JP7248343B2 - A method of inserting a plurality of underwater vehicles and a method of lifting and recovering them - Google Patents

A method of inserting a plurality of underwater vehicles and a method of lifting and recovering them Download PDF

Info

Publication number
JP7248343B2
JP7248343B2 JP2021210035A JP2021210035A JP7248343B2 JP 7248343 B2 JP7248343 B2 JP 7248343B2 JP 2021210035 A JP2021210035 A JP 2021210035A JP 2021210035 A JP2021210035 A JP 2021210035A JP 7248343 B2 JP7248343 B2 JP 7248343B2
Authority
JP
Japan
Prior art keywords
underwater vehicles
underwater
water
control means
water control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021210035A
Other languages
Japanese (ja)
Other versions
JP2022031417A (en
Inventor
岡秀 金
裕幸 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017072283A external-priority patent/JP7006900B2/en
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2021210035A priority Critical patent/JP7248343B2/en
Publication of JP2022031417A publication Critical patent/JP2022031417A/en
Application granted granted Critical
Publication of JP7248343B2 publication Critical patent/JP7248343B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、水底探査等の調査作業を行う複数の水中航走体の投入方法、及び揚収方法に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for launching a plurality of underwater vehicles for survey work such as bottom exploration, and a method for lifting and recovering them.

海洋や湖沼等において、調査水域に水中航走体を投入して水底探査等の調査作業を行う場合、水上に位置する船舶や水中に配置された装置が水中航走体に対する制御を行っている。
例えば特許文献1には、母船とケーブル接続された水中ステーションを海中に配設し、音響トランスポンダを探査地点近くの海底に配置し、複数の無索式無人潜水艇を水中ステーション及び音響トランスポンダと超音波信号を用いて通信させすることで誘導し、必要に応じて無索式無人潜水艇を水中ステーションにドッキングさせて充電又は電池交換と探査データの吸い上げを行う技術が開示されている。
また、特許文献2には、第1トランスポンダ、第1受波器及び第2受波器を備えた水中ステーションを母船から海中に吊り下げ、海底に第2トランスポンダを設置し、探査用の自律型無人航走体に第3トランスポンダ及び第3受波器を設け、水中ステーションは第2トランスポンダの信号を第1受波器で受信することによって定点保持を図り、自律型無人航走体は、探査中は第2トランスポンダの信号を第3受波器で受信することによって自航し、動力が減少すると第1トランスポンダの信号を第3受波器で受信することによって水中ステーションに向かって航走し、水中ステーションは第3トランスポンダの信号を第2受波器で受信することによって自律型無人航走を収容するための姿勢制御を行う技術が開示されている。
また、特許文献3には、水上に位置する母船に送波器を設け、探査用の無人潜水機に受波器を設け、母船から無人潜水機に制御信号を送る水中音響通信において、画素信号のハフ変換を利用して伝送誤りを補正する技術が開示されている。
また、特許文献4には、母船と水中航走体との間における通信を中継する自走中継器を観察領域の水面近傍に配置し、自走中継器と母船との間の通信は電波通信で行い、自走中継器と水中航走体との間の通信は音響通信で行うことによって、水平方向の通信可能距離を向上させる技術が開示されている。
In the ocean, lakes, etc., when an underwater vehicle is put into a survey water area to perform survey work such as underwater exploration, the underwater vehicle is controlled by a ship located on the water or a device placed in the water. .
For example, in Patent Document 1, an underwater station cable-connected to a mother ship is arranged in the sea, an acoustic transponder is arranged on the seabed near a survey point, and a plurality of unmanned unmanned submersibles are installed together with the underwater station and acoustic transponder. A technology is disclosed in which communication is performed using sound waves to guide the unmanned submersible, and if necessary, the unmanned underwater vehicle is docked to an underwater station for charging or battery replacement and exploration data retrieval.
Further, in Patent Document 2, an underwater station equipped with a first transponder, a first wave receiver and a second wave receiver is suspended in the sea from a mother ship, a second transponder is installed on the seabed, and an autonomous type for exploration The unmanned vehicle is equipped with a third transponder and a third wave receiver, and the underwater station attempts to maintain a fixed point by receiving the signal of the second transponder with the first wave receiver. In the middle, self-propelled by receiving the signal of the second transponder with the third receiver, and when the power decreases, it sails towards the underwater station by receiving the signal of the first transponder with the third receiver. , discloses a technique in which an underwater station performs attitude control for accommodating autonomous unmanned navigation by receiving a signal from a third transponder with a second receiver.
Further, Patent Document 3 discloses underwater acoustic communication in which a mother ship located on the water is provided with a transmitter, an unmanned submersible for exploration is provided with a receiver, and a control signal is sent from the mother ship to the unmanned submersible. A technique for correcting transmission errors using the Hough transform of is disclosed.
Further, in Patent Document 4, a self-propelled repeater that relays communication between a mother ship and an underwater vehicle is arranged near the water surface of an observation area, and communication between the self-propelled repeater and the mother ship is radio communication. , and communication between the self-propelled repeater and the underwater vehicle is performed by acoustic communication, thereby improving the communicable distance in the horizontal direction.

特開平3-266794号公報JP-A-3-266794 特開2003-26090号公報Japanese Patent Application Laid-Open No. 2003-26090 特開平5-147583号公報JP-A-5-147583 特開2001-308766号公報Japanese Patent Application Laid-Open No. 2001-308766

ところで、水中航走体は速度が遅いため1台だけでは広い水域を調査するのに時間がかかるが、エネルギー消費の面などから水中航走体の速度を上げるのには限界がある。そこで、広い水域を効率よく調査するために複数の水中航走体を投入することが考えられる。しかし、複数の水中航走体を用いて調査を行う場合は、1台の水中航走体を用いて調査を行う場合に比べて投入及び揚収作業に時間がかかる。また、水中航走体の投入及び揚収作業は、専用の設備を備えた専用船を用いて行うのが一般的であり、専用船のスケジュールが空くのを待つ必要があるため、水底探査の計画が希望通りに進まないといった課題がある。
特許文献1記載の発明は、水中ステーションや複数の無索式無人潜水艇の投入・揚収作業を効率よく安全に行うことについて開示するものではない。また、母船と水中ステーションがケーブルで接続されているため、母船や水中ステーションの移動が制限される。
特許文献2記載の発明は、水中ステーションや複数の自律型無人航走体の投入・揚収作業を効率よく安全に行うことについて開示するものではない。また、水中ステーションが母船から吊り下げられているため、母船や水中ステーションの移動が制限される。
特許文献3記載の発明は、水中音響通信が水面や海底の反射音の影響を受けやすいことを考慮し、伝送誤りを含んでいても正しい制御信号を推定することで無人潜水機が無制御状態に陥ることを防止しようとするものである。しかし、複数の無人潜水機の投入・揚収作業を効率よく安全に行うことについて開示するものではない。
特許文献4記載の発明は、自走中継器が自己の現在位置情報と水中航走体の現在位置情報とに基づいて水平移動の要否を判断し、水中航走体との通信状態を維持することが記載されている。また、水中航走体を複数投入することができる旨の記載がある。しかし、自走中継器や水中航走体の投入・揚収作業を効率よく安全に行うことについて開示するものではない。
By the way, since the speed of the underwater vehicle is slow, it takes time to survey a wide water area with only one vehicle, but there is a limit to increasing the speed of the underwater vehicle in terms of energy consumption. Therefore, it is conceivable to deploy a plurality of underwater vehicles in order to efficiently survey a wide area of water. However, when conducting surveys using a plurality of underwater vehicles, it takes more time to put in and lift up than when conducting surveys using one underwater vehicle. In addition, since it is common to use a dedicated vessel equipped with dedicated equipment to launch and recover underwater vehicles, it is necessary to wait for the schedule of the dedicated vessel to become available. There is a problem that the plan does not proceed as desired.
The invention described in Patent Document 1 does not disclose how to efficiently and safely carry out loading and unloading operations of an underwater station and a plurality of unmanned unmanned submersibles. In addition, since the mothership and the underwater station are connected by cables, movement of the mothership and the underwater station is restricted.
The invention described in Patent Document 2 does not disclose how to efficiently and safely carry out loading and unloading operations of an underwater station and a plurality of autonomous unmanned vehicles. Also, since the underwater station is suspended from the mothership, movement of the mothership and the underwater station is restricted.
The invention described in Patent Document 3 takes into account that underwater acoustic communication is susceptible to reflected sounds from the surface of the water and the seabed. It is intended to prevent falling into However, it does not disclose the efficient and safe loading and unloading of a plurality of unmanned submersibles.
In the invention described in Patent Document 4, the self-propelled repeater determines whether horizontal movement is necessary based on its own current position information and the current position information of the underwater vehicle, and maintains the communication state with the underwater vehicle. It is stated that Also, there is a description that a plurality of underwater vehicles can be introduced. However, it does not disclose the efficient and safe loading and unloading of self-propelled repeaters and underwater vehicles.

そこで本発明は、複数の水中航走体を展開・運用して水底探査等の調査作業を行うにあたって、水中航走体の投入及び揚収作業を効率よく安全に行うことができる複数の水中航走体の投入方法、及び揚収方法を提供することを目的とする。 Accordingly, the present invention provides a plurality of underwater vehicles capable of efficiently and safely carrying out the work of loading, picking up and recovering underwater vehicles when conducting survey work such as underwater exploration by deploying and operating a plurality of underwater vehicles. An object of the present invention is to provide a method of throwing in a running body and a method of picking it up.

請求項1記載に対応した複数の水中航走体の投入方法は、母船から水底を探査するための複数の水中航走体を水中に投入するに当たり、複数の水中航走体を管制するための数管理を有し水面の近傍を移動可能な水上管制手段を先に進水させ、その後に、複数の水中航走体を順次水中に投入するとともに、数管理部により水上管制手段を頂点とする略円錐状の範囲である管制領域内に位置する複数の水中航走体の数を管理し、水上管制手段の移動を管制領域内に位置する水中航走体の数に基づいて水中航走体の最大数を管制できるように制御することを特徴とする。
請求項1に記載の本発明によれば、先に水上管制手段が進水されるため、水上管制手段による水中航走体の管制を、水中航走体の投入後速やかに開始することができる。これにより、投入作業の効率及び安全性が向上する。
なお、探査とは観測、捜索、採取、救援、運搬等およそ水底において水中航走体が行なう行為の全体を含む。
A method for launching a plurality of underwater vehicles corresponding to claim 1 is a method for controlling a plurality of underwater vehicles when launching the plurality of underwater vehicles for exploring the bottom of the sea from a mother ship. A water control means having a number management unit and capable of moving near the surface of the water is first launched, and then a plurality of underwater vehicles are successively thrown into the water , and the number management unit controls the water control means at the top. The number of underwater vehicles located within the control area, which is a substantially conical range, is controlled, and the movement of the water control means is controlled based on the number of underwater vehicles located within the control area. It is characterized by controlling the maximum number of running bodies .
According to the first aspect of the present invention, since the water control means is launched first, the control of the underwater vehicle by the water control means can be started immediately after the underwater vehicle is launched. . This improves the efficiency and safety of the loading operation.
Exploration includes all actions such as observation, search, collection, rescue, transportation, etc. performed by an underwater vehicle on the bottom of the water.

