよりも航走速度を遅くすることができる。また、垂直スラスタや水平スラスタを有し、第2水中航走体30Bよりも動きの自由度が高く、水流等がある場所においても位置を保持することができるため、主に水底近くでの精密な調査作業を担う。第1水中航走体30Aには、水底の映像撮影を行うための撮像手段41が設けられている。撮像手段41は、例えば照明を備えたカメラである。
図2(a)は第2水中航走体30Bの上方斜視図、図2(b)は第2水中航走体30Bの下方斜視図である。航走型の第2水中航走体30Bは、第1水中航走体30Aよりも機敏かつ高速に動くことができるため、主に水底から離れた位置でより広い範囲における調査作業を担う。第2水中航走体30Bには、水底の地形の調査を行う地形調査手段42と水底下の地層の調査を行う地層調査手段43が設けられている。地形調査手段42及び地層調査手段43は、例えばソナーである。また、第2水中航走体30Bは、航走手段(潜航手段)31として、後部に推進器31Aを備え、下部にバラスト(重り)31Bを備えている。バラスト31Bは、第2水中航走体30Bから切り離し可能に取り付けられている。
The underwater vehicle 30 uses an autonomous underwater vehicle (AUV: Autonomous Underwater Vehicle) that autonomously navigates underwater without using a cable to connect to the water control means 20. Since the water control means 20 controls a plurality of underwater vehicles 30 using acoustic signals, it is not necessary to provide equipment for cables in the water control means 20, and the cables are entangled or the water control means 20 is controlled by the cables. Movement is not restricted.
FIG. 1 shows a case where a plurality of underwater vehicles 30 are a first underwater vehicle 30A and two second underwater vehicles 30B. The first underwater navigation body 30A and the second underwater navigation body 30B are provided with navigation means (diving means) 31 such as a rudder, a propulsion device, and a ballast (weight), and the navigation means 31 provides underwater. Can sail and dive. Further, the underwater vehicle 30 includes a self-positioning means 32 used for measuring the position of the own machine, a communication means 33 used for bidirectional communication by an acoustic signal with the water control means 20, and an acoustic of the water control means 20. An acoustic transponder (not shown) that responds to a signal emitted from the positioning means 24 is provided. The communication means 33 has a transmitter for transmitting sound waves and a receiver for receiving sound waves. The underwater vehicle 30 can be urgently levitated and collected by the mother ship 10 when the positioning by the water control means 20 fails a predetermined number of times or when the communication with the water control means 20 fails a predetermined number of times.
The hovering type first underwater vehicle 30A can have a slower speed than the second underwater vehicle 30B. In addition, it has a vertical thruster and a horizontal thruster, has a higher degree of freedom of movement than the second underwater vehicle 30B, and can maintain its position even in places where there is a water flow, etc., so it is mainly precise near the bottom of the water. Responsible for various research work. The first underwater vehicle 30A is provided with an image pickup means 41 for taking an image of the bottom of the water. The image pickup means 41 is, for example, a camera equipped with lighting.
FIG. 2A is an upward perspective view of the second underwater vehicle 30B, and FIG. 2B is a downward perspective view of the second underwater vehicle 30B. Since the navigation-type second underwater vehicle 30B can move more quickly and at a higher speed than the first underwater vehicle 30A, it is mainly responsible for survey work in a wider range at a position away from the bottom of the water. The second underwater vehicle 30B is provided with a topographic survey means 42 for surveying the topography of the bottom of the water and a geological survey means 43 for surveying the geological layer below the bottom of the water. The topographical survey means 42 and the geological survey means 43 are, for example, sonar. Further, the second underwater navigation body 30B is provided with a propulsion device 31A at the rear and a ballast (weight) 31B at the lower part as the navigation means (diving means) 31. The ballast 31B is detachably attached to the second underwater vehicle 30B.

次に、水上管制手段20及び複数の水中航走体30の投入・揚収システムについて、図3から図5を用いて説明する。 Next, the loading / unloading system of the water control means 20 and the plurality of underwater vehicles 30 will be described with reference to FIGS. 3 to 5.

図3は水上管制手段20及び複数の水中航走体30の載置状態を示す図、図4は水中航走体30の揚収作業を示す図である。
本実施形態の投入・揚収システムは、母船10に搭載されている。母船10は水中航走体30の投入・揚収作業用の専用設備が設けられた専用船ではなく、一般船である。
図3に示すように、投入・揚収システムは、水上管制手段20を載置する水上管制手段用載置台50と、水中航走30を載置する水中航走体用載置台60を備える。水上管制手段用載置台50の下部には入替手段51が設けられ、水中航走体用載置台60の下部には入替手段61が設けられている。
また、図4に示すように、投入・揚収システムは、投入・揚収設備70を備える。投入・揚収設備70は一般船に装備又は搭載可能なクレーンを含む設備であり、水上管制手段20を進水及び揚収する機能と、水中航走体30を投入及び揚収する機能を有している。これにより、水上管制手段20と水中航走体30を同じ設備を用いて進水、投入及び揚収することができる。また、母船10に一般船を用いることができるため、専用船のスケジュールに左右されることなく水底探査を行うことができる。
本実施形態では、入替手段51、61をキャスターとしている。水上管制手段20及び水中航走体30の投入・揚収順序に従って、入替手段51、61により、水上管制手段用載置台50と水中航走体用載置台60の投入・揚収設備70との位置関係を入れ替えることができる。これにより、水上管制手段20及び複数の水中航走体30を安定して載置、入れ替え、投入及び揚収作業をスムーズに行うことができる。図4では、第2水中航走体30Bの揚収作業を行うにあたり、母船10上の所定位置に水中航走体用載置台60が配置された状態を示している。
なお、入替手段51、61は、水上管制手段用載置台50と水中航走体用載置台60を移動させて投入・揚収設備70との位置関係を入れ替えるロボットアームやコンベヤー等であってもよい。
FIG. 3 is a diagram showing a mounting state of the water control means 20 and a plurality of underwater vehicles 30, and FIG. 4 is a diagram showing a collection operation of the underwater vehicle 30.
The loading / unloading system of this embodiment is mounted on the mother ship 10. The mother ship 10 is not a dedicated ship provided with dedicated equipment for loading and unloading the underwater vehicle 30, but a general ship.
As shown in FIG. 3, the loading / unloading system includes a mounting table 50 for water controlling means on which the water controlling means 20 is mounted, and a mounting table 60 for an underwater vehicle on which the underwater navigation 30 is mounted. A replacement means 51 is provided at the lower part of the mounting table 50 for water control means, and a replacement means 61 is provided at the lower part of the mounting table 60 for the underwater vehicle.
Further, as shown in FIG. 4, the loading / unloading system includes a loading / unloading facility 70. The loading / unloading equipment 70 is a facility including a crane that can be equipped or mounted on a general ship, and has a function of launching and unloading the surface control means 20 and a function of launching and unloading the underwater vehicle 30. is doing. As a result, the water control means 20 and the underwater vehicle 30 can be launched, loaded and unloaded using the same equipment. Further, since a general ship can be used as the mother ship 10, the bottom of the water can be explored without being influenced by the schedule of the dedicated ship.
In this embodiment, the replacement means 51 and 61 are casters. According to the loading / unloading order of the water control means 20 and the underwater vehicle 30, the replacement means 51 and 61 are used to connect the mounting table 50 for the water control means and the loading / unloading equipment 70 for the underwater vehicle 60. The positional relationship can be exchanged. As a result, the water control means 20 and the plurality of underwater vehicles 30 can be stably placed, replaced, loaded and collected smoothly. FIG. 4 shows a state in which the underwater vehicle mounting table 60 is arranged at a predetermined position on the mother ship 10 when the second underwater vehicle 30B is collected.
Even if the replacement means 51 and 61 are robot arms, conveyors, or the like that move the mounting table 50 for water control means and the mounting table 60 for underwater vehicles to replace the positional relationship with the loading / unloading equipment 70. good.

