JP2018070125A - Underwater acoustic communication system - Google Patents
Underwater acoustic communication system Download PDFInfo
- Publication number
- JP2018070125A JP2018070125A JP2016216699A JP2016216699A JP2018070125A JP 2018070125 A JP2018070125 A JP 2018070125A JP 2016216699 A JP2016216699 A JP 2016216699A JP 2016216699 A JP2016216699 A JP 2016216699A JP 2018070125 A JP2018070125 A JP 2018070125A
- Authority
- JP
- Japan
- Prior art keywords
- acoustic communication
- underwater
- acoustic
- communication
- relay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Radio Relay Systems (AREA)
Abstract
Description
本発明は、水上又は水面近くにある船舶等と水中に投入された水中航走体との間で音響信号を利用して通信を行う水中音響通信システムに関する。 The present invention relates to an underwater acoustic communication system that performs communication using an acoustic signal between a watercraft or the like on or near the water surface and an underwater vehicle that is thrown into the water.
海洋や湖沼等において、水中に水中航走体を投入して水底の探査等を行う場合、水上又は水面近くに位置する船舶等と水中航走体との間、又は水中に配置された装置と水中航走体との間では、音響信号を利用した水中音響通信システムを用いて通信が行われる。
例えば特許文献1には、母船とケーブル接続された水中ステーションを海中に配設し、音響トランスポンダを探査地点近くの海底に配置し、探査用の無索式無人潜水艇を水中ステーション及び音響トランスポンダと超音波信号を用いて通信させすることで誘導し、必要に応じて無索式無人潜水艇を水中ステーションにドッキングさせて充電又は電池交換と探査データの吸い上げを行う技術が開示されている。
また、特許文献2には、第1トランスポンダ、第1受波器及び第2受波器を備えた水中ステーションを母船から海中に吊り下げ、海底に第2トランスポンダを設置し、探査用の自律型無人航走体に第3トランスポンダ及び第3受波器を設け、水中ステーションは第2トランスポンダの信号を第1受波器で受信することによって定点保持を図り、自律型無人航走体は、探査中は第2トランスポンダの信号を第3受波器で受信することによって自航し、動力が減少すると第1トランスポンダの信号を第3受波器で受信することによって水中ステーションに向かって航走し、水中ステーションは第3トランスポンダの信号を第2受波器で受信することによって自律型無人航走を収容するための姿勢制御を行う技術が開示されている。
また、特許文献3には、水上に位置する母船に送波器を設け、探査用の無人潜水機に受波器を設け、母船から無人潜水機に制御信号を送る水中音響通信において、画素信号のハフ変換を利用して伝送誤りを補正する技術が開示されている。
また、特許文献4には、母船と水中航走体との間における通信を中継する自走中継器を観察領域の水面近傍に配置し、自走中継器と母船との間の通信は電波通信で行い、自走中継器と水中航走体との間の通信は音響通信で行うことによって、水平方向の通信可能距離を向上させる技術が開示されている。
In the ocean, lakes, etc., when investigating the bottom of the water by putting an underwater vehicle into the water, a device placed on the water or near the surface of the water and the underwater vehicle or underwater Communication with the underwater vehicle is performed using an underwater acoustic communication system using acoustic signals.
For example, in Patent Document 1, an underwater station cable-connected to a mother ship is placed in the sea, an acoustic transponder is placed on the sea floor near the exploration point, and an unmanned unmanned submersible for exploration is connected to the underwater station and the acoustic transponder. A technique is disclosed in which guidance is performed by communicating using an ultrasonic signal, and if necessary, an unmanned unmanned submersible is docked in an underwater station to perform charging or battery exchange and search data acquisition.
In Patent Document 2, an underwater station equipped with a first transponder, a first receiver and a second receiver is suspended from a mother ship into the sea, a second transponder is installed on the seabed, and an autonomous type for exploration. A third transponder and a third receiver are installed in the unmanned vehicle, and the underwater station receives the signal from the second transponder at the first receiver to maintain a fixed point. While the second transponder receives the signal from the second receiver by the third receiver, and when the power decreases, the first transponder receives the signal from the third receiver to move toward the underwater station. A technique is disclosed in which the underwater station performs attitude control for accommodating autonomous unmanned traveling by receiving a signal from a third transponder with a second receiver.
Patent Document 3 discloses a pixel signal in underwater acoustic communication in which a mother ship located on water is provided with a transmitter, a receiver is provided in an unmanned submersible for exploration, and a control signal is transmitted from the mother ship to the unmanned submersible. A technique for correcting a transmission error using the Hough transform is disclosed.
In Patent Document 4, a self-propelled repeater that relays communication between the mother ship and the underwater vehicle is arranged near the water surface in the observation area, and communication between the self-propelled repeater and the mother ship is radio wave communication. The technology which improves the communicable distance of a horizontal direction is performed by performing in communication and performing communication between a self-propelled repeater and an underwater vehicle by acoustic communication.
水上又は水面近くにある船舶等から、船舶等の下方の水中の水中航走体が水中音響通信を行う場合、一般的に音波の水面反射の影響により、船舶等を頂点とした円錐形の体積が、水中音響通信可能領域となる。しかし、水中航走体は、観測作業中等に水中音響通信可能領域から出ることも考えられる。水中航走体が水中音響通信可能領域を超えた場合は、水中音響通信は途絶してしまう。
特許文献1記載の発明は、母船と水中ステーションがケーブルで接続されているため、母船や水中ステーションの移動が制限される。また、音波が水面又は水底に反射することによる音響通信への影響を考慮していない。
特許文献2記載の発明は、水中ステーションが母船から吊り下げられているため、母船や水中ステーションの移動が制限される。また、音波が水面又は水底に反射することによる音響通信への影響を考慮していない。
特許文献3記載の発明は、水中音響通信が水面や海底の反射音の影響を受けやすいことを考慮し、伝送誤りを含んでいても正しい制御信号を推定することで無人潜水機が無制御状態に陥ることを防止しようとするものである。しかし、無人潜水機が母船を頂点とした略円錐状の水中音響通信可能領域を超えた場合には、通信が途絶してしまう。
特許文献4記載の発明は、音響通信は海面や海底からの反射によって音波が劣化するため特に水平方向の通信では音波の伝わらない領域があることを考慮し、自走中継器を介して母船と水中航走体との通信を行うことによって水平方向の通信可能距離を拡げようとするものである。しかし、自走中継器は水面近傍に配置されるため、自走中継器を頂点とした略円錐状の水中音響通信可能領域の外にある水中航走体とは通信できない。
When an underwater vehicle underwater such as a ship on or near the surface of the water performs underwater acoustic communication, generally the volume of the cone with the ship as the apex due to the reflection of the water surface of the sound wave However, it becomes an underwater acoustic communication possible area. However, it is conceivable that the underwater vehicle will leave the underwater acoustic communication area during observation work. When the underwater vehicle exceeds the underwater acoustic communication possible area, the underwater acoustic communication is interrupted.
In the invention described in Patent Document 1, since the mother ship and the underwater station are connected by a cable, the movement of the mother ship and the underwater station is restricted. Moreover, the influence on the acoustic communication by the sound wave reflecting off the water surface or the water bottom is not considered.
In the invention described in Patent Document 2, since the underwater station is suspended from the mother ship, movement of the mother ship and the underwater station is limited. Moreover, the influence on the acoustic communication by the sound wave reflecting off the water surface or the water bottom is not considered.
The invention described in Patent Document 3 considers that underwater acoustic communication is likely to be affected by reflected sound from the water surface or the seabed, and the unmanned submersible is in an uncontrolled state by estimating a correct control signal even if transmission errors are included. It is intended to prevent falling into. However, if the unmanned submarine exceeds the substantially conical underwater acoustic communication area with the mother ship at the top, communication is interrupted.
In the invention described in Patent Document 4, the acoustic communication deteriorates due to reflection from the sea surface and the sea floor, so that there is a region where the sound wave is not transmitted especially in the horizontal communication, and with the mother ship via the self-propelled repeater It is intended to increase the horizontal communicable distance by communicating with the underwater vehicle. However, since the self-propelled repeater is disposed in the vicinity of the water surface, it cannot communicate with the underwater vehicle that is outside the substantially conical underwater acoustic communication area with the self-propelled repeater as the apex.
そこで本発明は、水面近傍にある船舶等と水中にある水中航走体との水中音響通信可能範囲を拡大する水中音響通信システムを提供することを目的とする。 Then, this invention aims at providing the underwater acoustic communication system which expands the underwater acoustic communication possible range with the ship etc. which are in the water surface vicinity, and the underwater vehicle which is underwater.
請求項1記載に対応した水中音響通信システムにおいては、水面の近傍に配置した浮体音響通信手段と、水の中を航走する水中航走体に設けた航走体音響通信手段との間で音響信号を利用して通信を行う水中音響通信システムにおいて、水面から下方であって浮体音響通信手段が発信する音響信号の到達し易い略円錐状の範囲の所定領域に配置した音響通信中継手段を備え、少なくとも水中航走体が所定領域を超えて航走するときに音響通信中継手段を介して浮体音響通信手段と航走体音響通信手段が音響通信を行うことを特徴とする。
請求項1に記載の本発明によれば、浮体音響通信手段と航走体音響通信手段は、音響通信中継手段を介した音響通信を行うことができる。水中に配置された音響通信中継手段からの音波は水面反射の影響を受けにくいため所定領域外にある航走体音響通信手段にも届きやすい。すなわち、浮体音響通信手段と航走体音響通信手段が音響通信可能な範囲が拡大するため、水中航走体の活動範囲が拡大する。
なお、「水面の近傍に配置した浮体音響通信手段」には、水面に浮かぶブイ等に設けた浮体音響通信手段の他、全部又は大部分が水中に没していたとしても水面近傍に位置する浮体音響通信手段を含む。また、船舶等の浮体に搭載された状態も含むものとする。
In the underwater acoustic communication system corresponding to Claim 1, between the floating body acoustic communication means arrange | positioned in the vicinity of the water surface, and the navigation body acoustic communication means provided in the underwater vehicle which sails in water. In an underwater acoustic communication system that performs communication using an acoustic signal, an acoustic communication relay means disposed in a predetermined area in a substantially conical range that is downward from the surface of the water and is easily reachable by an acoustic signal transmitted by a floating acoustic communication means. The floating acoustic communication means and the navigation acoustic communication means perform acoustic communication via the acoustic communication relay means when at least the underwater vehicle travels beyond a predetermined area.
According to the first aspect of the present invention, the floating body acoustic communication unit and the navigation body acoustic communication unit can perform acoustic communication via the acoustic communication relay unit. Sound waves from the acoustic communication relay means arranged in the water are not easily affected by water surface reflection, and therefore easily reach the traveling body acoustic communication means outside the predetermined area. That is, since the range in which the floating body acoustic communication means and the navigation body acoustic communication means can perform acoustic communication is increased, the activity range of the underwater vehicle is expanded.
