JP7248262B2 - underwater acoustic communication system - Google Patents

underwater acoustic communication system Download PDF

Info

Publication number
JP7248262B2
JP7248262B2 JP2016216699A JP2016216699A JP7248262B2 JP 7248262 B2 JP7248262 B2 JP 7248262B2 JP 2016216699 A JP2016216699 A JP 2016216699A JP 2016216699 A JP2016216699 A JP 2016216699A JP 7248262 B2 JP7248262 B2 JP 7248262B2
Authority
JP
Japan
Prior art keywords
acoustic communication
underwater
acoustic
communication
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016216699A
Other languages
Japanese (ja)
Other versions
JP2018070125A (en
JP2018070125A5 (en
Inventor
雅彦 篠野
剛広 瀬田
章裕 岡本
祥梧 稲葉
忠教 瀧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2016216699A priority Critical patent/JP7248262B2/en
Publication of JP2018070125A publication Critical patent/JP2018070125A/en
Publication of JP2018070125A5 publication Critical patent/JP2018070125A5/ja
Application granted granted Critical
Publication of JP7248262B2 publication Critical patent/JP7248262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水上又は水面近くにある船舶等と水中に投入された水中航走体との間で音響信号を利用して通信を行う水中音響通信システムに関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater acoustic communication system that uses acoustic signals to communicate between a ship or the like on or near the surface of the water and an underwater vehicle thrown into the water.

海洋や湖沼等において、水中に水中航走体を投入して水底の探査等を行う場合、水上又は水面近くに位置する船舶等と水中航走体との間、又は水中に配置された装置と水中航走体との間では、音響信号を利用した水中音響通信システムを用いて通信が行われる。
例えば特許文献1には、母船とケーブル接続された水中ステーションを海中に配設し、音響トランスポンダを探査地点近くの海底に配置し、探査用の無索式無人潜水艇を水中ステーション及び音響トランスポンダと超音波信号を用いて通信させすることで誘導し、必要に応じて無索式無人潜水艇を水中ステーションにドッキングさせて充電又は電池交換と探査データの吸い上げを行う技術が開示されている。
また、特許文献2には、第1トランスポンダ、第1受波器及び第2受波器を備えた水中ステーションを母船から海中に吊り下げ、海底に第2トランスポンダを設置し、探査用の自律型無人航走体に第3トランスポンダ及び第3受波器を設け、水中ステーションは第2トランスポンダの信号を第1受波器で受信することによって定点保持を図り、自律型無人航走体は、探査中は第2トランスポンダの信号を第3受波器で受信することによって自航し、動力が減少すると第1トランスポンダの信号を第3受波器で受信することによって水中ステーションに向かって航走し、水中ステーションは第3トランスポンダの信号を第2受波器で受信することによって自律型無人航走を収容するための姿勢制御を行う技術が開示されている。
また、特許文献3には、水上に位置する母船に送波器を設け、探査用の無人潜水機に受波器を設け、母船から無人潜水機に制御信号を送る水中音響通信において、画素信号のハフ変換を利用して伝送誤りを補正する技術が開示されている。
また、特許文献4には、母船と水中航走体との間における通信を中継する自走中継器を観察領域の水面近傍に配置し、自走中継器と母船との間の通信は電波通信で行い、自走中継器と水中航走体との間の通信は音響通信で行うことによって、水平方向の通信可能距離を向上させる技術が開示されている。
In oceans, lakes, etc., when an underwater vehicle is put into the water to explore the bottom of the water, it is necessary to use equipment placed between a vessel, etc. located on or near the surface of the water and the underwater vehicle, or in the water. Communication with the underwater vehicle is performed using an underwater acoustic communication system using acoustic signals.
For example, in Patent Document 1, an underwater station connected with a cable to a mother ship is arranged in the sea, an acoustic transponder is arranged on the seabed near the survey point, and an unmanned submarine for exploration is used as the underwater station and the acoustic transponder. A technology is disclosed in which ultrasonic signals are used for communication to guide an unmanned underwater vehicle, and if necessary, an unmanned underwater vehicle is docked to an underwater station for charging or battery replacement and exploration data retrieval.
Further, in Patent Document 2, an underwater station equipped with a first transponder, a first wave receiver and a second wave receiver is suspended in the sea from a mother ship, a second transponder is installed on the seabed, and an autonomous type for exploration The unmanned vehicle is equipped with a third transponder and a third wave receiver, and the underwater station attempts to maintain a fixed point by receiving the signal of the second transponder with the first wave receiver. In the middle, self-propelled by receiving the signal of the second transponder with the third receiver, and when the power decreases, it sails towards the underwater station by receiving the signal of the first transponder with the third receiver. , discloses a technique in which an underwater station performs attitude control for accommodating autonomous unmanned navigation by receiving a signal from a third transponder with a second receiver.
Further, Patent Document 3 discloses underwater acoustic communication in which a mother ship located on the water is provided with a transmitter, an unmanned submersible for exploration is provided with a receiver, and a control signal is sent from the mother ship to the unmanned submersible. A technique for correcting transmission errors using the Hough transform of is disclosed.
Further, in Patent Document 4, a self-propelled repeater that relays communication between a mother ship and an underwater vehicle is arranged near the water surface of an observation area, and communication between the self-propelled repeater and the mother ship is radio communication. , and communication between the self-propelled repeater and the underwater vehicle is performed by acoustic communication, thereby improving the communicable distance in the horizontal direction.

特開平3-266794号公報JP-A-3-266794 特開2003-26090号公報Japanese Patent Application Laid-Open No. 2003-26090 特開平5-147583号公報JP-A-5-147583 特開2001-308766号公報Japanese Patent Application Laid-Open No. 2001-308766 特表2001-500941号公報Japanese Patent Publication No. 2001-500941

水上又は水面近くにある船舶等から、船舶等の下方の水中の水中航走体が水中音響通信を行う場合、一般的に音波の水面反射の影響により、船舶等を頂点とした円錐形の体積が、水中音響通信可能領域となる。しかし、水中航走体は、観測作業中等に水中音響通信可能領域から出ることも考えられる。水中航走体が水中音響通信可能領域を超えた場合は、水中音響通信は途絶してしまう。
特許文献1記載の発明は、母船と水中ステーションがケーブルで接続されているため、母船や水中ステーションの移動が制限される。また、音波が水面又は水底に反射することによる音響通信への影響を考慮していない。
特許文献2記載の発明は、水中ステーションが母船から吊り下げられているため、母船や水中ステーションの移動が制限される。また、音波が水面又は水底に反射することによる音響通信への影響を考慮していない。
特許文献3記載の発明は、水中音響通信が水面や海底の反射音の影響を受けやすいことを考慮し、伝送誤りを含んでいても正しい制御信号を推定することで無人潜水機が無制御状態に陥ることを防止しようとするものである。しかし、無人潜水機が母船を頂点とした略円錐状の水中音響通信可能領域を超えた場合には、通信が途絶してしまう。
特許文献4記載の発明は、音響通信は海面や海底からの反射によって音波が劣化するため特に水平方向の通信では音波の伝わらない領域があることを考慮し、自走中継器を介して母船と水中航走体との通信を行うことによって水平方向の通信可能距離を拡げようとするものである。しかし、自走中継器は水面近傍に配置されるため、自走中継器を頂点とした略円錐状の水中音響通信可能領域の外にある水中航走体とは通信できない。
When underwater acoustic communication is performed from a ship on or near the surface of the water to an underwater vehicle below the ship, generally due to the influence of sound waves reflected on the water surface, a conical volume with the ship at the apex is generated. is the area where underwater acoustic communication is possible. However, it is conceivable that the underwater vehicle may leave the area where underwater acoustic communication is possible during observation work. When the underwater vehicle exceeds the underwater acoustic communication possible area, the underwater acoustic communication is interrupted.
In the invention described in Patent Document 1, since the mother ship and the underwater station are connected by a cable, movement of the mother ship and the underwater station is restricted. In addition, no consideration is given to the effect on acoustic communication due to reflection of sound waves on the water surface or the bottom of the water.
In the invention described in Patent Document 2, since the underwater station is suspended from the mothership, movement of the mothership and the underwater station is restricted. In addition, no consideration is given to the effect on acoustic communication due to reflection of sound waves on the water surface or the bottom of the water.
The invention described in Patent Document 3 takes into account that underwater acoustic communication is susceptible to reflected sounds from the surface of the water and the seabed. It is intended to prevent falling into However, when the unmanned submersible exceeds the substantially cone-shaped underwater acoustic communication possible area with the mother ship at the apex, the communication is interrupted.
The invention described in Patent Document 4 considers that there are areas where sound waves do not propagate, especially in horizontal communication, because acoustic communication deteriorates due to reflection from the sea surface and seabed. This is intended to extend the horizontal communicable distance by communicating with an underwater vehicle. However, since the self-propelled repeater is placed near the surface of the water, it cannot communicate with the underwater vehicle outside the substantially conical underwater acoustic communication area with the self-propelled repeater at the apex.

そこで本発明は、水面近傍にある船舶等と水中にある水中航走体との水中音響通信可能範囲を拡大する水中音響通信システムを提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an underwater acoustic communication system that expands the underwater acoustic communication range between a ship or the like near the surface of the water and an underwater vehicle in the water.