請求項2記載の本発明は、先に進水した水上管制手段は、進水後、母船から所定距離離れるように移動することを特徴とする。
請求項2に記載の本発明によれば、水上管制手段は、後から投入される水中航走体が衝突したり、投入作業の邪魔となることがなく、投入された複数の水中航走体の管制を行うことができる。これにより、投入作業の効率及び安全性がさらに向上する。
According to a second aspect of the present invention, the previously launched water control means moves away from the mother ship by a predetermined distance after the launch.
According to the second aspect of the present invention, the water control means prevents a plurality of underwater vehicles introduced later from colliding with each other or interfering with the launching work. can be controlled. This further improves the efficiency and safety of the loading operation.

請求項3記載の本発明は、複数の水中航走体の投入順序は、水中航走体の沈降速度及び/又は潜航速度を考慮して定められることを特徴とする。
請求項3に記載の本発明によれば、例えば沈降速度や潜航速度が他よりも遅い水中航走体を先に投入することなどにより、探査開始までの時間を短縮でき、探査作業全体の効率を向上させることができる。また、各水中航走体間の沈降速度や潜航速度の差を考慮した投入順序とすることで、投入した水中航走体同士の衝突を防止することができ、安全性が向上する。
The present invention according to claim 3 is characterized in that the injection order of the plurality of underwater vehicles is determined in consideration of the settling speed and/or the diving speed of the underwater vehicles.
According to the third aspect of the present invention, for example, by inserting an underwater vehicle having a slower settling speed or submerged speed than others, the time until the start of exploration can be shortened, and the efficiency of the entire exploration work can be reduced. can be improved. In addition, by setting the order of introduction in consideration of the difference in sinking speed and submerged speed among the underwater vehicles, it is possible to prevent the underwater vehicles from colliding with each other, thereby improving safety.

請求項4記載の本発明は、母船の上で複数の水中航走体の探査深度を水中航走体に設定し、かつ水上管制手段に探査深度を入力することを特徴とする。
請求項4に記載の本発明によれば、複数の水中航走体に、予め設定した探査深度において、水上管制手段の管制を受けながら探査作業を行わせることができる。また、作業スペースの広く取れる母船の上で、かつ水に触れることなく探査深度を入力できる。
The present invention according to claim 4 is characterized in that the exploration depths of a plurality of underwater vehicles are set for the underwater vehicles on the mother ship, and the exploration depths are input to the water control means.
According to the fourth aspect of the present invention, a plurality of underwater vehicles can be made to perform exploration work at a preset exploration depth while being controlled by the water control means. In addition, it is possible to enter the exploration depth on a mothership with a large working space and without touching the water.

請求項5記載に対応した複数の水中航走体の揚収方法は、母船に水底を探査するための複数の水中航走体を水中から揚収するに当たり、複数の水中航走体を順次水中から揚収した後に、複数の水中航走体を管制するための数管理を有し水面の近傍を移動可能な水上管制手段であって、数管理部により水上管制手段を頂点とする略円錐状の範囲である管制領域内に位置する複数の水中航走体の数を管理し、水上管制手段の移動を管制領域内に位置する水中航走体の数に基づいて水中航走体の最大数を管制できるように制御する水上管制手段を揚収することを特徴とする。
請求項5に記載の本発明によれば、水中航走体の位置や通信状態を水上管制手段で把握しながら揚収することができる。これにより、揚収作業の効率及び安全性が向上する。
A method for lifting a plurality of underwater vehicles corresponding to claim 5 is provided in a method for lifting a plurality of underwater vehicles for exploring the bottom of a sea to a mother ship, wherein the plurality of underwater vehicles are sequentially lifted into the water. Water control means having a number management unit for controlling a plurality of underwater vehicles after being lifted up from the watercraft and capable of moving near the surface of the water , wherein the water control means is the top by the number management unit Manage the number of underwater vehicles located within a conical control area, and control the movement of water control means based on the number of underwater vehicles located within the control area. It is characterized by lifting and recovering the water control means that controls the maximum number .
According to the fifth aspect of the present invention, the underwater vehicle can be lifted and recovered while the position and communication state of the underwater vehicle are grasped by the water control means. This improves the efficiency and safety of the lifting and stowing work.

請求項6記載の本発明は、後から揚収する水上管制手段は、複数の水中航走体を揚収している間は、母船から所定距離離れた位置で待機することを特徴とする。
請求項6に記載の本発明によれば、水上管制手段は、浮上して来る水中航走体が衝突したり、揚収作業の邪魔となることがなく、揚収を待つ複数の水中航走体の管制を最後まで行うことができる。これにより、揚収作業の効率及び安全性がさらに向上する。
According to a sixth aspect of the present invention, the water control means to be lifted and recovered later is on standby at a position a predetermined distance away from the mother ship while the plurality of underwater vehicles are being lifted and recovered.
According to the sixth aspect of the present invention, the water control means prevents a surfacing underwater vehicle from colliding with it and does not interfere with the lifting operation. You can control your body to the end. This further improves the efficiency and safety of the lifting operation.

請求項7記載の本発明は、複数の水中航走体の揚収する順序は、浮上した順であることを特徴とする。
請求項7に記載の本発明によれば、先に浮上した水中航走体に後から浮上した水中航走体が衝突することを防止できる。また、浮上した水中航走体が水に流されて見失うことを防止できる。
The present invention according to claim 7 is characterized in that the order of lifting and recovering the plurality of underwater vehicles is the order of surfacing.
According to the seventh aspect of the present invention, it is possible to prevent an underwater vehicle that surfaced later from colliding with an underwater vehicle that surfaced earlier. In addition, it is possible to prevent the underwater vehicle that has surfaced from being washed away by the water and lost sight of.

請求項8記載の本発明は、複数の水中航走体の揚収が完了するまで、水上管制手段は管制を行うことを特徴とする。
請求項8に記載の本発明によれば、全ての水中航走体が揚収されるまで水上管制手段による水中航走体の管制が継続されるので、揚収作業の効率及び安全性が向上する。
The present invention according to claim 8 is characterized in that the water control means performs control until the lifting and recovering of the plurality of underwater vehicles is completed.
According to the eighth aspect of the present invention, since control of the underwater vehicle by the water control means is continued until all the underwater vehicles are lifted and recovered, the efficiency and safety of the lifting operation are improved. do.

本発明の複数の水中航走体の投入方法によれば、先に水上管制手段が進水されるため、水上管制手段による水中航走体の管制を、水中航走体の投入後速やかに開始することができる。これにより、投入作業の効率及び安全性が向上する。 According to the method of launching a plurality of underwater vehicles of the present invention, since the water control means is launched first, the control of the underwater vehicles by the water control means is started immediately after the underwater vehicles are launched. can do. This improves the efficiency and safety of the loading operation.

また、先に進水した水上管制手段は、進水後、母船から所定距離離れるように移動する場合には、水上管制手段は、後から投入される水中航走体が衝突したり、投入作業の邪魔となることがなく、投入された複数の水中航走体の管制を行うことができる。これにより、投入作業の効率及び安全性がさらに向上する。 In addition, when the water control means that was launched first moves away from the mother ship by a predetermined distance after the launch, the water control means will not be affected by collisions with underwater vehicles that will be launched later, and the launching work will be delayed. It is possible to control a plurality of underwater vehicles that have been introduced without interfering with the watercraft. This further improves the efficiency and safety of the loading operation.

また、複数の水中航走体の投入順序は、水中航走体の沈降速度及び/又は潜航速度を考慮して定められる場合には、例えば沈降速度や潜航速度が他よりも遅い水中航走体を先に投入することなどにより、探査開始までの時間を短縮でき、探査作業全体の効率を向上させることができる。また、各水中航走体間の沈降速度や潜航速度の差を考慮した投入順序とすることで、投入した水中航走体同士の衝突を防止することができ、安全性が向上する。 In addition, when the order of inserting a plurality of underwater vehicles is determined in consideration of the settling speed and/or diving speed of the underwater vehicle, for example, the underwater vehicle whose settling speed or diving speed is slower than the others By putting in first, the time until the start of exploration can be shortened, and the efficiency of the whole exploration work can be improved. In addition, by setting the order of introduction in consideration of the difference in sinking speed and submerged speed among the underwater vehicles, it is possible to prevent the underwater vehicles from colliding with each other, thereby improving safety.

また、母船の上で複数の水中航走体の探査深度を水中航走体に設定し、かつ水上管制手段に探査深度を入力する場合には、複数の水中航走体に、予め設定した探査深度において、水上管制手段の管制を受けながら探査作業を行わせることができる。また、作業スペースの広く取れる母船の上で、かつ水に触れることなく探査深度を入力できる。 Further, when setting the exploration depths of a plurality of underwater vehicles on the mother ship and inputting the exploration depths to the water control means, the previously set exploration depths are set for the plurality of underwater vehicles. At depth, exploration work can be performed under the control of the water control means. In addition, it is possible to enter the exploration depth on a mothership with a large working space and without touching the water.

また、本発明の複数の水中航走体の揚収方法によれば、水中航走体の位置や通信状態を水上管制手段で把握しながら揚収することができる。これにより、揚収作業の効率及び安全性が向上する。 Further, according to the method for lifting and recovering a plurality of underwater vehicles of the present invention, the underwater vehicles can be lifted and recovered while the positions and communication states of the underwater vehicles are grasped by the water control means. This improves the efficiency and safety of the lifting and stowing work.