The "floating acoustic communication means arranged near the water surface" is located near the water surface even if all or most of the floating acoustic communication means provided on a buoy or the like floating on the water surface is submerged in water. Includes floating acoustic communication means. Moreover, the state mounted in floating bodies, such as a ship, shall also be included.
請求項2記載の本発明は、所定領域のうち、水中音速の遅い低水温層に音響通信中継手段を配置することを特徴とする。
請求項2に記載の本発明によれば、低水温層は音波がより水平遠方に届きやすいため、浮体音響通信手段と航走体音響通信手段との音響通信中継手段を介した通信可能範囲がさらに拡大する。
The present invention according to claim 2 is characterized in that the acoustic communication relay means is arranged in a low water temperature layer having a low underwater sound speed in a predetermined region.
According to the second aspect of the present invention, since the low water temperature layer is more likely to reach the far side in the horizontal direction, the communicable range via the acoustic communication relay unit between the floating body acoustic communication unit and the traveling body acoustic communication unit is provided. Expand further.
請求項3記載の本発明は、水中音響通信システムを海洋で用い、所定領域のうち水中音速の遅い低塩分層に音響通信中継手段を配置することを特徴とする。
請求項3に記載の本発明によれば、低塩分層は音波がより水平遠方に届きやすいため、浮体音響通信手段と航走体音響通信手段との音響通信中継手段を介した通信可能範囲がさらに拡大する。
The present invention according to claim 3 is characterized in that the underwater acoustic communication system is used in the ocean, and the acoustic communication relay means is arranged in a low salinity layer having a low underwater sound speed in a predetermined region.
According to the third aspect of the present invention, since the low salinity layer is more likely to reach the farther horizontal sound wave, the communication range via the acoustic communication relay means between the floating acoustic communication means and the navigation acoustic communication means is increased. Expand further.
請求項4記載の本発明は、音響通信中継手段で把握した水中の音響通信の通信状況に従い、所定領域のうちの最適な位置に音響通信中継手段を配置することを特徴とする。
請求項4に記載の本発明によれば、浮体音響通信手段と航走体音響通信手段との音響通信中継手段を介した通信の安定性がさらに高まる。
The present invention according to claim 4 is characterized in that the acoustic communication relay means is arranged at an optimum position in a predetermined area in accordance with the communication status of underwater acoustic communication grasped by the acoustic communication relay means.
According to the fourth aspect of the present invention, the stability of communication via the acoustic communication relay unit between the floating body acoustic communication unit and the traveling body acoustic communication unit is further increased.
請求項5記載の本発明は、通信状況は音響通信中継手段と航走体音響通信手段との通信状況であることを特徴とする。
請求項5に記載の本発明によれば、通信の安定性が一層高まり、航走体音響通信手段との通信可能範囲がさらに拡大する。
The present invention according to claim 5 is characterized in that the communication status is a communication status between the acoustic communication relay means and the navigation vehicle acoustic communication means.
According to the fifth aspect of the present invention, the stability of communication is further increased, and the communicable range with the vehicle acoustic communication means is further expanded.
請求項6記載の本発明は、音響通信中継手段は、横方向に音響信号を送信して航走体音響通信手段と音響通信を行うことを特徴とする。
請求項6に記載の本発明によれば、特に水平方向に遠く離れた航走体音響通信手段とも安定して通信を行うことができる。
The invention according to claim 6 is characterized in that the acoustic communication relay means transmits acoustic signals in the lateral direction to perform acoustic communication with the navigation vehicle acoustic communication means.
According to the sixth aspect of the present invention, it is possible to stably communicate with the vehicle acoustic communication means that is particularly far away in the horizontal direction.
請求項7記載の本発明は、所定領域に水中航走体が存在する場合は、浮体音響通信手段と航走体音響通信手段で直接通信を行うことを特徴とする。
請求項7に記載の本発明によれば、音響通信中継手段のエネルギーの消耗や負荷を軽減できると共に、浮体音響通信手段と航走体音響通信手段との通信速度を速くできる。
なお、「直接通信」とは、音響通信中継手段を介さない通信をいう。
The present invention according to claim 7 is characterized in that when an underwater vehicle is present in a predetermined area, direct communication is performed between the floating acoustic communication means and the navigation acoustic communication means.
According to the seventh aspect of the present invention, the energy consumption and load of the acoustic communication relay means can be reduced, and the communication speed between the floating acoustic communication means and the navigation acoustic communication means can be increased.
Note that “direct communication” refers to communication that does not go through acoustic communication relay means.
請求項8記載の本発明は、浮体音響通信手段と航走体音響通信手段の直接通信と、音響通信中継手段を介した間接通信を切り替える通信切替手段を備えたことを特徴とする。
請求項8に記載の本発明によれば、浮体音響通信手段と航走体音響通信手段との間の通信状況に応じて、また必要に応じて直接通信と間接通信を切り替えることができる。
The present invention according to claim 8 is characterized by comprising communication switching means for switching between direct communication between the floating acoustic communication means and the navigation acoustic communication means and indirect communication via the acoustic communication relay means.
According to the eighth aspect of the present invention, direct communication and indirect communication can be switched according to the communication status between the floating acoustic communication means and the navigation acoustic communication means, and if necessary.
請求項9記載の本発明は、音響通信に供するデータとして位置データを含むことを特徴とする。
請求項9に記載の本発明によれば、位置データを含めることで、浮体音響通信手段、音響通信中継手段又は水中航走体の位置の補正や水中航走体が取得したデータとの対応付け等を行うことができる。
The present invention according to claim 9 includes position data as data used for acoustic communication.
According to the ninth aspect of the present invention, by including the position data, correction of the position of the floating acoustic communication means, the acoustic communication relay means or the underwater vehicle and the association with the data acquired by the underwater vehicle Etc. can be performed.
請求項10記載の本発明は、水中航走体及び/又は音響通信中継手段に音響通信に供するデータを記憶する記憶手段を有したことを特徴とする。
請求項10に記載の本発明によれば、必要に応じてデータを再送したり、水中航走体又は音響通信中継手段を水中から回収した後にデータを検証したりすることができる。
The tenth aspect of the present invention is characterized in that the underwater vehicle and / or the acoustic communication relay means has storage means for storing data for use in acoustic communication.
According to the tenth aspect of the present invention, data can be retransmitted as necessary, or data can be verified after the underwater vehicle or acoustic communication relay means is recovered from the water.
請求項11記載の本発明は、水中航走体を複数台有し、音響通信中継手段は複数台の水中航走体の音響信号を中継することを特徴とする。
請求項11に記載の本発明によれば、複数台の水中航走体を用いることで、観測作業等の効率を向上させることができる。
The present invention according to claim 11 has a plurality of underwater vehicles and the acoustic communication relay means relays the acoustic signals of the plurality of underwater vehicles.
According to the present invention described in claim 11, the efficiency of observation work and the like can be improved by using a plurality of underwater vehicles.
請求項12に記載の本発明は、複数の水中航走体がそれぞれ音響通信中継手段を搭載し、所定領域に存在する水中航走体が音響通信の中継を行うことを特徴とする。
請求項12に記載の本発明によれば、水中航走体自身が音響通信中継機能を兼ねることができる。また、複数の音響通信中継手段を設けることで、1台が故障しても他の水中航走体に搭載された音響通信中継手段を用いて間接通信が行える。
The present invention according to claim 12 is characterized in that each of the plurality of underwater vehicles is equipped with an acoustic communication relay means, and the underwater vehicle existing in a predetermined area relays the acoustic communication.
According to the twelfth aspect of the present invention, the underwater vehicle itself can also serve as an acoustic communication relay function. In addition, by providing a plurality of acoustic communication relay means, indirect communication can be performed using the acoustic communication relay means mounted on another underwater vehicle even if one unit breaks down.
請求項13に記載の本発明は、音響通信中継手段が水中を移動可能に構成され、音響通信中継手段の移動速度は水中航走体の航走速度よりも遅いものであることを特徴とする。
請求項13に記載の本発明によれば、音響通信中継手段が移動可能であるため、浮体音響通信手段を追尾させることで、浮体音響通信手段が移動しても音響通信中継手段が所定領域から外れることを防止できる。また、略円錐状の範囲の所定領域内で最大限、水中航走体との音響通信が可能な位置にまで移動が可能となるため、水中航走体の観測範囲等を拡げることができる。また、音響通信中継手段の移動速度を水中航走体の航走速度よりも遅くすることで、音響通信中継手段の消費エネルギーを節約して間接通信に備えることができる。
According to a thirteenth aspect of the present invention, the acoustic communication relay means is configured to be movable in water, and the moving speed of the acoustic communication relay means is slower than the traveling speed of the underwater vehicle. .
According to the thirteenth aspect of the present invention, since the acoustic communication relay means is movable, by tracking the floating acoustic communication means, even if the floating acoustic communication means moves, the acoustic communication relay means moves from the predetermined area. It can be prevented from coming off. In addition, since it is possible to move to a position where acoustic communication with the underwater vehicle is possible at most within a predetermined area of the substantially conical range, the observation range of the underwater vehicle can be expanded. Moreover, the energy consumption of the acoustic communication relay means can be saved to prepare for indirect communication by making the moving speed of the acoustic communication relay means slower than the traveling speed of the underwater vehicle.
請求項14に記載の本発明は、航走体音響通信手段と音響通信中継手段との間の音響通信ができなくなった場合に、水中航走体及び/又は音響通信中継手段を水面に浮上させることを特徴とする。
請求項14に記載の本発明によれば、早めに浮上させることで、水中航走体及び/又は音響通信中継手段を見失う前に回収することができる。
The present invention according to claim 14 causes the underwater vehicle and / or the acoustic communication relay means to float on the water surface when acoustic communication between the traveling body acoustic communication means and the acoustic communication relay means becomes impossible. It is characterized by that.
According to the present invention as set forth in claim 14, the vehicle can be recovered before losing sight of the underwater vehicle and / or the acoustic communication relay means by ascending early.
請求項15記載の本発明は、水中航走体及び/又は音響通信中継手段が水面に浮上した後は、浮体音響通信手段と水中航走体及び/又は音響通信中継手段との通信を空間を利用した無線通信に切り替えることを特徴とする。
請求項15に記載の本発明によれば、浮体音響通信手段と浮上した水中航走体及び/又は音響通信中継手段との通信をさらに、情報量を増し水平遠方まで安定して行うことができる。
In the present invention according to claim 15, after the underwater vehicle and / or the acoustic communication relay means have surfaced on the surface of the water, the communication between the floating acoustic communication means and the underwater vehicle and / or the acoustic communication relay means is performed in a space. It is characterized by switching to the used wireless communication.
According to the present invention as set forth in claim 15, communication between the floating acoustic communication means and the surfacing underwater vehicle and / or the acoustic communication relay means can be further performed stably by increasing the amount of information to a horizontal distance. .