請求項1記載に対応した水中音響通信システムにおいては、水中音速が1490m/s以下の水中音速が遅い層と水中音速が1490m/sを超える水中音速が速い層とを有する海域で用いられ、水面の近傍に配置した水面を移動可能な浮体音響通信手段と、水の中を航走する水中航走体に設けた航走体音響通信手段との間で音響信号を利用して通信を行う水中音響通信システムにおいて、水面から下方であって浮体音響通信手段が発信する音響信号の到達し易い略円錐状の範囲の所定領域であって、かつ所定領域を水温、塩分、及び水深により影響を受ける水中音速に応じて、水中音速が速い層と水中音速が遅い層とに区分したうちの水中音速が1490m/s以下の水中音速が遅い層に配置した水の中を移動可能な音響通信中継手段を備え、浮体音響通信手段の水面における移動に追随して音響通信中継手段を水中音速が遅い層の中で所定領域から外れないように移動させ、かつ水中航走体が所定領域を超えて航走するときに、音響通信中継手段を所定領域のうち水中音速が遅い層ので、音響通信中継手段と所定領域を超えて航走する水中航走体の航走体音響通信手段との通信状況良好な位置に移動させ、音響通信中継手段を介して浮体音響通信手段と所定領域を超えて航走する水中航走体の航走体音響通信手段が音響通信を行うことを特徴とする。
請求項1に記載の本発明によれば、浮体音響通信手段と航走体音響通信手段は、音響通信中継手段を介した音響通信を行うことができる。水中に配置された音響通信中継手段からの音波は水面反射の影響を受けにくいため所定領域外にある航走体音響通信手段にも届きやすい。すなわち、浮体音響通信手段と航走体音響通信手段が音響通信可能な範囲が拡大するため、水中航走体の活動範囲が拡大する。また、音響通信中継手段が移動可能であるため、浮体音響通信手段を追尾させることで、浮体音響通信手段が移動しても音響通信中継手段が所定領域から外れることを防止できる。また、略円錐状の範囲の所定領域内で最大限、水中航走体との音響通信が可能な位置にまで移動が可能となるため、水中航走体の観測範囲等を拡げることができる。また、音響通信中継手段を水中音速が1490m/s以下の水中音速が遅い層に配置し、水中航走体が所定領域を超えて航走するときに、水中音速が遅い層の中で、所定領域を超えて航走する水中航走体の航走体音響通信手段との通信状況が良好な位置に動作させることで、浮体音響通信手段と航走体音響通信手段との音響通信中継手段を介した通信の安定性が一層高まり、通信可能範囲がさらに拡大する。
なお、「水面の近傍に配置した浮体音響通信手段」には、水面に浮かぶブイ等に設けた浮体音響通信手段の他、全部又は大部分が水中に没していたとしても水面近傍に位置する浮体音響通信手段を含む。また、船舶等の浮体に搭載された状態も含むものとする
An underwater acoustic communication system corresponding to claim 1 is used in a sea area having a layer with a low underwater sound velocity of 1490 m/s or less and a high underwater sound velocity layer with an underwater sound velocity of more than 1490 m/s. Underwater communication using acoustic signals between a floating body acoustic communication means that can move on the water surface placed near the In an acoustic communication system, a predetermined area in a substantially conical range below the surface of the water where acoustic signals emitted by the floating body acoustic communication means can easily reach, and the predetermined area is affected by water temperature, salinity, and water depth. Acoustic communication relay means capable of moving in water arranged in a layer with a low underwater sound velocity of 1490 m/s or less among layers classified into a layer with a high underwater sound velocity and a layer with a low underwater sound velocity according to the underwater sound velocity. and moving the acoustic communication relay means so as not to deviate from the predetermined area in the layer where the underwater sound speed is slow following the movement of the floating body acoustic communication means on the water surface, and the underwater vehicle navigates beyond the predetermined area. communication between the acoustic communication relay means and the vehicle acoustic communication means of the underwater vehicle traveling beyond the predetermined area in a layer having a low underwater sound speed in the predetermined area when the underwater vehicle travels. The underwater vehicle is moved to a position where the situation is favorable , and the floating body acoustic communication means and the vehicle acoustic communication means of the underwater vehicle sailing beyond a predetermined area perform acoustic communication via the acoustic communication relay means. .
According to the first aspect of the present invention, the floating body acoustic communication means and the watercraft acoustic communication means can perform acoustic communication via the acoustic communication relay means. Since the sound waves from the acoustic communication relay means arranged in the water are not easily affected by the water surface reflection, they easily reach the vehicle acoustic communication means outside the predetermined area. That is, since the acoustic communication range between the floating body acoustic communication means and the vehicle acoustic communication means is expanded, the activity range of the underwater vehicle is expanded. Further, since the acoustic communication relay means is movable, it is possible to prevent the acoustic communication relay means from deviating from the predetermined area even if the floating acoustic communication means moves by tracking the floating acoustic communication means. Further, since it is possible to move up to a position where acoustic communication with the underwater vehicle is possible within the predetermined area of the substantially conical range, the observation range of the underwater vehicle can be expanded. Further, the acoustic communication relay means is arranged in a layer with a slow underwater sound speed of 1490 m/s or less , and when the underwater vehicle sails beyond a predetermined area, a predetermined Acoustic communication relay means between the floating body acoustic communication means and the vehicle acoustic communication means by operating the underwater vehicle traveling beyond the area at a position where the communication condition with the vehicle acoustic communication means is good. The stability of communication via is further enhanced, and the communication range is further expanded.
"Floating body acoustic communication means placed near the water surface" includes floating body acoustic communication means provided on buoys floating on the water surface, Includes floating acoustic communication means. It also includes the state of being mounted on a floating body such as a ship .

求項記載の本発明は、音響通信中継手段は、横方向に音響信号を送信して航走体音響通信手段と音響通信を行うことを特徴とする。
請求項に記載の本発明によれば、特に水平方向に遠く離れた航走体音響通信手段とも安定して通信を行うことができる。
The present invention according to claim 2 is characterized in that the acoustic communication relay means transmits acoustic signals laterally to perform acoustic communication with the vehicle acoustic communication means.
According to the second aspect of the present invention, stable communication can be performed even with a vehicle acoustic communication means that is particularly distant in the horizontal direction.

請求項記載の本発明は、所定領域に水中航走体が存在する場合は、浮体音響通信手段と航走体音響通信手段で直接通信を行うことを特徴とする。
請求項に記載の本発明によれば、音響通信中継手段のエネルギーの消耗や負荷を軽減できると共に、浮体音響通信手段と航走体音響通信手段との通信速度を速くできる。
なお、「直接通信」とは、音響通信中継手段を介さない通信をいう。
According to the third aspect of the present invention, when an underwater vehicle exists in a predetermined area, direct communication is performed between the floating body acoustic communication means and the vehicle acoustic communication means.
According to the third aspect of the present invention, the energy consumption and load of the acoustic communication relay means can be reduced, and the communication speed between the floating body acoustic communication means and the ship acoustic communication means can be increased.
Note that "direct communication" refers to communication that does not involve an acoustic communication relay means.

請求項記載の本発明は、浮体音響通信手段と航走体音響通信手段の直接通信と、音響通信中継手段を介した間接通信を切り替える通信切替手段を備えたことを特徴とする。
請求項に記載の本発明によれば、浮体音響通信手段と航走体音響通信手段との間の通信状況に応じて、また必要に応じて直接通信と間接通信を切り替えることができる。
The present invention according to claim 4 is characterized by comprising communication switching means for switching between direct communication between the floating body acoustic communication means and the ship acoustic communication means and indirect communication via the acoustic communication relay means.
According to the fourth aspect of the present invention, direct communication and indirect communication can be switched according to the communication status between the floating body acoustic communication means and the ship acoustic communication means, or as required.

請求項記載の本発明は、音響通信に供するデータとして位置データを含むことを特徴とする。
請求項に記載の本発明によれば、位置データを含めることで、浮体音響通信手段、音響通信中継手段又は水中航走体の位置の補正や水中航走体が取得したデータとの対応付け等を行うことができる。
The present invention according to claim 5 is characterized in that the data provided for acoustic communication includes position data.
According to the fifth aspect of the present invention, by including the position data, correction of the position of the floating body acoustic communication means, the acoustic communication relay means, or the underwater vehicle, and correspondence with the data acquired by the underwater vehicle. etc.

請求項記載の本発明は、位置データは、GNSS衛星からのGNSS信号を受信して浮体音響通信手段の自己位置を把握したデータであることを特徴とする。
請求項に記載の本発明によれば、位置データを、GNSS信号を受信して浮体音響通信手段の自己位置を把握したデータとすることができる。
The present invention according to claim 6 is characterized in that the position data is data obtained by receiving GNSS signals from GNSS satellites and grasping the self-position of the floating body acoustic communication means.
According to the sixth aspect of the present invention, the position data can be data obtained by receiving GNSS signals and grasping the self-position of the floating body acoustic communication means.

請求項記載の本発明は、浮体音響通信手段を複数有し、複数の浮体音響通信手段の各々がGNSS衛星からのGNSS信号を受信し各々の自己位置を把握することを特徴とする。
請求項に記載の本発明によれば、位置データを、複数の浮体音響通信手段の各々がGNSS信号を受信して自己位置を把握したデータとすることができる。
According to a seventh aspect of the present invention, a plurality of floating body acoustic communication means are provided, and each of the plurality of floating body acoustic communication means receives GNSS signals from GNSS satellites and grasps its own position.
According to the seventh aspect of the present invention, the position data can be data obtained by each of the plurality of floating body acoustic communication means receiving GNSS signals and grasping its own position.

請求項記載の本発明は、水中航走体及び/又は音響通信中継手段に音響通信に供するデータを記憶する記憶手段を有したことを特徴とする。
請求項に記載の本発明によれば、必要に応じてデータを再送したり、水中航走体又は音響通信中継手段を水中から回収した後にデータを検証したりすることができる。
According to an eighth aspect of the present invention, the underwater vehicle and/or the acoustic communication relay means has storage means for storing data to be used for acoustic communication.
According to the eighth aspect of the present invention, it is possible to retransmit the data as necessary, and to verify the data after recovering the underwater vehicle or the acoustic communication relay means from the water.

請求項記載の本発明は、水中航走体を複数台有し、音響通信中継手段は複数台の水中航走体の音響信号を中継することを特徴とする。
請求項に記載の本発明によれば、複数台の水中航走体を用いることで、観測作業等の効率を向上させることができる。
According to a ninth aspect of the present invention, a plurality of underwater vehicles are provided, and the acoustic communication relay means relays acoustic signals from the plurality of underwater vehicles.
According to the ninth aspect of the present invention, it is possible to improve the efficiency of observation work and the like by using a plurality of underwater vehicles.

請求項10記載の本発明は、複数台の水中航走体がそれぞれ音響通信中継手段を搭載し、所定領域に存在する水中航走体が音響通信の中継を行うことを特徴とする。
請求項10に記載の本発明によれば、水中航走体自身が音響通信中継機能を兼ねることができる。また、複数の音響通信中継手段を設けることで、1台が故障しても他の水中航走体に搭載された音響通信中継手段を用いて間接通信が行える。
According to the tenth aspect of the present invention, a plurality of underwater vehicles are each equipped with an acoustic communication relay means, and the underwater vehicles existing in a predetermined area relay the acoustic communication.
According to the tenth aspect of the present invention, the underwater vehicle itself can also serve as an acoustic communication relay function. In addition, by providing a plurality of acoustic communication relay means, indirect communication can be performed using the acoustic communication relay means mounted on other underwater vehicles even if one of them fails.

請求項11記載の本発明は、音響通信中継手段の移動速度は水中航走体の航走速度よりも遅いものであることを特徴とする。
請求項11に記載の本発明によれば、音響通信中継手段の移動速度を水中航走体の航走速度よりも遅くすることで、音響通信中継手段の消費エネルギーを節約して間接通信に備えることができる。
An eleventh aspect of the present invention is characterized in that the moving speed of the acoustic communication relay means is slower than the running speed of the underwater vehicle.
According to the eleventh aspect of the present invention, by making the moving speed of the acoustic communication relay means slower than the cruising speed of the underwater vehicle, energy consumption of the acoustic communication relay means is saved to prepare for indirect communication. be able to.

請求項12記載の本発明は、航走体音響通信手段と音響通信中継手段との間の音響通信ができなくなった場合に、水中航走体及び/又は音響通信中継手段を水面に浮上させることを特徴とする。
請求項12に記載の本発明によれば、早めに浮上させることで、水中航走体及び/又は音響通信中継手段を見失う前に回収することができる。
According to a twelfth aspect of the present invention, when acoustic communication between the vehicle acoustic communication means and the acoustic communication relay means has become impossible, the underwater vehicle and/or the acoustic communication relay means are allowed to rise to the surface of the water. characterized by
According to the twelfth aspect of the present invention, by surfacing early, the underwater vehicle and/or the acoustic communication relay means can be recovered before they are lost.

請求項13記載の本発明は、水中航走体及び/又は音響通信中継手段が水面に浮上した後は、浮体音響通信手段と水中航走体及び/又は音響通信中継手段との通信を空間を利用した無線通信に切り替えることを特徴とする。
請求項13に記載の本発明によれば、浮体音響通信手段と浮上した水中航走体及び/又は音響通信中継手段との通信をさらに、情報量を増し水平遠方まで安定して行うことができる。
According to the thirteenth aspect of the present invention, after the underwater vehicle and/or the acoustic communication relay means have surfaced to the surface of the water, the communication between the floating body acoustic communication means and the underwater vehicle and/or the acoustic communication relay means is performed in space. It is characterized by switching to the wireless communication used.
According to the thirteenth aspect of the present invention, the communication between the floating body acoustic communication means and the surfaced underwater vehicle and/or the acoustic communication relay means can be further increased in the amount of information and can be stably performed over a long horizontal distance. .