図5は投入・揚収システムの概略構成図である。
投入・揚収システムは、表示手段80を備える。表示手段80は、水中航走体30の投入順序又は揚収順序を表示するものであり、例えば電光掲示板、パソコンの画面、水中航走体30に付された番号などである。本実施形態では、表示手段80を、投入・揚収作業を行う作業指揮者から視認可能な位置に設けられた電光掲示板81と、各水中航走体30に付した識別番号82としている。表示手段80を備えることにより、複数の水中航走体30の投入順序又は揚収順序の間違いを防止して、作業の効率及び安全性を向上させることができる。
FIG. 5 is a schematic configuration diagram of a loading / unloading system.
The loading / unloading system includes a display means 80. The display means 80 displays the input order or the pick-up order of the underwater vehicle 30, and is, for example, an electric bulletin board, a screen of a personal computer, a number assigned to the underwater vehicle 30, and the like. In the present embodiment, the display means 80 is an electric bulletin board 81 provided at a position visible to the work commander performing the loading / unloading work, and an identification number 82 attached to each underwater vehicle 30. By providing the display means 80, it is possible to prevent an error in the loading order or the pick-up order of the plurality of underwater vehicles 30 and improve the efficiency and safety of the work.

母船10から複数の水中航走体30を投入するに当たっては、母船10から複数の水中航走体30を投入する前に、水上管制手段20を進水させる。水上管制手段20を進水させた後に水中航走体30を投入することで、水上管制手段20による水中航走体30の管制を、水中航走体30の投入後速やかに開始することができる。また、寸法的に水中航走体30よりも大きい水上管制手段20を先に進水させることにより、複数の水中航走体30の母船10上における作業スペースも広く確保できる。これにより、投入作業の効率及び安全性が向上する。
先に進水した水中航走体30よりも寸法的にも大きい水上管制手段20は、進水後、母船10から所定距離H離れるように移動する。所定距離Hは、後から投入される水中航走体30が衝突したり、投入作業の邪魔となることがなく、かつ、後から投入される複数の水中航走体30の管制を行うことができる範囲内とする。これにより、投入作業の効率及び安全性がさらに向上する。なお、所定距離Hは、水中航走体30の投入位置からの所定距離H1として設定してもよいし、船舶の側面からの所定距離H2として設定してもよい。
When the plurality of underwater vehicles 30 are launched from the mother ship 10, the water control means 20 is launched before the plurality of underwater vehicles 30 are launched from the mother ship 10. By launching the underwater vehicle 30 after launching the water control means 20, the control of the underwater vehicle 30 by the water control means 20 can be started immediately after the underwater vehicle 30 is introduced. .. Further, by launching the surface control means 20 having a size larger than that of the underwater vehicle 30 first, it is possible to secure a wide work space on the mother ship 10 of the plurality of underwater vehicles 30. This improves the efficiency and safety of the loading work.
After launching, the surface control means 20, which is larger in size than the previously launched underwater vehicle 30, moves away from the mother ship 10 by a predetermined distance H. The predetermined distance H can control a plurality of underwater vehicles 30 to be introduced later without colliding with the underwater vehicle 30 to be introduced later or interfering with the loading operation. Within the range that can be done. This further improves the efficiency and safety of the loading operation. The predetermined distance H may be set as a predetermined distance H1 from the loading position of the underwater vehicle 30 or as a predetermined distance H2 from the side surface of the ship.

複数の水中航走体30の投入順序は、水中航走体30の沈降速度又は潜航速度の少なくとも一方を考慮して定めることが好ましい。
例えば沈降速度や潜航速度が第2水中航走体30Bよりも遅く、探査深度も大きい第1水中航走体30Aを先に投入することなどにより、探査開始までの時間を短縮でき、探査作業全体の効率を向上させることができる。また、各水中航走体30間の沈降速度や潜航速度の差を考慮した投入順序とすることで、投入した水中航走体30同士の衝突を防止することができ、安全性が向上する。
It is preferable that the order of loading the plurality of underwater vehicles 30 is determined in consideration of at least one of the subsidence speed and the dive speed of the underwater vehicles 30.
For example, by introducing the first underwater vehicle 30A, which has a slower settling speed and dive speed than the second underwater vehicle 30B and a large exploration depth, the time until the start of exploration can be shortened, and the entire exploration work can be completed. Efficiency can be improved. Further, by setting the loading order in consideration of the difference in the settling speed and the diving speed between the submersible running bodies 30, it is possible to prevent the thrown underwater running bodies 30 from colliding with each other, and the safety is improved.

また、母船10の上で複数の水中航走体30の探査深度を水中航走体30に設定し、かつ水上管制手段20に水中航走体30に設定した探査深度を入力することが好ましい。これにより、予め設定した探査深度において、複数の水中航走体30が水上管制手段20の管制を受けながら探査作業を行うことができる。また、作業スペースを広く取れる母船10の上で、かつ水に触れることなく探査深度を入力できる。
なお、探査深度以外に、探査ミッション、探査領域、航走経路などといった探査に必要な情報を入力することにより探査条件として設定することも可能である。
Further, it is preferable to set the exploration depth of the plurality of underwater vehicles 30 on the mother ship 10 to the underwater vehicle 30 and input the exploration depth set to the underwater vehicle 30 to the water control means 20. As a result, at a preset exploration depth, the plurality of underwater vehicles 30 can perform exploration work while being controlled by the water control means 20. In addition, the exploration depth can be input on the mother ship 10 which can take a large work space without touching water.
In addition to the exploration depth, it is also possible to set the exploration conditions by inputting information necessary for exploration such as the exploration mission, exploration area, and navigation route.

母船10に複数の水中航走体30を揚収するに当たっては、複数の水中航走体30を順次水中から揚収した後に、水上管制手段20を揚収する。最後に水上管制手段20を揚収することで、水中航走体30の位置や通信状態を水上管制手段20で把握しながら揚収することができる。これにより、揚収作業の効率及び安全性が向上する。
水上管制手段20は、複数の水中航走体30を揚収している間は、母船10から所定距離H離れた位置で待機する。所定距離Hは、浮上してくる水中航走体30が衝突したり、水中航走体30の揚収作業の邪魔となることがなく、かつ、揚収されていない水中航走体30の管制を行うことができる範囲内とする。これにより、揚収作業の効率及び安全性がさらに向上する。なお、所定距離Hは、水中航走体30の揚収位置からの所定距離H1として設定してもよいし、船舶の側面からの所定距離H2として設定してもよい。
In unloading the plurality of underwater vehicles 30 to the mother ship 10, the surface control means 20 is evacuated after the plurality of underwater vehicles 30 are sequentially evacuated from the water. Finally, by collecting the water control means 20, the position and communication state of the underwater vehicle 30 can be collected while being grasped by the water control means 20. This improves the efficiency and safety of the collection work.
The surface control means 20 stands by at a position separated from the mother ship 10 by a predetermined distance H while the plurality of underwater vehicles 30 are being picked up. The predetermined distance H does not cause the floating underwater vehicle 30 to collide or interfere with the collection work of the underwater vehicle 30, and the control of the underwater vehicle 30 that has not been collected. To the extent that can be performed. This further improves the efficiency and safety of the unloading work. The predetermined distance H may be set as a predetermined distance H1 from the lift position of the underwater vehicle 30, or may be set as a predetermined distance H2 from the side surface of the ship.