本発明の水中音響通信システムによれば、浮体音響通信手段と航走体音響通信手段は、音響通信中継手段を介した音響通信を行うことができる。水中に配置された音響通信中継手段からの音波は水面反射の影響を受けにくいため所定領域外にある航走体音響通信手段にも届きやすい。すなわち、浮体音響通信手段と航走体音響通信手段が音響通信可能な範囲が拡大するため、水中航走体の活動範囲が拡大する。 According to the underwater acoustic communication system of the present invention, the floating acoustic communication means and the navigation acoustic communication means can perform acoustic communication via the acoustic communication relay means. Sound waves from the acoustic communication relay means arranged in the water are not easily affected by water surface reflection, and therefore easily reach the traveling body acoustic communication means outside the predetermined area. That is, since the range in which the floating body acoustic communication means and the navigation body acoustic communication means can perform acoustic communication is increased, the activity range of the underwater vehicle is expanded.
また、所定領域のうち、水中音速の遅い低水温層に音響通信中継手段を配置する場合には、低水温層は音波がより水平遠方に届きやすいため、浮体音響通信手段と航走体音響通信手段との音響通信中継手段を介した通信可能範囲がさらに拡大する。 In addition, when the acoustic communication relay means is arranged in a low water temperature layer where the underwater sound speed is slow in the predetermined area, since the low water temperature layer is more likely to reach sound waves in the horizontal direction, the floating acoustic communication means and the navigation acoustic communication The communicable range via the acoustic communication relay means with the means is further expanded.
また、水中音響通信システムを海洋で用い、所定領域のうち水中音速の遅い低塩分層に音響通信中継手段を配置する場合には、低塩分層は音波がより水平遠方に届きやすいため、浮体音響通信手段と航走体音響通信手段との音響通信中継手段を介した通信可能範囲がさらに拡大する。 In addition, when the underwater acoustic communication system is used in the ocean, and the acoustic communication relay means is placed in a low salinity layer where the underwater sound speed is slow in a predetermined area, the low salinity layer is more likely to reach the horizontal distance, so that the floating acoustics The communicable range of the communication means and the navigation vehicle acoustic communication means via the acoustic communication relay means is further expanded.
また、音響通信中継手段で把握した水中の音響通信の通信状況に従い、所定領域のうちの最適な位置に音響通信中継手段を配置する場合には、浮体音響通信手段と航走体音響通信手段との音響通信中継手段を介した通信の安定性がさらに高まる。 In addition, according to the communication status of underwater acoustic communication grasped by the acoustic communication relay means, when the acoustic communication relay means is arranged at an optimal position in the predetermined area, the floating acoustic communication means, the navigation acoustic communication means, The stability of communication via the acoustic communication relay means is further increased.
また、通信状況は音響通信中継手段と航走体音響通信手段との通信状況である場合には、通信の安定性が一層高まり、航走体音響通信手段との通信可能範囲がさらに拡大する。 In addition, when the communication status is a communication status between the acoustic communication relay unit and the traveling body acoustic communication unit, the stability of communication is further increased, and the communicable range with the traveling body acoustic communication unit is further expanded.
また、音響通信中継手段は、横方向に音響信号を送信して航走体音響通信手段と音響通信を行う場合には、特に水平方向に遠く離れた航走体音響通信手段とも安定して通信を行うことができる。 In addition, the acoustic communication relay means stably communicates with the traveling body acoustic communication means that is far away in the horizontal direction, particularly when the acoustic signal is transmitted in the lateral direction to perform acoustic communication with the traveling body acoustic communication means. It can be performed.
また、所定領域に水中航走体が存在する場合は、浮体音響通信手段と航走体音響通信手段で直接通信を行う場合には、音響通信中継手段のエネルギーの消耗や負荷を軽減できると共に、浮体音響通信手段と航走体音響通信手段との通信速度を速くできる。 In addition, when there is an underwater vehicle in a predetermined area, when performing direct communication between the floating acoustic communication means and the navigation acoustic communication means, energy consumption and load of the acoustic communication relay means can be reduced, The communication speed between the floating acoustic communication means and the navigation acoustic communication means can be increased.
また、浮体音響通信手段と航走体音響通信手段の直接通信と、音響通信中継手段を介した間接通信を切り替える通信切替手段を備えた場合には、浮体音響通信手段と航走体音響通信手段との間の通信状況に応じて、また必要に応じて直接通信と間接通信を切り替えることができる。 Further, in the case of including communication switching means for switching between direct communication between the floating acoustic communication means and the navigation acoustic communication means and indirect communication via the acoustic communication relay means, the floating acoustic communication means and the navigation acoustic communication means The direct communication and the indirect communication can be switched according to the communication status between and the direct communication.
また、音響通信に供するデータとして位置データを含む場合には、浮体音響通信手段、音響通信中継手段又は水中航走体の位置の補正や水中航走体が取得したデータとの対応付け等を行うことができる。 Further, when position data is included as data to be used for acoustic communication, correction of the position of the floating acoustic communication means, acoustic communication relay means or underwater vehicle, association with data acquired by the underwater vehicle, and the like are performed. be able to.
また、水中航走体及び/又は音響通信中継手段に音響通信に供するデータを記憶する記憶手段を有した場合には、必要に応じてデータを再送したり、水中航走体又は音響通信中継手段を水中から回収した後にデータを検証したりすることができる。 In addition, when the underwater vehicle and / or the acoustic communication relay means have storage means for storing data to be used for acoustic communication, the data is retransmitted as necessary, the underwater vehicle or acoustic communication relay means The data can be verified after recovering from the water.
また、水中航走体を複数台有し、音響通信中継手段は複数台の水中航走体の音響信号を中継する場合には、複数台の水中航走体を用いることで、観測作業等の効率を向上させることができる。 In addition, when there are multiple underwater vehicles and the acoustic communication relay means relays the acoustic signals of multiple underwater vehicles, by using multiple underwater vehicles, Efficiency can be improved.
また、複数の水中航走体がそれぞれ音響通信中継手段を搭載し、所定領域に存在する水中航走体が音響通信の中継を行う場合には、水中航走体自身が音響通信中継機能を兼ねることができる。また、複数の音響通信中継手段を設けることで、1台が故障しても他の水中航走体に搭載された音響通信中継手段を用いて間接通信が行える。 In addition, when a plurality of underwater vehicles are equipped with acoustic communication relay means, and underwater vehicles in a predetermined area relay acoustic communication, the underwater vehicles themselves also function as an acoustic communication relay function. be able to. In addition, by providing a plurality of acoustic communication relay means, indirect communication can be performed using the acoustic communication relay means mounted on another underwater vehicle even if one unit breaks down.
また、音響通信中継手段が水中を移動可能に構成され、音響通信中継手段の移動速度は水中航走体の航走速度よりも遅いものである場合には、音響通信中継手段が移動可能であるため、浮体音響通信手段を追尾させることで、浮体音響通信手段が移動しても音響通信中継手段が所定領域から外れることを防止できる。また、略円錐状の範囲の所定領域内で最大限、水中航走体との音響通信が可能な位置にまで移動が可能となるため、水中航走体の観測範囲等を拡げることができる。また、音響通信中継手段の移動速度を水中航走体の航走速度よりも遅くすることで、音響通信中継手段の消費エネルギーを節約して間接通信に備えることができる。 The acoustic communication relay means is configured to be movable in water, and the acoustic communication relay means is movable when the moving speed of the acoustic communication relay means is slower than the traveling speed of the underwater vehicle. Therefore, by tracking the floating acoustic communication means, it is possible to prevent the acoustic communication relay means from moving out of the predetermined area even if the floating acoustic communication means moves. In addition, since it is possible to move to a position where acoustic communication with the underwater vehicle is possible at most within a predetermined area of the substantially conical range, the observation range of the underwater vehicle can be expanded. Moreover, the energy consumption of the acoustic communication relay means can be saved to prepare for indirect communication by making the moving speed of the acoustic communication relay means slower than the traveling speed of the underwater vehicle.
また、航走体音響通信手段と音響通信中継手段との間の音響通信ができなくなった場合に、水中航走体及び/又は音響通信中継手段を水面に浮上させる場合には、早めに浮上させることで、水中航走体及び/又は音響通信中継手段を見失う前に回収することができる。 Also, when acoustic communication between the traveling body acoustic communication means and the acoustic communication relay means becomes impossible, when the underwater navigation body and / or the acoustic communication relay means are floated on the surface of the water, the aircraft is surfaced early. Thus, the underwater vehicle and / or the acoustic communication relay means can be recovered before losing sight.
また、水中航走体及び/又は音響通信中継手段が水面に浮上した後は、浮体音響通信手段と水中航走体及び/又は音響通信中継手段との通信を空間を利用した無線通信に切り替える場合には、浮体音響通信手段と浮上した水中航走体及び/又は音響通信中継手段との通信をさらに、情報量を増し水平遠方まで安定して行うことができる。 In addition, after the underwater vehicle and / or the acoustic communication relay means has surfaced, the communication between the floating acoustic communication means and the underwater vehicle and / or the acoustic communication relay means is switched to wireless communication using space. In addition, the communication between the floating acoustic communication means and the surfacing underwater vehicle and / or the acoustic communication relay means can further increase the amount of information and can be performed stably up to a horizontal distance.
以下に、本発明の実施形態による水中音響通信システムについて説明する。 Below, the underwater acoustic communication system by embodiment of this invention is demonstrated.
図1は、本発明の第1の実施形態による水中音響通信システムの概略構成図である。
図2は、深度(水深)と水温の関係を示す図であり、縦軸は深度[m]、横軸は水温[℃]である。
図3は、深度(水深)と塩分の関係を示す図であり、縦軸は深度[m]、横軸は塩分[permil]である。
FIG. 1 is a schematic configuration diagram of an underwater acoustic communication system according to a first embodiment of the present invention.
FIG. 2 is a diagram showing the relationship between depth (water depth) and water temperature, where the vertical axis represents depth [m] and the horizontal axis represents water temperature [° C.].
FIG. 3 is a diagram showing the relationship between depth (water depth) and salinity, where the vertical axis represents depth [m] and the horizontal axis represents salinity [permil].
図1では、海洋や湖沼等において、水面A近傍に浮体音響通信手段30を配置し、複数の水中ロボット20を投入し、水底Bの鉱物資源やエネルギー資源等の探査を行う状態を示している。
水面Aに浮かんだ船舶10は、浮体音響通信手段30を備え、電波の届かない水中に存在する水中ロボット20に対して音響信号を利用して通信を行い、水中ロボット20の監視及び制御を行う。
水中ロボット20は、浮体音響通信手段30との接続にケーブルを用いずに水中を自律的に航走する無索自律無人型の航走体(AUV:Autonomous Underwater Vehicle)であり、水中において水底B等を観測する。船舶10と水中ロボット20との通信をケーブル通信ではなく音響通信とすることで、船舶10にケーブル用の設備を設ける必要が無く、また、ケーブルが絡んだりケーブルによって船舶10の移動が制限されたりすることがない。
水中音響通信システムは、浮体音響通信手段30と、水中ロボット20に設けた航走体音響通信手段40との間で音響信号を利用して通信を行う。
FIG. 1 shows a state in which a floating acoustic communication means 30 is arranged near the water surface A in the ocean, a lake, and the like, a plurality of underwater robots 20 are inserted, and mineral resources and energy resources in the bottom B are searched. .