本発明の水中音響通信システムによれば、浮体音響通信手段と航走体音響通信手段は、音響通信中継手段を介した音響通信を行うことができる。水中に配置された音響通信中継手段からの音波は水面反射の影響を受けにくいため所定領域外にある航走体音響通信手段にも届きやすい。すなわち、浮体音響通信手段と航走体音響通信手段が音響通信可能な範囲が拡大するため、水中航走体の活動範囲が拡大する。また、音響通信中継手段が移動可能であるため、浮体音響通信手段を追尾させることで、浮体音響通信手段が移動しても音響通信中継手段が所定領域から外れることを防止できる。また、略円錐状の範囲の所定領域内で最大限、水中航走体との音響通信が可能な位置にまで移動が可能となるため、水中航走体の観測範囲等を拡げることができる。また、音響通信中継手段を水中音速が1490m/s以下の水中音速が遅い層に配置し、水中航走体が所定領域を超えて航走するときに、水中音速が遅い層の中で、所定領域を超えて航走する水中航走体の航走体音響通信手段との通信状況が良好な位置に動作させることで、浮体音響通信手段と航走体音響通信手段との音響通信中継手段を介した通信の安定性が一層高まり、通信可能範囲がさらに拡大する According to the underwater acoustic communication system of the present invention, the floating body acoustic communication means and the ship acoustic communication means can perform acoustic communication via the acoustic communication relay means. Since the sound waves from the acoustic communication relay means arranged in the water are not easily affected by the water surface reflection, they easily reach the vehicle acoustic communication means outside the predetermined area. That is, since the acoustic communication range between the floating body acoustic communication means and the vehicle acoustic communication means is expanded, the activity range of the underwater vehicle is expanded. Further, since the acoustic communication relay means is movable, it is possible to prevent the acoustic communication relay means from deviating from the predetermined area even if the floating acoustic communication means moves by tracking the floating acoustic communication means. Further, since it is possible to move up to a position where acoustic communication with the underwater vehicle is possible within the predetermined area of the substantially conical range, the observation range of the underwater vehicle can be expanded. Further, the acoustic communication relay means is arranged in a layer with a slow underwater sound speed of 1490 m/s or less , and when the underwater vehicle sails beyond a predetermined area, a predetermined Acoustic communication relay means between the floating body acoustic communication means and the vehicle acoustic communication means by operating the underwater vehicle traveling beyond the area at a position where the communication condition with the vehicle acoustic communication means is good. The stability of communication via is further enhanced, and the communication range is further expanded .

た、音響通信中継手段は、横方向に音響信号を送信して航走体音響通信手段と音響通信を行う場合には、特に水平方向に遠く離れた航走体音響通信手段とも安定して通信を行うことができる。 In addition , when the acoustic communication relay means transmits acoustic signals in the lateral direction to perform acoustic communication with the vehicle acoustic communication means, the acoustic communication relay means is stable especially with the vehicle acoustic communication means distant in the horizontal direction. can communicate.

また、所定領域に水中航走体が存在する場合は、浮体音響通信手段と航走体音響通信手段で直接通信を行う場合には、音響通信中継手段のエネルギーの消耗や負荷を軽減できると共に、浮体音響通信手段と航走体音響通信手段との通信速度を速くできる。 Further, when an underwater vehicle exists in a predetermined area, direct communication between the floating body acoustic communication means and the vehicle acoustic communication means can reduce energy consumption and load on the acoustic communication relay means, The communication speed between the floating body acoustic communication means and the ship acoustic communication means can be increased.

また、浮体音響通信手段と航走体音響通信手段の直接通信と、音響通信中継手段を介した間接通信を切り替える通信切替手段を備えた場合には、浮体音響通信手段と航走体音響通信手段との間の通信状況に応じて、また必要に応じて直接通信と間接通信を切り替えることができる。 Further, in the case of providing communication switching means for switching between direct communication between the floating body acoustic communication means and the cruising body acoustic communication means and indirect communication via the acoustic communication relay means, the floating body acoustic communication means and the cruising body acoustic communication means Direct communication and indirect communication can be switched according to the communication status between and as necessary.

また、音響通信に供するデータとして位置データを含む場合には、浮体音響通信手段、音響通信中継手段又は水中航走体の位置の補正や水中航走体が取得したデータとの対応付け等を行うことができる。 In addition, when position data is included as data for acoustic communication, correct the position of the floating body acoustic communication means, acoustic communication relay means, or underwater vehicle, and associate it with the data acquired by the underwater vehicle. be able to.

また、位置データは、GNSS衛星からのGNSS信号を受信して浮体音響通信手段の自己位置を把握したデータである場合には、位置データを、GNSS信号を受信して浮体音響通信手段の自己位置を把握したデータとすることができる。 Further, if the position data is data obtained by receiving GNSS signals from GNSS satellites and ascertaining the self-position of the floating body acoustic communication means, the position data is used to determine the self-position of the floating body acoustic communication means by receiving the GNSS signals. can be used as data that comprehends

また、浮体音響通信手段を複数有し、複数の浮体音響通信手段の各々がGNSS衛星からのGNSS信号を受信し各々の自己位置を把握する場合には、位置データを、複数の浮体音響通信手段の各々がGNSS信号を受信して自己位置を把握したデータとすることができる。 Further, when a plurality of floating body acoustic communication means are provided and each of the plurality of floating body acoustic communication means receives GNSS signals from GNSS satellites and grasps its own position, the position data is transmitted to the plurality of floating body acoustic communication means can be data obtained by receiving GNSS signals and grasping their own positions.

また、水中航走体及び/又は音響通信中継手段に音響通信に供するデータを記憶する記憶手段を有した場合には、必要に応じてデータを再送したり、水中航走体又は音響通信中継手段を水中から回収した後にデータを検証したりすることができる。 In addition, if the underwater vehicle and/or the acoustic communication relay means have storage means for storing data to be used for acoustic communication, the data can be resent as necessary, or the underwater vehicle or the acoustic communication relay means can be used. data can be verified after being recovered from the water.

また、水中航走体を複数台有し、音響通信中継手段は複数台の水中航走体の音響信号を中継する場合には、複数台の水中航走体を用いることで、観測作業等の効率を向上させることができる。 In addition, when a plurality of underwater vehicles are provided and the acoustic communication relay means relays the acoustic signals of the plurality of underwater vehicles, observation work, etc. can be facilitated by using a plurality of underwater vehicles. Efficiency can be improved.

また、複数台の水中航走体がそれぞれ音響通信中継手段を搭載し、所定領域に存在する水中航走体が音響通信の中継を行う場合には、水中航走体自身が音響通信中継機能を兼ねることができる。また、複数の音響通信中継手段を設けることで、1台が故障しても他の水中航走体に搭載された音響通信中継手段を用いて間接通信が行える。 In addition, when a plurality of underwater vehicles are each equipped with an acoustic communication relay means and an underwater vehicle existing in a predetermined area relays acoustic communication, the underwater vehicle itself carries out the acoustic communication relay function. can serve as In addition, by providing a plurality of acoustic communication relay means, indirect communication can be performed using the acoustic communication relay means mounted on other underwater vehicles even if one of them fails.

また、音響通信中継手段の移動速度は水中航走体の航走速度よりも遅いものである場合には、音響通信中継手段の移動速度を水中航走体の航走速度よりも遅くすることで、音響通信中継手段の消費エネルギーを節約して間接通信に備えることができる。 If the moving speed of the acoustic communication relay means is slower than the underwater vehicle, the moving speed of the acoustic communication relay means can be made slower than the underwater vehicle. , the energy consumption of the acoustic communication relay means can be saved to prepare for indirect communication.

また、航走体音響通信手段と音響通信中継手段との間の音響通信ができなくなった場合に、水中航走体及び/又は音響通信中継手段を水面に浮上させる場合には、早めに浮上させることで、水中航走体及び/又は音響通信中継手段を見失う前に回収することができる。 In addition, when the acoustic communication between the vehicle acoustic communication means and the acoustic communication relay means becomes impossible, the underwater vehicle and/or the acoustic communication relay means should rise to the surface of the water as soon as possible. By doing so, the underwater vehicle and/or the acoustic communication relay means can be recovered before they are lost.

また、水中航走体及び/又は音響通信中継手段が水面に浮上した後は、浮体音響通信手段と水中航走体及び/又は音響通信中継手段との通信を空間を利用した無線通信に切り替える場合には、浮体音響通信手段と浮上した水中航走体及び/又は音響通信中継手段との通信をさらに、情報量を増し水平遠方まで安定して行うことができる。 In addition, after the underwater vehicle and/or the acoustic communication relay means rise to the surface of the water, when switching the communication between the floating body acoustic communication means and the underwater vehicle and/or the acoustic communication relay means to wireless communication using space. In addition, communication between the floating body acoustic communication means and the surfaced underwater vehicle and/or the acoustic communication relay means can be further increased in the amount of information and can be carried out stably over a long horizontal distance.

本発明の第1の実施形態による水中音響通信システムの概略構成図1 is a schematic configuration diagram of an underwater acoustic communication system according to a first embodiment of the present invention; FIG. 深度と水温の関係を示す図Diagram showing the relationship between depth and water temperature 深度と塩分の関係を示す図Diagram showing the relationship between depth and salinity 音響通信中継手段の中継制御を示すフロー図Flow chart showing relay control of acoustic communication relay means 音響通信中継手段の中継制御を示すフロー図Flow diagram showing relay control of acoustic communication relay means 本発明の第2の実施形態による水中音響通信システムの概略構成図Schematic configuration diagram of an underwater acoustic communication system according to a second embodiment of the present invention

以下に、本発明の実施形態による水中音響通信システムについて説明する。 Below, an underwater acoustic communication system according to an embodiment of the present invention will be described.

図1は、本発明の第1の実施形態による水中音響通信システムの概略構成図である。
図2は、深度(水深)と水温の関係を示す図であり、縦軸は深度[m]、横軸は水温[℃]である。
図3は、深度(水深)と塩分の関係を示す図であり、縦軸は深度[m]、横軸は塩分[permil]である。
FIG. 1 is a schematic configuration diagram of an underwater acoustic communication system according to a first embodiment of the present invention.
FIG. 2 is a diagram showing the relationship between depth (water depth) and water temperature, with the vertical axis representing depth [m] and the horizontal axis representing water temperature [°C].
FIG. 3 is a diagram showing the relationship between depth (water depth) and salinity, with the vertical axis representing depth [m] and the horizontal axis representing salinity [permil].

図1では、海洋や湖沼等において、水面A近傍に浮体音響通信手段30を配置し、複数の水中ロボット20を投入し、水底Bの鉱物資源やエネルギー資源等の探査を行う状態を示している。
水面Aに浮かんだ船舶10は、浮体音響通信手段30を備え、電波の届かない水中に存在する水中ロボット20に対して音響信号を利用して通信を行い、水中ロボット20の監視及び制御を行う。
水中ロボット20は、浮体音響通信手段30との接続にケーブルを用いずに水中を自律的に航走する無索自律無人型の航走体(AUV:Autonomous Underwater Vehicle)であり、水中において水底B等を観測する。船舶10と水中ロボット20との通信をケーブル通信ではなく音響通信とすることで、船舶10にケーブル用の設備を設ける必要が無く、また、ケーブルが絡んだりケーブルによって船舶10の移動が制限されたりすることがない。
水中音響通信システムは、浮体音響通信手段30と、水中ロボット20に設けた航走体音響通信手段40との間で音響信号を利用して通信を行う。
FIG. 1 shows a state in which a floating body acoustic communication means 30 is arranged near a water surface A in an ocean, a lake, etc., and a plurality of underwater robots 20 are put in to search for mineral resources, energy resources, etc. on the bottom of the water B. .
A ship 10 floating on a water surface A is equipped with a floating body acoustic communication means 30, communicates with an underwater robot 20 existing underwater where radio waves do not reach, using acoustic signals, and monitors and controls the underwater robot 20. .
The underwater robot 20 is an unmanned autonomous underwater vehicle (AUV: Autonomous Underwater Vehicle) that autonomously navigates underwater without using a cable for connection with the floating body acoustic communication means 30. etc. are observed. By using acoustic communication instead of cable communication for communication between the ship 10 and the underwater robot 20, there is no need to provide equipment for cables on the ship 10, and the movement of the ship 10 is not restricted by the cables getting tangled. I have nothing to do.
The underwater acoustic communication system uses acoustic signals to communicate between the floating body acoustic communication means 30 and the vehicle acoustic communication means 40 provided in the underwater robot 20 .