複数の水中航走体30の揚収順序は、浮上した順であることが好ましい。浮上した順に揚収することで、先に浮上した水中航走体30に後から浮上した水中航走体30が衝突することを防止できる。また、浮上した水中航走体30が水に流されて見失うことを防止できる。 The order of withdrawal of the plurality of underwater vehicles 30 is preferably the order of ascending. By collecting the water in the order of ascending, it is possible to prevent the underwater vehicle 30 that has surfaced earlier from colliding with the underwater vehicle 30 that has surfaced earlier. In addition, it is possible to prevent the surfaced underwater vehicle 30 from being washed away by water and being lost.

また、複数の水中航走体30の揚収が完了するまで、水上管制手段20は、母船10から所定距離H離れた位置で水中航走体30の管制を行うことが好ましい。全ての水中航走体30が揚収されるまで水上管制手段20による水中航走体30の管制を継続することにより、揚収作業の効率及び安全性が向上する。 Further, it is preferable that the water control means 20 controls the underwater vehicle 30 at a position separated from the mother ship 10 by a predetermined distance H until the collection of the plurality of underwater vehicles 30 is completed. By continuing the control of the underwater vehicle 30 by the surface control means 20 until all the underwater vehicles 30 are collected, the efficiency and safety of the collection work are improved.

次に、水中航走体30の制御について、図6及び図7を用いて説明する。
図6は水中航走体30の制御ブロック図、図7は水中航走体30の制御フロー図である。
水中航走体30は、航走手段31、自機測位手段32、通信手段33、設定手段34、深度計35、探査ミッション遂行手段36、伝送手段37、記録手段38、航走速度設定部39、航走制御部40、撮像手段41、地形調査手段42及び地層調査手段43を備える。
探査ミッション遂行手段36は、深度制御部36A、潜航制御部36B、位置推定部36C、時刻管理部36D、ミッション制御部36Eを有する。
航走制御部40は、管制領域判断部40Aを有する。
Next, the control of the underwater vehicle 30 will be described with reference to FIGS. 6 and 7.
FIG. 6 is a control block diagram of the underwater vehicle 30, and FIG. 7 is a control flow diagram of the underwater vehicle 30.
The underwater navigation body 30 includes a navigation means 31, a self-positioning means 32, a communication means 33, a setting means 34, a depth meter 35, an exploration mission execution means 36, a transmission means 37, a recording means 38, and a cruising speed setting unit 39. A navigation control unit 40, an image pickup means 41, a topographic survey means 42, and a geological survey means 43 are provided.
The exploration mission executing means 36 includes a depth control unit 36A, a dive control unit 36B, a position estimation unit 36C, a time management unit 36D, and a mission control unit 36E.
The navigation control unit 40 has a control area determination unit 40A.

母船10に乗船しているオペレーターは、水中航走体30を母船10から探査水域に投入する前に、設定手段34を用いて、水中航走体30に対して、水中航走体30の探査ミッション、探査深度、探査領域及び航走経路などといった探査に必要な情報を入力することにより探査条件設定を行うと共に、航走速度設定部39を用いて、水中航走体30に対して、航走速度を設定する(ステップ1)。探査ミッション、探査深度、探査領域及び航走経路は、水中航走体30ごとに異ならせて設定する。
設定した探査深度などの探査条件及び航走速度は、後述のように水上管制手段20に入力する。
探査領域は、設定された各々の探査深度において、複数の水中航走体30が各々の探査領域を有するように設定することが好ましい。これにより、一層効率よく探査を行うことができる。
また、航走経路は、各々の探査領域を航走する水中航走体30の航走軌跡が、同時刻に重ならないように、航走経路を設定することが好ましい。これにより、探査深度が近接した水中航走体30同士の衝突を防止して安全性を高めることができる。また、水中航走体30が上下に重ならないようにすることで、水中航走体30が誤観測を起こしたり観測不能に陥ったりすることを低減できる。
また、水中航走体30ごとに異ならせて設定する探査深度は、探査深度が水底に近い低高度探査深度と、探査深度が水底から遠い高高度探査深度を有することが好ましく、低高度探査深度は水底からの高度(距離)が1m以上50m未満とし、高高度探査深度は水底からの高度(距離)が10m以上200m未満とすることがより好ましい。これにより、水底に近い領域と、水底から遠い領域を効率よく探査することができる。本実施形態では、ホバリング型の第1水中航走体30Aが低高度探査深度の領域の探査を担い、航走型の第2水中航走体30Bが高高度探査深度の領域の探査を担っている。第1水中航走体30Aの航走速度は第2水中航走体30Bの航走速度よりも遅いため、水底近くでの探査をより精密なものとすることができる。
The operator aboard the mother ship 10 uses the setting means 34 to search for the underwater vehicle 30 with respect to the underwater vehicle 30 before the underwater vehicle 30 is introduced into the exploration water area from the mother ship 10. Exploration conditions are set by inputting information necessary for exploration such as mission, exploration depth, exploration area, and navigation route, and the navigation speed setting unit 39 is used to navigate the underwater vehicle 30. Set the running speed (step 1). The exploration mission, exploration depth, exploration area, and navigation route are set differently for each underwater vehicle 30.
The set exploration conditions such as the exploration depth and the cruising speed are input to the surface control means 20 as described later.
The exploration area is preferably set so that the plurality of underwater vehicles 30 have each exploration area at each set exploration depth. This makes it possible to carry out exploration more efficiently.
Further, as the navigation route, it is preferable to set the navigation route so that the navigation loci of the underwater vehicle 30 traveling in each exploration area do not overlap at the same time. As a result, it is possible to prevent collisions between the underwater vehicles 30 having close exploration depths and improve safety. Further, by preventing the underwater vehicle 30 from overlapping vertically, it is possible to reduce the possibility that the underwater vehicle 30 causes erroneous observation or becomes unobservable.
Further, the exploration depths set differently for each underwater vehicle 30 are preferably a low altitude exploration depth whose exploration depth is close to the bottom of the water and a high altitude exploration depth whose exploration depth is far from the bottom of the water. It is more preferable that the altitude (distance) from the bottom of the water is 1 m or more and less than 50 m, and the altitude (distance) from the bottom of the water is 10 m or more and less than 200 m. This makes it possible to efficiently explore a region near the bottom of the water and a region far from the bottom of the water. In the present embodiment, the hovering type first underwater vehicle 30A is responsible for exploration in a low altitude exploration depth region, and the navigation type second underwater vehicle 30B is responsible for exploration in a high altitude exploration depth region. There is. Since the traveling speed of the first underwater vehicle 30A is slower than the traveling speed of the second underwater vehicle 30B, the exploration near the bottom of the water can be made more precise.

ステップ1の後、複数の水中航走体30を投入順序に従って水中に投入する(ステップ2)。
先に進水させた水上管制手段20は、投入された水中航走体30の管制を開始する。
After step 1, the plurality of underwater vehicles 30 are loaded into the water according to the loading order (step 2).
The surface control means 20 launched earlier starts control of the introduced underwater vehicle 30.

ステップ2の後、複数の水中航走体30は潜航及び沈降を開始する(ステップ3)。
潜航は推進器31A及びバラスト31Bを用いて行い、沈降は推進器31を停止してバラスト31Bの重さのみによって行う。
潜航及び沈降にあたって複数の水中航走体30の各々は、深度計35及び自機測位手段32を用いて自機の深度及び位置を測定し、深度制御部36A、潜航制御部36B及び位置推定部36Cを有する探査ミッション遂行手段36が、ステップ1で設定された探査深度に従って航走制御部40を制御する。航走制御部40は、探査ミッション遂行手段36による制御と航走速度設定部39で設定された航走速度に従って航走手段31を制御する。
自機測位手段32による自機の位置の測定は、例えば、速度センサ及びジャイロセンサを搭載し、自機の速度及び加速度を検出して算出することにより行う。
After step 2, the plurality of underwater vehicles 30 initiate diving and subsidence (step 3).
The dive is performed using the propulsion device 31A and the ballast 31B, and the subsidence is performed by stopping the propulsion device 31 and using only the weight of the ballast 31B.
For diving and subsidence, each of the plurality of underwater vehicles 30 measures the depth and position of its own aircraft using the depth meter 35 and its own positioning means 32, and measures the depth and position of its own aircraft, and the depth control unit 36A, the dive control unit 36B, and the position estimation unit. The exploration mission executing means 36 having the 36C controls the navigation control unit 40 according to the exploration depth set in step 1. The navigation control unit 40 controls the navigation means 31 according to the control by the exploration mission execution means 36 and the navigation speed set by the navigation speed setting unit 39.
The measurement of the position of the own machine by the own machine positioning means 32 is performed by, for example, mounting a speed sensor and a gyro sensor and detecting and calculating the speed and acceleration of the own machine.