The ship 10 floating on the water surface A includes a floating acoustic communication means 30, communicates with the underwater robot 20 existing in the water where radio waves do not reach, using the acoustic signal, and monitors and controls the underwater robot 20. .
The underwater robot 20 is an unmanned autonomous underwater vehicle (AUV) that autonomously travels underwater without using a cable for connection to the floating acoustic communication means 30. Observe etc. By making the communication between the ship 10 and the underwater robot 20 acoustic communication instead of cable communication, it is not necessary to provide a facility for the cable in the ship 10, and the cable is entangled or the movement of the ship 10 is restricted by the cable. There is nothing to do.
The underwater acoustic communication system performs communication using acoustic signals between the floating acoustic communication means 30 and the navigation acoustic communication means 40 provided in the underwater robot 20.
浮体音響通信手段30は、音波を送信する送波器と音波を受信する受波器とを有し、水面Aに浮かぶ船舶(調査母船)10に設けられている。
船舶10は、GNSS(全地球航法衛星システム)衛星1からのGNSS信号を受信することにより自船の位置を把握できる。
船舶10は、探索に関する指令等を浮体音響通信手段30から水中ロボット20に送信し、水中ロボット20から送信された観測データ等を浮体音響通信手段30で受信する。
The floating acoustic communication means 30 includes a transmitter that transmits sound waves and a receiver that receives sound waves, and is provided in the ship (investigation mother ship) 10 that floats on the water surface A.
The ship 10 can grasp the position of the ship by receiving a GNSS signal from a GNSS (Global Navigation Satellite System) satellite 1.
The ship 10 transmits a search-related command or the like from the floating acoustic communication unit 30 to the underwater robot 20, and the observation data transmitted from the underwater robot 20 is received by the floating acoustic communication unit 30.
水中ロボット20は、単数の中継体21と、複数の水中航走体22とからなる。中継体21には、音響通信中継手段50、通信切替手段60及び記憶手段70が搭載されている。水底B等の観測は主に水中航走体22が担うが、中継体21も水底B等の観測を行うことができる。
航走体音響通信手段40は、音波を送信する送波器と音波を受信する受波器とを有する。中継体21には、航走体音響通信手段40として中継体音響通信手段41が設けられ、水中航走体22には、航走体音響通信手段40として航走体音響通信手段42が設けられている。
中継体21、水中航走体22は、観測により得られた観測データ等を中継体音響通信手段41、航走体音響通信手段42から船舶10に送信し、船舶10から送信された指令等を中継体音響通信手段41、航走体音響通信手段42で受信する。
中継体21に搭載された音響通信中継手段50は、船舶10と水中航走体22との音響通信を中継する。これにより、船舶10と水中航走体22とは、中継体21の音響通信中継手段50を介した間接通信を行うことができる。
本実施形態のように、水中航走体22を複数台有し、中継体21が複数台の水中航走体22と船舶11との間で送受信される音響信号を中継することで、効率よく水中探査を行うことができる。
The underwater robot 20 includes a single relay body 21 and a plurality of underwater vehicle bodies 22. The relay body 21 is equipped with an acoustic communication relay means 50, a communication switching means 60, and a storage means 70. Observation of the bottom B is mainly performed by the underwater vehicle 22, but the relay body 21 can also observe the bottom B and the like.
The vehicle acoustic communication means 40 includes a transmitter that transmits sound waves and a receiver that receives sound waves. The relay body 21 is provided with relay body acoustic communication means 41 as the navigation body acoustic communication means 40, and the underwater navigation body 22 is provided with navigation body acoustic communication means 42 as the navigation body acoustic communication means 40. ing.
The relay body 21 and the underwater vehicle 22 transmit observation data and the like obtained by observation to the ship 10 from the relay body acoustic communication means 41 and the navigation body acoustic communication means 42, and send commands and the like transmitted from the ship 10. It is received by the relay body acoustic communication means 41 and the navigation body acoustic communication means 42.
The acoustic communication relay means 50 mounted on the relay body 21 relays the acoustic communication between the ship 10 and the underwater vehicle 22. Thereby, the ship 10 and the underwater vehicle 22 can perform indirect communication via the acoustic communication relay means 50 of the relay body 21.
Like this embodiment, it has two or more underwater vehicles 22, and the relay body 21 relays the acoustic signal transmitted / received between the plurality of underwater vehicles 22 and the ship 11, and is efficient. Underwater exploration can be performed.
なお、本実施形態においては、所定領域Xに水中航走体22が存在する場合は、船舶10と所定領域Xに存在する水中航走体22とは、中継体21の音響通信中継手段50を介さない直接通信を行う。これにより、中継体22の音響通信中継手段50のエネルギーの消耗や負荷を軽減すると共に、間接通信のときよりも船舶10と水中航走体22との通信速度が向上する。
図1において、実線矢印は、水中の音響通信を示す。
中継体21は、直接通信と間接通信を切り替える通信切替手段60を備えており、船舶10と水中航走体22との間の通信状況に応じて、または必要に応じて直接通信と間接通信を切り替えることができる。なお、常に船舶10と水中航走体22が間接通信を行う場合は、通信切替手段60を省略できる。
In the present embodiment, when the underwater vehicle 22 exists in the predetermined area X, the underwater vehicle 22 existing in the predetermined area X includes the acoustic communication relay unit 50 of the relay body 21. Direct communication without intervention. This reduces energy consumption and load of the acoustic communication relay means 50 of the relay body 22 and improves the communication speed between the ship 10 and the underwater vehicle 22 compared to indirect communication.
In FIG. 1, solid arrows indicate underwater acoustic communication.
The relay body 21 includes a communication switching unit 60 that switches between direct communication and indirect communication, and performs direct communication and indirect communication according to the communication status between the ship 10 and the underwater vehicle 22 or as necessary. Can be switched. When the ship 10 and the underwater vehicle 22 always perform indirect communication, the communication switching means 60 can be omitted.
船舶10と水中ロボット20との間で音響通信を行う場合、下方に送信した音波が水面Aで反射して特に水平方向及びそれに近い俯角方向への音響通信が困難となる。船舶10が発信する音響信号が到達しやすい領域は、図1に示すように、浮体音響通信手段30を頂点とした略円錐状の範囲である所定領域Xとなる。
中継体21は、水面Aから下方であって、船舶10からの音響信号が到達しやすい所定領域Xに配置され、所定領域Xを超えて航走しないように制御されている。中継体21を所定領域X内に留めることで、船舶10と中継体21との音響通信が途絶することを防止できる。
また、水中に配置された中継体21から発信される音響信号は、水面反射の影響が軽減されるため、船舶10から発信された音響信号よりも水平方向の到達範囲が拡がる。そのため、中継体21は、水中航走体22が所定領域Xの外にあるときにも、水中航走体22との音響通信を行いやすい。
したがって、船舶10と水中航走体22との音響通信は、少なくとも水中航走体22が所定領域Xを超えて航走している場合には、中継体21に搭載された音響通信中継手段50を介した間接通信を行うことで、通信途絶を回避できる。これにより、船舶10と水中航走体22との音響通信が可能な範囲が拡がり、ひいては水中航走体22が探索できる範囲が拡大する。
なお、中継体21の位置が深くなればなるほど、中継体音響通信手段41から発信される音響信号に対する水面反射の影響は小さくなるが、中継体21が水底Bに近づきすぎると水底Bで反射した音波(水底反射)の影響が大きくなるため、水面Aからの深度だけでなく水底Bからの高度も考慮することが好ましい。この場合、水底Bの形状は水面Aに比較して複雑であり水底反射も複雑となるため、水底Bの形状によって高度を考慮することがさらに好ましい。中継体21から発信される音響信号の水平方向の到達範囲は、中継体21の位置する深度及び高度と水面A及び水底Bに向かう音波の入射・反射角度等によって推定できる。
When acoustic communication is performed between the ship 10 and the underwater robot 20, the sound wave transmitted downward is reflected by the water surface A, and acoustic communication in the horizontal direction and the depression direction close thereto is particularly difficult. As shown in FIG. 1, the region where the acoustic signal transmitted from the ship 10 is likely to reach is a predetermined region X that is a substantially conical range with the floating acoustic communication means 30 as a vertex.
The relay body 21 is located below the water surface A and is disposed in a predetermined area X where the acoustic signal from the ship 10 can easily reach, and is controlled not to travel beyond the predetermined area X. By keeping the relay body 21 within the predetermined region X, it is possible to prevent the acoustic communication between the ship 10 and the relay body 21 from being interrupted.
In addition, since the acoustic signal transmitted from the relay body 21 disposed in the water is less affected by water surface reflection, the horizontal reach is wider than the acoustic signal transmitted from the ship 10. Therefore, the relay body 21 can easily perform acoustic communication with the underwater vehicle 22 even when the underwater vehicle 22 is outside the predetermined region X.
Therefore, the acoustic communication between the ship 10 and the underwater vehicle 22 is at least when the underwater vehicle 22 is traveling beyond the predetermined region X, and the acoustic communication relay means 50 mounted on the relay body 21. By performing indirect communication via the communication, communication interruption can be avoided. Thereby, the range in which the acoustic communication between the ship 10 and the underwater vehicle 22 can be expanded, and the range in which the underwater vehicle 22 can be searched is expanded.
The deeper the position of the relay body 21, the smaller the influence of water surface reflection on the acoustic signal transmitted from the relay body acoustic communication means 41. However, when the relay body 21 gets too close to the bottom B, it is reflected at the bottom B. Since the influence of sound waves (water bottom reflection) is increased, it is preferable to consider not only the depth from the water surface A but also the altitude from the water bottom B. In this case, since the shape of the bottom B is more complicated than the water surface A and the bottom reflection is also complicated, it is more preferable to consider the altitude depending on the shape of the bottom B. The reachable range of the acoustic signal transmitted from the relay body 21 in the horizontal direction can be estimated from the depth and altitude at which the relay body 21 is located, the incident / reflection angle of the sound wave toward the water surface A and the bottom B, and the like.
AUVである中継体21は、垂直スラスタや水平スラスタにより船舶10の移動に追随して移動したり、水流等がある場所においても位置を保持したりすることができる。したがって、本実施形態のように、音響通信中継手段50を中継体21に搭載すること、すなわち音響通信中継手段50を移動可能に構成することで、音響通信中継手段50を所定領域Xに留めることができる。また、中継体21が所定領域X内で最大限、水中航走体22との音響通信が可能な位置にまで移動することが可能となるため、水中航走体22の観測範囲等を拡げることができる。
なお、中継体21は所定領域Xに留まるため、水中航走体22よりも移動範囲が狭い。そのため中継体21の航走速度は、水中航走体22の航走速度より遅くても構わない。中継体21の航走速度を抑えることで、中継体21の消費エネルギーを節約して間接通信に備えることができる。
The relay body 21 which is AUV can move following the movement of the ship 10 by a vertical thruster or a horizontal thruster, or can maintain a position even in a place where there is a water flow or the like. Therefore, as in this embodiment, the acoustic communication relay unit 50 is mounted on the relay body 21, that is, the acoustic communication relay unit 50 is configured to be movable, so that the acoustic communication relay unit 50 remains in the predetermined region X. Can do. In addition, since the relay body 21 can move to a position where acoustic communication with the underwater vehicle 22 is possible within the predetermined area X, the observation range of the underwater vehicle 22 can be expanded. Can do.