浮体音響通信手段30は、音波を送信する送波器と音波を受信する受波器とを有し、水面Aに浮かぶ船舶(調査母船)10に設けられている。
船舶10は、GNSS(全地球航法衛星システム)衛星1からのGNSS信号を受信することにより自船の位置を把握できる。
船舶10は、探索に関する指令等を浮体音響通信手段30から水中ロボット20に送信し、水中ロボット20から送信された観測データ等を浮体音響通信手段30で受信する。
The floating body acoustic communication means 30 has a wave transmitter that transmits sound waves and a wave receiver that receives sound waves, and is provided in a ship (research mother ship) 10 floating on the water surface A.
A ship 10 can grasp its own position by receiving GNSS signals from a GNSS (Global Navigation Satellite System) satellite 1 .
The ship 10 transmits a search command or the like from the floating body acoustic communication means 30 to the underwater robot 20 , and the floating body acoustic communication means 30 receives observation data or the like transmitted from the underwater robot 20 .

水中ロボット20は、単数の中継体21と、複数の水中航走体22とからなる。中継体21には、音響通信中継手段50、通信切替手段60及び記憶手段70が搭載されている。水底B等の観測は主に水中航走体22が担うが、中継体21も水底B等の観測を行うことができる。
航走体音響通信手段40は、音波を送信する送波器と音波を受信する受波器とを有する。中継体21には、航走体音響通信手段40として中継体音響通信手段41が設けられ、水中航走体22には、航走体音響通信手段40として航走体音響通信手段42が設けられている。
中継体21、水中航走体22は、観測により得られた観測データ等を中継体音響通信手段41、航走体音響通信手段42から船舶10に送信し、船舶10から送信された指令等を中継体音響通信手段41、航走体音響通信手段42で受信する。
中継体21に搭載された音響通信中継手段50は、船舶10と水中航走体22との音響通信を中継する。これにより、船舶10と水中航走体22とは、中継体21の音響通信中継手段50を介した間接通信を行うことができる。
本実施形態のように、水中航走体22を複数台有し、中継体21が複数台の水中航走体22と船舶11との間で送受信される音響信号を中継することで、効率よく水中探査を行うことができる。
The underwater robot 20 consists of a single relay 21 and a plurality of underwater vehicles 22 . The relay 21 is equipped with acoustic communication relay means 50 , communication switching means 60 and storage means 70 . Observation of the water bottom B and the like is mainly performed by the underwater vehicle 22, but the intermediary body 21 can also observe the water bottom B and the like.
The vehicle acoustic communication means 40 has a transmitter for transmitting sound waves and a receiver for receiving sound waves. The relay 21 is provided with a relay acoustic communication means 41 as the cruise body acoustic communication means 40, and the underwater cruise body 22 is provided with a cruise body acoustic communication means 42 as the cruise body acoustic communication means 40. ing.
The relay 21 and the underwater vehicle 22 transmit observation data and the like obtained by observation from the relay acoustic communication means 41 and the underwater vehicle acoustic communication means 42 to the vessel 10, and the commands and the like transmitted from the vessel 10 are transmitted. It is received by the relay body acoustic communication means 41 and the vehicle acoustic communication means 42 .
Acoustic communication relay means 50 mounted on relay 21 relays acoustic communication between ship 10 and underwater vehicle 22 . As a result, the ship 10 and the underwater vehicle 22 can perform indirect communication via the acoustic communication relay means 50 of the relay 21 .
As in the present embodiment, a plurality of underwater vehicles 22 are provided, and the relay 21 relays acoustic signals transmitted and received between the plurality of underwater vehicles 22 and the ship 11, thereby efficiently Underwater exploration can be carried out.

なお、本実施形態においては、所定領域Xに水中航走体22が存在する場合は、船舶10と所定領域Xに存在する水中航走体22とは、中継体21の音響通信中継手段50を介さない直接通信を行う。これにより、中継体22の音響通信中継手段50のエネルギーの消耗や負荷を軽減すると共に、間接通信のときよりも船舶10と水中航走体22との通信速度が向上する。
図1において、実線矢印は、水中の音響通信を示す。
中継体21は、直接通信と間接通信を切り替える通信切替手段60を備えており、船舶10と水中航走体22との間の通信状況に応じて、または必要に応じて直接通信と間接通信を切り替えることができる。なお、常に船舶10と水中航走体22が間接通信を行う場合は、通信切替手段60を省略できる。
In this embodiment, when the underwater vehicle 22 exists in the predetermined area X, the ship 10 and the underwater vehicle 22 existing in the predetermined area X use the acoustic communication relay means 50 of the relay 21. Direct communication without intermediary. This reduces energy consumption and load on the acoustic communication relay means 50 of the relay 22, and improves the communication speed between the ship 10 and the underwater vehicle 22 compared to indirect communication.
In FIG. 1, solid arrows indicate underwater acoustic communication.
The intermediary 21 includes communication switching means 60 for switching between direct communication and indirect communication, and switches between direct communication and indirect communication according to the communication status between the ship 10 and the underwater vehicle 22 or as necessary. You can switch. In addition, when the ship 10 and the underwater vehicle 22 always perform indirect communication, the communication switching means 60 can be omitted.

船舶10と水中ロボット20との間で音響通信を行う場合、下方に送信した音波が水面Aで反射して特に水平方向及びそれに近い俯角方向への音響通信が困難となる。船舶10が発信する音響信号が到達しやすい領域は、図1に示すように、浮体音響通信手段30を頂点とした略円錐状の範囲である所定領域Xとなる。
中継体21は、水面Aから下方であって、船舶10からの音響信号が到達しやすい所定領域Xに配置され、所定領域Xを超えて航走しないように制御されている。中継体21を所定領域X内に留めることで、船舶10と中継体21との音響通信が途絶することを防止できる。
また、水中に配置された中継体21から発信される音響信号は、水面反射の影響が軽減されるため、船舶10から発信された音響信号よりも水平方向の到達範囲が拡がる。そのため、中継体21は、水中航走体22が所定領域Xの外にあるときにも、水中航走体22との音響通信を行いやすい。
したがって、船舶10と水中航走体22との音響通信は、少なくとも水中航走体22が所定領域Xを超えて航走している場合には、中継体21に搭載された音響通信中継手段50を介した間接通信を行うことで、通信途絶を回避できる。これにより、船舶10と水中航走体22との音響通信が可能な範囲が拡がり、ひいては水中航走体22が探索できる範囲が拡大する。
なお、中継体21の位置が深くなればなるほど、中継体音響通信手段41から発信される音響信号に対する水面反射の影響は小さくなるが、中継体21が水底Bに近づきすぎると水底Bで反射した音波(水底反射)の影響が大きくなるため、水面Aからの深度だけでなく水底Bからの高度も考慮することが好ましい。この場合、水底Bの形状は水面Aに比較して複雑であり水底反射も複雑となるため、水底Bの形状によって高度を考慮することがさらに好ましい。中継体21から発信される音響信号の水平方向の到達範囲は、中継体21の位置する深度及び高度と水面A及び水底Bに向かう音波の入射・反射角度等によって推定できる。
When acoustic communication is performed between the ship 10 and the underwater robot 20, sound waves transmitted downward are reflected by the water surface A, making it difficult to perform acoustic communication particularly in the horizontal direction and the depression angle direction close thereto. As shown in FIG. 1, the area where the acoustic signal emitted by the ship 10 can easily reach is a predetermined area X, which is a substantially conical range with the floating body acoustic communication means 30 at the apex.
The intermediary body 21 is located below the water surface A in a predetermined area X where acoustic signals from the ship 10 can easily reach, and is controlled so as not to exceed the predetermined area X. By keeping the relay 21 within the predetermined area X, it is possible to prevent interruption of acoustic communication between the ship 10 and the relay 21 .
In addition, the acoustic signal transmitted from the relay 21 placed in the water has a wider horizontal range than the acoustic signal transmitted from the ship 10 because the influence of reflection on the water surface is reduced. Therefore, even when the underwater vehicle 22 is outside the predetermined area X, the relay 21 can easily perform acoustic communication with the underwater vehicle 22 .
Therefore, acoustic communication between the ship 10 and the underwater vehicle 22 can be achieved by the acoustic communication relay means 50 mounted on the relay 21, at least when the underwater vehicle 22 is traveling beyond the predetermined area X. Communication disruption can be avoided by performing indirect communication via As a result, the range in which acoustic communication between the ship 10 and the underwater vehicle 22 is possible is expanded, and the range in which the underwater vehicle 22 can search is expanded.
As the position of the relay 21 becomes deeper, the influence of the water surface reflection on the acoustic signal transmitted from the relay acoustic communication means 41 becomes smaller. It is preferable to consider not only the depth from the water surface A but also the altitude from the water bottom B because the influence of sound waves (bottom reflection) increases. In this case, the shape of the water bottom B is more complicated than that of the water surface A, and the water bottom reflection is also complicated. The horizontal arrival range of the acoustic signal transmitted from the repeater 21 can be estimated from the depth and altitude at which the repeater 21 is located, the incidence/reflection angles of the sound waves toward the water surface A and the water bottom B, and the like.

AUVである中継体21は、垂直スラスタや水平スラスタにより船舶10の移動に追随して移動したり、水流等がある場所においても位置を保持したりすることができる。したがって、本実施形態のように、音響通信中継手段50を中継体21に搭載すること、すなわち音響通信中継手段50を移動可能に構成することで、音響通信中継手段50を所定領域Xに留めることができる。また、中継体21が所定領域X内で最大限、水中航走体22との音響通信が可能な位置にまで移動することが可能となるため、水中航走体22の観測範囲等を拡げることができる。
なお、中継体21は所定領域Xに留まるため、水中航走体22よりも移動範囲が狭い。そのため中継体21の航走速度は、水中航走体22の航走速度より遅くても構わない。中継体21の航走速度を抑えることで、中継体21の消費エネルギーを節約して間接通信に備えることができる。
The relay 21, which is an AUV, can move along with the movement of the ship 10 by means of a vertical thruster or a horizontal thruster, and can hold its position even in a place where there is a water current or the like. Therefore, by mounting the acoustic communication relay means 50 on the relay body 21 as in the present embodiment, that is, by configuring the acoustic communication relay means 50 to be movable, the acoustic communication relay means 50 can be kept within the predetermined area X. can be done. In addition, since the relay 21 can move to a position where acoustic communication with the underwater vehicle 22 is possible as much as possible within the predetermined area X, the observation range of the underwater vehicle 22 can be expanded. can be done.
Since the intermediary body 21 stays in the predetermined area X, the movement range is narrower than that of the underwater vehicle 22 . Therefore, the cruising speed of the intermediary body 21 may be slower than the cruising speed of the underwater cruising body 22 . By suppressing the cruising speed of the relay 21, the energy consumption of the relay 21 can be saved to prepare for indirect communication.

音響通信中継手段50が搭載された中継体21の鉛直方向の位置は、所定領域Xの外にある水中航走体22とも音響通信ができる位置となるように定める。
中継体21は、中継体音響通信手段41で把握した水中の音響通信の通信状況に従って、所定領域Xのうちの最適な位置に配置することが好ましい。所定領域Xのなかでも通信状況が良好な位置に音響通信中継手段50を搭載した中継体21を配置することで、船舶10と水中航走体22が音響通信中継手段50を介した間接通信を行う際の通信の安定性がさらに高まる。水中の音響通信の通信状況は、例えばシグナル/ノイズ比(S/N比)で把握する。
なお、最適な位置を決める際には、中継体21と船舶10との通信状況に従ってもよいが、中継体21と水中航走体22との通信状況に従って最適な位置に中継体21を配置した場合には、通信の安定性が一層高まり、水中航走体22との音響通信可能範囲をさらに拡げることができる。
また、所定領域Xのうち、水中音速の遅い低水温層に中継体21を配置してもよい。水温約3~74℃の範囲では、水温が低いほど水中音速が遅くなり、より水平遠方まで音波が届きやすいため、他よりも水温が低い低水温層に中継体21を配置することで、船舶10と水中航走体22との音響通信中継手段50を介した音響通信可能範囲がさらに拡大する。ここで図2は、水深1700m以上の海域における調査に基づき作成した深度と水温の関係を示す図である。図2から、この海域の水温は、水温が低いほど水中音速が遅くなる3~74℃の範囲内であり、水面Aから遠ざかるほど下がる傾向であることが分かる。よってこの水深と水温だけを考慮した場合は、中継体21の鉛直方向の位置をより深くすることが好ましい。但し、水底に熱水鉱床等があって水の温度が他よりも高い高水温層がある場合には、その高水温層を避けて配置する。このように、深度による水温変化を測定又は推定し、その結果に基づいて所定領域Xのなかでもより水温の低い場所に中継体21を配置することで、上記のように音響通信可能範囲がさらに拡大する。
また、水中音響通信システムを海洋で用いる場合には、所定領域Xのうち、塩分が他よりも低い低塩分層に中継体21を配置してもよい。塩分が低いほど水中音速が遅くなり、より水平遠方まで音波が届きやすいため、低塩分層に中継体21を配置することで、船舶10と水中航走体22との音響通信中継手段50を介した音響通信可能範囲がさらに拡大する。水深1700m以上の海域で深度と塩分の関係を調査したところ、図3に示すように、深度約400~600mが最も塩分が低い低塩分層であることが分かった。なお、水深が約400m以上の海域であれば、最大深度に関わらず深度約400~600mが低塩分層となる。したがって、水深と塩分だけを考慮した場合、水深が約400m以上の海域においては、所定領域Xのなかでも深度約400~600mに中継体21を配置することが好ましい。また、水温と塩分の両方が低い場合は、どちらか一方だけが低い場合と比べて水中音速がさらに遅くなるので、水温と塩分の両方に基づいて中継体21の位置を定めることがより好ましい。なお、水中音速には圧力(深度)も影響するため、この圧力も考慮して中継体21の位置を定めてもよい。
The position in the vertical direction of the relay body 21 on which the acoustic communication relay means 50 is mounted is determined so that acoustic communication with the underwater vehicle 22 outside the predetermined area X is possible.
The relay 21 is preferably arranged at an optimum position within the predetermined area X according to the communication status of the underwater acoustic communication ascertained by the relay acoustic communication means 41 . By arranging the relay 21 equipped with the acoustic communication relay means 50 in a position where the communication condition is good even within the predetermined area X, the ship 10 and the underwater vehicle 22 can perform indirect communication via the acoustic communication relay means 50. The stability of communication when performing is further enhanced. The communication status of underwater acoustic communication is grasped by, for example, a signal/noise ratio (S/N ratio).
Although the optimum position may be determined according to the communication status between the relay 21 and the ship 10, the relay 21 is arranged at the optimum position according to the communication status between the relay 21 and the underwater vehicle 22. In this case, the stability of communication is further improved, and the range of acoustic communication with the underwater vehicle 22 can be further expanded.
Further, the intermediary body 21 may be arranged in a low water temperature layer having a low underwater sound velocity in the predetermined area X. In the water temperature range of about 3 to 74 ° C, the lower the water temperature, the slower the underwater sound speed, and the sound wave can reach farther horizontally. 10 and the underwater vehicle 22 through the acoustic communication relay means 50, the acoustic communication possible range is further expanded. Here, FIG. 2 is a diagram showing the relationship between depth and water temperature created based on a survey in a sea area with a water depth of 1700 m or more. From FIG. 2, it can be seen that the water temperature of this sea area is within the range of 3 to 74° C., in which the lower the water temperature, the slower the underwater sound speed, and the further away from the water surface A, the lower the water temperature. Therefore, if only the water depth and water temperature are considered, it is preferable to make the position of the relay 21 deeper in the vertical direction. However, if there is a hydrothermal deposit on the bottom of the water and there is a high water temperature layer where the temperature of the water is higher than the others, the high water temperature layer should be avoided. In this way, by measuring or estimating the change in water temperature due to depth and arranging the relay 21 in a place where the water temperature is lower than the predetermined area X based on the result, the acoustic communication range is further expanded as described above. Expanding.
Further, when the underwater acoustic communication system is used in the ocean, the relay 21 may be arranged in a low-salinity layer of the predetermined area X, which has a lower salinity than the others. The lower the salinity, the slower the underwater sound velocity, and the more likely the sound wave reaches the horizontal distance. Acoustic communication possible range is further expanded. When we investigated the relationship between depth and salinity in sea areas with a depth of 1,700 m or more, we found that the lowest salinity layer is at a depth of about 400 to 600 m, as shown in Fig. 3. In addition, if the water depth is about 400 m or more, the low salinity layer will be at a depth of about 400 to 600 m regardless of the maximum depth. Therefore, when considering only water depth and salinity, it is preferable to arrange the intermediary body 21 at a depth of about 400 to 600 m in the predetermined area X in a sea area with a water depth of about 400 m or more. Also, when both the water temperature and the salinity are low, the underwater sound velocity is further reduced compared to when only one of them is low, so it is more preferable to determine the position of the relay 21 based on both the water temperature and the salinity. Since pressure (depth) also affects the speed of sound in water, the position of the relay 21 may be determined in consideration of this pressure as well.

音響通信中継手段50が搭載された中継体21の位置を定める方法について、さらに詳述する。
水温、塩分及び水深と、水中音速との関係を近似的に表す式としてMackenzieの式(式1)がある。

Figure 0007248262000001
ここで、
c:音速(m/s)
T:水温(℃)
S:塩分(permil)
D:水深(m)
である。
水温と塩分と水深とを考慮する場合、このMackenzieの式に従って音速を求めることが好ましい。 A method for determining the position of the relay 21 on which the acoustic communication relay means 50 is mounted will be described in further detail.
Mackenzie's equation (Equation 1) is an equation that approximates the relationship between the water temperature, salinity, water depth, and the speed of sound in water.
Figure 0007248262000001
here,
c: speed of sound (m/s)
T: water temperature (°C)
S: salinity (permil)
D: Water depth (m)
is.
Considering water temperature, salinity, and water depth, it is preferable to obtain the speed of sound according to Mackenzie's formula.

図2に示される水深と水温の関係、図3に示される水深と塩分の関係を用いて、上記式1に基づいて、水温と塩分と及び水深を考慮して音速を計算すると、表1のような結果となる。

Figure 0007248262000002
この場合、音速がもっとも小さくなる水深(音速極小点)は1000mであり、水深600mから1400mが、音速が1490m/s以下となる音速が遅い層と言える。さらに水深800mから1200mが、音速が1486m/s以下となる音速がより遅い音速極小層と言える。
図2に示されるような、水面Aの水温が30℃にもなる水温の高い海域においては、音速の変化に与える影響は、水温の変化>水深の変化>塩分の変化の順に大きい。水面Aの水温が低い海域においては、水温の変化よりも水深の変化や塩分の変化の影響が勝ってくる。
音速が遅い層は、水深に対する水温のプロファイル、塩分のプロファイル、及び水深によって異なってくるため、正確を期す場合は、適用海域の水温のプロファイル、塩分のプロファイル、及び水深に応じて、適宜、音速の遅くなる層を、式1等を用いて求めることが好ましい。より正確を期す場合は、水温、塩分、及び水深を例えば音響通信中継手段50で計測し、式1等に基づいて音速を計算し、音速の遅い層に音響通信中継手段50を配置することが好ましい。また、音速極小層に音響通信中継手段50を配置することがさらに好ましい。 Using the relationship between water depth and water temperature shown in FIG. 2 and the relationship between water depth and salinity shown in FIG. The result is
Figure 0007248262000002
In this case, the water depth at which the speed of sound is the lowest (minimum point of sound speed) is 1000 m, and it can be said that the depth of water from 600 m to 1400 m is the layer where the speed of sound is 1490 m/s or less. Furthermore, it can be said that the water depth of 800 m to 1200 m is the minimum sound velocity layer where the sound velocity is lower than 1486 m/s.
As shown in FIG. 2, in a high water temperature sea area where the water temperature of the water surface A is as high as 30 ° C, the effect on the change in the speed of sound is in the order of change in water temperature > change in water depth > change in salinity. In a sea area where the water temperature of the water surface A is low, the influence of changes in water depth and changes in salinity prevails over changes in water temperature.
Since the layer with slow sound velocity varies depending on the temperature profile, salinity profile, and water depth with respect to the water depth, if accuracy is desired, the sound velocity It is preferable to obtain the layer in which the is slowed down using Equation 1 or the like. If more accuracy is desired, the water temperature, salinity, and water depth can be measured, for example, by the acoustic communication relay means 50, the speed of sound can be calculated based on Equation 1, etc., and the acoustic communication relay means 50 can be placed in a layer where the speed of sound is slow. preferable. Further, it is more preferable to arrange the acoustic communication relay means 50 in the minimum sound velocity layer.

上述のように、水中に配置された中継体21から発信された水中音響信号は、水面反射の影響が軽減されるため、船舶10から発信された水中音響信号よりも水平方向の到達距離が延びる。そこで、中継体21が、横方向(水平方向)に音響信号を送信して水中航走体22と音響通信を行った場合には、特に水平方向に遠く離れた水中航走体22とも安定して通信を行うことができる。 As described above, the underwater acoustic signal transmitted from the relay 21 placed underwater has a longer reach in the horizontal direction than the underwater acoustic signal transmitted from the ship 10 because the influence of water surface reflection is reduced. . Therefore, when the relay 21 transmits an acoustic signal in the lateral direction (horizontal direction) to perform acoustic communication with the underwater vehicle 22, the underwater vehicle 22, which is particularly distant in the horizontal direction, can be stabilized. can communicate with each other.

中継体21及び水中航走体22には、音響通信に供するデータを記憶するハードディスクドライブや半導体メモリ等の記憶手段70が設けられており、必要に応じてデータを再送したり、水中航走体22又は音響通信中継手段50を水中から回収した後にデータを検証したりすることができる。
音響通信に供するデータには、自己位置や観測位置等の位置データを含むことができる。位置データを含めることで、船舶10、中継体21又は水中航走体22の位置の補正や水中航走体22が取得したデータとの対応付け等を行うことができる。
The intermediary 21 and the underwater vehicle 22 are provided with storage means 70 such as a hard disk drive or a semiconductor memory for storing data to be used for acoustic communication. 22 or after recovering the acoustic communication relay means 50 from the water, the data can be verified.
The data provided for acoustic communication can include position data such as self position and observed position. By including the position data, it is possible to correct the position of the ship 10, the intermediary body 21, or the underwater vehicle 22, and associate it with the data acquired by the underwater vehicle 22, or the like.

中継体21の中継体音響通信手段41と水中航走体22の航走体音響通信手段42との音響通信ができなくなった場合は、中継体21及び水中航走体22を水面Aに浮上させてもよい。
早めに浮上させることで、中継体21及び水中航走体22を見失う前に回収することができる。
なお、中継体21及び水中航走体22が水面Aに浮上した後は、船舶10と中継体21及び水中航走体22との通信を、空間を利用した無線通信に切り替えることが好ましい。
音波は水上では届きにくいため、無線通信に切り替えることで、船舶10と浮上した中継体21又は水中航走体22との距離が離れていても通信がしやすい。なお、空間を利用した無線通信としては、電波通信、光通信、音響通信等が使用可能である。
When acoustic communication between the relay acoustic communication means 41 of the relay 21 and the underwater vehicle acoustic communication means 42 of the underwater vehicle 22 becomes impossible, the relay 21 and the underwater vehicle 22 are made to surface on the water surface A. may
By surfacing early, the intermediary body 21 and the underwater vehicle 22 can be recovered before they are lost.
After the relay 21 and the underwater vehicle 22 surface on the water surface A, it is preferable to switch the communication between the ship 10 and the relay 21 and the underwater vehicle 22 to wireless communication using space.
Since sound waves are difficult to reach on water, switching to wireless communication facilitates communication even if the distance between the ship 10 and the floating relay 21 or the underwater vehicle 22 is long. Radio communication, optical communication, acoustic communication, etc. can be used as wireless communication using space.

複数の水中航走体22が、それぞれ音響通信中継手段50を搭載し、中継体21に加えて又は中継体21に代えて、所定領域Xに存在する水中航走体22が船舶10との音響通信の中継を行うようにしてもよい。
これにより、水中航走体22自身が音響通信を中継する機能を兼ねることができる。また、複数ある水中航走体22のそれぞれが音響通信中継手段50を備えることで、1台が故障しても他の水中航走体22に搭載された音響通信中継手段50を用いて間接通信が行える。
A plurality of underwater vehicles 22 are each equipped with an acoustic communication relay means 50, and in addition to the relay 21 or instead of the relay 21, the underwater vehicles 22 existing in the predetermined area X communicate with the ship 10 by acoustic communication. Communication may be relayed.
As a result, the underwater vehicle 22 itself can also serve as a relay for acoustic communication. In addition, since each of the plurality of underwater vehicles 22 is provided with the acoustic communication relay means 50, even if one of the underwater vehicles 22 fails, indirect communication can be performed using the acoustic communication relay means 50 mounted on the other underwater vehicles 22. can be done.

次に、本発明の第2の実施形態による水中音響通信システムについて説明する。なお、第1の実施形態と同一機能部材には同一符号を付して説明を省略する。 Next, an underwater acoustic communication system according to a second embodiment of the present invention will be described. In addition, the same code|symbol is attached|subjected to the same function member as 1st Embodiment, and description is abbreviate|omitted.

図4は本発明の第2の実施形態による水中音響通信システムの概略構成図である。
本実施形態は、洋上中継器(ASV:Autonomous Surface Vehicle)11を備え、船舶(調査母船)10には浮体音響通信手段30として船舶音響通信手段31が設けられ、洋上中継器11には浮体音響通信手段30として洋上中継器音響通信手段32が設けられている点において、第1の実施形態と異なる。船舶10と洋上中継器11との通信は、電波による無線通信により行われる。洋上中継器11を用いることで、水中航走体22の活動範囲をさらに拡げることができる。
FIG. 4 is a schematic configuration diagram of an underwater acoustic communication system according to a second embodiment of the present invention.
In this embodiment, a marine repeater (ASV: Autonomous Surface Vehicle) 11 is provided. This embodiment differs from the first embodiment in that an offshore repeater acoustic communication means 32 is provided as the communication means 30 . Communication between the ship 10 and the marine repeater 11 is performed by wireless communication using radio waves. By using the marine repeater 11, the range of activities of the underwater vehicle 22 can be further expanded.

船舶10及び洋上中継器11は、GNSS衛星1からのGNSS信号を受信することにより自己位置を把握できる。
洋上中継器11は、本体11Aが水中に没して水深約1.5mの位置にあり、アンテナ11Bの上部が水面Aよりも上に出た半潜水状態で用いられる。
船舶10、洋上中継器11は、探索に関する指令等を船舶音響通信手段31、洋上中継器音響通信手段32から水中ロボット20に送信し、水中ロボット20から送信された観測データ等を船舶音響通信手段31、洋上中継器音響通信手段32で受信する。
The ship 10 and the ocean repeater 11 can grasp their positions by receiving GNSS signals from the GNSS satellites 1 .
The marine repeater 11 is used in a semi-submersible state in which the main body 11A is submerged in water at a depth of about 1.5 m and the upper part of the antenna 11B is above the water surface A.
The ship 10 and the marine repeater 11 transmit a search command and the like from the ship acoustic communication means 31 and the marine repeater acoustic communication means 32 to the underwater robot 20, and the observation data and the like transmitted from the underwater robot 20 are transmitted to the ship acoustic communication means. 31, received by the ocean repeater acoustic communication means 32;

中継体21、水中航走体22は、観測により得られた観測データ等を中継体音響通信手段41、航走体音響通信手段42から船舶10及び洋上中継器11に送信し、船舶10及び洋上中継器11から送信された指令等を中継体音響通信手段41、航走体音響通信手段42で受信する。
中継体21に搭載された音響通信中継手段50は、船舶10と水中航走体22との音響通信を中継する。これにより、船舶10と水中航走体22とは、中継体21の音響通信中継手段50を介した間接通信を行うことができる。
The relay 21 and the underwater vehicle 22 transmit observation data and the like obtained by observation from the relay acoustic communication means 41 and the marine vehicle acoustic communication means 42 to the ship 10 and the marine relay 11. Commands and the like transmitted from the repeater 11 are received by the relay acoustic communication means 41 and the vehicle acoustic communication means 42 .
Acoustic communication relay means 50 mounted on relay 21 relays acoustic communication between ship 10 and underwater vehicle 22 . As a result, the ship 10 and the underwater vehicle 22 can perform indirect communication via the acoustic communication relay means 50 of the relay 21 .

中継体21は、水面Aから下方であって、船舶10からの音響信号が到達しやすい所定領域Xに配置され、所定領域Xを超えて航走しないように制御されている。
水中航走体22は、水面Aから下方であって、洋上中継器11からの音響信号が到達しやすい所定領域Yに配置されている。
船舶10と水中航走体22との音響通信は、少なくとも水中航走体22が所定領域X及び所定領域Yを超えて航走している場合には、中継体21に搭載された音響通信中継手段50を介した間接通信を行うことで、通信途絶を回避できる。これにより、船舶10と水中航走体22との音響通信が可能な範囲が拡がり、ひいては水中航走体22が探索できる範囲が拡大する。
The intermediary body 21 is located below the water surface A in a predetermined area X where acoustic signals from the ship 10 can easily reach, and is controlled so as not to exceed the predetermined area X.
The underwater vehicle 22 is located below the water surface A in a predetermined area Y where the acoustic signal from the ocean repeater 11 can easily reach.
Acoustic communication between the ship 10 and the underwater vehicle 22 is performed by acoustic communication relays mounted on the relay 21, at least when the underwater vehicle 22 is sailing beyond the predetermined regions X and Y. By performing indirect communication via means 50, communication interruption can be avoided. As a result, the range in which acoustic communication between the ship 10 and the underwater vehicle 22 is possible is expanded, and the range in which the underwater vehicle 22 can search is expanded.

なお、中継体21は、所定領域Yに配置し、所定領域Yを超えて航走しないように制御してもよい。この場合、中継体21と船舶10との通信は洋上中継器11を経由して行われるため、船舶10は、船舶音響通信手段31を省略できると共に、中継体21の位置に左右されることなく航走できる。 In addition, the intermediary body 21 may be arranged in a predetermined area Y and controlled so as not to exceed the predetermined area Y. FIG. In this case, since the communication between the relay 21 and the ship 10 is performed via the offshore repeater 11, the ship 10 can omit the ship acoustic communication means 31 and is not affected by the position of the relay 21. can sail.

次に、図5及び図6を用いて、音響通信中継手段50の中継制御の例について説明する。なお、第1の実施形態を中心に説明するが、第2の実施形態も基本的に同様である。 Next, an example of relay control of the acoustic communication relay means 50 will be described with reference to FIGS. 5 and 6. FIG. Although the first embodiment will be mainly described, the second embodiment is basically the same.

図5は、船舶から水中航走体に対して音響通信の確立を求める際の音響通信中継手段の中継制御を示すフロー図である。
船舶10は、水中航走体22に対して音響通信の確立を求める場合、水中航走体22に対して返答を求める第1の音響信号を浮体音響通信手段30から発信する。音波は無指向のため、浮体音響通信手段30が発信した第1の音響信号は、所定領域Xにある中継体21の中継体音響通信手段41でも受信される。中継体音響通信手段41が第1の音響信号を受信すると、音響通信中継手段50の中継制御がスタートする(ステップ1)。なお、第2の実施形態においては、船舶10は、水中航走体22に対して返答を求める信号を、無線通信で洋上中継器11に対して発信すると共に、第1の音響信号として船舶音響通信手段31から発信する。無線通信による信号は、洋上中継器11で音響信号に変換されて第1の音響信号として洋上中継器音響通信手段32から発信される。
ステップ1で発信された第1の音響信号を航走体音響通信手段42が受信すると、水中航走体22は、第1の音響信号を受信したことを知らせる第2の音響信号を航走体音響通信手段42から発信する。音響通信中継手段50は、ステップ1で発信された第1の音響信号を受信した後、水中航走体22から発信されるはずの第2の音響信号を中継体音響通信手段41が受信したか否かを判断する(ステップ2)。
ステップ2において、第2の音響信号を中継体音響通信手段41が受信したと判断した場合には、音響通信中継手段50はそのまま中継制御を終了する(ステップ3)。船舶10と水中航走体22との間で直接通信が可能な状態と判断できるためである。この場合は、船舶10と水中航走体22との間の音響通信は、中継体21を介さない直接通信により行われる。
ステップ2において、第2の音響信号を中継体音響通信手段41が受信していないと判断した場合には、音響通信中継手段50は、ステップ1で受信した第1の音響信号を中継体音響通信手段41から発信する(ステップ4)。ステップ1で発信された第1の音響信号が航走体音響通信手段42には届いていないと判断できるためである。
ステップ4で発信された第1の音響信号を航走体音響通信手段42が受信すると、水中航走体22は、第1の音響信号を受信したことを知らせる第2の音響信号を航走体音響通信手段42から発信する。音響通信中継手段50は、ステップ4で第1の音響信号を発信した後、水中航走体22から発信されるはずの第2の音響信号を中継体音響通信手段41が受信したか否かを判断する(ステップ5)。
ステップ5において、第2の音響信号を中継体音響通信手段41が受信したと判断した場合には、音響通信中継手段50は、通信切替手段60によって間接通信への切り替を行う(ステップ6)。船舶10と水中航走体22との間で間接通信は可能な状態と判断できるためである。この場合は、船舶10と水中航走体22との間の音響通信は、中継体21を介した間接通信により行われる。
ステップ5において、第2の音響信号を中継体音響通信手段41が受信していないと判断した場合には、音響通信中継手段50はそのまま中継制御を終了する(ステップ7)。船舶10と水中航走体22との間で間接通信も不可能な状態と判断できるためである。中継体21を浮上させて回収してもよい。なお、第2の実施形態においては、この場合であっても、船舶10と水中航走体22とは、洋上中継器11を経由した通信ができている可能性がある。そこで、洋上中継器11で電波に変換された第2の音響信号を船舶10が受信したか否かを伝える音響信号を、船舶音響通信手段31から中継体21に対して発信するようにしてもよい。
FIG. 5 is a flowchart showing relay control of the acoustic communication relay means when requesting establishment of acoustic communication from the ship to the underwater vehicle.
When the vessel 10 requests the underwater vehicle 22 to establish acoustic communication, the floating body acoustic communication means 30 transmits a first acoustic signal requesting the underwater vehicle 22 to reply. Since sound waves are non-directional, the first acoustic signal transmitted by the floating body acoustic communication means 30 is also received by the relay body acoustic communication means 41 of the relay body 21 located in the predetermined area X. When the relay acoustic communication means 41 receives the first acoustic signal, the relay control of the acoustic communication relay means 50 is started (step 1). In the second embodiment, the ship 10 transmits a signal requesting a response from the underwater vehicle 22 to the offshore repeater 11 by wireless communication, and the ship's acoustic signal is used as the first acoustic signal. Send from the communication means 31 . A signal by radio communication is converted into an acoustic signal by the ocean repeater 11 and transmitted from the ocean repeater acoustic communication means 32 as a first acoustic signal.
When the vehicle acoustic communication means 42 receives the first acoustic signal transmitted in step 1, the underwater vehicle 22 transmits a second acoustic signal notifying that the first acoustic signal has been received. It is transmitted from the acoustic communication means 42 . After receiving the first acoustic signal transmitted in step 1, the acoustic communication relay means 50 determines whether the relay body acoustic communication means 41 has received the second acoustic signal that should be transmitted from the underwater vehicle 22. Determine whether or not (step 2).
If it is determined in step 2 that the relay acoustic communication means 41 has received the second acoustic signal, the acoustic communication relay means 50 ends the relay control (step 3). This is because it can be determined that direct communication is possible between the ship 10 and the underwater vehicle 22 . In this case, acoustic communication between the ship 10 and the underwater vehicle 22 is performed by direct communication without the intermediary of the relay 21 .
If it is determined in step 2 that the relay acoustic communication means 41 has not received the second acoustic signal, the acoustic communication relay means 50 transmits the first acoustic signal received in step 1 to the relay acoustic communication. A call is sent from the means 41 (step 4). This is because it can be determined that the first acoustic signal transmitted in step 1 has not reached the vehicle acoustic communication means 42 .
When the vehicle acoustic communication means 42 receives the first acoustic signal transmitted in step 4, the underwater vehicle 22 transmits a second acoustic signal notifying that the first acoustic signal has been received. It is transmitted from the acoustic communication means 42 . After transmitting the first acoustic signal in step 4, the acoustic communication relay means 50 checks whether or not the relay body acoustic communication means 41 has received the second acoustic signal that should be transmitted from the underwater vehicle 22. Judge (step 5).
When it is determined in step 5 that the relay acoustic communication means 41 has received the second acoustic signal, the acoustic communication relay means 50 switches to indirect communication by the communication switching means 60 (step 6). This is because it can be determined that indirect communication is possible between the ship 10 and the underwater vehicle 22 . In this case, acoustic communication between the ship 10 and the underwater vehicle 22 is performed by indirect communication via the relay 21 .
If it is determined in step 5 that the relay acoustic communication means 41 has not received the second acoustic signal, the acoustic communication relay means 50 ends the relay control (step 7). This is because it can be determined that indirect communication between the ship 10 and the underwater vehicle 22 is also impossible. The intermediary body 21 may be floated and recovered. In the second embodiment, even in this case, there is a possibility that communication between the ship 10 and the underwater vehicle 22 is established via the ocean repeater 11 . Therefore, an acoustic signal indicating whether or not the ship 10 has received the second acoustic signal converted into radio waves by the marine repeater 11 may be transmitted from the ship acoustic communication means 31 to the relay 21. good.

なお、船舶10では、浮体音響通信手段30が第2の音響信号を受信しない場合、第1の音響信号を送信したか(ステップ4の動作を行ったか)否かの返答を求める音響信号を浮体音響通信手段30から中継体21に対して送信するか、ステップ4で中継体音響通信手段41から発信される第1の音響信号を浮体音響通信手段30で受信するようにしてもよい。 In the ship 10, when the floating body acoustic communication means 30 does not receive the second acoustic signal, the floating body sends an acoustic signal asking whether or not the first acoustic signal has been transmitted (whether the operation of step 4 has been performed). The first acoustic signal transmitted from the acoustic communication means 30 to the relay 21 or transmitted from the relay acoustic communication means 41 in step 4 may be received by the floating body acoustic communication means 30 .

図6は、水中航走体から船舶に対して音響通信の確立を求める際の音響通信中継手段の中継制御を説明するフロー図である。
水中航走体22は、船舶10に対して音響通信の確立を求める場合、船舶10に対して返答を求める第3の音響信号を航走体音響通信手段42から発信する。航走体音響通信手段42が発信した無指向の第3の音響信号は、中継体音響通信手段41でも受信できる可能性がある。中継体音響通信手段41が第3の音響信号を受信すると、音響通信中継手段50の中継制御がスタートする(ステップ11)。なお、第2の実施形態においては、洋上中継器11に到達した第3の音響信号は、電波に変換されて船舶10に向けて無線通信でも送信される。
ステップ11で発信された第3の音響信号を浮体音響通信手段30が受信すると、船舶10は、第3の音響信号を受信したことを知らせる第4の音響信号を浮体音響通信手段30から発信する。音響通信中継手段50は、ステップ11で発信された第3の音響信号を受信した後、船舶10から発信されるはずの第4の音響信号を中継体音響通信手段41が受信したか否かを判断する(ステップ12)。なお、第2の実施形態においては、船舶10は、第3の音響信号を受信したことを知らせる信号を、無線通信で洋上中継器11に対して発信すると共に、第4の音響信号として船舶音響通信手段31から発信する。無線通信による信号は、洋上中継器11で音響信号に変換されて第4の音響信号として洋上中継器音響通信手段32から発信される。
ステップ12において、第4の音響信号を中継体音響通信手段41が受信したと判断した場合には、音響通信中継手段50はそのまま中継制御を終了する(ステップ13)。船舶10と水中航走体22との間で直接通信が可能な状態と判断できるためである。この場合は、船舶10と水中航走体22との間の音響通信は、中継体21を介さない直接通信により行われる。
ステップ12において、第4の音響信号を中継体音響通信手段41が受信していないと判断した場合には、音響通信中継手段50は、ステップ11で受信した第3の音響信号を中継体音響通信手段41から発信する(ステップ14)。ステップ11で発信された第3の音響信号が浮体音響通信手段30には届いていないと判断できるためである。
ステップ14で発信された第3の音響信号を浮体音響通信手段30が受信すると、船舶10は、第3の音響信号を受信したことを知らせる第4の音響信号を浮体音響通信手段30から発信する。音響通信中継手段50は、ステップ14で第3の音響信号を発信した後、船舶10から発信されるはずの第4の音響信号を中継体音響通信手段41が受信したか否かを判断する(ステップ15)。なお、第2の実施形態においては、船舶10は、第3の音響信号を受信したことを知らせる信号を、無線通信で洋上中継器11に対して発信すると共に、第4の音響信号として船舶音響通信手段31から発信する。無線通信による信号は、洋上中継器11で音響信号に変換されて第4の音響信号として洋上中継器音響通信手段32から発信される。
ステップ15において、第4の音響信号を中継体音響通信手段41が受信したと判断した場合には、音響通信中継手段50は、受信した第4の音響信号を中継体音響通信手段41から発信すると共に、通信切替手段60によって間接通信への切り替えを行う(ステップ16)。船舶10と水中航走体22との間で間接通信は可能な状態と判断できるためである。この場合は、船舶10と水中航走体22との間の音響通信は、中継体21を介した間接通信により行われる。
ステップ15において、第4の音響信号を中継体音響通信手段41が受信していないと判断した場合には、音響通信中継手段50はそのまま中継制御を終了する(ステップ17)。船舶10と水中航走体22との間で間接通信も不可能な状態と判断できるためである。中継体21を浮上させて回収してもよい。また、この場合は、航走体音響通信手段42にも第4の音響信号が届かないため、水中航走体22に対して第4の音響信号を所定時間受信しない場合には浮上する指令を予め与えておくことで、水中航走体22を浮上させて回収することができる。なお、第2の実施形態においては、この場合であっても、船舶10と水中航走体22とは、洋上中継器11を経由した通信ができている可能性がある。そこで、洋上中継器11で電波に変換された第3の音響信号を船舶10が受信したか否かを伝える音響信号を、船舶音響通信手段31から中継体21に対して発信するようにしてもよい。
FIG. 6 is a flowchart for explaining the relay control of the acoustic communication relay means when requesting establishment of acoustic communication from the underwater vehicle to the ship.
When the underwater vehicle 22 requests the vessel 10 to establish acoustic communication, the underwater vehicle 22 transmits a third acoustic signal requesting the vessel 10 to reply from the vehicle acoustic communication means 42 . There is a possibility that the non-directional third acoustic signal transmitted by the vehicle acoustic communication means 42 can also be received by the relay acoustic communication means 41 . When the relay acoustic communication means 41 receives the third acoustic signal, the relay control of the acoustic communication relay means 50 is started (step 11). In addition, in the second embodiment, the third acoustic signal that has reached the marine repeater 11 is converted into radio waves and transmitted to the ship 10 by wireless communication.
When the floating body acoustic communication means 30 receives the third acoustic signal transmitted in step 11, the ship 10 transmits from the floating body acoustic communication means 30 a fourth acoustic signal notifying that the third acoustic signal has been received. . After receiving the third acoustic signal transmitted in step 11, the acoustic communication relay means 50 checks whether the relay body acoustic communication means 41 has received the fourth acoustic signal that should be transmitted from the ship 10. Make a decision (step 12). In the second embodiment, the ship 10 transmits a signal notifying that it has received the third acoustic signal to the marine repeater 11 by wireless communication, and the fourth acoustic signal is the ship acoustic signal. Send from the communication means 31 . A signal by wireless communication is converted into an acoustic signal by the ocean repeater 11 and transmitted from the ocean repeater acoustic communication means 32 as a fourth acoustic signal.
If it is determined in step 12 that the relay acoustic communication means 41 has received the fourth acoustic signal, the acoustic communication relay means 50 ends the relay control (step 13). This is because it can be determined that direct communication is possible between the ship 10 and the underwater vehicle 22 . In this case, acoustic communication between the ship 10 and the underwater vehicle 22 is performed by direct communication without the intermediary of the relay 21 .
If it is determined in step 12 that the relay acoustic communication means 41 has not received the fourth acoustic signal, the acoustic communication relay means 50 transmits the third acoustic signal received in step 11 to the relay acoustic communication. A call is sent from the means 41 (step 14). This is because it can be determined that the third acoustic signal transmitted in step 11 has not reached the floating body acoustic communication means 30 .
When the floating body acoustic communication means 30 receives the third acoustic signal transmitted in step 14, the ship 10 transmits from the floating body acoustic communication means 30 a fourth acoustic signal notifying that the third acoustic signal has been received. . After transmitting the third acoustic signal in step 14, the acoustic communication relay means 50 determines whether or not the relay body acoustic communication means 41 has received the fourth acoustic signal that should be transmitted from the ship 10 ( step 15). In the second embodiment, the ship 10 transmits a signal notifying that it has received the third acoustic signal to the marine repeater 11 by wireless communication, and the fourth acoustic signal is the ship acoustic signal. Send from the communication means 31 . A signal by wireless communication is converted into an acoustic signal by the ocean repeater 11 and transmitted from the ocean repeater acoustic communication means 32 as a fourth acoustic signal.
In step 15, when it is determined that the relay acoustic communication means 41 has received the fourth acoustic signal, the acoustic communication relay means 50 transmits the received fourth acoustic signal from the relay acoustic communication means 41. At the same time, switching to indirect communication is performed by the communication switching means 60 (step 16). This is because it can be determined that indirect communication is possible between the ship 10 and the underwater vehicle 22 . In this case, acoustic communication between the ship 10 and the underwater vehicle 22 is performed by indirect communication via the relay 21 .
If it is determined in step 15 that the relay acoustic communication means 41 has not received the fourth acoustic signal, the acoustic communication relay means 50 ends the relay control (step 17). This is because it can be determined that indirect communication between the ship 10 and the underwater vehicle 22 is also impossible. The intermediary body 21 may be floated and recovered. In this case, since the fourth acoustic signal does not reach the vehicle acoustic communication means 42, the underwater vehicle 22 is commanded to surface if it does not receive the fourth acoustic signal for a predetermined time. By providing it in advance, the underwater vehicle 22 can be surfaced and recovered. In the second embodiment, even in this case, there is a possibility that the ship 10 and the underwater vehicle 22 are able to communicate via the ocean repeater 11 . Therefore, an acoustic signal indicating whether or not the ship 10 has received the third acoustic signal converted into radio waves by the marine repeater 11 may be transmitted from the ship acoustic communication means 31 to the relay 21. good.

本発明の水中音響通信システムは、海洋や湖沼等における水中探査の際の、水面近くの船舶等と水中ロボットとの音響通信が可能な範囲を拡げることができるため、より広範囲にわたって効率的に水中探査を行うことができる。 INDUSTRIAL APPLICABILITY The underwater acoustic communication system of the present invention can expand the range in which acoustic communication can be performed between a ship or the like near the surface of the water and an underwater robot during underwater exploration in the ocean, lakes, or the like. Exploration can be done.