また、後から揚収する水上管制手段は、複数の水中航走体を揚収している間は、母船から所定距離離れた位置で待機する場合には、水上管制手段は、浮上して来る水中航走体が衝突したり、揚収作業の邪魔となることがなく、揚収を待つ複数の水中航走体の管制を最後まで行うことができる。これにより、揚収作業の効率及び安全性がさらに向上する。 Further, when the water control means to be lifted up later waits at a position a predetermined distance away from the mother ship while the plurality of underwater vehicles are being lifted up, the water control means will rise to the surface. A plurality of underwater vehicles waiting for unloading can be controlled to the end without the underwater vehicles colliding or interfering with the work of unloading. This further improves the efficiency and safety of the lifting operation.

また、複数の水中航走体の揚収する順序は、浮上した順である場合には、先に浮上した水中航走体に後から浮上した水中航走体が衝突することを防止できる。また、浮上した水中航走体が水に流されて見失うことを防止できる。 In addition, when the order in which the plurality of underwater vehicles are lifted up is the order in which they surface, it is possible to prevent the underwater vehicle that surfaced earlier from colliding with the underwater vehicle that surfaced later. In addition, it is possible to prevent the underwater vehicle that has surfaced from being washed away by the water and lost sight of.

また、複数の水中航走体の揚収が完了するまで、水上管制手段は管制を行う場合には、全ての水中航走体が揚収されるまで水上管制手段による水中航走体の管制が継続されるので、揚収作業の効率及び安全性が向上する。 In addition, in the case where the water control means performs control until all underwater vehicles have been lifted and recovered, the water control means shall continue to control the underwater vehicles until all underwater vehicles have been lifted and recovered. Since it is continued, the efficiency and safety of the lifting operation are improved.

本発明の実施形態による複数の水中航走体の運用システムの概略構成図1 is a schematic configuration diagram of an operating system for a plurality of underwater vehicles according to an embodiment of the present invention; FIG. 同水中航走体の外観斜視図Appearance perspective view of the underwater vehicle 同水上管制手段及び複数の水中航走体の載置状態を示す図A view showing the water control means and a plurality of underwater vehicles on which they are placed. 同水中航走体の揚収作業を示す図Diagram showing the work of lifting and recovering the underwater vehicle 同投入・揚収システムの概略構成図Schematic diagram of the loading/unloading system 同水中航走体の制御ブロック図Control block diagram of the underwater vehicle 同水中航走体の制御フロー図Control flow diagram of the underwater vehicle 同水上管制手段の制御ブロック図Control block diagram of the water control means 同水上管制手段の制御フロー図Control flow diagram of the water control means

以下に、本発明の実施形態による複数の水中航走体の投入方法、揚収方法、及び複数の水中航走体の投入・揚収システムについて説明する。 A method for launching a plurality of underwater vehicles, a method for lifting and recovering, and a system for launching and recovering a plurality of underwater vehicles according to embodiments of the present invention will be described below.

図1は複数の水中航走体の運用システムの概略構成図、図2は水中航走体の外観斜視図である。
図1では、海洋や湖沼等において、調査水域に1台の水上管制手段20を進水させ、複数の水中航走体30を投入し、水底を探査することにより鉱物資源やエネルギー資源等の調査作業を行う状態を示している。水上管制手段20及び水中航走体30は、母船(支援船)10に積載して調査水域まで運搬してきたものである。
水上管制手段20及び水中航走体30は無人かつ無索で自律航走するロボットであり、水面の近傍に配置された水上管制手段20が、電波の届かない水中で調査作業を行う複数の水中航走体30に対して音響信号を利用した管制を行っている。
FIG. 1 is a schematic configuration diagram of an operating system for a plurality of underwater vehicles, and FIG. 2 is an external perspective view of the underwater vehicle.
In FIG. 1, one water control means 20 is launched into an investigation water area in an ocean, a lake, etc., and a plurality of underwater vehicles 30 are launched to explore the bottom of the water to investigate mineral resources, energy resources, and the like. It shows the state of working. The water control means 20 and the underwater vehicle 30 were loaded on the mother ship (support ship) 10 and transported to the survey water area.
The water control means 20 and the underwater vehicle 30 are unmanned, untethered and autonomously cruising robots. Control using acoustic signals is performed for the medium running body 30 .

水上管制手段20には、洋上中継器(ASV:Autonomous Surface Vehicle)を用いている。水上管制手段20は、端部が半球面となった筒型の本体20aと、本体20aの上面に延設された垂直翼20bとを備える。母船10から調査水域に進水させた水上管制手段20は、本体20aが水中に没して垂直翼20bの上部が水面上に突き出た半潜水状態で用いられる。垂直翼20bの上部には、GPS等の自己位置把握手段21と、衛星通信アンテナ及び無線LANアンテナ等の海上通信手段22が搭載されている。水上管制手段20は、自己位置把握手段21を用いてGNSS(全地球航法衛星システム)衛星1からのGNSS信号を受信することにより、自己の位置を把握できる。また、海上通信手段22を用いて母船10との通信を行うことができる。
また、本体20aの後部には舵及びプロペラを有する移動手段23が設けられており、移動手段23によって水面の近傍を移動することができる。
また、本体20aの下面には、音響測位手段24及び通信手段25が設けられている。通信手段25は、音波を送信する送波器と音波を受信する受波器とを有する。水上管制手段20は、音響測位手段24を用いて水中航走体30の位置を測定すると共に、通信手段25を用いて水中航走体30と音響信号による双方向通信を行い、水中航走体30を管制している。水上管制手段20から水中に向けて発信される音響信号が到達し易いのは、水上管制手段20を頂点とした略円錐状の範囲であるため、この略円錐状の範囲を水上管制手段20が管制する管制領域Xとしている。
A marine repeater (ASV: Autonomous Surface Vehicle) is used for the water control means 20 . The water control means 20 includes a cylindrical main body 20a with a hemispherical end, and vertical wings 20b extending from the upper surface of the main body 20a. The water control means 20 launched from the mother ship 10 into the survey water area is used in a semi-submerged state in which the main body 20a is submerged and the upper part of the vertical wings 20b protrudes above the water surface. Self-positioning means 21 such as GPS and maritime communication means 22 such as satellite communication antennas and wireless LAN antennas are mounted on the upper portion of the vertical wing 20b. The water control means 20 can grasp its own position by receiving GNSS signals from the GNSS (Global Navigation Satellite System) satellites 1 using the self-positioning means 21 . Also, communication with the mother ship 10 can be performed using the maritime communication means 22 .
Further, a moving means 23 having a rudder and a propeller is provided at the rear portion of the main body 20a, and the moving means 23 can move near the surface of the water.
Further, acoustic positioning means 24 and communication means 25 are provided on the lower surface of the main body 20a. The communication means 25 has a wave transmitter that transmits sound waves and a wave receiver that receives sound waves. The water control means 20 uses the acoustic positioning means 24 to measure the position of the underwater vehicle 30, and uses the communication means 25 to perform two-way communication with the underwater vehicle 30 using acoustic signals. Controls 30. Acoustic signals transmitted underwater from the water control means 20 tend to reach a substantially conical range with the water control means 20 at the apex. A control area X is controlled.

水中航走体30には、水上管制手段20との接続にケーブルを用いずに水中を自律的に航走する無索自律無人型の航走体(AUV:Autonomous Underwater Vehicle)を用いている。水上管制手段20は複数の水中航走体30を音響信号を用いて管制するため、水上管制手段20にケーブル用の設備を設ける必要が無く、また、ケーブルが絡んだり、ケーブルによって水上管制手段20の移動が制限されたりすることがない。
図1では、複数の水中航走体30を、1台の第1水中航走体30Aと、2台の第2水中航走体30Bとした場合を示している。第1水中航走体30A及び第2水中航走体30Bには、舵、推進器及びバラスト(重り)などの航走手段(潜航手段)31が設けられており、この航走手段31によって水中を航走及び潜航することができる。また、水中航走体30には、自機の位置の測定に用いる自機測位手段32と、水上管制手段20との音響信号による双方向通信に用いる通信手段33と、水上管制手段20の音響測位手段24から発せられる信号に対して返答を行う音響トランスポンダ(図示無し)が設けられている。通信手段33は、音波を送信する送波器と音波を受信する受波器とを有する。水中航走体30は、水上管制手段20による測位が所定回数失敗した場合や、水上管制手段20との通信に所定回数失敗した場合などは、緊急浮上させて母船10に回収することができる。
ホバリング型の第1水中航走体30Aは、第2水中航走体30Bよりも航走速度を遅くすることができる。また、垂直スラスタや水平スラスタを有し、第2水中航走体30Bよりも動きの自由度が高く、水流等がある場所においても位置を保持することができるため、主に水底近くでの精密な調査作業を担う。第1水中航走体30Aには、水底の映像撮影を行うための撮像手段41が設けられている。撮像手段41は、例えば照明を備えたカメラである。
図2(a)は第2水中航走体30Bの上方斜視図、図2(b)は第2水中航走体30Bの下方斜視図である。航走型の第2水中航走体30Bは、第1水中航走体30Aよりも機敏かつ高速に動くことができるため、主に水底から離れた位置でより広い範囲における調査作業を担う。第2水中航走体30Bには、水底の地形の調査を行う地形調査手段42と水底下の地層の調査を行う地層調査手段43が設けられている。地形調査手段42及び地層調査手段43は、例えばソナーである。また、第2水中航走体30Bは、航走手段(潜航手段)31として、後部に推進器31Aを備え、下部にバラスト(重り)31Bを備えている。バラスト31Bは、第2水中航走体30Bから切り離し可能に取り付けられている。
The underwater vehicle 30 is an autonomous underwater vehicle (AUV) that autonomously navigates underwater without using a cable for connection with the water control means 20 . Since the water control means 20 controls a plurality of underwater vehicles 30 using acoustic signals, there is no need to provide equipment for cables in the water control means 20, and the cables may become entangled or the water control means 20 may be damaged by the cables. movement is not restricted.
FIG. 1 shows a case where the plurality of underwater vehicles 30 are one first underwater vehicle 30A and two second underwater vehicles 30B. The first underwater vehicle 30A and the second underwater vehicle 30B are provided with navigation means (diving means) 31 such as a rudder, propeller and ballast (weight). can sail and dive. In addition, the underwater vehicle 30 has own positioning means 32 used to measure its own position, communication means 33 used for two-way communication by acoustic signals with the water control means 20 , An acoustic transponder (not shown) is provided for replying to the signals emitted by the positioning means 24 . The communication means 33 has a wave transmitter that transmits sound waves and a wave receiver that receives sound waves. When positioning by the water control means 20 fails a predetermined number of times, or when communication with the water control means 20 fails a predetermined number of times, the underwater vehicle 30 can be urgently surfaced and recovered to the mother ship 10. - 特許庁
The first hovering underwater vehicle 30A can travel at a slower speed than the second underwater vehicle 30B. In addition, it has a vertical thruster and a horizontal thruster, and has a higher degree of freedom of movement than the second underwater vehicle 30B. responsible for the investigation work. The first underwater vehicle 30A is provided with imaging means 41 for taking an image of the bottom of the water. The imaging means 41 is, for example, a camera equipped with illumination.
FIG. 2(a) is an upper perspective view of the second underwater vehicle 30B, and FIG. 2(b) is a lower perspective view of the second underwater vehicle 30B. Since the cruising type second underwater vehicle 30B can move more agilely and faster than the first underwater vehicle 30A, it is mainly responsible for survey work in a wider range at a position away from the bottom of the water. The second underwater vehicle 30B is provided with topography survey means 42 for surveying the topography of the water bottom and stratum survey means 43 for surveying the strata under the water bottom. The topography survey means 42 and stratum survey means 43 are, for example, sonar. In addition, the second underwater vehicle 30B has a propeller 31A at the rear and a ballast (weight) 31B at the bottom as navigation means (diving means) 31. As shown in FIG. The ballast 31B is detachably attached to the second underwater vehicle 30B.

次に、水上管制手段20及び複数の水中航走体30の投入・揚収システムについて、図3から図5を用いて説明する。 Next, the system for loading and unloading the water control means 20 and the plurality of underwater vehicles 30 will be described with reference to FIGS. 3 to 5. FIG.

図3は水上管制手段20及び複数の水中航走体30の載置状態を示す図、図4は水中航走体30の揚収作業を示す図である。
本実施形態の投入・揚収システムは、母船10に搭載されている。母船10は水中航走体30の投入・揚収作業用の専用設備が設けられた専用船ではなく、一般船である。
図3に示すように、投入・揚収システムは、水上管制手段20を載置する水上管制手段用載置台50と、水中航走30を載置する水中航走体用載置台60を備える。水上管制手段用載置台50の下部には入替手段51が設けられ、水中航走体用載置台60の下部には入替手段61が設けられている。
また、図4に示すように、投入・揚収システムは、投入・揚収設備70を備える。投入・揚収設備70は一般船に装備又は搭載可能なクレーンを含む設備であり、水上管制手段20を進水及び揚収する機能と、水中航走体30を投入及び揚収する機能を有している。これにより、水上管制手段20と水中航走体30を同じ設備を用いて進水、投入及び揚収することができる。また、母船10に一般船を用いることができるため、専用船のスケジュールに左右されることなく水底探査を行うことができる。
本実施形態では、入替手段51、61をキャスターとしている。水上管制手段20及び水中航走体30の投入・揚収順序に従って、入替手段51、61により、水上管制手段用載置台50と水中航走体用載置台60の投入・揚収設備70との位置関係を入れ替えることができる。これにより、水上管制手段20及び複数の水中航走体30を安定して載置、入れ替え、投入及び揚収作業をスムーズに行うことができる。図4では、第2水中航走体30Bの揚収作業を行うにあたり、母船10上の所定位置に水中航走体用載置台60が配置された状態を示している。
なお、入替手段51、61は、水上管制手段用載置台50と水中航走体用載置台60を移動させて投入・揚収設備70との位置関係を入れ替えるロボットアームやコンベヤー等であってもよい。
FIG. 3 is a diagram showing a state in which the water control means 20 and the plurality of underwater vehicles 30 are placed, and FIG.
The loading/unloading system of this embodiment is mounted on the mother ship 10 . The mother ship 10 is not a dedicated ship provided with dedicated facilities for loading and unloading the underwater vehicle 30, but a general ship.
As shown in FIG. 3, the loading/unloading system includes a water control means mounting base 50 on which the water control means 20 is mounted, and an underwater vehicle mounting base 60 on which the underwater vehicle 30 is mounted. A replacement means 51 is provided under the water control means mounting base 50 , and a replacement means 61 is provided under the underwater vehicle mounting base 60 .
In addition, as shown in FIG. 4 , the charging/lifting system includes charging/lifting equipment 70 . The loading/unloading facility 70 is a facility including a crane that can be equipped or mounted on a general ship, and has a function of launching and unloading the water control means 20 and a function of loading and unloading the underwater vehicle 30. are doing. As a result, the water control means 20 and the underwater vehicle 30 can be launched, thrown into the water and lifted up using the same equipment. In addition, since a general ship can be used as the mother ship 10, the sea bottom exploration can be performed without being affected by the schedule of the dedicated ship.
In this embodiment, the replacement means 51 and 61 are casters. According to the order of loading and unloading of the water control means 20 and the underwater vehicle 30, the replacement means 51 and 61 switch the mounting base 50 for the water control means and the loading/lifting facility 70 for the mounting base 60 for the underwater vehicle. You can change the positional relationship. As a result, the water control means 20 and the plurality of underwater vehicles 30 can be stably placed, replaced, thrown in, and lifted up and recovered smoothly. FIG. 4 shows a state in which the underwater vehicle mounting table 60 is arranged at a predetermined position on the mother ship 10 when the second underwater vehicle 30B is lifted and collected.
The exchange means 51 and 61 may be a robot arm, a conveyor, or the like that moves the water control means mounting base 50 and the underwater vehicle mounting base 60 to change the positional relationship with the loading/unloading equipment 70. good.

図5は投入・揚収システムの概略構成図である。
投入・揚収システムは、表示手段80を備える。表示手段80は、水中航走体30の投入順序又は揚収順序を表示するものであり、例えば電光掲示板、パソコンの画面、水中航走体30に付された番号などである。本実施形態では、表示手段80を、投入・揚収作業を行う作業指揮者から視認可能な位置に設けられた電光掲示板81と、各水中航走体30に付した識別番号82としている。表示手段80を備えることにより、複数の水中航走体30の投入順序又は揚収順序の間違いを防止して、作業の効率及び安全性を向上させることができる。
FIG. 5 is a schematic configuration diagram of the loading/unloading system.
The loading/unloading system comprises display means 80 . The display means 80 displays the order of loading or unloading the underwater vehicle 30, such as an electronic bulletin board, a screen of a personal computer, or a number assigned to the underwater vehicle 30. FIG. In this embodiment, the display means 80 is an electronic bulletin board 81 provided at a position visible to the work leader who carries out the loading/unloading work, and an identification number 82 attached to each underwater vehicle 30 . By providing the display means 80, it is possible to prevent mistakes in the order of loading or unloading the plurality of underwater vehicles 30, thereby improving work efficiency and safety.

母船10から複数の水中航走体30を投入するに当たっては、母船10から複数の水中航走体30を投入する前に、水上管制手段20を進水させる。水上管制手段20を進水させた後に水中航走体30を投入することで、水上管制手段20による水中航走体30の管制を、水中航走体30の投入後速やかに開始することができる。また、寸法的に水中航走体30よりも大きい水上管制手段20を先に進水させることにより、複数の水中航走体30の母船10上における作業スペースも広く確保できる。これにより、投入作業の効率及び安全性が向上する。
先に進水した水中航走体30よりも寸法的にも大きい水上管制手段20は、進水後、母船10から所定距離H離れるように移動する。所定距離Hは、後から投入される水中航走体30が衝突したり、投入作業の邪魔となることがなく、かつ、後から投入される複数の水中航走体30の管制を行うことができる範囲内とする。これにより、投入作業の効率及び安全性がさらに向上する。なお、所定距離Hは、水中航走体30の投入位置からの所定距離H1として設定してもよいし、船舶の側面からの所定距離H2として設定してもよい。
When launching the plurality of underwater vehicles 30 from the mother ship 10, the water control means 20 is launched before launching the plurality of underwater vehicles 30 from the mother ship 10.例文帳に追加By launching the underwater vehicle 30 after launching the water control means 20, the control of the underwater vehicle 30 by the water control means 20 can be started immediately after the underwater vehicle 30 is launched. . In addition, by launching the water control means 20 which is dimensionally larger than the underwater vehicle 30, a large work space can be secured on the mother ship 10 for the plurality of underwater vehicles 30. FIG. This improves the efficiency and safety of the loading operation.
The water control means 20, which is dimensionally larger than the previously launched underwater vehicle 30, moves away from the mother ship 10 by a predetermined distance H after the launch. The predetermined distance H is such that the underwater vehicle 30 to be launched later does not collide with the vehicle or interfere with the launching operation, and the plurality of underwater vehicles 30 to be launched later can be controlled. within the possible range. This further improves the efficiency and safety of the loading operation. The predetermined distance H may be set as a predetermined distance H1 from the injection position of the underwater vehicle 30, or may be set as a predetermined distance H2 from the side of the ship.

複数の水中航走体30の投入順序は、水中航走体30の沈降速度又は潜航速度の少なくとも一方を考慮して定めることが好ましい。
例えば沈降速度や潜航速度が第2水中航走体30Bよりも遅く、探査深度も大きい第1水中航走体30Aを先に投入することなどにより、探査開始までの時間を短縮でき、探査作業全体の効率を向上させることができる。また、各水中航走体30間の沈降速度や潜航速度の差を考慮した投入順序とすることで、投入した水中航走体30同士の衝突を防止することができ、安全性が向上する。
It is preferable to determine the injection order of the plurality of underwater vehicles 30 in consideration of at least one of the settling speed and the diving speed of the underwater vehicles 30 .
For example, the first underwater vehicle 30A, which has a lower settling speed and submersion speed than the second underwater vehicle 30B and a larger depth of exploration, can be introduced first, thereby shortening the time until the start of exploration and reducing the overall exploration work. efficiency can be improved. In addition, by setting the order of introduction in consideration of the difference in sinking speed and submerged speed among the underwater vehicles 30, it is possible to prevent the underwater vehicles 30 from colliding with each other, thereby improving safety.

また、母船10の上で複数の水中航走体30の探査深度を水中航走体30に設定し、かつ水上管制手段20に水中航走体30に設定した探査深度を入力することが好ましい。これにより、予め設定した探査深度において、複数の水中航走体30が水上管制手段20の管制を受けながら探査作業を行うことができる。また、作業スペースを広く取れる母船10の上で、かつ水に触れることなく探査深度を入力できる。
なお、探査深度以外に、探査ミッション、探査領域、航走経路などといった探査に必要な情報を入力することにより探査条件として設定することも可能である。
Moreover, it is preferable to set the exploration depths of the plurality of underwater vehicles 30 on the mother ship 10 to the underwater vehicles 30 and input the exploration depths set for the underwater vehicles 30 to the water control means 20 . As a result, a plurality of underwater vehicles 30 can perform exploration work while being controlled by the water control means 20 at a preset exploration depth. Further, the exploration depth can be input on the mother ship 10 where a wide work space can be obtained and without touching the water.
In addition to the exploration depth, it is also possible to set the exploration conditions by inputting information necessary for the exploration such as the exploration mission, the exploration area, and the cruising route.