In addition, since the relay body 21 remains in the predetermined region X, the moving range is narrower than the underwater vehicle 22. Therefore, the traveling speed of the relay body 21 may be slower than the traveling speed of the underwater vehicle 22. By suppressing the traveling speed of the relay body 21, energy consumption of the relay body 21 can be saved and prepared for indirect communication.
音響通信中継手段50が搭載された中継体21の鉛直方向の位置は、所定領域Xの外にある水中航走体22とも音響通信ができる位置となるように定める。
中継体21は、中継体音響通信手段41で把握した水中の音響通信の通信状況に従って、所定領域Xのうちの最適な位置に配置することが好ましい。所定領域Xのなかでも通信状況が良好な位置に音響通信中継手段50を搭載した中継体21を配置することで、船舶10と水中航走体22が音響通信中継手段50を介した間接通信を行う際の通信の安定性がさらに高まる。水中の音響通信の通信状況は、例えばシグナル/ノイズ比(S/N比)で把握する。
なお、最適な位置を決める際には、中継体21と船舶10との通信状況に従ってもよいが、中継体21と水中航走体22との通信状況に従って最適な位置に中継体21を配置した場合には、通信の安定性が一層高まり、水中航走体22との音響通信可能範囲をさらに拡げることができる。
また、所定領域Xのうち、水中音速の遅い低水温層に中継体21を配置してもよい。水温約3〜74℃の範囲では、水温が低いほど水中音速が遅くなり、より水平遠方まで音波が届きやすいため、他よりも水温が低い低水温層に中継体21を配置することで、船舶10と水中航走体22との音響通信中継手段50を介した音響通信可能範囲がさらに拡大する。ここで図2は、水深1700m以上の海域における調査に基づき作成した深度と水温の関係を示す図である。図2から、この海域の水温は、水温が低いほど水中音速が遅くなる3〜74℃の範囲内であり、水面Aから遠ざかるほど下がる傾向であることが分かる。よってこの水深と水温だけを考慮した場合は、中継体21の鉛直方向の位置をより深くすることが好ましい。但し、水底に熱水鉱床等があって水の温度が他よりも高い高水温層がある場合には、その高水温層を避けて配置する。このように、深度による水温変化を測定又は推定し、その結果に基づいて所定領域Xのなかでもより水温の低い場所に中継体21を配置することで、上記のように音響通信可能範囲がさらに拡大する。
また、水中音響通信システムを海洋で用いる場合には、所定領域Xのうち、塩分が他よりも低い低塩分層に中継体21を配置してもよい。塩分が低いほど水中音速が遅くなり、より水平遠方まで音波が届きやすいため、低塩分層に中継体21を配置することで、船舶10と水中航走体22との音響通信中継手段50を介した音響通信可能範囲がさらに拡大する。水深1700m以上の海域で深度と塩分の関係を調査したところ、図3に示すように、深度約400〜600mが最も塩分が低い低塩分層であることが分かった。なお、水深が約400m以上の海域であれば、最大深度に関わらず深度約400〜600mが低塩分層となる。したがって、水深と塩分だけを考慮した場合、水深が約400m以上の海域においては、所定領域Xのなかでも深度約400〜600mに中継体21を配置することが好ましい。また、水温と塩分の両方が低い場合は、どちらか一方だけが低い場合と比べて水中音速がさらに遅くなるので、水温と塩分の両方に基づいて中継体21の位置を定めることがより好ましい。なお、水中音速には圧力(深度)も影響するため、この圧力も考慮して中継体21の位置を定めてもよい。
The position in the vertical direction of the relay body 21 on which the acoustic communication relay means 50 is mounted is determined so as to be a position where acoustic communication can be performed with the underwater vehicle 22 outside the predetermined area X.
It is preferable to arrange the relay body 21 at an optimal position in the predetermined region X according to the communication status of underwater acoustic communication grasped by the relay body acoustic communication means 41. By arranging the relay body 21 with the acoustic communication relay means 50 mounted at a position where the communication condition is good in the predetermined area X, the ship 10 and the underwater vehicle 22 perform indirect communication via the acoustic communication relay means 50. The stability of communication when performing is further increased. The communication status of underwater acoustic communication is grasped by, for example, a signal / noise ratio (S / N ratio).
In determining the optimum position, the communication state between the relay body 21 and the ship 10 may be followed. However, the relay body 21 is arranged at the optimum position according to the communication state between the relay body 21 and the underwater vehicle 22. In this case, the stability of communication is further enhanced, and the range of acoustic communication with the underwater vehicle 22 can be further expanded.
Moreover, you may arrange | position the relay body 21 in the low water temperature layer with a slow underwater sound speed among the predetermined area | region X. FIG. When the water temperature is in the range of about 3 to 74 ° C., the lower the water temperature, the lower the sound speed in water, and the more easily the sound waves reach farther to the horizontal, so by placing the relay body 21 in the low water temperature layer where the water temperature is lower than the others, The range in which acoustic communication is possible between the vehicle 10 and the underwater vehicle 22 via the acoustic communication relay means 50 is further expanded. Here, FIG. 2 is a diagram showing the relationship between the depth and the water temperature created based on the survey in the sea area with a water depth of 1700 m or more. From FIG. 2, it can be seen that the water temperature in this sea area is in the range of 3 to 74 ° C. where the underwater sound speed becomes slower as the water temperature is lower, and tends to decrease as the distance from the water surface A increases. Therefore, when only the water depth and the water temperature are considered, it is preferable to make the position of the relay body 21 in the vertical direction deeper. However, when there is a hydrothermal deposit at the bottom of the water and there is a high water temperature layer where the temperature of the water is higher than the others, the high water temperature layer is avoided. In this way, by measuring or estimating the water temperature change due to the depth and arranging the relay body 21 in a place where the water temperature is lower in the predetermined region X based on the result, the acoustic communication possible range is further increased as described above. Expanding.
Moreover, when using an underwater acoustic communication system in the ocean, you may arrange | position the relay body 21 in the low salinity layer whose salinity is lower than the others in the predetermined area X. The lower the salinity, the slower the sound velocity in the water and the easier it is for sound waves to reach further horizontally. Therefore, by arranging the relay body 21 in the low salinity layer, the acoustic communication relay means 50 between the ship 10 and the underwater vehicle 22 is provided. The range in which acoustic communication can be further expanded. As a result of investigating the relationship between depth and salinity in a sea area with a water depth of 1700 m or more, it was found that a depth of about 400 to 600 m was the lowest salinity layer as shown in FIG. In addition, if the water depth is about 400 m or more, a depth of about 400 to 600 m is a low salinity layer regardless of the maximum depth. Therefore, when considering only the water depth and salinity, it is preferable to arrange the relay body 21 at a depth of about 400 to 600 m in the predetermined area X in the sea area where the water depth is about 400 m or more. In addition, when both the water temperature and the salinity are low, the underwater sound speed is further slower than when only one of them is low, so it is more preferable to determine the position of the relay body 21 based on both the water temperature and the salinity. Since the pressure (depth) also affects the underwater sound speed, the position of the relay body 21 may be determined in consideration of this pressure.
音響通信中継手段50が搭載された中継体21の位置を定める方法について、さらに詳述する。
水温、塩分及び水深と、水中音速との関係を近似的に表す式としてMackenzieの式(式1)がある。
c:音速(m/s)
T:水温(℃)
S:塩分(permil)
D:水深(m)
である。
水温と塩分と水深とを考慮する場合、このMackenzieの式に従って音速を求めることが好ましい。
A method for determining the position of the relay body 21 on which the acoustic communication relay means 50 is mounted will be described in further detail.
Mackenzie's equation (Equation 1) is an equation that approximates the relationship between water temperature, salinity, water depth, and underwater sound speed.
c: Sound velocity (m / s)
T: Water temperature (° C)
S: salt (permil)
D: Water depth (m)
It is.
When considering the water temperature, salinity, and water depth, it is preferable to obtain the sound speed according to the Mackenzie equation.
図2に示される水深と水温の関係、図3に示される水深と塩分の関係を用いて、上記式1に基づいて、水温と塩分と及び水深を考慮して音速を計算すると、表1のような結果となる。
図2に示されるような、水面Aの水温が30℃にもなる水温の高い海域においては、音速の変化に与える影響は、水温の変化>水深の変化>塩分の変化の順に大きい。水面Aの水温が低い海域においては、水温の変化よりも水深の変化や塩分の変化の影響が勝ってくる。
音速が遅い層は、水深に対する水温のプロファイル、塩分のプロファイル、及び水深によって異なってくるため、正確を期す場合は、適用海域の水温のプロファイル、塩分のプロファイル、及び水深に応じて、適宜、音速の遅くなる層を、式1等を用いて求めることが好ましい。より正確を期す場合は、水温、塩分、及び水深を例えば音響通信中継手段50で計測し、式1等に基づいて音速を計算し、音速の遅い層に音響通信中継手段50を配置することが好ましい。また、音速極小層に音響通信中継手段50を配置することがさらに好ましい。
Using the relationship between water depth and water temperature shown in FIG. 2 and the relationship between water depth and salinity shown in FIG. 3 and calculating the speed of sound in consideration of the water temperature, salinity and water depth based on the above equation 1, The result is as follows.
In the sea area where the water temperature of the water surface A is as high as 30 ° C., as shown in FIG. In the sea area where the water temperature of the water surface A is low, the influence of changes in water depth and salinity prevails over changes in water temperature.
Layers with slow sound speed vary depending on the water temperature profile, salinity profile, and water depth, so for accuracy, the sound speed is appropriately adjusted according to the water temperature profile, salinity profile, and water depth of the applicable sea area. It is preferable to obtain the layer that slows down using Equation 1 or the like. For more accuracy, it is possible to measure the water temperature, salinity, and water depth, for example, with the acoustic communication relay means 50, calculate the sound speed based on Equation 1 and the like, and place the acoustic communication relay means 50 in a layer with a low sound speed. preferable. Moreover, it is more preferable to arrange the acoustic communication relay means 50 in the sonic minimum layer.