ステップ3の後、設定された探査深度に達した水中航走体30は航走を開始する(ステップ4)。
設定された探査深度で航走を開始した各水中航走体30は、自機測位手段32を用いて自機の位置を測定し、探査ミッション遂行手段36に送信する。位置推定部36Cを有する探査ミッション遂行手段36は、ステップ1で設定された探査領域を水中航走体30が航走するように航走制御部40を制御する。航走制御部40は、探査ミッション遂行手段36による制御と航走速度設定部39で設定された航走速度に従って航走手段31を制御する。これにより、水中航走体30は探査領域を航走する(ステップ5)。
時刻を管理する時刻管理部36Dを有する探査ミッション遂行手段36は、ステップ1で設定された航走経路に従って、他の水中航走体30と航走軌跡が同時刻に重ならないように航走制御部40を制御する。
After step 3, the underwater vehicle 30 that has reached the set exploration depth starts sailing (step 4).
Each underwater vehicle 30 that has started cruising at the set exploration depth measures the position of its own aircraft using its own positioning means 32 and transmits it to the exploration mission execution means 36. The exploration mission execution means 36 having the position estimation unit 36C controls the navigation control unit 40 so that the underwater vehicle 30 navigates in the exploration region set in step 1. The navigation control unit 40 controls the navigation means 31 according to the control by the exploration mission execution means 36 and the navigation speed set by the navigation speed setting unit 39. As a result, the underwater vehicle 30 navigates the exploration region (step 5).
The exploration mission execution means 36 having the time management unit 36D that manages the time controls the navigation so that the navigation trajectory does not overlap with the other underwater vehicle 30 according to the navigation route set in step 1. The unit 40 is controlled.

航走制御部40は、探査ミッション遂行手段36から受信した自機の推定位置、深度及び水上管制手段20との通信状態に基づいて、水上管制手段20の管制領域X内で航走する(ステップ6)。通信状態は、例えばシグナル/ノイズ比(S/N比)で把握する。
また、航走制御部40は、管制領域判断部40Aを有し、自機の推定位置及び水上管制手段20との通信状態に基づいて、自機が管制領域X内に位置するか否かを定期的に判断する(ステップ7)。
The navigation control unit 40 navigates within the control area X of the water control means 20 based on the estimated position, depth, and communication state with the water control means 20 of the own aircraft received from the exploration mission execution means 36 (step). 6). The communication state is grasped by, for example, a signal / noise ratio (S / N ratio).
Further, the navigation control unit 40 has a control area determination unit 40A, and determines whether or not the own machine is located in the control area X based on the estimated position of the own machine and the communication state with the water control means 20. Make a judgment on a regular basis (step 7).

ステップ7において、自機が管制領域X内にいると判断した場合には、探査ミッションを遂行する(ステップ8)。
探査ミッション遂行手段36のミッション制御部36Eが、第1水中航走体30Aに設けられた撮像手段41を制御することにより、水底の映像撮影を行うことができる。また、ミッション制御部36Eが、第2水中航走体30Bに設けられた地形調査手段42及び地層調査手段43を制御することにより、水底の地形及び水底下の地層の情報を得ることができる。
得られた撮影画像、水底の地形及び水底下の地層の情報といった探査ミッション遂行結果は、ハードディスクや磁気テープ等の記録手段38に記録される。また、伝送手段37で符号化等の処理が行われた後に通信手段33を用いて水上管制手段20へ送信される(ステップ9)。
If it is determined in step 7 that the aircraft is within the control area X, an exploration mission is executed (step 8).
By controlling the image pickup means 41 provided in the first underwater vehicle 30A, the mission control unit 36E of the exploration mission execution means 36 can take an image of the bottom of the water. Further, the mission control unit 36E can obtain information on the topography of the bottom of the water and the stratum below the bottom of the water by controlling the topography survey means 42 and the geological survey means 43 provided in the second underwater vehicle 30B.
The results of the exploration mission, such as the obtained captured images, the topography of the bottom of the water, and the information of the strata below the bottom of the water, are recorded in a recording means 38 such as a hard disk or a magnetic tape. Further, after the transmission means 37 performs processing such as coding, the transmission means is transmitted to the water control means 20 using the communication means 33 (step 9).

ステップ9の後、探査ミッション遂行手段36は、設定された探査ミッションを完了したと判断した場合は、探査ミッションを終了し(ステップ10)、自機を浮上させる(ステップ11)。 After step 9, if it is determined that the exploration mission execution means 36 has completed the set exploration mission, the exploration mission is completed (step 10) and the aircraft is surfaced (step 11).

ステップ7において、自機が管制領域X内にいないと判断した場合には、探査ミッション遂行手段は、探査続行不可能と判断し、自機を浮上させる(ステップ11)。
なお、浮上させる前に、自機測位手段32による測位結果等に基づいて、位置推定部36Cによる自機の位置推定を行い、管制領域Xに戻れるか否かを判断し、戻れないと判断した場合に浮上させるようにしてもよい。
If it is determined in step 7 that the aircraft is not within the control area X, the exploration mission execution means determines that the exploration cannot be continued and levitates the aircraft (step 11).
Before ascending, the position estimation unit 36C estimated the position of the own machine based on the positioning result of the own machine positioning means 32, determined whether or not the aircraft could return to the control area X, and determined that the position could not be returned. It may be surfaced in some cases.

次に、水上管制手段20の制御について、図8及び図9を用いて説明する。
図8は水上管制手段20の制御ブロック図、図9は水上管制手段20の制御フロー図である。
水上管制手段20は、自己位置把握手段21、海上通信手段22、移動手段23、音響測位手段24、通信手段25、管制設定部26及び移動制御手段27を備える。
移動制御手段27は、数管理部27A、待機制御部27B、位置推定部27C、航走記録部27D及び管制判断部27Eを有する。
Next, the control of the water control means 20 will be described with reference to FIGS. 8 and 9.
FIG. 8 is a control block diagram of the water control means 20, and FIG. 9 is a control flow diagram of the water control means 20.
The water control means 20 includes a self-position grasping means 21, a maritime communication means 22, a moving means 23, an acoustic positioning means 24, a communication means 25, a control setting unit 26, and a movement control means 27.
The movement control means 27 has a number management unit 27A, a standby control unit 27B, a position estimation unit 27C, a cruising recording unit 27D, and a control determination unit 27E.