22 水中航走体
30 浮体音響通信手段
40、42 航走体音響通信手段
50 音響通信中継手段
60 通信切替手段
70 記憶手段
A 水面
X 所定領域
22 Underwater Vehicle 30 Floating Body Acoustic Communication Means 40, 42 Vehicle Acoustic Communication Means 50 Acoustic Communication Relay Means 60 Communication Switching Means 70 Storage Means A Water Surface X Predetermined Area

Claims (13)

水中音速が1490m/s以下の前記水中音速が遅い層と前記水中音速が1490m/sを超える前記水中音速が速い層とを有する海域で用いられ、水面の近傍に配置した前記水面を移動可能な浮体音響通信手段と、水の中を航走する水中航走体に設けた航走体音響通信手段との間で音響信号を利用して通信を行う水中音響通信システムにおいて、前記水面から下方であって前記浮体音響通信手段が発信する前記音響信号の到達し易い略円錐状の範囲の所定領域であって、かつ前記所定領域を水温、塩分、及び水深により影響を受ける前記水中音速に応じて、前記水中音速が速い層と前記水中音速が遅い層とに区分したうちの前記水中音速が1490m/s以下の前記水中音速が遅い層に配置した前記水の中を移動可能な音響通信中継手段を備え、前記浮体音響通信手段の前記水面における移動に追随して前記音響通信中継手段を前記水中音速が遅い層の中で前記所定領域から外れないように移動させ、かつ前記水中航走体が前記所定領域を超えて航走するときに、前記音響通信中継手段を前記所定領域のうち前記水中音速が遅い層ので、前記音響通信中継手段と前記所定領域を超えて航走する前記水中航走体の前記航走体音響通信手段との通信状況良好な位置に移動させ、前記音響通信中継手段を介して前記浮体音響通信手段と前記所定領域を超えて航走する前記水中航走体の前記航走体音響通信手段が音響通信を行うことを特徴とする水中音響通信システム。 It is used in a sea area having a layer with a low underwater sound velocity of 1490 m/s or less and a high underwater layer with an underwater sound velocity of more than 1490 m/s, and can move on the water surface placed near the water surface. In an underwater acoustic communication system in which communication is performed using acoustic signals between a floating body acoustic communication means and a vehicle acoustic communication means provided on an underwater vehicle that travels in the water, below the water surface A predetermined area in a substantially conical range where the acoustic signal transmitted by the floating body acoustic communication means can easily reach, and the predetermined area is determined according to the underwater sound speed affected by water temperature, salinity, and water depth , an acoustic communication relay means capable of moving in the water, which is arranged in the layer with the slow underwater sound velocity of 1490 m/s or less among the layers with the high underwater sound velocity and the layers with the slow underwater sound velocity. and moving the acoustic communication relay means so as not to deviate from the predetermined area in the layer where the speed of sound in water is slow , following the movement of the floating body acoustic communication means on the water surface, and When sailing over the predetermined area, the acoustic communication relay means is placed in a layer of the predetermined area where the speed of sound in water is slow , and the water sails over the predetermined area with the acoustic communication relay means. Said underwater cruising , in which the intermediate cruising body is moved to a position where communication with the cruising body acoustic communication means is favorable , and the floating body acoustic communication means and the floating body acoustic communication means travel beyond the predetermined area via the acoustic communication relay means. An underwater acoustic communication system, wherein said vehicle acoustic communication means of a body performs acoustic communication. 前記音響通信中継手段は、横方向に前記音響信号を送信して前記航走体音響通信手段と前記音響通信を行うことを特徴とする請求項1に記載の水中音響通信システム。 2. An underwater acoustic communication system according to claim 1 , wherein said acoustic communication relay means transmits said acoustic signal laterally to perform said acoustic communication with said vehicle acoustic communication means. 前記所定領域に前記水中航走体が存在する場合は、前記浮体音響通信手段と前記航走体音響通信手段で直接通信を行うことを特徴とする請求項1又は請求項に記載の水中音響通信システム。 3. The underwater acoustics according to claim 1 , wherein when the underwater vehicle exists in the predetermined area, direct communication is performed by the floating body acoustic communication means and the vehicle acoustic communication means . Communications system. 前記浮体音響通信手段と前記航走体音響通信手段の前記直接通信と、前記音響通信中継手段を介した間接通信を切り替える通信切替手段を備えたことを特徴とする請求項に記載の水中音響通信システム。 4. Underwater acoustics according to claim 3 , further comprising communication switching means for switching between said direct communication between said floating body acoustic communication means and said ship acoustic communication means, and indirect communication via said acoustic communication relay means. Communications system. 前記音響通信に供するデータとして位置データを含むことを特徴とする請求項1から請求項のうちの1項に記載の水中音響通信システム。 5. The underwater acoustic communication system according to claim 1 , wherein position data is included as data provided for said acoustic communication. 前記位置データは、GNSS衛星からのGNSS信号を受信して前記浮体音響通信手段の自己位置を把握したデータであることを特徴とする請求項に記載の水中音響通信システム。 6. The underwater acoustic communication system according to claim 5 , wherein said position data is data obtained by receiving GNSS signals from GNSS satellites and grasping the self-position of said floating body acoustic communication means. 前記浮体音響通信手段を複数有し、複数の前記浮体音響通信手段の各々が前記GNSS衛星からの前記GNSS信号を受信し各々の前記自己位置を把握することを特徴とする請求項に記載の水中音響通信システム。 7. The floating body acoustic communication means according to claim 6 , wherein each of the plurality of floating body acoustic communication means receives the GNSS signals from the GNSS satellites and grasps the self position of each of the floating body acoustic communication means. Underwater acoustic communication system. 前記水中航走体及び/又は前記音響通信中継手段に前記音響通信に供するデータを記憶する記憶手段を有したことを特徴とする請求項1から請求項のうちの1項に記載の水中音響通信システム。 8. The underwater acoustic according to any one of claims 1 to 7 , wherein the underwater vehicle and/or the acoustic communication relay means has storage means for storing data to be used for the acoustic communication. Communications system. 前記水中航走体を複数台有し、前記音響通信中継手段は複数台の前記水中航走体の前記音響信号を中継することを特徴とする請求項1から請求項8のうちの1項に記載の水中音響通信システム。 The apparatus according to any one of claims 1 to 8 , wherein a plurality of underwater vehicles are provided, and the acoustic communication relay means relays the acoustic signals of the plurality of underwater vehicles. An underwater acoustic communication system as described. 複数台の前記水中航走体がそれぞれ前記音響通信中継手段を搭載し、前記所定領域に存在する前記水中航走体が前記音響通信の中継を行うことを特徴とする請求項に記載の水中音響通信システム。 10. The underwater vehicle according to claim 9 , wherein a plurality of said underwater vehicles are each equipped with said acoustic communication relay means, and said underwater vehicle existing in said predetermined area relays said acoustic communication. Acoustic communication system. 前記音響通信中継手段の移動速度は前記水中航走体の航走速度よりも遅いものであることを特徴とする請求項1から請求項のうちの1項に記載の水中音響通信システム。 10. An underwater acoustic communication system according to claim 1, wherein the moving speed of said acoustic communication relay means is slower than the running speed of said underwater vehicle. 前記航走体音響通信手段と前記音響通信中継手段との間の前記音響通信ができなくなった場合に、前記水中航走体及び/又は前記音響通信中継手段を前記水面に浮上させることを特徴とする請求項1から請求項11のうちの1項に記載の水中音響通信システム。 When the acoustic communication between the vehicle acoustic communication means and the acoustic communication relay means is disabled, the underwater vehicle and/or the acoustic communication relay means are floated to the surface of the water. An underwater acoustic communication system according to any one of claims 1 to 11 . 前記水中航走体及び/又は前記音響通信中継手段が前記水面に浮上した後は、前記浮体音響通信手段と前記水中航走体及び/又は前記音響通信中継手段との通信を空間を利用した無線通信に切り替えることを特徴とする請求項12に記載の水中音響通信システム。 After the underwater vehicle and/or the acoustic communication relay means rises to the surface of the water, the communication between the floating body acoustic communication means and the underwater vehicle and/or the acoustic communication relay means is performed wirelessly using space. 13. An underwater acoustic communication system according to claim 12 , characterized by switching to communication.
JP2016216699A 2016-11-04 2016-11-04 underwater acoustic communication system Active JP7248262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016216699A JP7248262B2 (en) 2016-11-04 2016-11-04 underwater acoustic communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016216699A JP7248262B2 (en) 2016-11-04 2016-11-04 underwater acoustic communication system

Publications (3)

Publication Number Publication Date
JP2018070125A JP2018070125A (en) 2018-05-10
JP2018070125A5 JP2018070125A5 (en) 2019-12-12
JP7248262B2 true JP7248262B2 (en) 2023-03-29

Family

ID=62111942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016216699A Active JP7248262B2 (en) 2016-11-04 2016-11-04 underwater acoustic communication system

Country Status (1)

Country Link
JP (1) JP7248262B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6980255B2 (en) * 2017-08-25 2021-12-15 国立研究開発法人海洋研究開発機構 Sonic competition elimination method for underwater observation systems and underwater observation systems
JP7033256B2 (en) * 2018-05-23 2022-03-10 Kddi株式会社 Unmanned underwater vehicles, acoustic communication systems, and programs
JP7392522B2 (en) 2020-03-04 2023-12-06 株式会社Ihi Underwater remote control device
CN113891420B (en) * 2020-07-02 2023-05-05 哈尔滨工业大学(威海) Underwater sound cooperative communication relay selection method based on multi-attribute decision

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004248210A (en) 2003-02-17 2004-09-02 Nippon Telegr & Teleph Corp <Ntt> Radio communication method and radio communication system
JP2006128795A (en) 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd Muticast receiving method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491839B1 (en) * 1969-04-30 1974-01-17
JP2002057631A (en) * 2000-08-10 2002-02-22 Mitsubishi Heavy Ind Ltd Submarine communication network system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004248210A (en) 2003-02-17 2004-09-02 Nippon Telegr & Teleph Corp <Ntt> Radio communication method and radio communication system
JP2006128795A (en) 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd Muticast receiving method

Also Published As

Publication number Publication date
JP2018070125A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP7248262B2 (en) underwater acoustic communication system
US9118407B2 (en) Self-propelled buoy for monitoring underwater objects
US11511835B2 (en) Operating method of multiple underwater vehicles and operating system of multiple underwater vehicles
US11774962B2 (en) Control method of underwater vehicle, introducing method of underwater vehicle, recovering method of underwater vehicle, control system of underwater vehicle, introducing/recovering equipment of control system of underwater vehicle
US10604218B2 (en) Manoeuvring device and method therof
JP2018070125A5 (en)
JP5354638B2 (en) Underwater object search system
JP2016088282A (en) Sonobuoy
JP2017184034A (en) Ocean network system, buoy, submarine object control system, submarine communication method, submarine object control method, and program
JP7142340B2 (en) Underwater probe information sharing method and underwater probe information sharing system
JP2015217882A (en) Underwater vehicle floating position selection method and underwater vehicle floating position selection device
JP2002057631A (en) Submarine communication network system
JP6057731B2 (en) Undersea exploration station
JP2018029253A (en) Acoustic communication method and acoustic communication system, and acoustic communication repeater
JP7003830B2 (en) Communication status control system
JP7099883B2 (en) Communication failure suppression system
JP7222292B2 (en) Cruise control device, underwater vehicle, and cruise control method
Caiti et al. Underwater acoustic networks: The Fp7 UAN project
JP7300151B2 (en) Acoustic communication method and acoustic communication system by attitude control of floating body
JP6991544B2 (en) Underwater vehicle control method and underwater vehicle control system
RU2766365C1 (en) Controlled mobile hydroacoustic buoy-beacon
JP7135592B2 (en) Acoustic communication system
JP7392522B2 (en) Underwater remote control device
JP6980255B2 (en) Sonic competition elimination method for underwater observation systems and underwater observation systems
CN107843899B (en) Method, device and system for positioning return direction of underwater vehicle

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210928

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210928

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211005

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211012

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211228

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220105

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220510

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230131

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230228

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230309

R150 Certificate of patent or registration of utility model

Ref document number: 7248262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150