上述のように、水中に配置された中継体21から発信された水中音響信号は、水面反射の影響が軽減されるため、船舶10から発信された水中音響信号よりも水平方向の到達距離が延びる。そこで、中継体21が、横方向(水平方向)に音響信号を送信して水中航走体22と音響通信を行った場合には、特に水平方向に遠く離れた水中航走体22とも安定して通信を行うことができる。 As described above, the underwater acoustic signal transmitted from the relay body 21 disposed in the water is less affected by water surface reflection, and thus the horizontal reach is longer than the underwater acoustic signal transmitted from the ship 10. . Therefore, when the relay body 21 transmits an acoustic signal in the horizontal direction (horizontal direction) and performs acoustic communication with the underwater vehicle 22, the underwater vehicle 22 that is far away in the horizontal direction is particularly stable. Can communicate.
中継体21及び水中航走体22には、音響通信に供するデータを記憶するハードディスクドライブや半導体メモリ等の記憶手段70が設けられており、必要に応じてデータを再送したり、水中航走体22又は音響通信中継手段50を水中から回収した後にデータを検証したりすることができる。
音響通信に供するデータには、自己位置や観測位置等の位置データを含むことができる。位置データを含めることで、船舶10、中継体21又は水中航走体22の位置の補正や水中航走体22が取得したデータとの対応付け等を行うことができる。
The relay body 21 and the underwater vehicle 22 are provided with storage means 70 such as a hard disk drive and a semiconductor memory for storing data used for acoustic communication. Or the data can be verified after the acoustic communication relay means 50 is recovered from the water.
The data used for acoustic communication can include position data such as the self position and the observation position. By including the position data, it is possible to correct the position of the ship 10, the relay body 21, or the underwater vehicle 22, or to associate the data with the data acquired by the underwater vehicle 22.
中継体21の中継体音響通信手段41と水中航走体22の航走体音響通信手段42との音響通信ができなくなった場合は、中継体21及び水中航走体22を水面Aに浮上させてもよい。
早めに浮上させることで、中継体21及び水中航走体22を見失う前に回収することができる。
なお、中継体21及び水中航走体22が水面Aに浮上した後は、船舶10と中継体21及び水中航走体22との通信を、空間を利用した無線通信に切り替えることが好ましい。
音波は水上では届きにくいため、無線通信に切り替えることで、船舶10と浮上した中継体21又は水中航走体22との距離が離れていても通信がしやすい。なお、空間を利用した無線通信としては、電波通信、光通信、音響通信等が使用可能である。
When acoustic communication between the relay body acoustic communication means 41 of the relay body 21 and the navigation body acoustic communication means 42 of the underwater vehicle 22 becomes impossible, the relay body 21 and the underwater vehicle 22 are floated on the water surface A. May be.
By ascending early, the relay body 21 and the underwater vehicle 22 can be recovered before losing sight.
In addition, after the relay body 21 and the underwater vehicle 22 have surfaced on the water surface A, it is preferable to switch the communication between the ship 10 and the relay body 21 and the underwater vehicle 22 to wireless communication using a space.
Since sound waves are difficult to reach on the water, switching to wireless communication facilitates communication even if the distance between the ship 10 and the surfacing relay body 21 or the underwater navigation body 22 is long. Note that radio communication, optical communication, acoustic communication, and the like can be used as wireless communication using space.
複数の水中航走体22が、それぞれ音響通信中継手段50を搭載し、中継体21に加えて又は中継体21に代えて、所定領域Xに存在する水中航走体22が船舶10との音響通信の中継を行うようにしてもよい。
これにより、水中航走体22自身が音響通信を中継する機能を兼ねることができる。また、複数ある水中航走体22のそれぞれが音響通信中継手段50を備えることで、1台が故障しても他の水中航走体22に搭載された音響通信中継手段50を用いて間接通信が行える。
The plurality of underwater vehicles 22 are each equipped with the acoustic communication relay means 50, and in addition to the relay body 21 or instead of the relay body 21, the underwater vehicle 22 existing in the predetermined region X is acoustically connected to the ship 10. Communication relay may be performed.
Thereby, the underwater vehicle 22 itself can also serve as a function of relaying acoustic communication. In addition, each of the plurality of underwater vehicles 22 includes the acoustic communication relay means 50, so that even if one unit breaks down, indirect communication is performed using the acoustic communication relay means 50 mounted on another underwater vehicle 22. Can be done.
次に、本発明の第2の実施形態による水中音響通信システムについて説明する。なお、第1の実施形態と同一機能部材には同一符号を付して説明を省略する。 Next, an underwater acoustic communication system according to the second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the same functional member as 1st Embodiment, and description is abbreviate | omitted.
図4は本発明の第2の実施形態による水中音響通信システムの概略構成図である。
本実施形態は、洋上中継器(ASV:Autonomous Surface Vehicle)11を備え、船舶(調査母船)10には浮体音響通信手段30として船舶音響通信手段31が設けられ、洋上中継器11には浮体音響通信手段30として洋上中継器音響通信手段32が設けられている点において、第1の実施形態と異なる。船舶10と洋上中継器11との通信は、電波による無線通信により行われる。洋上中継器11を用いることで、水中航走体22の活動範囲をさらに拡げることができる。
FIG. 4 is a schematic configuration diagram of an underwater acoustic communication system according to the second embodiment of the present invention.
This embodiment is provided with an offshore surface vehicle (ASV) 11, a ship (investigation mother ship) 10 is provided with a ship acoustic communication means 31 as a floating acoustic communication means 30, and the offshore repeater 11 is provided with a floating body sound. It differs from the first embodiment in that an offshore repeater acoustic communication means 32 is provided as the communication means 30. Communication between the ship 10 and the offshore repeater 11 is performed by radio communication using radio waves. By using the offshore repeater 11, the activity range of the underwater vehicle 22 can be further expanded.
船舶10及び洋上中継器11は、GNSS衛星1からのGNSS信号を受信することにより自己位置を把握できる。
洋上中継器11は、本体11Aが水中に没して水深約1.5mの位置にあり、アンテナ11Bの上部が水面Aよりも上に出た半潜水状態で用いられる。
船舶10、洋上中継器11は、探索に関する指令等を船舶音響通信手段31、洋上中継器音響通信手段32から水中ロボット20に送信し、水中ロボット20から送信された観測データ等を船舶音響通信手段31、洋上中継器音響通信手段32で受信する。
The ship 10 and the offshore repeater 11 can grasp their own positions by receiving the GNSS signal from the GNSS satellite 1.
The offshore repeater 11 is used in a semi-submersible state in which the main body 11A is submerged in water and located at a depth of about 1.5 m, and the upper part of the antenna 11B protrudes above the water surface A.
The ship 10 and the offshore repeater 11 transmit a search-related command and the like from the ship acoustic communication unit 31 and the offshore repeater acoustic communication unit 32 to the underwater robot 20, and the observation data transmitted from the underwater robot 20 is transmitted to the ship acoustic communication unit. 31. Received by the offshore repeater acoustic communication means 32.
中継体21、水中航走体22は、観測により得られた観測データ等を中継体音響通信手段41、航走体音響通信手段42から船舶10及び洋上中継器11に送信し、船舶10及び洋上中継器11から送信された指令等を中継体音響通信手段41、航走体音響通信手段42で受信する。
中継体21に搭載された音響通信中継手段50は、船舶10と水中航走体22との音響通信を中継する。これにより、船舶10と水中航走体22とは、中継体21の音響通信中継手段50を介した間接通信を行うことができる。
The relay body 21 and the underwater vehicle 22 transmit observation data and the like obtained by observation to the ship 10 and the offshore repeater 11 from the relay body acoustic communication means 41 and the navigation body acoustic communication means 42. A command transmitted from the repeater 11 is received by the relay acoustic communication means 41 and the navigation acoustic communication means 42.
The acoustic communication relay means 50 mounted on the relay body 21 relays the acoustic communication between the ship 10 and the underwater vehicle 22. Thereby, the ship 10 and the underwater vehicle 22 can perform indirect communication via the acoustic communication relay means 50 of the relay body 21.
中継体21は、水面Aから下方であって、船舶10からの音響信号が到達しやすい所定領域Xに配置され、所定領域Xを超えて航走しないように制御されている。
水中航走体22は、水面Aから下方であって、洋上中継器11からの音響信号が到達しやすい所定領域Yに配置されている。
船舶10と水中航走体22との音響通信は、少なくとも水中航走体22が所定領域X及び所定領域Yを超えて航走している場合には、中継体21に搭載された音響通信中継手段50を介した間接通信を行うことで、通信途絶を回避できる。これにより、船舶10と水中航走体22との音響通信が可能な範囲が拡がり、ひいては水中航走体22が探索できる範囲が拡大する。
The relay body 21 is located below the water surface A and is disposed in a predetermined area X where the acoustic signal from the ship 10 can easily reach, and is controlled not to travel beyond the predetermined area X.
The underwater vehicle 22 is disposed below the water surface A and in a predetermined region Y where an acoustic signal from the offshore repeater 11 is easily reached.
The acoustic communication between the ship 10 and the underwater vehicle 22 is an acoustic communication relay mounted on the relay body 21 at least when the underwater vehicle 22 is traveling beyond the predetermined region X and the predetermined region Y. By performing indirect communication via the means 50, communication interruption can be avoided. Thereby, the range in which the acoustic communication between the ship 10 and the underwater vehicle 22 can be expanded, and the range in which the underwater vehicle 22 can be searched is expanded.
なお、中継体21は、所定領域Yに配置し、所定領域Yを超えて航走しないように制御してもよい。この場合、中継体21と船舶10との通信は洋上中継器11を経由して行われるため、船舶10は、船舶音響通信手段31を省略できると共に、中継体21の位置に左右されることなく航走できる。 The relay body 21 may be arranged in the predetermined area Y and controlled so as not to travel beyond the predetermined area Y. In this case, since the communication between the relay body 21 and the ship 10 is performed via the offshore repeater 11, the ship 10 can omit the ship acoustic communication means 31 and is not affected by the position of the relay body 21. You can sail.
次に、図5及び図6を用いて、音響通信中継手段50の中継制御の例について説明する。なお、第1の実施形態を中心に説明するが、第2の実施形態も基本的に同様である。 Next, an example of relay control of the acoustic communication relay unit 50 will be described with reference to FIGS. 5 and 6. Although the description will focus on the first embodiment, the second embodiment is basically the same.