母船10に複数の水中航走体30を揚収するに当たっては、複数の水中航走体30を順次水中から揚収した後に、水上管制手段20を揚収する。最後に水上管制手段20を揚収することで、水中航走体30の位置や通信状態を水上管制手段20で把握しながら揚収することができる。これにより、揚収作業の効率及び安全性が向上する。
水上管制手段20は、複数の水中航走体30を揚収している間は、母船10から所定距離H離れた位置で待機する。所定距離Hは、浮上してくる水中航走体30が衝突したり、水中航走体30の揚収作業の邪魔となることがなく、かつ、揚収されていない水中航走体30の管制を行うことができる範囲内とする。これにより、揚収作業の効率及び安全性がさらに向上する。なお、所定距離Hは、水中航走体30の揚収位置からの所定距離H1として設定してもよいし、船舶の側面からの所定距離H2として設定してもよい。
When the plurality of underwater vehicles 30 are to be lifted onto the mother ship 10, the water control means 20 is lifted after the plurality of underwater vehicles 30 are sequentially lifted from the water. Finally, by lifting the water control means 20, the position and communication state of the underwater vehicle 30 can be grasped by the water control means 20 while lifting. This improves the efficiency and safety of the lifting and stowing work.
The water control means 20 stands by at a predetermined distance H from the mother ship 10 while the plurality of underwater vehicles 30 are being lifted up. The predetermined distance H is such that the floating underwater vehicle 30 does not collide with the underwater vehicle 30 or interfere with the lifting operation of the underwater vehicle 30, and the underwater vehicle 30 that has not been lifted is controlled. within the scope that can be performed. This further improves the efficiency and safety of the lifting operation. In addition, the predetermined distance H may be set as a predetermined distance H1 from the lifting position of the underwater vehicle 30, or may be set as a predetermined distance H2 from the side of the ship.

複数の水中航走体30の揚収順序は、浮上した順であることが好ましい。浮上した順に揚収することで、先に浮上した水中航走体30に後から浮上した水中航走体30が衝突することを防止できる。また、浮上した水中航走体30が水に流されて見失うことを防止できる。 The order in which the plurality of underwater vehicles 30 are lifted and recovered is preferably the order in which they surfaced. By lifting and recovering in the order in which they surface, it is possible to prevent the underwater vehicle 30 that surfaced later from colliding with the underwater vehicle 30 that surfaced first. In addition, it is possible to prevent the floating underwater vehicle 30 from being washed away by the water and lost sight of.

また、複数の水中航走体30の揚収が完了するまで、水上管制手段20は、母船10から所定距離H離れた位置で水中航走体30の管制を行うことが好ましい。全ての水中航走体30が揚収されるまで水上管制手段20による水中航走体30の管制を継続することにより、揚収作業の効率及び安全性が向上する。 Further, it is preferable that the water control means 20 controls the underwater vehicles 30 at a position a predetermined distance H from the mother ship 10 until the lifting of the plurality of underwater vehicles 30 is completed. By continuing the control of the underwater vehicle 30 by the water control means 20 until all the underwater vehicle 30 are lifted and recovered, the efficiency and safety of the lifting operation are improved.

次に、水中航走体30の制御について、図6及び図7を用いて説明する。
図6は水中航走体30の制御ブロック図、図7は水中航走体30の制御フロー図である。
水中航走体30は、航走手段31、自機測位手段32、通信手段33、設定手段34、深度計35、探査ミッション遂行手段36、伝送手段37、記録手段38、航走速度設定部39、航走制御部40、撮像手段41、地形調査手段42及び地層調査手段43を備える。
探査ミッション遂行手段36は、深度制御部36A、潜航制御部36B、位置推定部36C、時刻管理部36D、ミッション制御部36Eを有する。
航走制御部40は、管制領域判断部40Aを有する。
Next, control of the underwater vehicle 30 will be described with reference to FIGS. 6 and 7. FIG.
6 is a control block diagram of the underwater vehicle 30, and FIG. 7 is a control flow diagram of the underwater vehicle 30. As shown in FIG.
The underwater vehicle 30 includes navigation means 31 , self-positioning means 32 , communication means 33 , setting means 34 , depth gauge 35 , exploration mission execution means 36 , transmission means 37 , recording means 38 , and navigation speed setting section 39 . , a navigation control unit 40 , an imaging means 41 , a terrain investigation means 42 and a stratum investigation means 43 .
The exploration mission execution means 36 has a depth control section 36A, a diving control section 36B, a position estimation section 36C, a time management section 36D, and a mission control section 36E.
The cruise control unit 40 has a control area determination unit 40A.

母船10に乗船しているオペレーターは、水中航走体30を母船10から探査水域に投入する前に、設定手段34を用いて、水中航走体30に対して、水中航走体30の探査ミッション、探査深度、探査領域及び航走経路などといった探査に必要な情報を入力することにより探査条件設定を行うと共に、航走速度設定部39を用いて、水中航走体30に対して、航走速度を設定する(ステップ1)。探査ミッション、探査深度、探査領域及び航走経路は、水中航走体30ごとに異ならせて設定する。
設定した探査深度などの探査条件及び航走速度は、後述のように水上管制手段20に入力する。
探査領域は、設定された各々の探査深度において、複数の水中航走体30が各々の探査領域を有するように設定することが好ましい。これにより、一層効率よく探査を行うことができる。
また、航走経路は、各々の探査領域を航走する水中航走体30の航走軌跡が、同時刻に重ならないように、航走経路を設定することが好ましい。これにより、探査深度が近接した水中航走体30同士の衝突を防止して安全性を高めることができる。また、水中航走体30が上下に重ならないようにすることで、水中航走体30が誤観測を起こしたり観測不能に陥ったりすることを低減できる。
また、水中航走体30ごとに異ならせて設定する探査深度は、探査深度が水底に近い低高度探査深度と、探査深度が水底から遠い高高度探査深度を有することが好ましく、低高度探査深度は水底からの高度(距離)が1m以上50m未満とし、高高度探査深度は水底からの高度(距離)が10m以上200m未満とすることがより好ましい。これにより、水底に近い領域と、水底から遠い領域を効率よく探査することができる。本実施形態では、ホバリング型の第1水中航走体30Aが低高度探査深度の領域の探査を担い、航走型の第2水中航走体30Bが高高度探査深度の領域の探査を担っている。第1水中航走体30Aの航走速度は第2水中航走体30Bの航走速度よりも遅いため、水底近くでの探査をより精密なものとすることができる。
An operator on board the mother ship 10 uses the setting means 34 to instruct the underwater vehicle 30 to explore the underwater vehicle 30 before the underwater vehicle 30 is introduced from the mother ship 10 into the exploration water area. By inputting information necessary for exploration such as mission, depth of exploration, exploration area and navigation route, exploration conditions are set, and the navigation speed setting unit 39 is used to control the underwater vehicle 30 to navigate. Set the running speed (step 1). The exploration mission, exploration depth, exploration area, and navigation route are set differently for each underwater vehicle 30 .
The search conditions such as the set search depth and the cruising speed are input to the water control means 20 as described later.
The exploration area is preferably set so that the plurality of underwater vehicles 30 have their respective exploration areas at each of the set exploration depths. As a result, exploration can be performed more efficiently.
Further, it is preferable to set the cruising route so that the trajectories of the underwater vehicle 30 navigating the respective exploration areas do not overlap at the same time. As a result, it is possible to prevent collisions between the underwater vehicles 30 whose exploration depths are close to each other, thereby enhancing safety. In addition, by preventing the underwater vehicle 30 from overlapping vertically, it is possible to reduce the occurrence of erroneous observations of the underwater vehicle 30 and the failure of observation.
In addition, the exploration depth set differently for each underwater vehicle 30 preferably has a low-altitude exploration depth close to the water bottom and a high-altitude exploration depth far from the water bottom. is more preferably 1 m or more and less than 50 m in altitude (distance) from the water bottom, and the high-altitude exploration depth is more preferably 10 m or more and less than 200 m in altitude (distance) from the water bottom. As a result, an area close to the bottom of the water and an area far from the bottom of the water can be efficiently explored. In the present embodiment, the first hovering underwater vehicle 30A is responsible for exploration of the low altitude exploration depth region, and the second navigation underwater vehicle 30B is responsible for exploration of the high altitude exploration depth region. there is Since the cruising speed of the first underwater vehicle 30A is slower than the cruising speed of the second underwater vehicle 30B, the exploration near the bottom of the water can be made more precise.

ステップ1の後、複数の水中航走体30を投入順序に従って水中に投入する(ステップ2)。
先に進水させた水上管制手段20は、投入された水中航走体30の管制を開始する。
After step 1, a plurality of underwater vehicles 30 are thrown into the water according to the order of throwing (step 2).
The water control means 20 launched first starts controlling the underwater vehicle 30 that has been thrown into the water.

ステップ2の後、複数の水中航走体30は潜航及び沈降を開始する(ステップ3)。
潜航は推進器31A及びバラスト31Bを用いて行い、沈降は推進器31を停止してバラスト31Bの重さのみによって行う。
潜航及び沈降にあたって複数の水中航走体30の各々は、深度計35及び自機測位手段32を用いて自機の深度及び位置を測定し、深度制御部36A、潜航制御部36B及び位置推定部36Cを有する探査ミッション遂行手段36が、ステップ1で設定された探査深度に従って航走制御部40を制御する。航走制御部40は、探査ミッション遂行手段36による制御と航走速度設定部39で設定された航走速度に従って航走手段31を制御する。
自機測位手段32による自機の位置の測定は、例えば、速度センサ及びジャイロセンサを搭載し、自機の速度及び加速度を検出して算出することにより行う。
After step 2, the plurality of underwater vehicles 30 start diving and sinking (step 3).
Diving is performed using the propeller 31A and ballast 31B, and sinking is performed only by the weight of the ballast 31B with the propeller 31 stopped.
When diving and sinking, each of the plurality of underwater vehicles 30 measures the depth and position of the vehicle using the depth gauge 35 and the vehicle positioning means 32, and controls the depth control section 36A, the diving control section 36B, and the position estimation section. The exploration mission execution means 36 having 36C controls the cruise control section 40 according to the exploration depth set in step 1. The cruising control unit 40 controls the cruising means 31 according to the control by the exploration mission accomplishing means 36 and the cruising speed set by the cruising speed setting unit 39 .
The measurement of the position of the own machine by the own machine positioning means 32 is performed by, for example, installing a speed sensor and a gyro sensor, and detecting and calculating the speed and acceleration of the own machine.