母船10に乗船しているオペレーターは、水上管制手段20を母船10から調査水域に進水させる前に、管制設定部26を用いて、水上管制手段20に対して、水上管制手段20の移動範囲、管制すべき水中航走体30の数や性能、深度などといった管制に必要な情報を入力することにより管制設定を行う(ステップ11)。
ステップ11の後、調査水域に進水した水上管制手段20は、後から投入された水中航走体30に対する管制を開始する。まず、音響測位手段24を用いて複数の水中航走体30のそれぞれの位置を測定し、測位結果を移動制御手段27に送信する(ステップ12)。
ステップ12の後、通信手段25を用いて複数の水中航走体30のそれぞれとの通信状態を測定し、測定結果を移動制御手段27に送信する(ステップ13)。通信状態は、例えばシグナル/ノイズ比(S/N比)で把握する。
移動制御手段27は、受信したステップ12における測位結果とステップ13における測定結果に基づいて、複数の水中航走体30のそれぞれの航走経路を時刻とともに航走記録部27Dに記録する(ステップ14)。
Before the water control means 20 is launched from the mother ship 10 into the survey water area, the operator aboard the mother ship 10 uses the control setting unit 26 to move the water control means 20 with respect to the water control means 20. , The control setting is performed by inputting information necessary for control such as the number, performance, and depth of the underwater navigation bodies 30 to be controlled (step 11).
After step 11, the surface control means 20 launched into the survey water area starts control of the underwater vehicle 30 introduced later. First, the positions of the plurality of underwater vehicles 30 are measured by using the acoustic positioning means 24, and the positioning result is transmitted to the movement control means 27 (step 12).
After step 12, the communication state with each of the plurality of underwater vehicles 30 is measured by using the communication means 25, and the measurement result is transmitted to the movement control means 27 (step 13). The communication state is grasped by, for example, a signal / noise ratio (S / N ratio).
The movement control means 27 records the respective navigation routes of the plurality of underwater vehicles 30 together with the time in the navigation recording unit 27D based on the received positioning result in step 12 and the measurement result in step 13 (step 14). ).

ステップ14の後、数管理部27Aは、ステップ11における管制設定で入力された水中航走体30の数と、ステップ14で航走経路が記録された水中航走体30の数とを比較し、管制すべき水中航走体30の全数が管制領域X内に位置するか否かを判断する(ステップ15)。
ステップ15において、管制すべき水中航走体30の数と航走経路が記録された水中航走体30の数が同じか多いと判断した場合、すなわち管制すべき水中航走体30の全数が管制領域X内に位置すると判断した場合には、その結果を管制判断部27Eに送信する。
この場合において、移動制御手段27は、航走記録部27Dに記録された航走経路等に基づいて複数の水中航走体30の行動を予測し、その予測結果に基づいて水中航走体30が管制領域Xから外れないように水上管制手段20を移動するように制御してもよい。これにより、水中航走体30が管制領域Xから外れることを未然に防ぐことができる。
なお、水上管制手段20を移動するに当り、移動開始時点での管制領域Xの中に位置する複数の水中航走体30の数が減じない範囲で移動することが好ましい。これにより、管制領域X内に位置する水中航走体30の数が減少することを防止できる。
After step 14, the number management unit 27A compares the number of underwater vehicles 30 input in the control setting in step 11 with the number of underwater vehicles 30 for which the navigation route is recorded in step 14. , It is determined whether or not all of the underwater vehicles 30 to be controlled are located in the control area X (step 15).
In step 15, when it is determined that the number of underwater vehicles 30 to be controlled and the number of underwater vehicles 30 in which the navigation route is recorded are the same or larger, that is, the total number of underwater vehicles 30 to be controlled is If it is determined that it is located within the control area X, the result is transmitted to the control determination unit 27E.
In this case, the movement control means 27 predicts the behavior of the plurality of underwater vehicles 30 based on the navigation route and the like recorded in the navigation recording unit 27D, and the underwater vehicle 30 is based on the prediction result. May be controlled to move the surface control means 20 so as not to deviate from the control area X. As a result, it is possible to prevent the underwater vehicle 30 from coming out of the control area X.
When moving the water control means 20, it is preferable to move within a range in which the number of the plurality of underwater vehicles 30 located in the control area X at the start of the movement does not decrease. This makes it possible to prevent the number of underwater vehicles 30 located in the control area X from decreasing.

ステップ15において、管制すべき水中航走体30の数よりも航走経路が記録された水中航走体30の数が少ないと判断した場合、すなわち管制すべき水中航走体30の一部又は全数が管制領域Xを外れたと判断した場合には、位置推定部27Cは、航走記録部27Dに記録された水中航走体30の航走経路に基づいて、管制領域Xを外れた水中航走体30が存在する方向を推定する(ステップ16)。
ステップ16の後、待機制御部27Bは、ステップ15において水中航走体30が管制領域Xを外れたことが最初に検出されたときから所定時間経過したか否かを判断する(ステップ17)。
ステップ17において、所定時間経過していないと判断した場合には、ステップ15に戻り、管制すべき水中航走体30の全てが管制領域X内にいるか否かを再度判断する。
ステップ17において、所定時間経過したと判断した場合には、待機制御部27Bは、ステップ15の判断結果を管制判断部27Eに送信すると共に、水上管制手段20の移動を開始するように指示する(ステップ18)。これにより移動手段23が動作して水上管制手段20が移動する。
管制すべき水中航走体30の一部又は全数が管制領域Xを外れたと判断した場合であっても、管制領域Xを外れた水中航走体30が自ら管制領域X内に戻ってくる可能性や、実際には管制領域X内に位置しているものの一時的な測位・通信障害により管制領域Xを外れたと誤って検出された可能性等があるため、本実施形態のように、水上管制手段20を移動するに当り、水中航走体30が管制領域Xを外れたことを検出してから所定時間待機し、その間にステップ5の判断を所定回数繰り返すことで、水上管制手段20が無用に動くことを低減できる。これにより、水上管制手段20のエネルギーの浪費や、管制領域X内に位置する水中航走体30が管制領域Xから外れてしまうことを防止できる。
また、位置推定部27Cが、航走記録部27Dに記録された水中航走体30の航走経路に基づいて、管制領域Xを外れた水中航走体30が存在する方向を推定し、移動制御手段27がこの推定結果に基づいて移動手段23を制御することで、水上管制手段20の管制精度や移動効率を向上させ、管制領域Xから外れた水中航走体30を管制領域X内により早く戻すことができる。
In step 15, when it is determined that the number of underwater vehicles 30 in which the navigation route is recorded is smaller than the number of underwater vehicles 30 to be controlled, that is, a part of the underwater vehicle 30 to be controlled or If it is determined that all of them are out of the control area X, the position estimation unit 27C will use the underwater navigation outside the control area X based on the navigation path of the underwater vehicle 30 recorded in the navigation recording unit 27D. The direction in which the running body 30 exists is estimated (step 16).
After step 16, the standby control unit 27B determines whether or not a predetermined time has elapsed from the time when it was first detected that the underwater vehicle 30 has deviated from the control region X in step 15 (step 17).
If it is determined in step 17 that the predetermined time has not elapsed, the process returns to step 15 and it is determined again whether or not all of the underwater vehicles 30 to be controlled are within the control area X.
If it is determined in step 17 that the predetermined time has elapsed, the standby control unit 27B transmits the determination result of step 15 to the control determination unit 27E and instructs the water control means 20 to start moving (the movement of the water control means 20 is started). Step 18). As a result, the moving means 23 operates and the water control means 20 moves.
Even if it is determined that a part or all of the underwater vehicles 30 to be controlled are out of the control area X, the underwater vehicles 30 outside the control area X can return to the control area X by themselves. Since there is a possibility that it is erroneously detected that it is out of the control area X due to a temporary positioning / communication failure although it is actually located in the control area X, it may be detected on the water as in the present embodiment. When moving the control means 20, the water control means 20 waits for a predetermined time after detecting that the underwater vehicle 30 has deviated from the control area X, and repeats the determination in step 5 a predetermined number of times during that time. Unnecessary movement can be reduced. As a result, it is possible to prevent the energy of the surface control means 20 from being wasted and the underwater vehicle 30 located in the control area X from being deviated from the control area X.
Further, the position estimation unit 27C estimates the direction in which the underwater vehicle 30 outside the control area X exists based on the navigation route of the underwater vehicle 30 recorded in the navigation recording unit 27D, and moves. By controlling the moving means 23 based on the estimation result, the control means 27 improves the control accuracy and the movement efficiency of the water control means 20, and the underwater vehicle 30 outside the control area X is moved into the control area X. You can get it back quickly.

移動制御手段27は、水上管制手段20を移動させる場合、複数の水中航走体30の全てを管制できる位置に水上管制手段20が移動するように移動手段23を制御することが好ましい。これにより、全ての水中航走体30を水上管制手段20の管制下におくことができるため、より安全かつ効率的に水中探査を行うことができる。
また、複数の水中航走体30の全数を管制できない場合は、移動制御手段27は、複数の水中航走体30の最大数を管制できる位置に水上管制手段20が移動するように移動手段23を制御することが好ましい。これにより、管制領域Xから外れる水中航走体30の数を最小にすることができる。この場合、最大数は、複数の水中航走体30の数から管制領域Xを逸脱した水中航走体30、故障した水中航走体30、浮上した水中航走体30のいずれかを含む管制不可能数を減じた数であることが好ましい。これにより、探査可能な複数の水中航走体30を管制領域X内に位置させて水中探査を継続することができる。
When the water control means 20 is moved, the movement control means 27 preferably controls the movement means 23 so that the water control means 20 moves to a position where all of the plurality of underwater vehicles 30 can be controlled. As a result, all the underwater vehicles 30 can be placed under the control of the surface control means 20, so that underwater exploration can be performed more safely and efficiently.
If the total number of the plurality of underwater vehicles 30 cannot be controlled, the movement control means 27 moves the water control means 20 so that the water control means 20 moves to a position where the maximum number of the plurality of underwater vehicles 30 can be controlled. It is preferable to control. As a result, the number of underwater vehicles 30 outside the control area X can be minimized. In this case, the maximum number is a control including any one of the underwater vehicle 30 deviating from the control area X from the number of the plurality of underwater vehicles 30, the failed underwater vehicle 30, and the surfaced underwater vehicle 30. The number is preferably the number obtained by subtracting the impossible number. As a result, it is possible to continue the underwater exploration by locating a plurality of explorable underwater vehicles 30 within the control region X.

管制判断部27Eは、数管理部27A又は待機制御部27Bから送信された判断結果に基づいて、管制設定を変更するか否かを判断する(ステップ19)。
ステップ19では、数管理部27Aから判断結果を受信した場合であって、管制すべき水中航走体30の数と航走経路が記録された水中航走体30の数が同じ場合には、管制設定を変更せず、ステップ12となる。
また、数管理部27Aから判断結果を受信した場合であって、管制すべき水中航走体30の数よりも航走経路が記録された水中航走体30の数が多い場合には、ステップ11となり、管制設定部26は、管制領域Xに戻った水中航走体30を含めた管制設定に変更する。これにより、管制領域Xに戻った水中航走体30を含めて管制を継続することができる。
また、待機制御部27Bから判断結果を受信した場合、すなわち管制領域Xを外れた水中航走体30があるとの判断結果を受信した場合には、ステップ11となり、管制設定部26は、管制領域Xを外れた水中航走体30を除いた管制設定に変更する。これにより、管制領域Xを外れた水中航走体30を除いて管制を継続することができる。
The control determination unit 27E determines whether or not to change the control setting based on the determination result transmitted from the number management unit 27A or the standby control unit 27B (step 19).
In step 19, when the determination result is received from the number management unit 27A and the number of the underwater navigation bodies 30 to be controlled and the number of the underwater navigation bodies 30 in which the navigation route is recorded are the same, Step 12 is performed without changing the control setting.
Further, when the determination result is received from the number management unit 27A and the number of the underwater navigation bodies 30 in which the navigation route is recorded is larger than the number of the underwater navigation bodies 30 to be controlled, the step. At 11, the control setting unit 26 changes to the control setting including the underwater vehicle 30 that has returned to the control area X. As a result, the control can be continued including the underwater vehicle 30 that has returned to the control area X.
Further, when the determination result is received from the standby control unit 27B, that is, when the determination result that there is an underwater vehicle 30 outside the control area X is received, step 11 occurs, and the control setting unit 26 controls. Change to the control setting excluding the underwater vehicle 30 outside the area X. As a result, the control can be continued except for the underwater vehicle 30 outside the control area X.

このように水上管制手段20は、複数の水中航走体30の数を管理する数管理部27Aを有することで、水上管制手段20の移動を、水中航走体30の数に基づいて制御することができる。
また、水上管制手段20が複数の水中航走体30を測位できる位置に移動するため、複数の水中航走体30を管制領域X内に位置させて調査作業を継続することができる。
また、水上管制手段20を複数の水中航走体30との通信が可能な位置に移動させることで、より安全かつ効率的に調査作業を行うことができる。
これらにより、複数の水中航走体30を見失うことなく広い水域を安全かつ効率的に調査することができる。
なお、複数の水中航走体30の設定手段34で設定される探査深度等の探査条件は、母船10における探査条件設定以外にも、母船10からの指示を水上管制手段20を介して、又は水上管制手段20にプログラムされたスケジュールに基づいて、自動的に更新することも可能である。
As described above, the water control means 20 has the number management unit 27A that manages the number of the plurality of underwater vehicles 30, so that the movement of the water control means 20 is controlled based on the number of the underwater vehicles 30. be able to.
Further, since the water control means 20 moves to a position where the plurality of underwater vehicles 30 can be positioned, it is possible to position the plurality of underwater vehicles 30 within the control area X and continue the investigation work.
Further, by moving the water control means 20 to a position where communication with the plurality of underwater vehicles 30 is possible, the investigation work can be performed more safely and efficiently.
As a result, it is possible to safely and efficiently investigate a wide water area without losing sight of the plurality of underwater vehicles 30.
As for the exploration conditions such as the exploration depth set by the setting means 34 of the plurality of underwater vehicles 30, in addition to the exploration condition setting in the mother ship 10, the instruction from the mother ship 10 is given via the water control means 20 or. It is also possible to update automatically based on the schedule programmed in the water control means 20.

[付記]
(付記1)
母船から水底を探査するための複数の水中航走体を水中に投入するに当たり、複数の前記水中航走体を管制する水面の近傍を移動可能な水上管制手段を先に進水させ、その後に、複数の前記水中航走体を順次水中に投入することを特徴とする複数の水中航走体の投入方法。
これによれば、先に水上管制手段が進水されるため、水上管制手段による水中航走体の管制を、水中航走体の投入後速やかに開始することができる。これにより、投入作業の効率及び安全性が向上する。
なお、探査とは観測、捜索、採取、救援、運搬等およそ水底において水中航走体が行なう行為の全体を含む。
(付記2)
先に進水した前記水上管制手段は、進水後、前記母船から所定距離離れるように移動することを特徴とする付記1に記載の複数の水中航走体の投入方法。
これによれば、水上管制手段は、後から投入される水中航走体が衝突したり、投入作業の邪魔となることがなく、投入された複数の水中航走体の管制を行うことができる。これにより、投入作業の効率及び安全性がさらに向上する。
(付記3)
複数の前記水中航走体の投入順序は、前記水中航走体の沈降速度及び/又は潜航速度を考慮して定められることを特徴とする付記1又は付記2に記載の複数の水中航走体の投入方法。
これによれば、例えば沈降速度や潜航速度が他よりも遅い水中航走体を先に投入することなどにより、探査開始までの時間を短縮でき、探査作業全体の効率を向上させることができる。また、各水中航走体間の沈降速度や潜航速度の差を考慮した投入順序とすることで、投入した水中航走体同士の衝突を防止することができ、安全性が向上する。
(付記4)
前記母船の上で複数の前記水中航走体の探査深度を前記水中航走体に設定し、かつ前記水上管制手段に前記探査深度を入力することを特徴とする付記1から付記3のうちの1項に記載の複数の水中航走体の投入方法。
これによれば、複数の水中航走体に、予め設定した探査深度において、水上管制手段の管制を受けながら探査作業を行わせることができる。また、作業スペースの広く取れる母船の上で、かつ水に触れることなく探査深度を入力できる。
(付記5)
母船に水底を探査するための複数の水中航走体を水中から揚収するに当たり、複数の前記水中航走体を順次水中から揚収した後に、複数の前記水中航走体を管制する水面の近傍を移動可能な水上管制手段を揚収することを特徴とする複数の水中航走体の揚収方法。
これによれば、水中航走体の位置や通信状態を水上管制手段で把握しながら揚収することができる。これにより、揚収作業の効率及び安全性が向上する。
(付記6)
後から揚収する前記水上管制手段は、複数の前記水中航走体を揚収している間は、前記母船から所定距離離れた位置で待機することを特徴とする付記5に記載の複数の水中航走体の揚収方法。
これによれば、水上管制手段は、浮上して来る水中航走体が衝突したり、揚収作業の邪魔となることがなく、揚収を待つ複数の水中航走体の管制を最後まで行うことができる。これにより、揚収作業の効率及び安全性がさらに向上する。
(付記7)
複数の前記水中航走体の揚収する順序は、浮上した順であることを特徴とする付記5又は付記6に記載の複数の水中航走体の揚収方法。
これによれば、先に浮上した水中航走体に後から浮上した水中航走体が衝突することを防止できる。また、浮上した水中航走体が水に流されて見失うことを防止できる。
(付記8)
複数の前記水中航走体の揚収が完了するまで、前記水上管制手段は管制を行うことを特徴とする付記5から付記7のうちの1項に記載の複数の水中航走体の揚収方法。
これによれば、全ての水中航走体が揚収されるまで水上管制手段による水中航走体の管制が継続されるので、揚収作業の効率及び安全性が向上する。
[Additional Notes]
(Appendix 1)
When introducing multiple underwater vehicles for exploring the bottom of the water from the mother ship, a water control means that can move near the water surface that controls the multiple underwater vehicles is first launched, and then. , A method for throwing a plurality of underwater vehicles into the water, wherein the plurality of the underwater vehicles are sequentially thrown into the water.
According to this, since the water control means is launched first, the control of the underwater vehicle by the water control means can be started immediately after the underwater vehicle is introduced. This improves the efficiency and safety of the loading work.
It should be noted that exploration includes all actions performed by the underwater vehicle at the bottom of the water, such as observation, search, collection, rescue, and transportation.
(Appendix 2)
The method for throwing in a plurality of underwater vehicles according to Appendix 1, wherein the water control means previously launched moves away from the mother ship by a predetermined distance after the launch.
According to this, the surface control means can control a plurality of the introduced underwater vehicles without colliding with the underwater vehicles to be introduced later or interfering with the injection work. .. This further improves the efficiency and safety of the loading operation.
(Appendix 3)
The plurality of underwater vehicles according to Appendix 1 or 2, wherein the order of input of the plurality of underwater vehicles is determined in consideration of the settling speed and / or the dive speed of the underwater vehicles. How to put in.
According to this, for example, the time until the start of exploration can be shortened and the efficiency of the entire exploration work can be improved by first introducing an underwater vehicle having a slower sedimentation speed or dive speed than others. In addition, by setting the loading order in consideration of the difference in sedimentation speed and diving speed between the loaded underwater vehicles, it is possible to prevent collisions between the loaded underwater vehicles and improve safety.
(Appendix 4)
Of Appendix 1 to Appendix 3, characterized in that the exploration depths of a plurality of the underwater vehicles are set to the underwater vehicles on the mother ship and the exploration depths are input to the water control means. The method for throwing in a plurality of underwater vehicles according to item 1.
According to this, it is possible to have a plurality of underwater vehicles perform exploration work at a preset exploration depth while being controlled by water control means. In addition, the exploration depth can be entered on the mother ship, which has a large work space, without touching the water.
(Appendix 5)
When a plurality of underwater vehicles for exploring the bottom of the water are withdrawn from the water on the mother ship, after the plurality of the underwater vehicles are sequentially removed from the water, the surface of the water controlling the plurality of the underwater vehicles is controlled. A method for unloading a plurality of underwater vehicles, which comprises unloading a surface control means that can move in the vicinity.
According to this, it is possible to collect the underwater vehicle while grasping the position and communication state of the underwater vehicle by the water control means. This improves the efficiency and safety of the collection work.
(Appendix 6)
2. How to collect underwater vehicles.
According to this, the surface control means does not collide with the floating underwater vehicle or interfere with the unloading work, and controls a plurality of underwater vehicles waiting for unloading to the end. be able to. This further improves the efficiency and safety of the unloading work.
(Appendix 7)
The method for collecting a plurality of underwater vehicles according to Supplementary Note 5 or 6, wherein the order of collection of the plurality of underwater vehicles is the order of ascending.
According to this, it is possible to prevent the underwater vehicle that has surfaced earlier from colliding with the underwater vehicle that has surfaced earlier. In addition, it is possible to prevent the surfaced underwater vehicle from being washed away by water and being lost.
(Appendix 8)
Requisition of the plurality of underwater vehicles according to item 1 of Appendix 5 to Appendix 7, wherein the surface control means performs control until the collection of the plurality of underwater vehicles is completed. Method.
According to this, the control of the underwater vehicle by the surface control means is continued until all the underwater vehicles are unloaded, so that the efficiency and safety of the unloading work are improved.

本発明の複数の水中航走体の投入方法、揚収方法、及び複数の水中航走体の投入・揚収システムは、複数の水中航走体を展開・運用して水底探査等の調査作業を行うにあたって、水中航走体の投入及び揚収作業を効率よく安全に行うことができる。 In the method of loading and unloading a plurality of underwater vehicles and the system for loading and unloading a plurality of underwater vehicles of the present invention, a plurality of underwater vehicles are deployed and operated for investigation work such as underwater exploration. It is possible to efficiently and safely carry out the loading and unloading work of the underwater vehicle.

10 母船
20 水上管制手段
30 水中航走体
34 設定手段
50 水上管制手段用載置台
51 入替手段
60 水中航走体用載置台
61 入替手段
70 投入・揚収設備
80 表示手段
H 所定距離
10 Mothership 20 Water control means 30 Underwater vehicle 34 Setting means 50 Water control means mounting table 51 Replacement means 60 Underwater vehicle mounting table 61 Replacement means 70 Input / collection equipment 80 Display means H Predetermined distance

Claims (5)

母船に搭載される水中航走体の投入・揚収システムであって、投入・揚収設備と、複数の水中航走体を管制する水面の近傍を移動可能な水上管制手段を載置する水上管制手段用載置台と、複数の水中航走体を載置する水中航走体用載置台と、前記水上管制手段用載置台と前記水中航走体用載置台の前記投入・揚収設備との位置関係を入れ替える入替手段とを備えたことを特徴とする複数の水中航走体の投入・揚収システム。 It is a system for loading and unloading underwater vehicles mounted on the mother ship, and is equipped with loading and unloading equipment and water control means that can move near the water surface that controls multiple underwater vehicles. A mounting table for control means, a mounting table for an underwater vehicle on which a plurality of underwater vehicles are mounted, a mounting table for water control means, and a loading / unloading facility for the mounting table for an underwater vehicle. A system for loading and unloading multiple underwater vehicles, which is characterized by being equipped with a replacement means for swapping the positional relationship between the two. 複数の前記水中航走体の探査深度を設定する設定手段をさらに備えたことを特徴とする請求項に記載の複数の水中航走体の投入・揚収システム。 The input / collection system for a plurality of underwater vehicles according to claim 1 , further comprising a setting means for setting the exploration depth of the plurality of the underwater vehicles. 設定された複数の前記水中航走体の投入順序及び/又は揚収順序を表示する表示手段をさらに備えたことを特徴とする請求項又は請求項に記載の複数の水中航走体の投入・揚収システム。 The plurality of underwater vehicles according to claim 1 or 2 , further comprising a display means for displaying the input order and / or the collection order of the plurality of set underwater vehicles. Input / collection system. 前記投入・揚収設備は、前記水上管制手段を進水・揚収する機能を有していることを特徴とする請求項から請求項のうちの1項に記載の複数の水中航走体の投入・揚収システム。 The plurality of underwater navigation according to claim 1 to claim 3 , wherein the loading / unloading facility has a function of launching / unloading the surface control means. Body input / collection system. 前記母船は一般船であり、前記投入・揚収設備は前記一般船に装備されているクレーンを含む設備であることを特徴とする請求項から請求項のうちの1項に記載の複数の水中航走体の投入・揚収システム。 The plurality of items according to claim 1 to claim 4 , wherein the mother ship is a general ship, and the loading / unloading facility is a facility including a crane equipped on the general ship. Underwater vehicle input / collection system.
JP2017072283A 2017-03-31 2017-03-31 Input / collection system for multiple underwater vehicles Active JP7006900B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017072283A JP7006900B2 (en) 2017-03-31 2017-03-31 Input / collection system for multiple underwater vehicles
US16/498,981 US11774962B2 (en) 2017-03-31 2018-03-30 Control method of underwater vehicle, introducing method of underwater vehicle, recovering method of underwater vehicle, control system of underwater vehicle, introducing/recovering equipment of control system of underwater vehicle
KR1020197027469A KR102497993B1 (en) 2017-03-31 2018-03-30 Control method of an underwater hang main body, input method of an underwater hang main body, pumping method of an underwater hang main body, control system of an underwater hang main body, and input and pumping equipment of an underwater hang main body control system
EP18774212.7A EP3604112A4 (en) 2017-03-31 2018-03-30 Traffic control method for underwater craft, launching method for underwater craft, retrieval method for underwater craft, traffic control system for underwater craft, and launching/retrieval equipment for traffic control system for underwater craft
PCT/JP2018/013772 WO2018181958A1 (en) 2017-03-31 2018-03-30 Traffic control method for underwater craft, launching method for underwater craft, retrieval method for underwater craft, traffic control system for underwater craft, and launching/retrieval equipment for traffic control system for underwater craft
CN201880021293.8A CN110475712B (en) 2017-03-31 2018-03-30 Control method, input method, recovery method, control system and input recovery equipment of control system of underwater vehicle
JP2021210035A JP7248343B2 (en) 2017-03-31 2021-12-24 A method of inserting a plurality of underwater vehicles and a method of lifting and recovering them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017072283A JP7006900B2 (en) 2017-03-31 2017-03-31 Input / collection system for multiple underwater vehicles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021210035A Division JP7248343B2 (en) 2017-03-31 2021-12-24 A method of inserting a plurality of underwater vehicles and a method of lifting and recovering them

Publications (2)

Publication Number Publication Date
JP2018172075A JP2018172075A (en) 2018-11-08
JP7006900B2 true JP7006900B2 (en) 2022-01-24

Family

ID=64108123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017072283A Active JP7006900B2 (en) 2017-03-31 2017-03-31 Input / collection system for multiple underwater vehicles

Country Status (1)

Country Link
JP (1) JP7006900B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195031B (en) * 2021-10-27 2024-04-02 武汉船用机械有限责任公司 Towing device and towing method for aircraft
CN115709785B (en) * 2022-11-18 2023-10-20 深海技术科学太湖实验室 Underwater test guaranteeing method for unpowered large-scale submersible

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308766A (en) 2000-04-18 2001-11-02 Mitsubishi Heavy Ind Ltd Communication system for underwater navigating object and self-propelled repeater for the same
JP2002145187A (en) 2000-11-16 2002-05-22 Mitsui Eng & Shipbuild Co Ltd Submarine boat and distribution measuring method
JP2009227086A (en) 2008-03-21 2009-10-08 Mitsubishi Heavy Ind Ltd Control type underwater information collecting system and underwater cruising vessel control system
US20110144836A1 (en) 2009-12-11 2011-06-16 Lockheed Martin Corporation, Corporation of the State of Delaware Underwater investigation system providing unmanned underwater vehicle (uuv) guidance based upon updated position state estimates and related methods
WO2016038453A1 (en) 2014-09-12 2016-03-17 Cgg Services Sa Auv based seismic acquisition system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308766A (en) 2000-04-18 2001-11-02 Mitsubishi Heavy Ind Ltd Communication system for underwater navigating object and self-propelled repeater for the same
JP2002145187A (en) 2000-11-16 2002-05-22 Mitsui Eng & Shipbuild Co Ltd Submarine boat and distribution measuring method
JP2009227086A (en) 2008-03-21 2009-10-08 Mitsubishi Heavy Ind Ltd Control type underwater information collecting system and underwater cruising vessel control system
US20110144836A1 (en) 2009-12-11 2011-06-16 Lockheed Martin Corporation, Corporation of the State of Delaware Underwater investigation system providing unmanned underwater vehicle (uuv) guidance based upon updated position state estimates and related methods
WO2016038453A1 (en) 2014-09-12 2016-03-17 Cgg Services Sa Auv based seismic acquisition system and method

Also Published As

Publication number Publication date
JP2018172075A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
WO2018181958A1 (en) Traffic control method for underwater craft, launching method for underwater craft, retrieval method for underwater craft, traffic control system for underwater craft, and launching/retrieval equipment for traffic control system for underwater craft
US9417351B2 (en) Marine seismic surveys using clusters of autonomous underwater vehicles
JP6991545B2 (en) Operation method of multiple underwater vehicles and operation system of multiple underwater vehicles
US11486346B1 (en) Autonomous underwater beacon locator
JP4721568B2 (en) Submarine exploration method and equipment using autonomous unmanned vehicle
CN107580559A (en) water environment mobile robot
JP5884978B2 (en) Underwater vehicle lifting device and method
TW201620785A (en) Marine craft for performing surface operations
KR101605112B1 (en) Method and Apparatus for Removing Mines in the Sea
WO2019208757A1 (en) Operation method in which autonomous underwater vehicle is used
JP7006900B2 (en) Input / collection system for multiple underwater vehicles
JP7195582B2 (en) Method for lifting and recovering a plurality of underwater vehicles, and system for lifting and recovering a plurality of underwater vehicles
US10793241B2 (en) Method and system for launching and recovering underwater vehicles with an autonomous base
JP2018070125A (en) Underwater acoustic communication system
JP2018070125A5 (en)
JP2019177832A (en) Information sharing method for underwater exploration device and information sharing system for underwater exploration device
JP7248343B2 (en) A method of inserting a plurality of underwater vehicles and a method of lifting and recovering them
JP6991544B2 (en) Underwater vehicle control method and underwater vehicle control system
JP7195583B2 (en) Operation method for multiple underwater vehicles and operation system for multiple underwater vehicles
US12129822B1 (en) Autonomous underwater beacon locator
WO2023223101A1 (en) Gnss-equipped auv for deploying positioning transponders
WO2024161139A1 (en) System and method for using autonomous underwater vehicles for ocean bottom seismic nodes
CN116280110A (en) Underwater archaeological robot cooperation platform and cooperation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211224

R150 Certificate of patent or registration of utility model

Ref document number: 7006900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150