図5は、船舶から水中航走体に対して音響通信の確立を求める際の音響通信中継手段の中継制御を示すフロー図である。
船舶10は、水中航走体22に対して音響通信の確立を求める場合、水中航走体22に対して返答を求める第1の音響信号を浮体音響通信手段30から発信する。音波は無指向のため、浮体音響通信手段30が発信した第1の音響信号は、所定領域Xにある中継体21の中継体音響通信手段41でも受信される。中継体音響通信手段41が第1の音響信号を受信すると、音響通信中継手段50の中継制御がスタートする(ステップ1)。なお、第2の実施形態においては、船舶10は、水中航走体22に対して返答を求める信号を、無線通信で洋上中継器11に対して発信すると共に、第1の音響信号として船舶音響通信手段31から発信する。無線通信による信号は、洋上中継器11で音響信号に変換されて第1の音響信号として洋上中継器音響通信手段32から発信される。
ステップ1で発信された第1の音響信号を航走体音響通信手段42が受信すると、水中航走体22は、第1の音響信号を受信したことを知らせる第2の音響信号を航走体音響通信手段42から発信する。音響通信中継手段50は、ステップ1で発信された第1の音響信号を受信した後、水中航走体22から発信されるはずの第2の音響信号を中継体音響通信手段41が受信したか否かを判断する(ステップ2)。
ステップ2において、第2の音響信号を中継体音響通信手段41が受信したと判断した場合には、音響通信中継手段50はそのまま中継制御を終了する(ステップ3)。船舶10と水中航走体22との間で直接通信が可能な状態と判断できるためである。この場合は、船舶10と水中航走体22との間の音響通信は、中継体21を介さない直接通信により行われる。
ステップ2において、第2の音響信号を中継体音響通信手段41が受信していないと判断した場合には、音響通信中継手段50は、ステップ1で受信した第1の音響信号を中継体音響通信手段41から発信する(ステップ4)。ステップ1で発信された第1の音響信号が航走体音響通信手段42には届いていないと判断できるためである。
ステップ4で発信された第1の音響信号を航走体音響通信手段42が受信すると、水中航走体22は、第1の音響信号を受信したことを知らせる第2の音響信号を航走体音響通信手段42から発信する。音響通信中継手段50は、ステップ4で第1の音響信号を発信した後、水中航走体22から発信されるはずの第2の音響信号を中継体音響通信手段41が受信したか否かを判断する(ステップ5)。
ステップ5において、第2の音響信号を中継体音響通信手段41が受信したと判断した場合には、音響通信中継手段50は、通信切替手段60によって間接通信への切り替を行う(ステップ6)。船舶10と水中航走体22との間で間接通信は可能な状態と判断できるためである。この場合は、船舶10と水中航走体22との間の音響通信は、中継体21を介した間接通信により行われる。
ステップ5において、第2の音響信号を中継体音響通信手段41が受信していないと判断した場合には、音響通信中継手段50はそのまま中継制御を終了する(ステップ7)。船舶10と水中航走体22との間で間接通信も不可能な状態と判断できるためである。中継体21を浮上させて回収してもよい。なお、第2の実施形態においては、この場合であっても、船舶10と水中航走体22とは、洋上中継器11を経由した通信ができている可能性がある。そこで、洋上中継器11で電波に変換された第2の音響信号を船舶10が受信したか否かを伝える音響信号を、船舶音響通信手段31から中継体21に対して発信するようにしてもよい。
FIG. 5 is a flowchart showing relay control of the acoustic communication relay means when the establishment of acoustic communication is requested from the ship to the underwater vehicle.
When the ship 10 requests the underwater vehicle 22 to establish acoustic communication, the ship 10 transmits a first acoustic signal for requesting a response to the underwater vehicle 22 from the floating body acoustic communication means 30. Since the sound wave is omnidirectional, the first acoustic signal transmitted by the floating acoustic communication means 30 is also received by the relay acoustic communication means 41 of the relay body 21 in the predetermined area X. When the relay acoustic communication means 41 receives the first acoustic signal, the relay control of the acoustic communication relay means 50 starts (step 1). In the second embodiment, the ship 10 transmits a signal for requesting a response to the underwater vehicle 22 to the offshore repeater 11 by wireless communication, and the ship acoustics as the first acoustic signal. A call is sent from the communication means 31. A signal by wireless communication is converted into an acoustic signal by the offshore repeater 11 and transmitted from the offshore repeater acoustic communication means 32 as a first acoustic signal.
When the traveling body acoustic communication means 42 receives the first acoustic signal transmitted in step 1, the underwater traveling body 22 receives the second acoustic signal that informs that the first acoustic signal has been received. Originating from the acoustic communication means 42. After the first acoustic signal transmitted in step 1 is received by the acoustic communication relay means 50, has the relay acoustic communication means 41 received the second acoustic signal that should be transmitted from the underwater vehicle 22? It is determined whether or not (step 2).
If it is determined in step 2 that the relay acoustic communication means 41 has received the second acoustic signal, the acoustic communication relay means 50 ends the relay control as it is (step 3). This is because it can be determined that direct communication between the ship 10 and the underwater vehicle 22 is possible. In this case, the acoustic communication between the ship 10 and the underwater vehicle 22 is performed by direct communication not via the relay body 21.
If it is determined in step 2 that the second acoustic signal is not received by the relay acoustic communication means 41, the acoustic communication relay means 50 uses the first acoustic signal received in step 1 as the relay acoustic communication. A call is made from the means 41 (step 4). This is because it can be determined that the first acoustic signal transmitted in step 1 has not reached the vehicle acoustic communication means 42.
When the traveling body acoustic communication means 42 receives the first acoustic signal transmitted in step 4, the underwater traveling body 22 receives the second acoustic signal that informs that the first acoustic signal has been received. Originating from the acoustic communication means 42. After transmitting the first acoustic signal in step 4, the acoustic communication relay unit 50 determines whether the relay unit acoustic communication unit 41 has received the second acoustic signal that should be transmitted from the underwater vehicle 22. Judgment is made (step 5).
If it is determined in step 5 that the second acoustic signal has been received by the relay acoustic communication unit 41, the acoustic communication relay unit 50 switches to indirect communication by the communication switching unit 60 (step 6). This is because it can be determined that indirect communication between the ship 10 and the underwater vehicle 22 is possible. In this case, acoustic communication between the ship 10 and the underwater vehicle 22 is performed by indirect communication via the relay body 21.
If it is determined in step 5 that the second acoustic signal has not been received by the relay acoustic communication means 41, the acoustic communication relay means 50 ends the relay control as it is (step 7). This is because it can be determined that indirect communication between the ship 10 and the underwater vehicle 22 is also impossible. The relay body 21 may be levitated and collected. In the second embodiment, even in this case, there is a possibility that the ship 10 and the underwater vehicle 22 can communicate via the offshore repeater 11. Therefore, an acoustic signal indicating whether or not the ship 10 has received the second acoustic signal converted into radio waves by the offshore repeater 11 is transmitted from the ship acoustic communication means 31 to the relay body 21. Good.
なお、船舶10では、浮体音響通信手段30が第2の音響信号を受信しない場合、第1の音響信号を送信したか(ステップ4の動作を行ったか)否かの返答を求める音響信号を浮体音響通信手段30から中継体21に対して送信するか、ステップ4で中継体音響通信手段41から発信される第1の音響信号を浮体音響通信手段30で受信するようにしてもよい。 In the ship 10, when the floating acoustic communication means 30 does not receive the second acoustic signal, an acoustic signal for requesting a response as to whether or not the first acoustic signal has been transmitted (the operation of step 4 has been performed) is sent to the floating body. The first acoustic signal transmitted from the acoustic communication unit 30 to the relay body 21 or transmitted from the relay body acoustic communication unit 41 in step 4 may be received by the floating body acoustic communication unit 30.
図6は、水中航走体から船舶に対して音響通信の確立を求める際の音響通信中継手段の中継制御を説明するフロー図である。
水中航走体22は、船舶10に対して音響通信の確立を求める場合、船舶10に対して返答を求める第3の音響信号を航走体音響通信手段42から発信する。航走体音響通信手段42が発信した無指向の第3の音響信号は、中継体音響通信手段41でも受信できる可能性がある。中継体音響通信手段41が第3の音響信号を受信すると、音響通信中継手段50の中継制御がスタートする(ステップ11)。なお、第2の実施形態においては、洋上中継器11に到達した第3の音響信号は、電波に変換されて船舶10に向けて無線通信でも送信される。
ステップ11で発信された第3の音響信号を浮体音響通信手段30が受信すると、船舶10は、第3の音響信号を受信したことを知らせる第4の音響信号を浮体音響通信手段30から発信する。音響通信中継手段50は、ステップ11で発信された第3の音響信号を受信した後、船舶10から発信されるはずの第4の音響信号を中継体音響通信手段41が受信したか否かを判断する(ステップ12)。なお、第2の実施形態においては、船舶10は、第3の音響信号を受信したことを知らせる信号を、無線通信で洋上中継器11に対して発信すると共に、第4の音響信号として船舶音響通信手段31から発信する。無線通信による信号は、洋上中継器11で音響信号に変換されて第4の音響信号として洋上中継器音響通信手段32から発信される。
ステップ12において、第4の音響信号を中継体音響通信手段41が受信したと判断した場合には、音響通信中継手段50はそのまま中継制御を終了する(ステップ13)。船舶10と水中航走体22との間で直接通信が可能な状態と判断できるためである。この場合は、船舶10と水中航走体22との間の音響通信は、中継体21を介さない直接通信により行われる。
ステップ12において、第4の音響信号を中継体音響通信手段41が受信していないと判断した場合には、音響通信中継手段50は、ステップ11で受信した第3の音響信号を中継体音響通信手段41から発信する(ステップ14)。ステップ11で発信された第3の音響信号が浮体音響通信手段30には届いていないと判断できるためである。
ステップ14で発信された第3の音響信号を浮体音響通信手段30が受信すると、船舶10は、第3の音響信号を受信したことを知らせる第4の音響信号を浮体音響通信手段30から発信する。音響通信中継手段50は、ステップ14で第3の音響信号を発信した後、船舶10から発信されるはずの第4の音響信号を中継体音響通信手段41が受信したか否かを判断する(ステップ15)。なお、第2の実施形態においては、船舶10は、第3の音響信号を受信したことを知らせる信号を、無線通信で洋上中継器11に対して発信すると共に、第4の音響信号として船舶音響通信手段31から発信する。無線通信による信号は、洋上中継器11で音響信号に変換されて第4の音響信号として洋上中継器音響通信手段32から発信される。
ステップ15において、第4の音響信号を中継体音響通信手段41が受信したと判断した場合には、音響通信中継手段50は、受信した第4の音響信号を中継体音響通信手段41から発信すると共に、通信切替手段60によって間接通信への切り替えを行う(ステップ16)。船舶10と水中航走体22との間で間接通信は可能な状態と判断できるためである。この場合は、船舶10と水中航走体22との間の音響通信は、中継体21を介した間接通信により行われる。
ステップ15において、第4の音響信号を中継体音響通信手段41が受信していないと判断した場合には、音響通信中継手段50はそのまま中継制御を終了する(ステップ17)。船舶10と水中航走体22との間で間接通信も不可能な状態と判断できるためである。中継体21を浮上させて回収してもよい。また、この場合は、航走体音響通信手段42にも第4の音響信号が届かないため、水中航走体22に対して第4の音響信号を所定時間受信しない場合には浮上する指令を予め与えておくことで、水中航走体22を浮上させて回収することができる。なお、第2の実施形態においては、この場合であっても、船舶10と水中航走体22とは、洋上中継器11を経由した通信ができている可能性がある。そこで、洋上中継器11で電波に変換された第3の音響信号を船舶10が受信したか否かを伝える音響信号を、船舶音響通信手段31から中継体21に対して発信するようにしてもよい。
FIG. 6 is a flowchart for explaining the relay control of the acoustic communication relay unit when the establishment of acoustic communication is requested from the underwater vehicle to the ship.