ステップ3の後、設定された探査深度に達した水中航走体30は航走を開始する(ステップ4)。
設定された探査深度で航走を開始した各水中航走体30は、自機測位手段32を用いて自機の位置を測定し、探査ミッション遂行手段36に送信する。位置推定部36Cを有する探査ミッション遂行手段36は、ステップ1で設定された探査領域を水中航走体30が航走するように航走制御部40を制御する。航走制御部40は、探査ミッション遂行手段36による制御と航走速度設定部39で設定された航走速度に従って航走手段31を制御する。これにより、水中航走体30は探査領域を航走する(ステップ5)。
時刻を管理する時刻管理部36Dを有する探査ミッション遂行手段36は、ステップ1で設定された航走経路に従って、他の水中航走体30と航走軌跡が同時刻に重ならないように航走制御部40を制御する。
After step 3, the underwater vehicle 30 that has reached the set exploration depth starts sailing (step 4).
Each underwater vehicle 30 that has started cruising at the set exploration depth measures its position using its own positioning means 32 and transmits it to the exploration mission accomplishing means 36 . The exploration mission accomplishing means 36 having the position estimating section 36C controls the navigation control section 40 so that the underwater vehicle 30 navigates the exploration area set in step 1. FIG. The cruising control unit 40 controls the cruising means 31 according to the control by the exploration mission accomplishing means 36 and the cruising speed set by the cruising speed setting unit 39 . Thereby, the underwater vehicle 30 navigates the investigation area (step 5).
The exploration mission execution means 36 having a time management unit 36D that manages time follows the cruising route set in step 1, and controls the cruising so that the cruising trajectories of the other underwater vehicles 30 do not overlap at the same time. control unit 40;

航走制御部40は、探査ミッション遂行手段36から受信した自機の推定位置、深度及び水上管制手段20との通信状態に基づいて、水上管制手段20の管制領域X内で航走する(ステップ6)。通信状態は、例えばシグナル/ノイズ比(S/N比)で把握する。
また、航走制御部40は、管制領域判断部40Aを有し、自機の推定位置及び水上管制手段20との通信状態に基づいて、自機が管制領域X内に位置するか否かを定期的に判断する(ステップ7)。
The navigation control unit 40 navigates within the control area X of the water control means 20 based on the estimated position and depth of the aircraft received from the exploration mission execution means 36 and the state of communication with the water control means 20 (step 6). The communication state is grasped, for example, by a signal/noise ratio (S/N ratio).
Further, the cruise control unit 40 has a control area determination unit 40A, and determines whether or not the own aircraft is located within the control area X based on the estimated position of the own aircraft and the state of communication with the water control means 20. Periodically judge (step 7).

ステップ7において、自機が管制領域X内にいると判断した場合には、探査ミッションを遂行する(ステップ8)。
探査ミッション遂行手段36のミッション制御部36Eが、第1水中航走体30Aに設けられた撮像手段41を制御することにより、水底の映像撮影を行うことができる。また、ミッション制御部36Eが、第2水中航走体30Bに設けられた地形調査手段42及び地層調査手段43を制御することにより、水底の地形及び水底下の地層の情報を得ることができる。
得られた撮影画像、水底の地形及び水底下の地層の情報といった探査ミッション遂行結果は、ハードディスクや磁気テープ等の記録手段38に記録される。また、伝送手段37で符号化等の処理が行われた後に通信手段33を用いて水上管制手段20へ送信される(ステップ9)。
If it is determined in step 7 that the aircraft is within the control area X, the exploration mission is carried out (step 8).
The mission control section 36E of the exploration mission accomplishing means 36 controls the imaging means 41 provided in the first underwater vehicle 30A, so that images of the bottom of the water can be photographed. In addition, the mission control unit 36E controls the landform survey means 42 and the stratum survey means 43 provided in the second underwater vehicle 30B to obtain information on the topography of the water bottom and the stratum below the seabed.
The results of the exploration mission, such as the obtained photographed images, the topography of the water bottom, and the information on the strata below the water bottom, are recorded in a recording means 38 such as a hard disk or magnetic tape. Also, after processing such as encoding is performed by the transmission means 37, it is transmitted to the water control means 20 using the communication means 33 (step 9).

ステップ9の後、探査ミッション遂行手段36は、設定された探査ミッションを完了したと判断した場合は、探査ミッションを終了し(ステップ10)、自機を浮上させる(ステップ11)。 After step 9, when the search mission accomplishing means 36 determines that the set search mission has been completed, it ends the search mission (step 10) and floats its own aircraft (step 11).

ステップ7において、自機が管制領域X内にいないと判断した場合には、探査ミッション遂行手段は、探査続行不可能と判断し、自機を浮上させる(ステップ11)。
なお、浮上させる前に、自機測位手段32による測位結果等に基づいて、位置推定部36Cによる自機の位置推定を行い、管制領域Xに戻れるか否かを判断し、戻れないと判断した場合に浮上させるようにしてもよい。
If it is determined in step 7 that the aircraft is not within the control area X, the exploration mission accomplishing means determines that the exploration cannot be continued, and floats the aircraft (step 11).
Before floating, the position of the aircraft is estimated by the position estimating unit 36C based on the positioning results of the aircraft positioning means 32, etc., and it is determined whether or not it is possible to return to the control area X, and it is determined that it is not possible to return. You may make it float in case.

次に、水上管制手段20の制御について、図8及び図9を用いて説明する。
図8は水上管制手段20の制御ブロック図、図9は水上管制手段20の制御フロー図である。
水上管制手段20は、自己位置把握手段21、海上通信手段22、移動手段23、音響測位手段24、通信手段25、管制設定部26及び移動制御手段27を備える。
移動制御手段27は、数管理部27A、待機制御部27B、位置推定部27C、航走記録部27D及び管制判断部27Eを有する。
Next, the control of the water control means 20 will be described with reference to FIGS. 8 and 9. FIG.
8 is a control block diagram of the water control means 20, and FIG. 9 is a control flow chart of the water control means 20. As shown in FIG.
The water control means 20 includes self-localization means 21 , maritime communication means 22 , movement means 23 , acoustic positioning means 24 , communication means 25 , control setting section 26 and movement control means 27 .
The movement control means 27 has a number management section 27A, a standby control section 27B, a position estimation section 27C, a cruise recording section 27D, and a control determination section 27E.

母船10に乗船しているオペレーターは、水上管制手段20を母船10から調査水域に進水させる前に、管制設定部26を用いて、水上管制手段20に対して、水上管制手段20の移動範囲、管制すべき水中航走体30の数や性能、深度などといった管制に必要な情報を入力することにより管制設定を行う(ステップ11)。
ステップ11の後、調査水域に進水した水上管制手段20は、後から投入された水中航走体30に対する管制を開始する。まず、音響測位手段24を用いて複数の水中航走体30のそれぞれの位置を測定し、測位結果を移動制御手段27に送信する(ステップ12)。
ステップ12の後、通信手段25を用いて複数の水中航走体30のそれぞれとの通信状態を測定し、測定結果を移動制御手段27に送信する(ステップ13)。通信状態は、例えばシグナル/ノイズ比(S/N比)で把握する。
移動制御手段27は、受信したステップ12における測位結果とステップ13における測定結果に基づいて、複数の水中航走体30のそれぞれの航走経路を時刻とともに航走記録部27Dに記録する(ステップ14)。
Before launching the water control means 20 from the mother ship 10 into the survey water area, the operator on board the mother ship 10 uses the control setting unit 26 to set the movement range of the water control means 20 to the water control means 20. , control setting is performed by inputting information necessary for control such as the number, performance and depth of underwater vehicles 30 to be controlled (step 11).
After step 11, the water control means 20 launched into the survey water area starts control of the underwater vehicle 30 that is launched later. First, the position of each of the plurality of underwater vehicles 30 is measured using the acoustic positioning means 24, and the positioning results are transmitted to the movement control means 27 (step 12).
After step 12, the communication state with each of the plurality of underwater vehicles 30 is measured using the communication means 25, and the measurement results are transmitted to the movement control means 27 (step 13). The communication state is grasped, for example, by a signal/noise ratio (S/N ratio).
The movement control means 27 records the respective cruising routes of the plurality of underwater vehicles 30 along with the time in the cruising recording section 27D based on the received positioning results in step 12 and the measurement results in step 13 (step 14). ).

ステップ14の後、数管理部27Aは、ステップ11における管制設定で入力された水中航走体30の数と、ステップ14で航走経路が記録された水中航走体30の数とを比較し、管制すべき水中航走体30の全数が管制領域X内に位置するか否かを判断する(ステップ15)。
ステップ15において、管制すべき水中航走体30の数と航走経路が記録された水中航走体30の数が同じか多いと判断した場合、すなわち管制すべき水中航走体30の全数が管制領域X内に位置すると判断した場合には、その結果を管制判断部27Eに送信する。
この場合において、移動制御手段27は、航走記録部27Dに記録された航走経路等に基づいて複数の水中航走体30の行動を予測し、その予測結果に基づいて水中航走体30が管制領域Xから外れないように水上管制手段20を移動するように制御してもよい。これにより、水中航走体30が管制領域Xから外れることを未然に防ぐことができる。
なお、水上管制手段20を移動するに当り、移動開始時点での管制領域Xの中に位置する複数の水中航走体30の数が減じない範囲で移動することが好ましい。これにより、管制領域X内に位置する水中航走体30の数が減少することを防止できる。
After step 14, the number management unit 27A compares the number of underwater vehicles 30 input in the control setting in step 11 with the number of underwater vehicles 30 whose cruising routes are recorded in step 14. , it is determined whether or not all underwater vehicles 30 to be controlled are located within the control area X (step 15).
If it is determined in step 15 that the number of underwater vehicles 30 to be controlled and the number of underwater vehicles 30 whose navigation routes are recorded are the same or greater, that is, the total number of underwater vehicles 30 to be controlled is If it is determined that it is located within the control area X, it transmits the result to the control determination section 27E.
In this case, the movement control means 27 predicts the actions of the plurality of underwater vehicles 30 based on the cruising routes and the like recorded in the cruising recording section 27D, and based on the prediction results, the underwater vehicles 30 may be controlled to move the water control means 20 so as not to deviate from the control area X. This can prevent the underwater vehicle 30 from leaving the control area X in advance.
In moving the water control means 20, it is preferable to move within a range that does not reduce the number of the plurality of underwater vehicles 30 positioned in the control area X at the start of movement. As a result, the number of underwater vehicles 30 positioned within the control area X can be prevented from decreasing.

ステップ15において、管制すべき水中航走体30の数よりも航走経路が記録された水中航走体30の数が少ないと判断した場合、すなわち管制すべき水中航走体30の一部又は全数が管制領域Xを外れたと判断した場合には、位置推定部27Cは、航走記録部27Dに記録された水中航走体30の航走経路に基づいて、管制領域Xを外れた水中航走体30が存在する方向を推定する(ステップ16)。
ステップ16の後、待機制御部27Bは、ステップ15において水中航走体30が管制領域Xを外れたことが最初に検出されたときから所定時間経過したか否かを判断する(ステップ17)。
ステップ17において、所定時間経過していないと判断した場合には、ステップ15に戻り、管制すべき水中航走体30の全てが管制領域X内にいるか否かを再度判断する。
ステップ17において、所定時間経過したと判断した場合には、待機制御部27Bは、ステップ15の判断結果を管制判断部27Eに送信すると共に、水上管制手段20の移動を開始するように指示する(ステップ18)。これにより移動手段23が動作して水上管制手段20が移動する。
管制すべき水中航走体30の一部又は全数が管制領域Xを外れたと判断した場合であっても、管制領域Xを外れた水中航走体30が自ら管制領域X内に戻ってくる可能性や、実際には管制領域X内に位置しているものの一時的な測位・通信障害により管制領域Xを外れたと誤って検出された可能性等があるため、本実施形態のように、水上管制手段20を移動するに当り、水中航走体30が管制領域Xを外れたことを検出してから所定時間待機し、その間にステップ5の判断を所定回数繰り返すことで、水上管制手段20が無用に動くことを低減できる。これにより、水上管制手段20のエネルギーの浪費や、管制領域X内に位置する水中航走体30が管制領域Xから外れてしまうことを防止できる。
また、位置推定部27Cが、航走記録部27Dに記録された水中航走体30の航走経路に基づいて、管制領域Xを外れた水中航走体30が存在する方向を推定し、移動制御手段27がこの推定結果に基づいて移動手段23を制御することで、水上管制手段20の管制精度や移動効率を向上させ、管制領域Xから外れた水中航走体30を管制領域X内により早く戻すことができる。
If it is determined in step 15 that the number of underwater vehicles 30 whose navigation routes are recorded is smaller than the number of underwater vehicles 30 to be controlled, that is, part of the underwater vehicles 30 to be controlled or When it is determined that all of them are out of the control area X, the position estimating unit 27C determines the underwater navigation unit 30 out of the control area X based on the navigation route of the underwater vehicle 30 recorded in the navigation recording unit 27D. The direction in which the running body 30 exists is estimated (step 16).
After step 16, the standby control unit 27B determines whether or not a predetermined time has passed since it was first detected that the underwater vehicle 30 left the control area X in step 15 (step 17).
If it is determined in step 17 that the predetermined time has not elapsed, the process returns to step 15 to determine again whether or not all underwater vehicles 30 to be controlled are within the control area X.
In step 17, when it is determined that the predetermined time has elapsed, the standby control unit 27B transmits the determination result of step 15 to the control determination unit 27E and instructs the water control means 20 to start moving ( step 18). As a result, the moving means 23 operates and the water control means 20 moves.
Even if it is determined that some or all of the underwater vehicles 30 to be controlled have left the control area X, the underwater vehicles 30 that have left the control area X may return to the control area X by themselves. There is also a possibility that it is erroneously detected as being outside the control area X due to a temporary positioning/communication failure even though it is actually located within the control area X. In order to move the control means 20, after detecting that the underwater vehicle 30 has left the control area X, the watercraft 30 waits for a predetermined period of time. Useless movement can be reduced. As a result, the waste of energy of the water control means 20 and the underwater vehicle 30 positioned within the control area X can be prevented from leaving the control area X.
Further, the position estimating unit 27C estimates the direction in which the underwater vehicle 30 that is outside the control area X exists based on the cruising route of the underwater vehicle 30 recorded in the cruising recording unit 27D. The control means 27 controls the movement means 23 based on this estimation result, thereby improving the control accuracy and movement efficiency of the water control means 20, and moving the underwater vehicle 30 out of the control area X into the control area X. can return quickly.

移動制御手段27は、水上管制手段20を移動させる場合、複数の水中航走体30の全てを管制できる位置に水上管制手段20が移動するように移動手段23を制御することが好ましい。これにより、全ての水中航走体30を水上管制手段20の管制下におくことができるため、より安全かつ効率的に水中探査を行うことができる。
また、複数の水中航走体30の全数を管制できない場合は、移動制御手段27は、複数の水中航走体30の最大数を管制できる位置に水上管制手段20が移動するように移動手段23を制御することが好ましい。これにより、管制領域Xから外れる水中航走体30の数を最小にすることができる。この場合、最大数は、複数の水中航走体30の数から管制領域Xを逸脱した水中航走体30、故障した水中航走体30、浮上した水中航走体30のいずれかを含む管制不可能数を減じた数であることが好ましい。これにより、探査可能な複数の水中航走体30を管制領域X内に位置させて水中探査を継続することができる。
When moving the water control means 20, the movement control means 27 preferably controls the movement means 23 so that the water control means 20 moves to a position where all of the plurality of underwater vehicles 30 can be controlled. As a result, all the underwater vehicles 30 can be placed under the control of the water control means 20, so that underwater exploration can be carried out more safely and efficiently.
Further, when all the plurality of underwater vehicles 30 cannot be controlled, the movement control means 27 causes the movement means 23 to move the water control means 20 to a position where the maximum number of the plurality of underwater vehicles 30 can be controlled. is preferably controlled. As a result, the number of underwater vehicles 30 deviating from the control area X can be minimized. In this case, the maximum number of underwater vehicles 30 includes any of the underwater vehicles 30 that deviate from the control area X, the underwater vehicles 30 that have broken down, and the underwater vehicles 30 that have surfaced. It is preferably a number obtained by subtracting the impossible number. As a result, a plurality of underwater vehicles 30 that can be explored can be positioned within the control area X to continue underwater exploration.

管制判断部27Eは、数管理部27A又は待機制御部27Bから送信された判断結果に基づいて、管制設定を変更するか否かを判断する(ステップ19)。
ステップ19では、数管理部27Aから判断結果を受信した場合であって、管制すべき水中航走体30の数と航走経路が記録された水中航走体30の数が同じ場合には、管制設定を変更せず、ステップ12となる。
また、数管理部27Aから判断結果を受信した場合であって、管制すべき水中航走体30の数よりも航走経路が記録された水中航走体30の数が多い場合には、ステップ11となり、管制設定部26は、管制領域Xに戻った水中航走体30を含めた管制設定に変更する。これにより、管制領域Xに戻った水中航走体30を含めて管制を継続することができる。
また、待機制御部27Bから判断結果を受信した場合、すなわち管制領域Xを外れた水中航走体30があるとの判断結果を受信した場合には、ステップ11となり、管制設定部26は、管制領域Xを外れた水中航走体30を除いた管制設定に変更する。これにより、管制領域Xを外れた水中航走体30を除いて管制を継続することができる。
The control determination unit 27E determines whether or not to change the control setting based on the determination result transmitted from the number management unit 27A or the standby control unit 27B (step 19).
In step 19, when the determination result is received from the number management unit 27A and the number of underwater vehicles 30 to be controlled is the same as the number of underwater vehicles 30 whose cruising routes are recorded, Without changing the control settings, go to step 12.
Further, when the determination result is received from the number management unit 27A, and when the number of underwater vehicles 30 whose cruising routes are recorded is greater than the number of underwater vehicles 30 to be controlled, step 11, the control setting unit 26 changes the control setting to include the underwater vehicle 30 that has returned to the control area X. As a result, control can be continued including the underwater vehicle 30 that has returned to the control area X.
Further, when the determination result is received from the standby control unit 27B, that is, when the determination result that there is an underwater vehicle 30 outside the control area X is received, the process proceeds to step 11, and the control setting unit 26 The control setting is changed to exclude the underwater vehicle 30 outside the region X. As a result, the control can be continued except for the underwater vehicle 30 that has left the control area X.

このように水上管制手段20は、複数の水中航走体30の数を管理する数管理部27Aを有することで、水上管制手段20の移動を、水中航走体30の数に基づいて制御することができる。
また、水上管制手段20が複数の水中航走体30を測位できる位置に移動するため、複数の水中航走体30を管制領域X内に位置させて調査作業を継続することができる。
また、水上管制手段20を複数の水中航走体30との通信が可能な位置に移動させることで、より安全かつ効率的に調査作業を行うことができる。
これらにより、複数の水中航走体30を見失うことなく広い水域を安全かつ効率的に調査することができる。
なお、複数の水中航走体30の設定手段34で設定される探査深度等の探査条件は、母船10における探査条件設定以外にも、母船10からの指示を水上管制手段20を介して、又は水上管制手段20にプログラムされたスケジュールに基づいて、自動的に更新することも可能である。
Thus, the water control means 20 has the number management section 27A for managing the number of the plurality of underwater vehicles 30, thereby controlling the movement of the water control means 20 based on the number of the underwater vehicles 30. be able to.
Further, since the water control means 20 moves the plurality of underwater vehicles 30 to positions where they can be positioned, the plurality of underwater vehicles 30 can be positioned within the control area X to continue the survey work.
Further, by moving the water control means 20 to a position where communication with the plurality of underwater vehicles 30 is possible, the survey work can be performed more safely and efficiently.
As a result, a wide area of water can be surveyed safely and efficiently without losing sight of the plurality of underwater vehicles 30 .
The exploration conditions such as the depth of exploration set by the setting means 34 of the plurality of underwater vehicles 30 may be set by instructions from the mother ship 10 via the water control means 20, or It can also be updated automatically based on a schedule programmed into the water control means 20 .

本発明の複数の水中航走体の投入方法、揚収方法、及び複数の水中航走体の投入・揚収システムは、複数の水中航走体を展開・運用して水底探査等の調査作業を行うにあたって、水中航走体の投入及び揚収作業を効率よく安全に行うことができる。 The method for inserting a plurality of underwater vehicles, the method for lifting up a plurality of underwater vehicles, and the system for inserting and lifting a plurality of underwater vehicles according to the present invention are used to deploy and operate a plurality of underwater vehicles to carry out survey work such as bottom exploration. In carrying out the operation, it is possible to efficiently and safely carry out the loading and unloading work of the underwater vehicle.

10 母船
20 水上管制手段
30 水中航走体
34 設定手段
50 水上管制手段用載置台
51 入替手段
60 水中航走体用載置台
61 入替手段
70 投入・揚収設備
80 表示手段
H 所定距離
10 Mother Ship 20 Water Control Means 30 Underwater Vehicle 34 Setting Means 50 Water Control Means Mounting Table 51 Replacement Means 60 Underwater Vehicle Mounting Table 61 Replacement Means 70 Loading/Receiving Equipment 80 Display Means H Predetermined Distance

Claims (8)

母船から水底を探査するための複数の水中航走体を水中に投入するに当たり、複数の前記水中航走体を管制するための数管理を有し水面の近傍を移動可能な水上管制手段を先に進水させ、その後に、複数の前記水中航走体を順次水中に投入するとともに、前記数管理部により前記水上管制手段を頂点とする略円錐状の範囲である管制領域内に位置する複数の前記水中航走体の数を管理し、前記水上管制手段の移動を前記管制領域内に位置する前記水中航走体の数に基づいて前記水中航走体の最大数を管制できるように制御することを特徴とする複数の水中航走体の投入方法。 Water control means having a number control section for controlling the plurality of underwater vehicles and capable of moving near the surface of the water when a plurality of underwater vehicles for exploring the bottom of the water are thrown into the water from the mother ship. is launched first, and then the plurality of underwater vehicles are sequentially thrown into the water, and the number management unit positions them within a control area that is a substantially conical range with the water control means as the apex and control the movement of the water control means to the maximum number of the underwater vehicles based on the number of the underwater vehicles located within the control area. A method of launching a plurality of underwater vehicles characterized by controlling to 先に進水した前記水上管制手段は、進水後、前記母船から所定距離離れるように移動することを特徴とする請求項1に記載の複数の水中航走体の投入方法。 2. The method of launching a plurality of underwater vehicles according to claim 1, wherein said water control means, which is launched first, moves away from said mother ship by a predetermined distance after being launched. 複数の前記水中航走体の投入順序は、前記水中航走体の沈降速度及び/又は潜航速度を考慮して定められることを特徴とする請求項1又は請求項2に記載の複数の水中航走体の投入方法。 3. The plurality of underwater vehicles according to claim 1 or 2, wherein the order of introduction of the plurality of underwater vehicles is determined in consideration of the settling speed and/or the diving speed of the underwater vehicles. How to insert the running body. 前記母船の上で複数の前記水中航走体の探査深度を前記水中航走体に設定し、かつ前記水上管制手段に前記探査深度を入力することを特徴とする請求項1から請求項3のうちの1項に記載の複数の水中航走体の投入方法。 4. The method according to any one of claims 1 to 3, wherein the exploration depths of the plurality of underwater vehicles are set for the underwater vehicles on the mother ship, and the exploration depths are input to the water control means. 1. A method of launching a plurality of underwater vehicles according to 1 above. 母船に水底を探査するための複数の水中航走体を水中から揚収するに当たり、複数の前記水中航走体を順次水中から揚収した後に、複数の前記水中航走体を管制するための数管理を有し水面の近傍を移動可能な水上管制手段であって、前記数管理部により前記水上管制手段を頂点とする略円錐状の範囲である管制領域内に位置する複数の前記水中航走体の数を管理し、前記水上管制手段の移動を前記管制領域内に位置する前記水中航走体の数に基づいて前記水中航走体の最大数を管制できるように制御する前記水上管制手段を揚収することを特徴とする複数の水中航走体の揚収方法。 When a plurality of underwater vehicles for exploring the bottom of the sea are lifted from the water to the mother ship, after the plurality of underwater vehicles are successively lifted from the water, the plurality of underwater vehicles are controlled. Water control means having a number management unit and capable of moving in the vicinity of the water surface, wherein the plurality of water control means positioned within a control area, which is a substantially conical range with the water control means at the apex, by the number management unit managing the number of underwater vehicles and controlling the movement of said water control means so as to control the maximum number of said underwater vehicles based on the number of said underwater vehicles located within said control area; A method for lifting and recovering a plurality of underwater vehicles, characterized by lifting and recovering water control means . 後から揚収する前記水上管制手段は、複数の前記水中航走体を揚収している間は、前記母船から所定距離離れた位置で待機することを特徴とする請求項5に記載の複数の水中航走体の揚収方法。 6. The plurality according to claim 5, wherein the water control means to be lifted up later waits at a position separated from the mother ship by a predetermined distance while the plurality of underwater vehicles are being lifted up. method for lifting and recovering an underwater vehicle. 複数の前記水中航走体の揚収する順序は、浮上した順であることを特徴とする請求項5又は請求項6に記載の複数の水中航走体の揚収方法。 7. The method for lifting and recovering a plurality of underwater vehicles according to claim 5, wherein the order of lifting and recovering the plurality of underwater vehicles is the order in which they surfaced. 複数の前記水中航走体の揚収が完了するまで、前記水上管制手段は管制を行うことを特徴とする請求項5から請求項7のうちの1項に記載の複数の水中航走体の揚収方法。 8. The plurality of underwater vehicles according to any one of claims 5 to 7, wherein said water control means performs control until lifting and recovering of said plurality of underwater vehicles is completed. pick-up method.
JP2021210035A 2017-03-31 2021-12-24 A method of inserting a plurality of underwater vehicles and a method of lifting and recovering them Active JP7248343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021210035A JP7248343B2 (en) 2017-03-31 2021-12-24 A method of inserting a plurality of underwater vehicles and a method of lifting and recovering them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017072283A JP7006900B2 (en) 2017-03-31 2017-03-31 Input / collection system for multiple underwater vehicles
JP2021210035A JP7248343B2 (en) 2017-03-31 2021-12-24 A method of inserting a plurality of underwater vehicles and a method of lifting and recovering them

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017072283A Division JP7006900B2 (en) 2017-03-31 2017-03-31 Input / collection system for multiple underwater vehicles

Publications (2)

Publication Number Publication Date
JP2022031417A JP2022031417A (en) 2022-02-18
JP7248343B2 true JP7248343B2 (en) 2023-03-29

Family

ID=87890850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021210035A Active JP7248343B2 (en) 2017-03-31 2021-12-24 A method of inserting a plurality of underwater vehicles and a method of lifting and recovering them

Country Status (1)

Country Link
JP (1) JP7248343B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308766A (en) 2000-04-18 2001-11-02 Mitsubishi Heavy Ind Ltd Communication system for underwater navigating object and self-propelled repeater for the same
JP2002145187A (en) 2000-11-16 2002-05-22 Mitsui Eng & Shipbuild Co Ltd Submarine boat and distribution measuring method
JP2009227086A (en) 2008-03-21 2009-10-08 Mitsubishi Heavy Ind Ltd Control type underwater information collecting system and underwater cruising vessel control system
JP2016144956A (en) 2015-02-06 2016-08-12 株式会社Ihi Underwater vehicle relative position control method and underwater vehicle relative position control system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081297A (en) * 1996-09-09 1998-03-31 Mitsubishi Heavy Ind Ltd Underwater information recovering and relaying method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308766A (en) 2000-04-18 2001-11-02 Mitsubishi Heavy Ind Ltd Communication system for underwater navigating object and self-propelled repeater for the same
JP2002145187A (en) 2000-11-16 2002-05-22 Mitsui Eng & Shipbuild Co Ltd Submarine boat and distribution measuring method
JP2009227086A (en) 2008-03-21 2009-10-08 Mitsubishi Heavy Ind Ltd Control type underwater information collecting system and underwater cruising vessel control system
JP2016144956A (en) 2015-02-06 2016-08-12 株式会社Ihi Underwater vehicle relative position control method and underwater vehicle relative position control system

Also Published As

Publication number Publication date
JP2022031417A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
KR102497993B1 (en) Control method of an underwater hang main body, input method of an underwater hang main body, pumping method of an underwater hang main body, control system of an underwater hang main body, and input and pumping equipment of an underwater hang main body control system
US9417351B2 (en) Marine seismic surveys using clusters of autonomous underwater vehicles
KR102531807B1 (en) A method for operating a plurality of underwater anti-subjects and an operating system for a plurality of submersible anti-submarine anti-submarine
EP2760732B1 (en) Autonomous underwater vehicle for marine seismic surveys
US11486346B1 (en) Autonomous underwater beacon locator
JP7148266B2 (en) Work method using autonomous unmanned submersible
WO2016023080A1 (en) Marine craft for performing surface operations
JP2009173073A (en) Underwater object searching system
JP2022145659A (en) Coupling system between water surface relay machine and underwater vehicle, and operation method for the same
JP7195582B2 (en) Method for lifting and recovering a plurality of underwater vehicles, and system for lifting and recovering a plurality of underwater vehicles
JP7142340B2 (en) Underwater probe information sharing method and underwater probe information sharing system
JP7006900B2 (en) Input / collection system for multiple underwater vehicles
CN110857996A (en) Submarine earthquake observation system and laying method thereof
JP7248343B2 (en) A method of inserting a plurality of underwater vehicles and a method of lifting and recovering them
JP7195583B2 (en) Operation method for multiple underwater vehicles and operation system for multiple underwater vehicles
JP6991544B2 (en) Underwater vehicle control method and underwater vehicle control system
US20240253753A1 (en) System and method for using autonomous underwater vehicles for ocean bottom seismic nodes
WO2022196812A1 (en) System for coupling aquatic relay machine and underwater cruising body, and operation method therefor
WO2023223101A1 (en) Gnss-equipped auv for deploying positioning transponders
WO2024161139A1 (en) System and method for using autonomous underwater vehicles for ocean bottom seismic nodes
JP2024118519A (en) Expandable underwater vehicle-surface repeater connection system and method for operating the expandable underwater vehicle-surface repeater connection system
CN114789772A (en) Docking device for recovering underwater robot, unmanned ship and recovery method
Collins Untethered AUV'S Can Reduce Costs For Offshore Inspection Jobs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230309

R150 Certificate of patent or registration of utility model

Ref document number: 7248343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150