When the underwater vehicle 22 requests the ship 10 to establish acoustic communication, the underwater vehicle 22 transmits a third acoustic signal for requesting a response from the ship 10 from the vehicle acoustic communication means 42. There is a possibility that the omnidirectional third acoustic signal transmitted by the traveling body acoustic communication means 42 can be received also by the relay acoustic communication means 41. When the relay acoustic communication means 41 receives the third acoustic signal, the relay control of the acoustic communication relay means 50 starts (step 11). In the second embodiment, the third acoustic signal that has reached the offshore repeater 11 is converted into a radio wave and transmitted to the ship 10 by wireless communication.
When the floating acoustic communication means 30 receives the third acoustic signal transmitted in step 11, the ship 10 transmits a fourth acoustic signal from the floating acoustic communication means 30 informing that the third acoustic signal has been received. . After receiving the third acoustic signal transmitted in step 11, the acoustic communication relay means 50 determines whether the relay acoustic communication means 41 has received the fourth acoustic signal that should be transmitted from the ship 10. Judgment is made (step 12). In the second embodiment, the ship 10 transmits a signal notifying that the third acoustic signal has been received to the offshore repeater 11 by wireless communication, and the ship acoustics as the fourth acoustic signal. A call is sent from the communication means 31. The signal by wireless communication is converted into an acoustic signal by the offshore repeater 11 and transmitted from the offshore repeater acoustic communication means 32 as a fourth acoustic signal.
If it is determined in step 12 that the relay acoustic communication means 41 has received the fourth acoustic signal, the acoustic communication relay means 50 ends the relay control as it is (step 13). This is because it can be determined that direct communication between the ship 10 and the underwater vehicle 22 is possible. In this case, the acoustic communication between the ship 10 and the underwater vehicle 22 is performed by direct communication not via the relay body 21.
If it is determined in step 12 that the fourth acoustic signal is not received by the relay acoustic communication unit 41, the acoustic communication relay unit 50 uses the third acoustic signal received in step 11 as the relay acoustic communication. A transmission is made from the means 41 (step 14). This is because it can be determined that the third acoustic signal transmitted in step 11 has not reached the floating acoustic communication means 30.
When the floating acoustic communication unit 30 receives the third acoustic signal transmitted in step 14, the ship 10 transmits a fourth acoustic signal that informs that the third acoustic signal has been received from the floating acoustic communication unit 30. . The acoustic communication relay means 50 determines whether or not the relay acoustic communication means 41 has received the fourth acoustic signal that should be transmitted from the ship 10 after transmitting the third acoustic signal in step 14 ( Step 15). In the second embodiment, the ship 10 transmits a signal notifying that the third acoustic signal has been received to the offshore repeater 11 by wireless communication, and the ship acoustics as the fourth acoustic signal. A call is sent from the communication means 31. The signal by wireless communication is converted into an acoustic signal by the offshore repeater 11 and transmitted from the offshore repeater acoustic communication means 32 as a fourth acoustic signal.
In step 15, when it is determined that the fourth acoustic signal is received by the relay acoustic communication unit 41, the acoustic communication relay unit 50 transmits the received fourth acoustic signal from the relay acoustic communication unit 41. At the same time, the communication switching means 60 switches to indirect communication (step 16). This is because it can be determined that indirect communication between the ship 10 and the underwater vehicle 22 is possible. In this case, acoustic communication between the ship 10 and the underwater vehicle 22 is performed by indirect communication via the relay body 21.
If it is determined in step 15 that the fourth acoustic signal is not received by the relay acoustic communication means 41, the acoustic communication relay means 50 ends the relay control as it is (step 17). This is because it can be determined that indirect communication between the ship 10 and the underwater vehicle 22 is also impossible. The relay body 21 may be levitated and collected. Further, in this case, since the fourth acoustic signal does not reach the traveling body acoustic communication means 42, a command to ascend when the fourth acoustic signal is not received for a predetermined time to the underwater traveling body 22 is provided. By giving in advance, the underwater vehicle 22 can be levitated and collected. In the second embodiment, even in this case, there is a possibility that the ship 10 and the underwater vehicle 22 can communicate via the offshore repeater 11. Therefore, an acoustic signal indicating whether or not the ship 10 has received the third acoustic signal converted into radio waves by the offshore repeater 11 is transmitted from the ship acoustic communication means 31 to the relay body 21. Good.
本発明の水中音響通信システムは、海洋や湖沼等における水中探査の際の、水面近くの船舶等と水中ロボットとの音響通信が可能な範囲を拡げることができるため、より広範囲にわたって効率的に水中探査を行うことができる。 The underwater acoustic communication system of the present invention can expand the range in which acoustic communication between a ship near the water surface and the underwater robot can be expanded during underwater exploration in the ocean, lakes and the like. Exploration can be performed.
22 水中航走体
30 浮体音響通信手段
40、42 航走体音響通信手段
50 音響通信中継手段
60 通信切替手段
70 記憶手段
A 水面
X 所定領域
22 underwater vehicle 30 floating body acoustic communication means 40, 42 navigation body acoustic communication means 50 acoustic communication relay means 60 communication switching means 70 storage means A water surface X predetermined area
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016216699A JP7248262B2 (en) | 2016-11-04 | 2016-11-04 | underwater acoustic communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016216699A JP7248262B2 (en) | 2016-11-04 | 2016-11-04 | underwater acoustic communication system |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018070125A true JP2018070125A (en) | 2018-05-10 |
JP2018070125A5 JP2018070125A5 (en) | 2019-12-12 |
JP7248262B2 JP7248262B2 (en) | 2023-03-29 |
Family
ID=62111942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016216699A Active JP7248262B2 (en) | 2016-11-04 | 2016-11-04 | underwater acoustic communication system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7248262B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019041281A (en) * | 2017-08-25 | 2019-03-14 | 国立研究開発法人海洋研究開発機構 | Underwater observation system and sound wave competition elimination method of the same |
JP2019202646A (en) * | 2018-05-23 | 2019-11-28 | Kddi株式会社 | Unmanned diving machine, acoustic communication system, and program |
JP2021138262A (en) * | 2020-03-04 | 2021-09-16 | 株式会社Ihi | Underwater remote controller |
CN113891420A (en) * | 2020-07-02 | 2022-01-04 | 哈尔滨工业大学(威海) | Underwater acoustic cooperative communication relay selection method based on multi-attribute decision |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS491839B1 (en) * | 1969-04-30 | 1974-01-17 | ||
JP2002057631A (en) * | 2000-08-10 | 2002-02-22 | Mitsubishi Heavy Ind Ltd | Submarine communication network system |
JP2004248210A (en) * | 2003-02-17 | 2004-09-02 | Nippon Telegr & Teleph Corp <Ntt> | Radio communication method and radio communication system |
JP2006128795A (en) * | 2004-10-26 | 2006-05-18 | Matsushita Electric Ind Co Ltd | Muticast receiving method |
-
2016
- 2016-11-04 JP JP2016216699A patent/JP7248262B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS491839B1 (en) * | 1969-04-30 | 1974-01-17 | ||
JP2002057631A (en) * | 2000-08-10 | 2002-02-22 | Mitsubishi Heavy Ind Ltd | Submarine communication network system |
JP2004248210A (en) * | 2003-02-17 | 2004-09-02 | Nippon Telegr & Teleph Corp <Ntt> | Radio communication method and radio communication system |
JP2006128795A (en) * | 2004-10-26 | 2006-05-18 | Matsushita Electric Ind Co Ltd | Muticast receiving method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019041281A (en) * | 2017-08-25 | 2019-03-14 | 国立研究開発法人海洋研究開発機構 | Underwater observation system and sound wave competition elimination method of the same |
JP2019202646A (en) * | 2018-05-23 | 2019-11-28 | Kddi株式会社 | Unmanned diving machine, acoustic communication system, and program |
JP7033256B2 (en) | 2018-05-23 | 2022-03-10 | Kddi株式会社 | Unmanned underwater vehicles, acoustic communication systems, and programs |
JP2021138262A (en) * | 2020-03-04 | 2021-09-16 | 株式会社Ihi | Underwater remote controller |
JP7392522B2 (en) | 2020-03-04 | 2023-12-06 | 株式会社Ihi | Underwater remote control device |
CN113891420A (en) * | 2020-07-02 | 2022-01-04 | 哈尔滨工业大学(威海) | Underwater acoustic cooperative communication relay selection method based on multi-attribute decision |
CN113891420B (en) * | 2020-07-02 | 2023-05-05 | 哈尔滨工业大学(威海) | Underwater sound cooperative communication relay selection method based on multi-attribute decision |
Also Published As
Publication number | Publication date |
---|---|
JP7248262B2 (en) | 2023-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3271240B1 (en) | Communications among water environment mobile robots | |
US9118407B2 (en) | Self-propelled buoy for monitoring underwater objects | |
JP6965506B2 (en) | Underwater mobile and underwater communication systems | |
JP7248262B2 (en) | underwater acoustic communication system | |
US11774962B2 (en) | Control method of underwater vehicle, introducing method of underwater vehicle, recovering method of underwater vehicle, control system of underwater vehicle, introducing/recovering equipment of control system of underwater vehicle | |
JP5288467B2 (en) | Unmanned submarine | |
JP2018070125A5 (en) | ||
US10604218B2 (en) | Manoeuvring device and method therof | |
US11511835B2 (en) | Operating method of multiple underwater vehicles and operating system of multiple underwater vehicles | |
KR101866916B1 (en) | Water apparatus for usbl operation | |
JP2016088282A (en) | Sonobuoy | |
JP2006220436A (en) | Apparatus for reducing effect of oscillation of multi-beam echo sounding device or ocean floor research vessel with same | |
JP6287573B2 (en) | Method and apparatus for selecting floating position of underwater vehicle | |
JP7142340B2 (en) | Underwater probe information sharing method and underwater probe information sharing system | |
JP2018029253A (en) | Acoustic communication method and acoustic communication system, and acoustic communication repeater | |
JP6057731B2 (en) | Undersea exploration station | |
JP2019043289A (en) | Cruising controller and cruising control method | |
JP2019177832A5 (en) | ||
JP7003830B2 (en) | Communication status control system | |
JP6991544B2 (en) | Underwater vehicle control method and underwater vehicle control system | |
JP7099883B2 (en) | Communication failure suppression system | |
JP7222292B2 (en) | Cruise control device, underwater vehicle, and cruise control method | |
JP7300151B2 (en) | Acoustic communication method and acoustic communication system by attitude control of floating body | |
JP7135592B2 (en) | Acoustic communication system | |
JP6980255B2 (en) | Sonic competition elimination method for underwater observation systems and underwater observation systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191030 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191030 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200730 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210112 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210928 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210928 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20211005 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20211012 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20211228 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20220105 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220510 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20220726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220926 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20230131 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20230228 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20230228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230309 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7248262 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |