JP7005237B2 - Electronics - Google Patents

Electronics Download PDF

Info

Publication number
JP7005237B2
JP7005237B2 JP2017171177A JP2017171177A JP7005237B2 JP 7005237 B2 JP7005237 B2 JP 7005237B2 JP 2017171177 A JP2017171177 A JP 2017171177A JP 2017171177 A JP2017171177 A JP 2017171177A JP 7005237 B2 JP7005237 B2 JP 7005237B2
Authority
JP
Japan
Prior art keywords
rotation
magnetic field
signal
magnet
hall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017171177A
Other languages
Japanese (ja)
Other versions
JP2019045420A (en
Inventor
太郎 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017171177A priority Critical patent/JP7005237B2/en
Publication of JP2019045420A publication Critical patent/JP2019045420A/en
Application granted granted Critical
Publication of JP7005237B2 publication Critical patent/JP7005237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Optical Transform (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Rotary Switch, Piano Key Switch, And Lever Switch (AREA)

Description

本発明は、電子機器の回転操作部材に関する。 The present invention relates to a rotation operating member of an electronic device.

特に、ユーザーが回転操作を行う撮像装置に用いられる回転操作部材(回転リング、回転ダイヤル、等)の構成に関するものである。分野は、撮像装置に加えて、音響機器、自動車、航空機、医療機器、等の回転操作部材(回転リング、回転ダイヤル、等)に適用できる。 In particular, it relates to a configuration of a rotation operation member (rotation ring, rotation dial, etc.) used in an image pickup device in which a user performs a rotation operation. The field can be applied to rotation operation members (rotation ring, rotation dial, etc.) of audio equipment, automobiles, aircraft, medical equipment, etc., in addition to image pickup devices.

デジタルカメラ等の撮像装置では、ダイヤル等の回転操作部材を回転操作することで、撮影条件の設定や機能の選択を行う事が可能である。回転操作部材の回転を検知する方法として、磁気センサを用いるものが提案されている。 In an image pickup device such as a digital camera, it is possible to set shooting conditions and select a function by rotating a rotation operation member such as a dial. As a method of detecting the rotation of the rotation operation member, a method using a magnetic sensor has been proposed.

例えば、特許文献1では、回転操作部材と一体で回転し、円周方向にS極とN極が交互に着磁されたリング状の回転磁石とGMRセンサで回転方向・回転量を検出する構成が開示されている。 For example, in Patent Document 1, the rotation direction and the amount of rotation are detected by a ring-shaped rotating magnet and a GMR sensor that rotate integrally with a rotation operating member and have S poles and N poles alternately magnetized in the circumferential direction. Is disclosed.

特開2013-073726号公報Japanese Unexamined Patent Publication No. 2013-03726

しかしながら、上述の特許文献に開示された従来技術では、向きの異なる水平磁場を回転動作の1クリック内で検知する必要がある。 However, in the prior art disclosed in the patent document described above, it is necessary to detect horizontal magnetic fields in different directions within one click of the rotational motion.

そのため、クリックピッチに対して、回転磁石の磁極ピッチを半分にする必要がある。 Therefore, it is necessary to halve the magnetic pole pitch of the rotating magnet with respect to the click pitch.

つまり、回転磁石の磁極数を、回転操作部材を1回転させた場合の総クリック数の倍の数に設定する必要がある。 That is, it is necessary to set the number of magnetic poles of the rotating magnet to be twice the total number of clicks when the rotation operating member is rotated once.

磁極数の増加は磁石の大型化につながるため、上述された従来技術では、回転操作部材の小型化が妨げられる恐れがある。 Since an increase in the number of magnetic poles leads to an increase in the size of the magnet, the above-mentioned prior art may hinder the miniaturization of the rotation operating member.

また、磁極1つあたりの大きさが小さいと、発生する磁束密度も低下するため、磁極数の多い構成では十分な磁束密度が得られずに、磁場検知の信頼性が低下する可能性がある。 Further, if the size per magnetic pole is small, the generated magnetic flux density also decreases, so that a sufficient magnetic flux density cannot be obtained in a configuration with a large number of magnetic poles, and the reliability of magnetic field detection may decrease. ..

そこで、本発明の目的は、小型化が可能でかつ検知信頼性に優れた回転操作部材を提供する事である。 Therefore, an object of the present invention is to provide a rotation operation member that can be miniaturized and has excellent detection reliability.

上記目的を達成するために、本発明の電子機器は、回転軸に対して第1の方向及び前記第1の方向と反対の第2の方向の両方向に回転可能に保持された回転操作部材と、前記回転操作部材に対して、所定の回転角度毎にクリック感を発生させるクリック機構と、前記所定の回転角度の2倍の周期を持つ第1の信号および第2の信号を、前記所定の回転角度以下の所定のずれ量を持って発生させる信号発生手段と、前記第1の信号及び前記第2の信号を用いて、前記所定の回転角度と同等の周期で立上りエッジ及び立下りエッジを持つ前記回転操作部材の回転量を示すパルス信号と前記回転操作部材の回転方向を示す回転方向信号を生成する信号発生手段と、を有する電子機器であって、
前記回転方向信号の出力が前記第1の方向の場合、前記パルス信号の立上りエッジで回転検知を行い、前記回転方向信号の出力が前記第2の方向の場合、前記パルス信号の立下がりエッジで回転検知を行う回転検知制御手段を有し、
前記信号発生手段は、前記所定の回転角度と等しいピッチで磁極が変化する磁場生成部材と、前記磁場生成部材の着磁面に垂直な第1の方向の磁場と、前記磁場生成部材の着磁面及び前記第1の方向の磁場と直交する方向の第2の方向の磁場を検知可能な磁場検知部と、を有し、
前記磁場検知部は単一の電気素子であることを特徴とする。
In order to achieve the above object, the electronic device of the present invention includes a rotation operating member rotatably held in both a first direction with respect to the rotation axis and a second direction opposite to the first direction. A click mechanism that generates a click feeling at each predetermined rotation angle with respect to the rotation operation member, and a first signal and a second signal having a period twice the predetermined rotation angle are provided. Using the signal generating means for generating with a predetermined deviation amount equal to or less than the rotation angle, the first signal and the second signal, the rising edge and the falling edge are generated in a cycle equivalent to the predetermined rotation angle. An electronic device having a pulse signal indicating the amount of rotation of the rotation operating member and a signal generating means for generating a rotation direction signal indicating the rotation direction of the rotation operating member.
When the output of the rotation direction signal is in the first direction, rotation detection is performed at the rising edge of the pulse signal, and when the output of the rotation direction signal is in the second direction, it is at the falling edge of the pulse signal. It has a rotation detection control means that detects rotation, and has
The signal generating means includes a magnetic field generating member whose magnetic pole changes at a pitch equal to the predetermined rotation angle, a magnetic field in a first direction perpendicular to the magnetizing surface of the magnetic field generating member, and magnetism of the magnetic field generating member. It has a surface and a magnetic field detecting unit capable of detecting a magnetic field in a second direction orthogonal to the magnetic field in the first direction.
The magnetic field detection unit is characterized by being a single electric element .

本発明によれば、小型で組立時のバラつきや外力などによる影響を受けずに安定して回転検知を行う事が可能な回転操作部材を得ることが出来る。 According to the present invention, it is possible to obtain a rotation operation member which is small in size and capable of stably performing rotation detection without being affected by variations during assembly or external force.

本発明の実施形態に係る電子機器の外観図External view of the electronic device according to the embodiment of the present invention 本発明の実施形態に係る電子機器のシステムブロック図System block diagram of an electronic device according to an embodiment of the present invention 図1の電子機器が備える回転操作部材の構成図Configuration diagram of the rotation operation member included in the electronic device of FIG. 図1の電子機器が備える回転操作部材の断面図Cross-sectional view of the rotation operating member included in the electronic device of FIG. 本発明の実施形態に係る磁石、ホールICの配置図Layout of the magnet and Hall IC according to the embodiment of the present invention 本発明の実施形態に係る磁場とホールICの信号を示す図The figure which shows the magnetic field and the signal of the Hall IC which concerns on embodiment of this invention. 本発明の実施形態に係る磁場とホールICの信号を示す図The figure which shows the magnetic field and the signal of the Hall IC which concerns on embodiment of this invention. 本発明の実施形態に係る磁場とホールICの信号を示す図The figure which shows the magnetic field and the signal of the Hall IC which concerns on embodiment of this invention. 本発明の実施形態に係る磁石とクリック部材の配置を示す図The figure which shows the arrangement of the magnet and the click member which concerns on embodiment of this invention. 本発明の第2の実施形態に係る回転操作部材の構成図Configuration diagram of the rotation operation member according to the second embodiment of the present invention. 本発明の第2の実施形態に係る回転操作部材の断面図Sectional drawing of rotation operation member which concerns on 2nd Embodiment of this invention 本発明の第2の実施形態に係る磁石とホールICの配置図Arrangement of magnet and Hall IC according to the second embodiment of the present invention 本発明の第3の実施形態に係る磁石とホールICの配置図Arrangement of magnet and Hall IC according to the third embodiment of the present invention 本発明の第4の実施形態に係る電子機器の外観図External view of the electronic device according to the fourth embodiment of the present invention.

(第1の実施例)
以下、図1及び図2を参照して、本発明の第1の実施例による、電子機器について説明する。なお、電子機器の例として、撮像装置に適用した場合を説明する。
(First Example)
Hereinafter, the electronic device according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. As an example of an electronic device, a case where it is applied to an image pickup device will be described.

(撮像装置の外観図)
図1(a)、(b)に本発明の回転操作部材を搭載した撮像装置の外観図を示す。
(Outline view of the image pickup device)
FIGS. 1 (a) and 1 (b) show external views of an image pickup apparatus equipped with the rotation operating member of the present invention.

図1(a)は撮像装置100の前面斜視図であり、図1(b)は撮像装置100の背面斜視図である。シャッターボタン61は撮影指示を行うための操作部である。モード切り替えスイッチ60は各種モードを切り替えるための操作部である。 FIG. 1A is a front perspective view of the image pickup apparatus 100, and FIG. 1B is a rear perspective view of the image pickup apparatus 100. The shutter button 61 is an operation unit for giving a shooting instruction. The mode changeover switch 60 is an operation unit for switching various modes.

ダイヤル71は回転操作部材であり、このダイヤル71を回すことで、シャッター速度や絞りなど各種設定値の変更等が行える。 The dial 71 is a rotation operation member, and by turning the dial 71, various set values such as a shutter speed and an aperture can be changed.

電源スイッチ72は撮像装置100の電源のON及びOFFを切り替える操作部材である。液晶画面40はTFTや有機ELを用いた表示装置であり、撮像装置の各種設定画面や撮影画像の表示を行う。 The power switch 72 is an operating member that switches the power of the image pickup apparatus 100 on and off. The liquid crystal screen 40 is a display device using a TFT or an organic EL, and displays various setting screens of the image pickup device and captured images.

回転操作部材200は時計周り、反時計周り方向に突き当たることなく回転可能なダイヤル状の操作部材であり、撮影モード選択や測距点選択、画像再生選択、メニュー操作等の様々な操作に使用される。 The rotation operation member 200 is a dial-shaped operation member that can rotate without hitting in the clockwise or counterclockwise direction, and is used for various operations such as shooting mode selection, AF point selection, image reproduction selection, and menu operation. To.

選択枠の移動や画像送りなどを行える。押しボタン270は押圧して操作を行うボタンであり、主に選択項目の決定などに用いられる。 You can move the selection frame and feed images. The push button 270 is a button that is pressed to perform an operation, and is mainly used for determining a selection item or the like.

通信端子10は撮像装置100が不図示の撮影レンズ(着脱可能)と通信を行う為の通信端子である。 The communication terminal 10 is a communication terminal for the image pickup apparatus 100 to communicate with a photographing lens (detachable) (not shown).

接眼ファインダー16は不図示のフォーカシングスクリーンを観察することで、不図示のレンズユニットを通して得た被写体の光学像の焦点や構図の確認を行うための覗き込み型のファインダーである。 The eyepiece finder 16 is a peep-type finder for confirming the focus and composition of an optical image of a subject obtained through a lens unit (not shown) by observing a focusing screen (not shown).

図2は撮像装置100のシステムブロック図である。 FIG. 2 is a system block diagram of the image pickup apparatus 100.

不揮発性メモリ101は、後述するCPU150が動作を行う際のプログラムを格納する。本実施例では、Flash-ROMとして説明を行うが、これは一例であり、不揮発性メモリであれば、他のメモリを適用することも可能である。 The non-volatile memory 101 stores a program when the CPU 150, which will be described later, operates. In this embodiment, the description will be given as Flash-ROM, but this is an example, and if it is a non-volatile memory, another memory can be applied.

RAM102は、撮像装置100で撮影される画像バッファや画像処理された画像データを一時的に記憶するための記憶手段の機能と、後述するCPU150が動作を行う際のワークメモリとして使用するRAMである。 The RAM 102 is a function of a storage means for temporarily storing an image buffer taken by the image pickup apparatus 100 and image processed image data, and a RAM used as a work memory when the CPU 150, which will be described later, operates. ..

本実施例では、これらの機能をRAMで行うようにしているが、アクセス速度が十分に問題ないレベルのメモリであれば、他のメモリを適用することも可能である。 In this embodiment, these functions are performed by RAM, but other memory can be applied as long as the memory has a level at which the access speed does not have a problem.

電源部105は、撮像装置100の電源部である。電源部105は電池やACアダプタ等で構成され、直接乃至は不図示のDC-DCコンバータ等を介して、撮像装置100の各ブロックに電源を供給する。 The power supply unit 105 is a power supply unit of the image pickup apparatus 100. The power supply unit 105 is composed of a battery, an AC adapter, or the like, and supplies power to each block of the image pickup apparatus 100 directly or via a DC-DC converter (not shown).

電源スイッチ72は、撮像装置100の電源スイッチである。本実施例では、図1に示すように、メカ的にオン/オフの位置を持つ構造で説明する。 The power switch 72 is a power switch for the image pickup apparatus 100. In this embodiment, as shown in FIG. 1, a structure having a mechanically on / off position will be described.

しかしながら、これに限定する必要はなく、プッシュスイッチ、電気的スイッチ等で構成されてもよい。 However, the present invention is not limited to this, and a push switch, an electric switch, or the like may be used.

電源スイッチ72がオフの状態では、撮像装置100に電源部105が挿入されている状態でも撮像装置としては機能せず、消費電力の少ない状態を保持する。 When the power switch 72 is off, the image pickup device does not function as an image pickup device even when the power supply unit 105 is inserted into the image pickup device 100, and the state of low power consumption is maintained.

電源スイッチ72がオンの状態で、電源部105が挿入されると、撮像装置100は撮像装置として機能する。 When the power supply unit 105 is inserted while the power switch 72 is on, the image pickup device 100 functions as an image pickup device.

CPU150は、撮像装置100を統括的に制御するCPUである。撮像装置としての基本機能である撮像機能を実現する。 The CPU 150 is a CPU that comprehensively controls the image pickup apparatus 100. It realizes the image pickup function, which is the basic function of the image pickup device.

また、後述するホールIC検出方式の回転操作部材200の検出結果に応じて、撮像装置100のモード切り替えや液晶画面40の表示更新等を行う。 Further, the mode of the image pickup apparatus 100 is switched, the display of the liquid crystal screen 40 is updated, and the like are performed according to the detection result of the rotation operation member 200 of the Hall IC detection method described later.

(撮像装置のブロック図)
タイマ151は、任意の時間を測定可能なタイマ機能である。図2では、CPU150に内蔵される構成で説明を行うが、外付けされる構成であっても構わない。
(Block diagram of image pickup device)
The timer 151 is a timer function capable of measuring an arbitrary time. In FIG. 2, the configuration built in the CPU 150 will be described, but the configuration may be externally attached.

CPU150の指示に応じて、時間測定を開始し、CPU150の指示に応じて、時間測定を終了する機能を持つ。 It has a function of starting the time measurement according to the instruction of the CPU 150 and ending the time measurement according to the instruction of the CPU 150.

また、タイマを絶えず動作させ、所定時間間隔で定期的にCPU150に割り込みを発生させる機能も併せ持つ。 It also has a function of continuously operating a timer and periodically generating an interrupt in the CPU 150 at predetermined time intervals.

カウンタ152は、後述する回転操作部材200の操作回数をカウントするためのカウンタ機能である。 The counter 152 is a counter function for counting the number of operations of the rotation operation member 200, which will be described later.

図2では、CPU150に内蔵される構成で説明を行うが、外付けされる構成であっても構わない。 In FIG. 2, the configuration built in the CPU 150 will be described, but the configuration may be externally attached.

また、図2では、回転操作部材200の操作回数をカウントする構成で説明を行うが、任意の操作部の操作回数をカウントすることが可能である。 Further, in FIG. 2, although the configuration for counting the number of operations of the rotation operation member 200 will be described, it is possible to count the number of operations of any operation unit.

ホールIC241は、特定の方向の磁場を検出可能な横磁場検知部122と、それと垂直な方向の磁場を検出可能な縦磁場検知部121を備えた磁気センサICである。 The Hall IC 241 is a magnetic sensor IC including a horizontal magnetic field detection unit 122 capable of detecting a magnetic field in a specific direction and a vertical magnetic field detection unit 121 capable of detecting a magnetic field in a direction perpendicular to the horizontal magnetic field detection unit 122.

図2では、CPU150に外付けされる構成で説明を行うが、CPU150に内蔵される構成であっても構わない。 In FIG. 2, a configuration externally attached to the CPU 150 will be described, but a configuration built in the CPU 150 may be used.

ホールIC241の、横磁場検知部122と縦磁場検知部121は、任意の上側閾値と下側閾値を設定されており、検出される磁束密度が、上記閾値を超えた場合、または下回った場合に所定の信号を出力する。 The transverse magnetic field detection unit 122 and the longitudinal magnetic field detection unit 121 of the Hall IC 241 are set with an arbitrary upper threshold value and lower threshold value, and when the detected magnetic flux density exceeds or falls below the above threshold value. Outputs a predetermined signal.

また、CPU150の指示に応じて、任意のタイミングで横磁場検知部122乃至縦磁場検知部121の検出磁束密度を読み出すことが可能である。 Further, it is possible to read out the detection magnetic flux density of the transverse magnetic field detection unit 122 to the longitudinal magnetic field detection unit 121 at an arbitrary timing according to the instruction of the CPU 150.

磁石251は、リング状の永久磁石であり、円周方向にS極とN極とが交互に一定のピッチで着磁されている。 The magnet 251 is a ring-shaped permanent magnet, and S poles and N poles are alternately magnetized at a constant pitch in the circumferential direction.

詳細は図3以降で説明するが、磁石251は回転操作部材200と一体となって回転し、ホールIC241で磁束密度の変化を検知し、回転操作部材200の回転方向と回転量を算出する。 Although the details will be described with reference to FIGS. 3 and 3, the magnet 251 rotates integrally with the rotation operation member 200, the change in the magnetic flux density is detected by the hall IC 241 and the rotation direction and the rotation amount of the rotation operation member 200 are calculated.

(回転操作部材200の説明)
以下、図3および図4を用いて、回転操作部材200の構成について説明する。
(Explanation of rotation operation member 200)
Hereinafter, the configuration of the rotation operating member 200 will be described with reference to FIGS. 3 and 4.

図3は、回転操作部材200の構造の一例を示した分解斜視図である。 FIG. 3 is an exploded perspective view showing an example of the structure of the rotation operating member 200.

図4は回転操作部材200の断面図であり、図4(a)は、後述するボール部材211の中心を通る断面、図4(b)はホールIC241の中心を通る断面を表している。 4A and 4B are cross-sectional views of the rotation operating member 200, FIG. 4A shows a cross section passing through the center of the ball member 211 described later, and FIG. 4B shows a cross section passing through the center of the hall IC 241.

回転操作部材200をユーザーが時計回り方向、反時計回り方向の両方向に回転操作を行うための操作部材である。210はベース部材であり、回転操作部材200を回動可能に保持している。 This is an operation member for the user to rotate the rotation operation member 200 in both clockwise and counterclockwise directions. Reference numeral 210 is a base member, which rotatably holds the rotation operation member 200.

ベース部材210は撮像装置100の背面カバー110(図3、図4では不図示)に3か所の固定部210a、b、cで固定される。 The base member 210 is fixed to the back cover 110 (not shown in FIGS. 3 and 4) of the image pickup apparatus 100 by three fixing portions 210a, b, and c.

230は磁石保持部材であり、回転操作部材200の操作部の裏面にビス231によって固定される。 Reference numeral 230 denotes a magnet holding member, which is fixed to the back surface of the operation portion of the rotation operation member 200 by a screw 231.

251は、磁石であり、N極とS極が交互に等ピッチに分極されている。 Reference numeral 251 is a magnet, in which the north pole and the south pole are alternately polarized at equal pitches.

磁場生成部材としての磁石251は、N極とS極それぞれに着磁面251aが設けられており、着磁面251aに垂直方向に磁場が発生する。 The magnet 251 as a magnetic field generating member is provided with a magnetizing surface 251a on each of the N pole and the S pole, and a magnetic field is generated in the direction perpendicular to the magnetizing surface 251a.

磁石251は、所定のピッチで磁極が変化する磁場生成部材として機能する。 The magnet 251 functions as a magnetic field generating member whose magnetic poles change at a predetermined pitch.

磁場生成部材は、回転操作部材200の回転軸に垂直な平面内かつ磁場生成部材と回転軸の間に磁場を発生させる。 The magnetic field generation member generates a magnetic field in a plane perpendicular to the rotation axis of the rotation operation member 200 and between the magnetic field generation member and the rotation axis.

磁場生成部材としての磁石251は、回転操作部材200に対して所定の角度となるように固定され、回転操作部材200の回転動作と共に、磁石保持部材230および磁石251が一体的に回転する。 The magnet 251 as a magnetic field generation member is fixed at a predetermined angle with respect to the rotation operation member 200, and the magnet holding member 230 and the magnet 251 rotate integrally with the rotation operation of the rotation operation member 200.

211はボール部材であり、回転操作部材200の回転軸と直交する方向に、進退可能にベース部材210のボール保持部210dに保持されている。 Reference numeral 211 is a ball member, which is held by the ball holding portion 210d of the base member 210 so as to be able to advance and retreat in a direction orthogonal to the rotation axis of the rotation operating member 200.

212はばね部材であり、上記ボール部材211を磁石保持部材230の凹凸形状230fに当接する方向に付勢している。 Reference numeral 212 denotes a spring member, which urges the ball member 211 in a direction of contacting the uneven shape 230f of the magnet holding member 230.

凹凸形状230fは、凹部230gと凸部230hが交互に等ピッチに形成されている。 In the concave-convex shape 230f, the concave portions 230g and the convex portions 230h are alternately formed at equal pitches.

ユーザーが回転操作部材200を回転させると、ボール部材211はボール保持部210d内で凹凸形状230fに沿って進退し、クリック感が発生する。 When the user rotates the rotation operation member 200, the ball member 211 moves back and forth along the uneven shape 230f in the ball holding portion 210d, and a click feeling is generated.

ボール部材211、凹凸形状230fは、回転操作部材200に対して、所定の回転角度毎にクリック感を発生させるクリック機構である。 The ball member 211 and the concave-convex shape 230f are click mechanisms that generate a click feeling at each predetermined rotation angle with respect to the rotation operation member 200.

241はホールICであり、2方向の磁場(後述する縦磁場と横磁場)の強さを検知することが可能である。 Reference numeral 241 is a Hall IC, which can detect the strength of a magnetic field in two directions (a vertical magnetic field and a horizontal magnetic field, which will be described later).

240は基板であり、ホールIC241が実装される。基板240には、基板位置決め穴240a、240bがあり、ホールIC241が磁石251の着磁面251aと対向する位置となるように、基板固定板250のボス250d、250eと嵌合して位置決めされる。 Reference numeral 240 is a substrate, and the hall IC 241 is mounted on the substrate. The substrate 240 has substrate positioning holes 240a and 240b, and is positioned by fitting with the bosses 250d and 250e of the substrate fixing plate 250 so that the hole IC 241 faces the magnetizing surface 251a of the magnet 251. ..

このような構成によって、磁石251の着磁面251aから発生した磁場を、ホールIC241によって検知することが可能となる。この検知方法については後述する。 With such a configuration, the magnetic field generated from the magnetized surface 251a of the magnet 251 can be detected by the Hall IC 241. This detection method will be described later.

基板固定板250は3か所の取付部250a、b、cが設けられており、ベース部材210の固定部210a、b、cと共に、ビス260a、b、cによって背面カバー110(図3、4では不図示)に締結され固定される。 The board fixing plate 250 is provided with three mounting portions 250a, b, and c, and together with the fixing portions 210a, b, and c of the base member 210, the back cover 110 is provided by the screws 260a, b, and c (FIGS. 3, 4). (Not shown) is fastened and fixed.

回転操作部材200が操作されると、磁石251が一体的に回転し、ホールIC241部に生じる磁場が変化する。 When the rotation operation member 200 is operated, the magnet 251 rotates integrally, and the magnetic field generated in the hall IC 241 portion changes.

この磁場変化をホールIC241で検出することで、回転操作部材200の回転動作を検知することが可能となる。 By detecting this change in the magnetic field with the Hall IC 241 it is possible to detect the rotational operation of the rotation operating member 200.

270は押しボタンである。回転操作部材200の操作と合わせて使用され、回転操作部材200で操作メニューの選択、押しボタン270で決定といった使い方をされる。 270 is a push button. It is used in combination with the operation of the rotation operation member 200, and the rotation operation member 200 is used to select an operation menu and the push button 270 is used to determine.

押しボタン270は、回転操作部材200の回転軸方向に摺動可能に保持されている。 The push button 270 is slidably held in the rotation axis direction of the rotation operation member 200.

押しボタン270が押された際には、押しボタン270によってスイッチラバー280が付勢されて、スイッチラバー280の導電部281が基板内に設けられた電極パッドと接触することで押しボタンスイッチの検知が可能となる。 When the push button 270 is pressed, the switch rubber 280 is urged by the push button 270, and the conductive portion 281 of the switch rubber 280 comes into contact with the electrode pad provided in the substrate to detect the push button switch. Is possible.

(ホールIC241による磁場の検知の説明)
続いて図5を用いて、磁石251が発生させる磁場と、ホールIC241による磁場の検知について説明する。
(Explanation of magnetic field detection by Hall IC 241)
Subsequently, with reference to FIG. 5, the magnetic field generated by the magnet 251 and the detection of the magnetic field by the Hall IC 241 will be described.

図5(a)は磁石251とホールIC241をダイヤル回転軸方向から見た図であり、図5(b)は磁石251とホールIC241を回転軸に垂直な方向(図中矢印C方向)から見た図である。 FIG. 5A is a view of the magnet 251 and the Hall IC 241 as viewed from the dial rotation axis direction, and FIG. 5B is a view of the magnet 251 and the Hall IC 241 from the direction perpendicular to the rotation axis (arrow C direction in the figure). It is a figure.

磁石251は、N極10極、S極10極の計20極に等ピッチに分極されている。 The magnet 251 is polarized at an equal pitch to a total of 20 poles, 10 poles of N pole and 10 poles of S pole.

磁場生成部材としての磁石251は、円形状の磁石を等しいピッチで分極した構成である。 The magnet 251 as a magnetic field generating member has a configuration in which circular magnets are polarized at equal pitches.

また、磁場生成部材としての磁石251は、複数の磁石を等しいピッチで円周上に配列させた構成であっても良い。 Further, the magnet 251 as a magnetic field generating member may have a configuration in which a plurality of magnets are arranged on the circumference at equal pitches.

磁石251の着磁面251a側にはホールIC241が配置され、磁石251の幅の中心とホールIC241の検出部241aが一致するようになっている。 A hole IC 241 is arranged on the magnetizing surface 251a side of the magnet 251 so that the center of the width of the magnet 251 coincides with the detection unit 241a of the hole IC 241.

ホールIC241は磁石251の中心軸方向(ダイヤル回転軸方向(矢印A方向))と、磁石251の円の接線方向(矢印B方向)の磁場の磁束密度を検出し、それぞれの磁場の状態を表す所定の信号を出力する。 The Hall IC 241 detects the magnetic flux densities of the magnetic flux in the central axis direction of the magnet 251 (dial rotation axis direction (arrow A direction)) and the tangential direction of the circle of the magnet 251 (arrow B direction), and represents the state of each magnetic field. Outputs a predetermined signal.

ホールIC241の出力信号の詳細については後述する。 The details of the output signal of the hall IC 241 will be described later.

図5(c)、(d)は磁石251をダイヤル回転軸に直交する方向(矢印C方向)から見て、ホールIC241付近を拡大した図である。 5 (c) and 5 (d) are enlarged views of the vicinity of the hall IC 241 when the magnet 251 is viewed from the direction orthogonal to the dial rotation axis (arrow C direction).

図5(c)はホールIC241の検出部241aとS極の中心が図面左右方向で一致している状態を表す。 FIG. 5C shows a state in which the detection unit 241a of the Hall IC 241 and the center of the S pole coincide with each other in the left-right direction of the drawing.

図5(d)は、図5(c)の状態から磁石251がダイヤル回転軸を中心に回転し、ホールIC241の検出部241aとS極N極の境界が一致している状態を表す。 FIG. 5D shows a state in which the magnet 251 rotates about the dial rotation axis from the state of FIG. 5C, and the boundaries of the detection unit 241a of the Hall IC 241 and the S pole and N pole coincide with each other.

磁石251は極異方性の配向を持つように着磁されている。 The magnet 251 is magnetized so as to have a polar anisotropic orientation.

すなわち、磁石251の内部における磁場は着磁面251aに垂直な直線となるのではない。 That is, the magnetic field inside the magnet 251 is not a straight line perpendicular to the magnetizing surface 251a.

磁石内磁場254で示すように着磁面251aのS極から垂直に立上ったあと弧を描いてN極に向かい着磁面251aのN極において再び垂直方向となる。 As shown by the magnetic field in the magnet 254, after rising vertically from the S pole of the magnetizing surface 251a, an arc is drawn toward the N pole, and the direction is again vertical at the N pole of the magnetizing surface 251a.

磁石251の外部においては、磁束253で示すように、N極から垂直に立上った磁束が弧を描いてS極に向かう。 Outside the magnet 251 as shown by the magnetic flux 253, the magnetic flux rising vertically from the N pole draws an arc toward the S pole.

同様に、図5(e)はホールIC241の検出部241aとN極中心が図面左右方向で一致している状態、図5(f)は、検出部241aが図5(d)から1磁極分回転し、S極、N極が入替った状態を示している。 Similarly, FIG. 5 (e) shows a state in which the detection unit 241a of the Hall IC 241 and the center of the N pole coincide with each other in the left-right direction of the drawing. It shows a state in which the S pole and the N pole are switched by rotating.

ここで、図5(a)中の矢印A方向の磁場を縦磁場253a、図5(a)中の矢印B方向の磁場を横磁場253bと定義する。 Here, the magnetic field in the direction of arrow A in FIG. 5A is defined as the longitudinal magnetic field 253a, and the magnetic field in the direction of arrow B in FIG. 5A is defined as the transverse magnetic field 253b.

その場合、図5(c)の状態ではホールIC241の検出部241aには縦磁場253aが検出され、横磁場253bは検出されない。 In that case, in the state of FIG. 5C, the longitudinal magnetic field 253a is detected in the detection unit 241a of the Hall IC 241 and the transverse magnetic field 253b is not detected.

反対に図5(d)の状態では縦磁場253aは検出されずに横磁場253bのみが検出されることとなる。 On the contrary, in the state of FIG. 5D, the vertical magnetic field 253a is not detected and only the horizontal magnetic field 253b is detected.

また、図5(c)から図5(d)に至る途中の状態では縦磁場253aと横磁場253bが回転状態に応じた強さで検出されることとなる。 Further, in the state on the way from FIG. 5 (c) to FIG. 5 (d), the longitudinal magnetic field 253a and the transverse magnetic field 253b are detected with the strength corresponding to the rotational state.

つまり、図5(c)は縦磁場253aが最大で縦磁場253aがゼロの状態、図5(d)は縦磁場253aがゼロで縦磁場253aが最大の状態を表す。 That is, FIG. 5C shows a state in which the vertical magnetic field 253a is maximum and the vertical magnetic field 253a is zero, and FIG. 5D shows a state in which the vertical magnetic field 253a is zero and the vertical magnetic field 253a is maximum.

磁石251をダイヤル回転軸回りに回転させると、ホールIC241の検出部241aで検出される縦磁場253aと横磁場253bはゼロから上記最大値の間で回転状態に応じた値をとる。 When the magnet 251 is rotated around the dial rotation axis, the vertical magnetic field 253a and the horizontal magnetic field 253b detected by the detection unit 241a of the Hall IC 241 take a value corresponding to the rotation state from zero to the above maximum value.

(ダイヤル回転時における磁場の変化とホールIC241の出力信号の説明)
以下、図6を用いてダイヤル回転時における磁場の変化とホールIC241の出力信号の詳細について説明する。
(Explanation of changes in magnetic field during dial rotation and output signal of Hall IC 241)
Hereinafter, the change in the magnetic field at the time of dial rotation and the details of the output signal of the Hall IC 241 will be described with reference to FIG.

図6(a)は縦横磁場の強さとそれを検知したホールIC241の出力の関係を表すグラフである。横軸は回転操作部材200の回転角度を、縦軸は磁場強度や信号出力値を表す。 FIG. 6A is a graph showing the relationship between the strength of the longitudinal and transverse magnetic fields and the output of the Hall IC 241 that has detected it. The horizontal axis represents the rotation angle of the rotation operating member 200, and the vertical axis represents the magnetic field strength and the signal output value.

前述したように、本実施例の回転操作部材200は凹凸形状230fとボール部材211およびにばね部材212よるクリック機構を有しており、回転操作部材200の回転操作は1クリックを基本単位として行われることとなる。 As described above, the rotation operation member 200 of the present embodiment has a click mechanism by the concave-convex shape 230f, the ball member 211, and the spring member 212, and the rotation operation of the rotation operation member 200 is performed with one click as a basic unit. Will be struck.

横軸に示すIからIVはクリック位置を表し、それぞれの間は1クリック分の角度である。また、IからIVで示されているクリック位置はボール部材211が凹部230gと接触している状態である。 I to IV shown on the horizontal axis represent the click position, and the angle between them is one click. Further, the click position indicated by I to IV is a state in which the ball member 211 is in contact with the recess 230 g.

まず、グラフ上部に示されているのが縦磁束密度301と横磁束密度302である。縦磁束密度301は、ホールIC241で検知された磁場の縦磁場253a(図5(c)参照)の磁束密度を表している。 First, the vertical magnetic flux density 301 and the horizontal magnetic flux density 302 are shown at the upper part of the graph. The vertical magnetic flux density 301 represents the magnetic flux density of the vertical magnetic field 253a (see FIG. 5C) of the magnetic field detected by the Hall IC 241.

また、横磁束密度302はホールIC241で検知された磁場の横磁場253bの磁束密度を表している。 Further, the transverse magnetic flux density 302 represents the magnetic flux density of the transverse magnetic field 253b of the magnetic field detected by the Hall IC 241.

ここでは、回転操作部材200を一定の速度で時計回り方向に回転させている場合を想定しており、図から明らかなように、それぞれの磁束密度はゼロを中心として最大値と最小値の間で周期的に変化する。 Here, it is assumed that the rotation operation member 200 is rotated clockwise at a constant speed, and as is clear from the figure, each magnetic flux density is between the maximum value and the minimum value centered on zero. It changes periodically with.

回転角度Iの状態で、301aで示されている様に、縦磁束密度301は最大値をとる。また、同じ状態で302aで示されているように横磁束密度302はゼロとなる。 In the state of the rotation angle I, the longitudinal magnetic flux density 301 has a maximum value as shown by 301a. Further, in the same state, the lateral magnetic flux density 302 becomes zero as shown by 302a.

これは図5(c)に示すようにホールIC241で検出される磁場が矢印A方向成分のみで、矢印B方向成分は持っていない事を意味する。 This means that, as shown in FIG. 5C, the magnetic field detected by the Hall IC 241 has only the arrow A direction component and does not have the arrow B direction component.

この状態から回転操作部材200が回転し、301bで示す状態になると縦磁束密度301はゼロになり、同じ状態で302bで示されているように横磁束密度302は最小値を取る。 When the rotation operation member 200 rotates from this state and reaches the state indicated by 301b, the longitudinal magnetic flux density 301 becomes zero, and the lateral magnetic flux density 302 takes the minimum value as shown by 302b in the same state.

これは図5(d)に示すように、ホールIC241で検出される磁場が矢印A方向成分は持っておらず、矢印B方向成分のみ、かつ矢印Bとは反対向きである事を意味する。 This means that, as shown in FIG. 5D, the magnetic field detected by the Hall IC 241 does not have the arrow A direction component, only the arrow B direction component, and is in the opposite direction to the arrow B.

さらに回転操作部材200が回転し、301c、302cで示す状態になると図5(e)で示すように、ホールIC241で検出される磁場は矢印Aと反対向きの成分のみで、矢印B方向の成分が無い状態となる。 Further, when the rotation operation member 200 rotates and becomes the state shown by 301c and 302c, as shown in FIG. 5 (e), the magnetic field detected by the hall IC 241 is only the component in the direction opposite to the arrow A, and the component in the direction of the arrow B. Will be in a state without.

この状態まで来ると、回転角度Iから回転角度IIまで1クリック分回転操作部材200が回転した事となる。また301d、302dで示される点まで進むと、図5(f)の様に矢印A方向の成分がなく、矢印B方向の成分のみホールIC241で検知されている状態となる。 When this state is reached, the rotation operation member 200 has rotated from the rotation angle I to the rotation angle II by one click. Further, when proceeding to the points indicated by 301d and 302d, there is no component in the direction of arrow A as shown in FIG. 5 (f), and only the component in the direction of arrow B is detected by the hall IC 241.

また、図5(c)から(f)の4つの状態の間では、縦磁束密度301と横磁束密度302は回転操作部材200の回転角度に応じた値を取る。 Further, between the four states of FIGS. 5 (c) to 5 (f), the vertical magnetic flux density 301 and the horizontal magnetic flux density 302 take values according to the rotation angle of the rotation operating member 200.

上述したように、回転操作部材200が1クリック分動くと、磁石251は1磁極分回転し、縦磁束密度301と横磁束密度302が1/2周期分変化する。 As described above, when the rotation operation member 200 moves by one click, the magnet 251 rotates by one magnetic pole, and the vertical magnetic flux density 301 and the lateral magnetic flux density 302 change by 1/2 cycle.

縦磁束密度301と横磁束密度302はそれぞれ1/2周期しか変化しないが、着磁ピッチ分ずれた周期的な信号となる。 The longitudinal magnetic flux density 301 and the transverse magnetic flux density 302 each change only 1/2 cycle, but the signals are periodic signals deviated by the magnetizing pitch.

CPU150は、所定の回転角度の2倍の周期を持つ第1の信号および第2の信号を、所定の回転角度以下の所定のずれ量を持って発生させる信号発生手段として機能する。 The CPU 150 functions as a signal generation means for generating a first signal and a second signal having a period twice a predetermined rotation angle with a predetermined deviation amount equal to or less than the predetermined rotation angle.

この2つの信号の極大値の現れる順番や回数を検知することで、回転操作部材200の回転量と回転方向を求める事が可能となる。 By detecting the order and the number of times when the maximum values of these two signals appear, it is possible to obtain the rotation amount and the rotation direction of the rotation operation member 200.

CPU150は、第1の方向の磁場の変化量及び第2の方向の磁場の変化量に応じて、回転操作部材200の回転量及び回転操作部材200の回転方向を算出する算出手段として機能する。 The CPU 150 functions as a calculation means for calculating the rotation amount of the rotation operation member 200 and the rotation direction of the rotation operation member 200 according to the change amount of the magnetic field in the first direction and the change amount of the magnetic field in the second direction.

次に、ホールIC241が出力する信号について説明する。縦磁束密度301、横磁束密度302のグラフと重なる様に示されているのが、ホールIC241の上側閾値307aと下側閾値307bである。 Next, the signal output by the hall IC 241 will be described. The upper threshold value 307a and the lower threshold value 307b of the Hall IC 241 are shown so as to overlap with the graphs of the longitudinal magnetic flux density 301 and the transverse magnetic flux density 302.

ホールIC241は検出部241aを通過する磁束を定期的にサンプリングしている。 The Hall IC 241 periodically samples the magnetic flux passing through the detection unit 241a.

そして、検出された縦横の磁束密度が上側閾値307aを上回った場合、または下側閾値307bを下回った場合に、ホールIC241内部で縦磁場信号303と横磁場信号304を変化させる。 Then, when the detected vertical and horizontal magnetic flux densities exceed the upper threshold value 307a or fall below the lower threshold value 307b, the vertical magnetic field signal 303 and the horizontal magnetic field signal 304 are changed inside the hall IC 241.

以下に詳細を説明する。縦磁場信号303と横磁場信号304は縦磁束密度301と横磁束密度302に対応した信号である。 Details will be described below. The longitudinal magnetic field signal 303 and the transverse magnetic field signal 304 are signals corresponding to the longitudinal magnetic flux density 301 and the transverse magnetic flux density 302.

それぞれの磁束密度が上側閾値307aを上回った場合は信号がH(Hi)からL(Lo)に、下側閾値307bを下回った場合は信号がLからHに変化する。 When the respective magnetic flux densities exceed the upper threshold value 307a, the signal changes from H (Hi) to L (Lo), and when the respective magnetic flux densities fall below the lower threshold value 307b, the signal changes from L to H.

上記いずれにも該当しない場合は、現在の値が保持される。 If none of the above applies, the current value is retained.

図6(a)の回転角度Iの状態では縦磁束密度301は上側閾値307aを上回っている。 In the state of the rotation angle I in FIG. 6A, the longitudinal magnetic flux density 301 exceeds the upper threshold value 307a.

そのため、縦磁場信号303はLとなっており、横磁束密度302は上側閾値307aを上回った後、下側閾値307bを下回る状態まで進んでいない。 Therefore, the longitudinal magnetic field signal 303 is L, and the transverse magnetic flux density 302 exceeds the upper threshold value 307a and then does not advance to a state below the lower threshold value 307b.

そのため、こちらもLとなっている。 Therefore, this is also L.

この状態から回転操作部材200が回転し、ホールIC241は定期的に磁束密度のサンプリングを行い、縦磁場信号303と横磁場信号304を更新し続ける。302eで示す点まで来る。 From this state, the rotation operation member 200 rotates, and the Hall IC 241 periodically samples the magnetic flux density and continues to update the longitudinal magnetic field signal 303 and the transverse magnetic field signal 304. It comes to the point indicated by 302e.

その場合、横磁束密度302が下側閾値307bを下回り、その直後の回転角度IaのサンプリングでホールIC241が磁束密度を検知する。 In that case, the lateral magnetic flux density 302 falls below the lower threshold value 307b, and the Hall IC 241 detects the magnetic flux density by sampling the rotation angle Ia immediately after that.

そして、横磁束密度302が下側閾値307bを下回ったこと検知し、横磁場信号304をLからHに変化させる。 Then, it is detected that the transverse magnetic flux density 302 is below the lower threshold value 307b, and the transverse magnetic field signal 304 is changed from L to H.

この時点では、縦磁束密度301は下側閾値307bを下回っていないので、縦磁場信号303はLのままである。 At this point, the longitudinal magnetic flux density 301 is not below the lower threshold 307b, so the longitudinal magnetic field signal 303 remains L.

さらに、回転操作部材200が回転し301eで示す点を超えると縦磁束密度301が下側閾値307bを下回る。 Further, when the rotation operation member 200 rotates and exceeds the point indicated by 301e, the longitudinal magnetic flux density 301 falls below the lower threshold value 307b.

この直後の回転角度Ibの状態でホールIC241が磁束密度を検知し、縦磁束密度301が下側閾値307bを下回ったこと検知し、縦磁場信号303をLからHに変化させる。 Immediately after this, the Hall IC 241 detects the magnetic flux density in the state of the rotation angle Ib, detects that the vertical magnetic flux density 301 is below the lower threshold value 307b, and changes the vertical magnetic field signal 303 from L to H.

この時点では横磁束密度302は上側閾値307aを上回っていないので、横磁場信号304はHのままである。 At this point, the transverse magnetic flux density 302 does not exceed the upper threshold 307a, so that the transverse magnetic field signal 304 remains H.

回転操作部材200が回転し302fで示す点まで来ると、横磁束密度302が上側閾値307aを超える。 When the rotation operation member 200 rotates and reaches the point indicated by 302f, the lateral magnetic flux density 302 exceeds the upper threshold value 307a.

直後の回転角度IIaのサンプリング時に横磁場信号304はHからLに変化し、縦磁場信号303はHのままである。 Immediately after sampling of the rotation angle IIa, the transverse magnetic field signal 304 changes from H to L, and the longitudinal magnetic field signal 303 remains H.

更に進んで301fの点までくると縦磁束密度301が上側閾値307aを超え、直後の回転角度IIbのサンプリング時に縦磁場信号303がHからLとなり、横磁場信号304は引き続きLのままである。 Further, when the point of 301f is reached, the longitudinal magnetic flux density 301 exceeds the upper threshold value 307a, the longitudinal magnetic field signal 303 changes from H to L at the time of sampling of the rotation angle IIb immediately after, and the transverse magnetic field signal 304 continues to remain L.

この様に、回転操作部材200と一体的に磁石251が等速回転する事により、ホールIC241からは、縦磁場信号303と横磁場信号304という縦磁束密度301と横磁束密度302と同一周期の矩形信号が出力される。 In this way, the magnet 251 rotates at a constant velocity integrally with the rotation operation member 200, so that the hall IC 241 has the same period as the longitudinal magnetic flux density 301 and the transverse magnetic flux density 302 of the longitudinal magnetic field signal 303 and the transverse magnetic field signal 304. A rectangular signal is output.

このような構成とすることで、アナログ波形であった縦磁束密度301、横磁束密度302が矩形波となるため、CPU150で容易に処理を行う事が可能となる。 With such a configuration, the vertical magnetic flux density 301 and the horizontal magnetic flux density 302, which are analog waveforms, become rectangular waves, so that the CPU 150 can easily perform processing.

ここで、縦磁場信号303と横磁場信号304の排他的論理和(XOR)を取る事を考えると、パルス信号305で示すような信号となる。 Here, considering the exclusive OR (XOR) of the longitudinal magnetic field signal 303 and the transverse magnetic field signal 304, the signal is as shown by the pulse signal 305.

図から明らかなようにパルス信号305は縦磁場信号303や横磁場信号304の半分の周期で変化する矩形波となり、その周期は回転操作部材200の1クリック分に相当する。 As is clear from the figure, the pulse signal 305 is a square wave that changes in a half cycle of the longitudinal magnetic field signal 303 and the transverse magnetic field signal 304, and the cycle corresponds to one click of the rotation operating member 200.

つまり、パルス信号305をモニタリングすると回転操作部材200の1クリック分の回転を検出する事が可能となる。 That is, by monitoring the pulse signal 305, it is possible to detect the rotation of the rotation operating member 200 for one click.

上述したように、本実施例の回転操作部材では、回転操作部材200にクリック感を生じさせるための凹凸形状230fのピッチと、磁石251の磁極のピッチが一致している。 As described above, in the rotation operation member of the present embodiment, the pitch of the uneven shape 230f for giving a click feeling to the rotation operation member 200 and the pitch of the magnetic poles of the magnet 251 match.

よって、回転操作部材200が1クリック分回転した状態では、縦磁場信号303および横磁場信号304は半周期分しか変化せず、どちらか一方の信号だけでは1クリック分の回転を検出することはできない。 Therefore, when the rotation operation member 200 is rotated by one click, the longitudinal magnetic field signal 303 and the transverse magnetic field signal 304 change only by half a cycle, and it is not possible to detect the rotation by one click with only one of the signals. Can not.

磁石251の磁極ピッチを凹凸形状230fのピッチの半分にすれば、1クリックで縦磁場信号303および横磁場信号304を1周期分変化させることが可能である。 If the magnetic pole pitch of the magnet 251 is set to half the pitch of the concave-convex shape 230f, the vertical magnetic field signal 303 and the horizontal magnetic field signal 304 can be changed by one cycle with one click.

しかしながら、着磁工程の制約から磁極の幅には下限値があり、磁極数の増加は磁石の大型化につながる恐れがある。 However, there is a lower limit to the width of the magnetic poles due to the restrictions of the magnetizing process, and an increase in the number of magnetic poles may lead to an increase in the size of the magnet.

そこで、本実施例のように縦磁場信号303と横磁場信号304の排他的論理和を取る事で、1クリック分と同じ磁極ピッチでも1周期分の信号を発生させることが可能となり、磁石の大型化を防ぐ事が可能となる。 Therefore, by taking the exclusive OR of the longitudinal magnetic field signal 303 and the transverse magnetic field signal 304 as in this embodiment, it is possible to generate a signal for one cycle even with the same magnetic pole pitch as one click, and the magnet can be generated. It is possible to prevent the increase in size.

また、本実施例のホールIC241は1つの素子で縦横磁場両方が検知可能なため、縦横磁場の信号のずれを抑える事が可能である。 Further, since the Hall IC 241 of the present embodiment can detect both the vertical and horizontal magnetic fields with one element, it is possible to suppress the deviation of the signal of the vertical and horizontal magnetic fields.

詳細は、実施例3で説明するが、縦磁場検知用、横磁場検知用のホールICを1個ずつ使って磁石251の磁場を検知する事も可能である。 Details will be described in Example 3, but it is also possible to detect the magnetic field of the magnet 251 by using one Hall IC for detecting the vertical magnetic field and one for detecting the horizontal magnetic field.

但し、その場合はホールIC同士の相互位置関係のずれが検知性能に影響を与えるため、2個のホールICを精度良く配置する事が必要となってくる。 However, in that case, since the deviation of the mutual positional relationship between the Hall ICs affects the detection performance, it is necessary to arrange the two Hall ICs with high accuracy.

本実施例の構成では2方向の磁場を検知可能なホールICを用いるため、磁石とホールICの相対位置が変化しても検知性能に与える影響は少なくて済む。 In the configuration of this embodiment, since a Hall IC capable of detecting a magnetic field in two directions is used, even if the relative positions of the magnet and the Hall IC change, the influence on the detection performance is small.

このため、組立時のずれや外力、環境温度などによる構成部品の変位による影響を受けにくい回転操作部材を提供することが出来る。 Therefore, it is possible to provide a rotation operation member that is not easily affected by displacement of components due to displacement during assembly, external force, environmental temperature, or the like.

(回転方向信号306の生成の説明)
図6(a)最下部の回転方向信号306は回転操作部材200の回転方向を表す信号であり、Lは回転操作部材200が時計回りに回転し、Hは反時計回りに回転している事を表す。
(Explanation of generation of rotation direction signal 306)
FIG. 6 (a) The rotation direction signal 306 at the lowermost portion is a signal indicating the rotation direction of the rotation operation member 200, L indicates that the rotation operation member 200 rotates clockwise, and H indicates that the rotation operation member 200 rotates counterclockwise. Represents.

以下、回転方向信号306の生成の詳細を説明する。 Hereinafter, the details of the generation of the rotation direction signal 306 will be described.

縦磁場信号303と横磁場信号304の取り得る値を表にしたものが図6(b)である。それぞれの信号(H,L)の組合せによって状態1から状態4の4通りが考えられる。 FIG. 6B is a table showing possible values of the longitudinal magnetic field signal 303 and the transverse magnetic field signal 304. There are four possible states from state 1 to state 4 depending on the combination of each signal (H, L).

例えば、回転角度Iから回転角度Iaの間は状態1である。 For example, the state 1 is between the rotation angle I and the rotation angle Ia.

回転角度IaからIbの間は横磁場信号304が変化するため状態2となる。 Since the transverse magnetic field signal 304 changes between the rotation angles Ia and Ib, the state 2 is reached.

同様にIbからIIaの間は状態3、IIaからIIbの間は状態4となり、IIbからIIIaの間で再び状態1に戻る。 Similarly, the state 3 is between Ib and IIa, the state 4 is between IIa and IIb, and the state 1 is returned again between IIb and IIIa.

つまり、回転操作部材200を時計回りに回転させると、縦磁場信号303と横磁場信号304の組み合わせは状態1→状態2→状態3→状態4→状態1という順序で変化する事となる。 That is, when the rotation operation member 200 is rotated clockwise, the combination of the longitudinal magnetic field signal 303 and the transverse magnetic field signal 304 changes in the order of state 1 → state 2 → state 3 → state 4 → state 1.

また、詳細は後述するが、回転操作部材200を反時計回りに回転させた場合は状態1→状態4→状態3→状態2→状態1という順序で変化する。 Further, although the details will be described later, when the rotation operation member 200 is rotated counterclockwise, it changes in the order of state 1 → state 4 → state 3 → state 2 → state 1.

よって、縦磁場信号303と横磁場信号304の変化をモニタリングすると、回転操作部材200の回転方向を検知する事が可能である。 Therefore, by monitoring the changes in the longitudinal magnetic field signal 303 and the transverse magnetic field signal 304, it is possible to detect the rotation direction of the rotation operating member 200.

ホールIC241はこの処理を内部的に行い、検知された回転方向をH(反時計回り)とL(時計回り)として出力する。 The Hall IC 241 performs this process internally and outputs the detected rotation directions as H (counterclockwise) and L (clockwise).

(回転操作部材200を反時計回りに回転している場合の信号処理の説明)
次に、図7を用いて、回転操作部材200を反時計回りに回転している場合の信号処理について説明する。
(Explanation of signal processing when the rotation operation member 200 is rotated counterclockwise)
Next, with reference to FIG. 7, signal processing when the rotation operation member 200 is rotated counterclockwise will be described.

図6(a)と同一の信号は同じ符号で示し、以下図6(a)と異なる部分のみ説明する。 The same signals as those in FIG. 6A are indicated by the same reference numerals, and only the parts different from those in FIG. 6A will be described below.

図7は回転操作部材200が反時計回りに回転している状態で、ある任意のクリック位置IVからIまで回転した状態を表す。 FIG. 7 shows a state in which the rotation operation member 200 is rotated counterclockwise and is rotated from an arbitrary click position IV to I.

縦磁束密度301と横磁束密度302から縦磁場信号303、横磁場信号304およびパルス信号305が生成される処理は時計回りの回転時と同等である。 The process of generating the longitudinal magnetic field signal 303, the transverse magnetic field signal 304, and the pulse signal 305 from the longitudinal magnetic flux density 301 and the transverse magnetic flux density 302 is the same as during clockwise rotation.

次に図6(b)と同様に縦磁場信号303と横磁場信号304の組合せ状態を考える。角度IVからIVaの間は(縦磁場信号303、横磁場信号304)は(L,H)となるため状態2である。 Next, consider the combined state of the longitudinal magnetic field signal 303 and the transverse magnetic field signal 304 as in FIG. 6B. Between the angles IV and IVa, (vertical magnetic field signal 303, horizontal magnetic field signal 304) is (L, H), so that the state is 2.

IVaからIVbの間は(L,L)となるため状態1となる。 Since it is (L, L) between IVa and IVb, it is in state 1.

以下、IVbからIIIaの間は状態4、IIIaからIIIbの間は状態3、IIIbからIIaの間は状態2となる。つまり、回転操作部材200の回転に従って状態2→状態1→状態4→状態3→状態2という順序で変化する。 Hereinafter, the state 4 is between IVb and IIIa, the state 3 is between IIIa and IIIb, and the state 2 is between IIIb and IIa. That is, it changes in the order of state 2 → state 1 → state 4 → state 3 → state 2 according to the rotation of the rotation operation member 200.

これにより上述したように、回転操作部材200が反時計周りに回転しているという事が分かるため、ホールIC241は回転方向信号306としてH(反時計回り)を出力する。 As a result, as described above, it can be seen that the rotation operating member 200 is rotating counterclockwise, so that the Hall IC 241 outputs H (counterclockwise) as the rotation direction signal 306.

(回転検知制御を行う信号処理方法の説明)
次に、図8(a)、(b)を用いて、パルス信号305と回転方向信号306から回転操作部材200の回転検知制御を行う信号処理方法について説明する。
(Explanation of signal processing method for rotation detection control)
Next, a signal processing method for performing rotation detection control of the rotation operation member 200 from the pulse signal 305 and the rotation direction signal 306 will be described with reference to FIGS. 8A and 8B.

図8(a)は回転操作部材200を回転角度Iから時計回りに2クリック分回転角度IIIまで回転させた後に、反時計回りに2クリック分回転させ、角度Iに戻した時の縦横磁束密度および各種信号を表している。 FIG. 8A shows the longitudinal and transverse magnetic flux densities when the rotation operating member 200 is rotated clockwise from the rotation angle I to the rotation angle III by 2 clicks, then rotated counterclockwise by 2 clicks, and returned to the angle I. And represents various signals.

図8(b)はパルス信号305、回転方向信号306に応じて、CPU150が行う回転検知処理を示すフローチャートである。 FIG. 8B is a flowchart showing the rotation detection process performed by the CPU 150 in response to the pulse signal 305 and the rotation direction signal 306.

本実施例における信号処理では、回転方向信号306の出力に応じて、パルス信号305の立上り、立下りエッジのどちらを利用するかを切り換える。 In the signal processing in this embodiment, it is switched whether to use the rising edge or the falling edge of the pulse signal 305 according to the output of the rotation direction signal 306.

具体的には、回転方向信号306がL(時計回り)の時は、図に示す立上りエッジ(305a1、305a2、305a3)のタイミングで回転操作部材200の回転処理を行う。 Specifically, when the rotation direction signal 306 is L (clockwise), the rotation operation member 200 is rotated at the timing of the rising edge (305a1, 305a2, 305a3) shown in the figure.

そして、回転方向信号306がH(反時計回り)の時には、立下りエッジ(305b1、305b2、305b3、305b4)のタイミングで回転処理を行う。 Then, when the rotation direction signal 306 is H (counterclockwise), the rotation process is performed at the timing of the falling edge (305b1, 305b2, 305b3, 305b4).

以下、図8(a)の回転角度に沿って説明する。 Hereinafter, the description will be given along the rotation angle of FIG. 8 (a).

回転角度Iから回転角度IIに時計回りに1クリック動く場合、回転方向信号306は時計回りを表すLとなっている。 When moving one click clockwise from the rotation angle I to the rotation angle II, the rotation direction signal 306 is L representing the clockwise direction.

このため、パルス信号305の立下りエッジ305b1のタイミングでは何も起こらない。この状態から回転操作部材200が回転すると回転角度Icにおいて、凹凸形状230fの凸部230hを超える。 Therefore, nothing happens at the timing of the falling edge 305b1 of the pulse signal 305. When the rotation operation member 200 rotates from this state, the convex portion 230h of the concave-convex shape 230f is exceeded at the rotation angle Ic.

引き続き回転操作部材200が回転して、パルス信号305の立上りエッジ305a1がくると、CPU150は回転操作部材200が1クリック分回転したと判断して、撮像装置100の設定変更などの所定の動作を行う。 When the rotation operation member 200 continues to rotate and the rising edge 305a1 of the pulse signal 305 arrives, the CPU 150 determines that the rotation operation member 200 has rotated by one click, and performs a predetermined operation such as changing the setting of the image pickup apparatus 100. conduct.

そして、ボール部材211が再び凹部230gに接触する回転角度IIの状態まで回転すると1クリック分の動作が終了となる。回転角度IIから回転角度IIIまでの1クリック分の動作も同様の処理が行われる。 Then, when the ball member 211 rotates to the state of the rotation angle II in which the ball member 211 comes into contact with the recess 230 g again, the operation for one click is completed. The same processing is performed for the operation for one click from the rotation angle II to the rotation angle III.

次に、回転角度IIIで回転操作部材200を反時計回りに反転させた場合を説明する。前述した様に、ユーザーがダイヤル操作を行う際は1クリック毎の操作が基本となる。 Next, a case where the rotation operation member 200 is inverted counterclockwise at the rotation angle III will be described. As described above, when the user performs a dial operation, the operation for each click is basic.

そのため、回転角度IIIで示すようなクリック位置からの反転操作が多用されることが想定される。 Therefore, it is assumed that the reversal operation from the click position as shown by the rotation angle III is frequently used.

このときの縦磁束密度301と横磁束密度302は回転角度IIIに対して対称的な波形となる。 At this time, the longitudinal magnetic flux density 301 and the transverse magnetic flux density 302 have waveforms that are symmetrical with respect to the rotation angle III.

回転角度IIIからIIに向かう1クリックの中で、凹凸形状230fの凸部230hを乗り越える回転角度IIIcまでの間はパルス信号305には立上りエッジも立下りエッジも現れない。 In one click from the rotation angle III to II, neither the rising edge nor the falling edge appears in the pulse signal 305 until the rotation angle IIIc overcoming the convex portion 230h of the concave-convex shape 230f.

これは横磁束密度302が下側閾値307bを下回らないため、横磁場信号304が変化しないためである。 This is because the transverse magnetic flux density 302 does not fall below the lower threshold value 307b, so that the transverse magnetic field signal 304 does not change.

回転角度IIIcを超えた後は、縦磁束密度301が下側閾値307bを下回った後の回転角度IIIbのサンプリング時に縦磁場信号303がLからHに変化し、パルス信号305に立下りエッジ305b3が現れる。 After the rotation angle IIIc is exceeded, the vertical magnetic field signal 303 changes from L to H during sampling of the rotation angle IIIb after the longitudinal magnetic flux density 301 falls below the lower threshold value 307b, and the falling edge 305b3 is added to the pulse signal 305. appear.

同じタイミングで縦磁場信号303と横磁場信号304の組合せ状態が変化するため、回転方向信号306もLからHに変化する。 Since the combined state of the longitudinal magnetic field signal 303 and the transverse magnetic field signal 304 changes at the same timing, the rotation direction signal 306 also changes from L to H.

回転方向信号306がHの場合はパルス信号305の立下りエッジで回転処理が行われるため、上述した立下りエッジ305b3をCPU150が認識し、回転処理を行う。 When the rotation direction signal 306 is H, the rotation processing is performed at the falling edge of the pulse signal 305. Therefore, the CPU 150 recognizes the above-mentioned falling edge 305b3 and performs the rotation processing.

その後、ボール部材211が凹部230gに当接する回転角度IIに至って、反時計回りに反転した1クリック目が終了する。 After that, the rotation angle II at which the ball member 211 abuts on the recess 230 g is reached, and the first click inverted counterclockwise is completed.

回転角度IIから回転角度Iまでの反時計回りの1クリックも同様の処理が行われる。 The same processing is performed for one click counterclockwise from the rotation angle II to the rotation angle I.

回転角度IIIからIIに至るプロセスで、時計回り時と同様にパルス信号305の立上りエッジのみを利用する制御を行った場合、回転角度IIIからIIの間には立上がりエッジが存在しない。 In the process from the rotation angles III to II, when the control using only the rising edge of the pulse signal 305 is performed as in the case of clockwise rotation, there is no rising edge between the rotation angles III and II.

そのため、CPU150は回転動作を認識する事ができない。つまり反転操作時の1クリック目の回転は検知されず、ユーザーの意図する回転動作が実行されない。 Therefore, the CPU 150 cannot recognize the rotation operation. That is, the rotation of the first click at the time of the reversing operation is not detected, and the rotation operation intended by the user is not executed.

また、立上りエッジ305a3が示すように、半時計回り時の立上りエッジは回転角度IIと回転角度IIcの間に現れる。 Further, as shown by the rising edge 305a3, the rising edge when counterclockwise appears between the rotation angle II and the rotation angle IIc.

回転操作部材200をユーザーが操作する場合を考える。 Consider the case where the user operates the rotation operation member 200.

ばね部材212の付勢力に対抗して回転操作部材200を回転させる状態(例:回転角度IIからIIc)と、ボール部材211が凸部230hを乗り越えてバネの付勢力でダイヤルが回転方向に付勢される状態(例:回転角度IIcからIII)が繰り返される。 In a state where the rotation operating member 200 is rotated against the urging force of the spring member 212 (example: rotation angles II to IIc), the ball member 211 gets over the convex portion 230h and the dial is attached in the rotation direction by the urging force of the spring. The state of being energized (eg, rotation angles IIc to III) is repeated.

このため、1クリック分の回転動作を発生させる信号のエッジは、ユーザーが意志を持って回転操作部材200を回転させ、ボール部材211が凸部230hを乗り越えた後の状態、つまり、回転角度IIcからIIIの間に出現する事が望ましい。 Therefore, the edge of the signal that generates the rotation operation for one click is the state after the user voluntarily rotates the rotation operation member 200 and the ball member 211 gets over the convex portion 230h, that is, the rotation angle IIc. It is desirable that it appears between 1 and III.

上記の様に回転角度IIからIIcの間で回転処理が行われると、回転操作部材200のガタツキ等により、ユーザーが予期しないタイミングで回転動作が行われてしまう可能性があるからである。 This is because if the rotation process is performed between the rotation angles II and IIc as described above, the rotation operation may be performed at an unexpected timing by the user due to rattling of the rotation operation member 200 or the like.

常に立上り、立下りエッジのどちらか一方のみを検出する構成では、時計回り、反時計回のどちらかで、ボール部材211が凸部230hを乗り越える前にパルス信号305のエッジが出現してしまう。 In the configuration in which only one of the rising edge and the falling edge is always detected, the edge of the pulse signal 305 appears before the ball member 211 gets over the convex portion 230h in either clockwise or counterclockwise rotation.

よって、ボール部材211が凸部230hを乗り越えた後に回転検知を行う制御が実現できない。 Therefore, it is not possible to realize the control of detecting the rotation after the ball member 211 gets over the convex portion 230h.

このように、回転方向信号306の値に応じて、パルス信号305の利用するエッジを切り換える制御を行う事で、反転動作時の1クリック目の動作不良を防止することが出来る。 In this way, by controlling to switch the edge used by the pulse signal 305 according to the value of the rotation direction signal 306, it is possible to prevent a malfunction of the first click during the inversion operation.

また、回転方向によらずにボール部材211が凸部230hを乗り越えた後に回転検知を行う事が可能となるので、誤作動が少なくユーザーの意志に忠実に反応する回転操作部材を提供する事が可能となる。 Further, since it is possible to detect the rotation after the ball member 211 has passed over the convex portion 230h regardless of the rotation direction, it is possible to provide a rotation operation member that has few malfunctions and faithfully reacts to the user's intention. It will be possible.

また、ボール部材211が凸部230hを乗り越えている途中に反転操作を行った場合でも、上記の制御を行う事で、動作不良を防止して、ユーザーの意志を反映した回転動作を行う事が可能である。 Further, even if the reversing operation is performed while the ball member 211 is overcoming the convex portion 230h, by performing the above control, it is possible to prevent malfunction and perform a rotational operation reflecting the user's intention. It is possible.

(CPU150の回転動作の制御のフローチャートの説明)
図8(b)は上述した制御をフローチャートで表したものである。以下フローチャートに沿ってCPU150の実際の動きを説明する。
(Explanation of the flowchart for controlling the rotation operation of the CPU 150)
FIG. 8B is a flowchart of the above-mentioned control. The actual operation of the CPU 150 will be described below with reference to the flowchart.

パルス信号305の立上りエッジ、および立下りエッジが発生するとCPU150に割り込みが発生する。これがS100である。 When the rising edge and the falling edge of the pulse signal 305 are generated, an interrupt is generated in the CPU 150. This is S100.

次にS101に進みパルス信号305がHであるかどうか判定を行う。パルス信号305がHである場合はS102に進み、回転方向信号306がLであるか判定を行う。 Next, the process proceeds to S101 and it is determined whether or not the pulse signal 305 is H. If the pulse signal 305 is H, the process proceeds to S102, and it is determined whether the rotation direction signal 306 is L.

回転方向信号306がLである場合はS103に進み回転操作部材200が時計回り方向に1クリック回転させた処理を行う。 When the rotation direction signal 306 is L, the process proceeds to S103 and the rotation operation member 200 is rotated by one click in the clockwise direction.

そして、S104に進み割り込み処理が終了となる。S102において回転方向信号306がLでなかった場合(回転方向信号306がHの場合)は何も処理を行わずにS104に進む。 Then, the process proceeds to S104 and the interrupt processing ends. If the rotation direction signal 306 is not L in S102 (when the rotation direction signal 306 is H), the process proceeds to S104 without performing any processing.

また、S101においてパルス信号305がHでなかった場合(パルス信号305がL)はS111に進み、回転方向信号306がHかどうか判定を行う。 If the pulse signal 305 is not H in S101 (the pulse signal 305 is L), the process proceeds to S111, and it is determined whether or not the rotation direction signal 306 is H.

回転方向信号306がHの場合はS112に進み反時計回りに1クリック回転させた処理を行い、S104で割り込み処理を終了させる。 When the rotation direction signal 306 is H, the process proceeds to S112 and is rotated counterclockwise by one click, and the interrupt process is terminated in S104.

S111で回転方向信号306がHでなかった場合(回転方向信号306がL)は何も処理を行わずにS104に進み割り込み処理を終了させる。 If the rotation direction signal 306 is not H in S111 (rotation direction signal 306 is L), the process proceeds to S104 without any processing and the interrupt processing is terminated.

このフローチャートを図8(a)の信号波形に照らし合わせてみると以下の様になる。 When this flowchart is compared with the signal waveform of FIG. 8A, it becomes as follows.

立下りエッジ305b1で発生した割り込みは、S101でNO,S111もNOとなり、(4)のルートを通ることで何も処理は実行されない。 The interrupt generated at the falling edge 305b1 becomes NO in S101 and NO in S111, and no processing is executed by passing through the route (4).

立上りエッジ305a1で発生した割り込みは、S101でYES,S102もYESとなり、(1)のルートを通ることで時計回り方向に1クリック分の回転処理が実行される。 The interrupt generated at the rising edge 305a1 is YES in S101 and YES in S102, and the rotation process for one click is executed in the clockwise direction by passing through the route (1).

同様に、立下りエッジ305b3の割り込みでは、S101でNO、S111でYESとなり、(3)のルートを通る事で反時計回り方向に1クリック分の処理が実行される。 Similarly, in the interrupt of the falling edge 305b3, NO is set in S101 and YES is set in S111, and the process for one click is executed in the counterclockwise direction by passing through the route (3).

また、立上りエッジ305a3の割り込みでは、S101でYES,S102でNOとなり、(2)のルートを通るため何も処理は行われない。 Further, in the interrupt of the rising edge 305a3, YES is set in S101 and NO is set in S102, and no processing is performed because the route (2) is passed.

以上、説明したように、図8(b)のフローチャートに沿った処理を行う事で、回転操作部材200の回転方向によらずに、動作不良を発生させず、ユーザーの意志を反映した回転検知制御を行う事が可能となる。 As described above, by performing the processing according to the flowchart of FIG. 8B, the rotation detection that reflects the user's intention without causing a malfunction regardless of the rotation direction of the rotation operation member 200. It is possible to control.

(磁石251と磁石保持部材230の配置の関係)
以下、図9を用いて、磁石251と磁石保持部材230の配置の関係を説明する。
(Relationship between magnet 251 and magnet holding member 230)
Hereinafter, the relationship between the arrangement of the magnet 251 and the magnet holding member 230 will be described with reference to FIG. 9.

図9は、ホールIC241と磁石251の配置を示す上面概略図である。 FIG. 9 is a schematic top view showing the arrangement of the hall IC 241 and the magnet 251.

図9(a)は、ホールIC241が磁石251のS極に対向し、ボール部材211が凹凸形状230fの凹部230gに落ち込んだ状態を示している。 FIG. 9A shows a state in which the hole IC 241 faces the S pole of the magnet 251 and the ball member 211 is depressed into the concave portion 230 g of the concave-convex shape 230f.

図9(b)は、ホールIC241が磁石251のN極に対向し、ボール部材211が凹凸形状230fの凹部230gに落ち込んだ状態を示している。 FIG. 9B shows a state in which the hole IC 241 faces the north pole of the magnet 251 and the ball member 211 is depressed into the concave portion 230 g of the concave-convex shape 230f.

図9(c)は、ホールIC241が磁石251のS極とN極の境目に対向し、ボール部材211が凸部230hの頂点に位置する状態を示している。 FIG. 9C shows a state in which the hole IC 241 faces the boundary between the S pole and the N pole of the magnet 251 and the ball member 211 is located at the apex of the convex portion 230h.

図9に示す角度I、II、III、IVは、それぞれ図6から図8の回転角度に対応している。 The angles I, II, III, and IV shown in FIG. 9 correspond to the rotation angles of FIGS. 6 to 8, respectively.

回転操作部材200を時計回りに1クリック分回転させると、図9(a)から図9(b)の状態に変化する。 When the rotation operation member 200 is rotated clockwise by one click, the state changes from FIG. 9A to FIG. 9B.

回転操作部材200を反時計回りに1クリック分回転させると、図9(b)から図9(a)へ状態が変化する。 When the rotation operation member 200 is rotated counterclockwise by one click, the state changes from FIG. 9 (b) to FIG. 9 (a).

なお、図9(a)の状態は図5(c)で示した状態と対応しており、図9(b)は図5(e)の状態と対応している。 The state of FIG. 9 (a) corresponds to the state shown in FIG. 5 (c), and FIG. 9 (b) corresponds to the state of FIG. 5 (e).

また、図9(c)の状態は図5(d)の状態に対応している。回転操作部材200を操作していない時は、図9(a)、(b)の状態であり、図9(c)の状態は回転操作部材200を回転させている途中の状態である。 Further, the state of FIG. 9 (c) corresponds to the state of FIG. 5 (d). When the rotation operation member 200 is not operated, the states shown in FIGS. 9A and 9B are shown, and the state shown in FIG. 9C is a state in which the rotation operation member 200 is being rotated.

このように、磁石251の分極数と回転操作部材200のクリック数を等しくした場合でも、上述したような制御を行う事で、ダイヤルの回転方向と回転量を検知することが可能となる。 In this way, even when the number of polarizations of the magnet 251 and the number of clicks of the rotation operation member 200 are made equal to each other, it is possible to detect the rotation direction and the rotation amount of the dial by performing the control as described above.

よって、磁極数の増加を抑えて磁石が小型化できることにより、回転操作部材全体の小型化が可能となる。 Therefore, the magnet can be miniaturized by suppressing the increase in the number of magnetic poles, so that the entire rotation operating member can be miniaturized.

また、磁石の小型化が必要ではない場合でも、回転検知ピッチを細分化できるので、高精度な回転検知が可能となる。 Further, even if it is not necessary to reduce the size of the magnet, the rotation detection pitch can be subdivided, so that highly accurate rotation detection becomes possible.

また、本実施例では磁石251を等ピッチで20分極された円環状の形状としたが、両端がS極、N極着磁された2極だけの磁石10個を、円型かつ磁極が交互に入替るように配置しても同様の効果が得られる。 Further, in this embodiment, the magnet 251 has an annular shape polarized by 20 at equal pitches, but 10 magnets having only two poles magnetized with S poles and N poles at both ends are circular and have alternating magnetic poles. The same effect can be obtained even if it is arranged so as to be replaced with.

また、本実施例では磁石251と回転操作部材200が一体的に回転する構成としたが、回転操作部材200と磁石251の回転軸を別の場所に配置し、回転操作部材200の回転と連動して磁石251が回転するような構成も可能である。 Further, in this embodiment, the magnet 251 and the rotation operation member 200 are configured to rotate integrally, but the rotation operation member 200 and the rotation axis of the magnet 251 are arranged at different places and interlocked with the rotation of the rotation operation member 200. It is also possible to rotate the magnet 251.

ここでは、撮像装置100の背面カバー110に設けられた回転操作部材200について説明を行ったが、本発明はこれに限定されるものではなく、図1に示したダイヤル71のような回転操作部材にも適用可能である。 Here, the rotation operation member 200 provided on the back cover 110 of the image pickup apparatus 100 has been described, but the present invention is not limited to this, and the rotation operation member such as the dial 71 shown in FIG. 1 is not limited thereto. It is also applicable to.

(第2の実施例)
以下、図10および図11を用いて、本実施例の第2の形態について説明する。
(Second Example)
Hereinafter, the second embodiment of the present embodiment will be described with reference to FIGS. 10 and 11.

実施例1と同等の内容には同等の符号を振り詳細な説明は省略する。 The same reference numerals are given to the contents equivalent to those of the first embodiment, and detailed description thereof will be omitted.

本実施例では第1の実施形態に対して、磁石251とホールIC241の配置のみが異なるため、その部分に特化して説明を行う。 In this embodiment, since only the arrangement of the magnet 251 and the hall IC 241 is different from the first embodiment, the description will be given specifically to that portion.

図10は、ホールIC241を磁石251の内側に配置したときの、回転操作部材200の構造の一例を示した分解斜視図である。図11は回転操作部材200の断面図であり、ホールIC241の中心を通る断面を表している。 FIG. 10 is an exploded perspective view showing an example of the structure of the rotation operating member 200 when the hall IC 241 is arranged inside the magnet 251. FIG. 11 is a cross-sectional view of the rotation operating member 200, showing a cross section passing through the center of the hall IC 241.

240cは基板立ち曲げ部であり、基板240の一部を折り曲げられる構成となっており、ホールIC241は基板立ち曲げ部240cに実装される。 The 240c is a substrate standing bending portion, and is configured to be able to bend a part of the substrate 240, and the hole IC 241 is mounted on the substrate standing bending portion 240c.

290は基板保持部材であり、スイッチラバー280および基板240を覆うようにして基板固定板250にビス291によって固定される。 Reference numeral 290 is a substrate holding member, which is fixed to the substrate fixing plate 250 by screws 291 so as to cover the switch rubber 280 and the substrate 240.

基板保持部材290は基板保持部290aが設けられており、基板立ち曲げ部240cが取り付けられる。 The substrate holding member 290 is provided with a substrate holding portion 290a, and a substrate standing bending portion 240c is attached to the substrate holding member 290.

磁石251は、回転操作部材200と磁石保持部材230とによって固定され、着磁面251aは磁石251の内側面に設けられる。 The magnet 251 is fixed by the rotation operation member 200 and the magnet holding member 230, and the magnetizing surface 251a is provided on the inner surface of the magnet 251.

ホールIC241は磁石251の内側の着磁面251aに対向する位置に配置される。 The Hall IC 241 is arranged at a position facing the magnetizing surface 251a inside the magnet 251.

(ホールIC241による磁場の検知の説明)
続いて、図12を用いて、ホールIC241を磁石251の内側に配置した場合の、磁石251が発生させる磁場と、ホールIC241による磁場の検知について説明する。
(Explanation of magnetic field detection by Hall IC 241)
Subsequently, with reference to FIG. 12, the magnetic field generated by the magnet 251 and the detection of the magnetic field by the Hall IC 241 when the Hall IC 241 is arranged inside the magnet 251 will be described.

実施例1と同等の内容には同等の符号を振り詳細な説明は省略する。 The same reference numerals are given to the contents equivalent to those of the first embodiment, and detailed description thereof will be omitted.

第1の磁場検知部及び第2の磁場検知部は、ホールIC241としての単一の電気素子内に設けられている。 The first magnetic field detection unit and the second magnetic field detection unit are provided in a single electric element as the Hall IC 241.

図12(a)は、磁石251とホールIC241をダイヤル回転軸方向から見た図である。磁石251の厚みの中心とホールIC241の検出部241aと、回転軸方向に一致した状態で配置される。 FIG. 12A is a view of the magnet 251 and the hole IC 241 as viewed from the dial rotation axis direction. The center of the thickness of the magnet 251 and the detection unit 241a of the hall IC 241 are arranged so as to coincide with the direction of the rotation axis.

ホールIC241は磁石251の回転軸垂直方向(ダイヤル回転軸に垂直な方向(矢印A方向))と、磁石251の円の接線方向(矢印B方向)の磁場の磁束密度を検出し、それぞれの磁場の状態を表す所定の信号を出力する。 The Hall IC 241 detects the magnetic flux densities of the magnetic fields in the direction perpendicular to the rotation axis of the magnet 251 (direction perpendicular to the dial rotation axis (arrow A direction)) and in the tangential direction of the circle of the magnet 251 (arrow B direction), and each magnetic field. A predetermined signal indicating the state of is output.

図12(b)は、磁石251とホールIC241を回転軸に垂直な方向(図中矢印Aと対向する向き)から見た図である。 FIG. 12B is a view of the magnet 251 and the Hall IC 241 viewed from a direction perpendicular to the rotation axis (direction facing arrow A in the figure).

磁石251は、内側面に着磁面251aが設けられ、ホールIC241は着磁面251aに対向する位置に、磁石251の幅の中心とホールIC241の検出部241aが一致するように配置される。 The magnet 251 is provided with a magnetized surface 251a on the inner surface thereof, and the hole IC 241 is arranged at a position facing the magnetized surface 251a so that the center of the width of the magnet 251 and the detection unit 241a of the hole IC 241 coincide with each other.

図12(c)、(d)は磁石251をダイヤル回転軸方向(矢印D方向)から見て、NSNの3極を拡大した図である。 12 (c) and 12 (d) are enlarged views of the three poles of the NSN when the magnet 251 is viewed from the dial rotation axis direction (arrow D direction).

図12(c)は、ホールIC241の検出部241aとS極の中心が、図の左右方向で一致した状態を表している。 FIG. 12C shows a state in which the detection unit 241a of the Hall IC 241 and the center of the S pole coincide with each other in the left-right direction of the figure.

また、図12(d)は、図12(c)の状態から磁石251がダイヤル回転軸を中心に回転し、ホールIC241の検出部241aとS極N極の境界が一致した状態を表す。 Further, FIG. 12 (d) shows a state in which the magnet 251 rotates about the dial rotation axis from the state of FIG. 12 (c), and the boundary between the detection unit 241a of the Hall IC 241 and the S pole N pole coincides.

図12(e)、(f)は磁石251をダイヤル回転軸方向(矢印C方向)から見て、SNSの3極を拡大した図である。 12 (e) and 12 (f) are enlarged views of the three poles of the SNS when the magnet 251 is viewed from the dial rotation axis direction (arrow C direction).

図12(e)はホールIC241の検出部241aとS極の中心が、一致した状態を表し、図12(f)は、図12(e)の状態から磁石251がダイヤル回転軸を中心に回転し、ホールIC241の検出部241aとS極N極の境界が一致した状態を表す。 FIG. 12 (e) shows a state in which the detection unit 241a of the Hall IC 241 and the center of the S pole coincide with each other, and FIG. 12 (f) shows the magnet 251 rotating about the dial rotation axis from the state of FIG. 12 (e). It represents a state in which the boundaries of the detection unit 241a of the Hall IC 241 and the S pole and the N pole coincide with each other.

図12に示す各磁場は、図5に示した磁場と同様に、着磁面251aのN極から垂直に立上ったあと弧を描いてS極に向かい着磁面251aのS極において再び垂直方向となる。 Similar to the magnetic field shown in FIG. 5, each magnetic field shown in FIG. 12 rises vertically from the N pole of the magnetizing surface 251a and then draws an arc toward the S pole and again at the S pole of the magnetizing surface 251a. It will be in the vertical direction.

図12(e)に示すように、磁石251の着磁面251aから発生する磁場は、磁石251の内部空間のみに形成される。 As shown in FIG. 12 (e), the magnetic field generated from the magnetizing surface 251a of the magnet 251 is formed only in the internal space of the magnet 251.

前述したように、磁石251の磁場は矢印A,Bで定義される平面と平行な方向がほとんどであり、矢印C方向の磁場はほとんど発生しない。 As described above, the magnetic field of the magnet 251 is mostly in the direction parallel to the plane defined by the arrows A and B, and the magnetic field in the direction of the arrow C is hardly generated.

よって、磁石251の内側面にのみ着磁面251aを設けることで、磁石251から外部に漏れる磁場を低減することが可能となる。 Therefore, by providing the magnetizing surface 251a only on the inner surface of the magnet 251 it is possible to reduce the magnetic field leaking from the magnet 251 to the outside.

このような構成によって、撮像装置内の撮像センサや電気素子へ与える磁場の影響を低減でき、また、撮像装置と共に使用される外部機器へ与える磁場の影響を抑えることが出来る。 With such a configuration, the influence of the magnetic field on the image pickup sensor and the electric element in the image pickup device can be reduced, and the influence of the magnetic field on the external device used together with the image pickup device can be suppressed.

図12(b)に示す矢印D、E、Fは、回転操作部材200の外部からホールIC241の検出部241aに向かう、外来磁場の方向を示している。 Arrows D, E, and F shown in FIG. 12B indicate the direction of the external magnetic field from the outside of the rotation operating member 200 toward the detection unit 241a of the hall IC 241.

(ホールIC241の検知性能に対する、外来磁場の影響の説明)
以下、ホールIC241の検知性能に対する、外来磁場の影響を低減する構成について説明する。
(Explanation of the effect of the external magnetic field on the detection performance of the Hall IC 241)
Hereinafter, a configuration for reducing the influence of the external magnetic field on the detection performance of the Hall IC 241 will be described.

図1(b)に示すように、回転操作部材200は撮像装置100の背面カバー110上に配置されており、ホールIC241は背面カバー110の近傍に配置される。 As shown in FIG. 1B, the rotation operation member 200 is arranged on the back cover 110 of the image pickup apparatus 100, and the hall IC 241 is arranged in the vicinity of the back cover 110.

このため、ホールIC241は外来磁場の影響を少なからず受けやすい構成であるといえる。本実施の第2の形態における背面カバー110は金属部材で構成された磁性体とする。 Therefore, it can be said that the Hall IC 241 is not a little affected by the external magnetic field. The back cover 110 in the second embodiment of the present embodiment is a magnetic material made of a metal member.

このとき、ホールIC241の検知磁場に影響を与える外来磁場のうち、矢印DおよびE方向成分は、ホールIC241が回転操作部材200の内部に配置される。 At this time, among the external magnetic fields that affect the detection magnetic field of the Hall IC 241, the arrow D and E direction components are arranged inside the rotation operation member 200 of the Hall IC 241.

よって、磁性体である背面カバー110によってある程度遮ることが出来ると考えられる。 Therefore, it is considered that the back cover 110, which is a magnetic material, can block the cover to some extent.

本実施例の第2の形態では、ホールIC241の磁場の検知軸方向は、回転軸垂直方向(矢印A方向)および磁石251の円の接線方向(矢印B方向)であり、ダイヤルの回転軸方向(矢印C)には検知軸を持たない。 In the second embodiment of the present embodiment, the detection axis direction of the magnetic field of the Hall IC 241 is the direction perpendicular to the rotation axis (arrow A direction) and the tangential direction of the circle of the magnet 251 (arrow B direction), and the direction of the rotation axis of the dial. (Arrow C) does not have a detection axis.

この構成によって、矢印F方向の外来磁場成分がホールIC241の検知磁場に与える影響を無くす事ができ、外来磁場の影響を低減可能な構成である。 With this configuration, the influence of the external magnetic field component in the direction of the arrow F on the detection magnetic field of the Hall IC 241 can be eliminated, and the influence of the external magnetic field can be reduced.

以上の本実施例の第2の形態では、円環状の磁石251の内側面に着磁面を設け、磁石251の内側にホールIC241を配置する構成により、磁石251から外部に漏れる磁場を低減することが可能となる。 In the second embodiment of the present embodiment described above, the magnetic field leaking from the magnet 251 to the outside is reduced by providing a magnetized surface on the inner surface of the annular magnet 251 and arranging the hole IC 241 inside the magnet 251. It becomes possible.

よって、撮像装置内外に与える磁場の影響を低減できる構成を説明した。 Therefore, the configuration that can reduce the influence of the magnetic field applied to the inside and outside of the image pickup device has been described.

また、ホールIC241を、検知軸が回転軸垂直方向(矢印A方向)および磁石251の円の接線方向(矢印B方向)となるように配置する。 Further, the Hall IC 241 is arranged so that the detection axis is in the direction perpendicular to the rotation axis (direction of arrow A) and the tangential direction of the circle of the magnet 251 (direction of arrow B).

よって、外来磁場(矢印E方向)がホールIC241の検知磁場に与える影響を無くすことが可能となった。この構成においても、図8(b)の制御フローチャートに従うことで、実施例1と同様の効果が得られる。 Therefore, it is possible to eliminate the influence of the external magnetic field (direction of arrow E) on the detection magnetic field of the Hall IC 241. Also in this configuration, the same effect as that of the first embodiment can be obtained by following the control flowchart of FIG. 8 (b).

(第3の実施例)
以下、図13を用いて、本実施例の第3の形態について説明する。
(Third Example)
Hereinafter, the third embodiment of the present embodiment will be described with reference to FIG.

実施例1と同等の内容には同等の符号を振り詳細な説明は省略する。 The same reference numerals are given to the contents equivalent to those of the first embodiment, and detailed description thereof will be omitted.

本実施例では第1の実施形態に対して、磁石251とホールIC241の配置のみが異なるため、その部分に特化して説明を行う。 In this embodiment, since only the arrangement of the magnet 251 and the hall IC 241 is different from the first embodiment, the description will be given specifically to that portion.

磁石251は本実施例では12極に着磁されている。 The magnet 251 is magnetized to 12 poles in this embodiment.

図中、白抜き部がN極、網掛け部がS極である。241b、241cはホールICであり、それぞれ一方向の磁場を検出する事ができる。 In the figure, the white part is the N pole and the shaded part is the S pole. 241b and 241c are Hall ICs, each of which can detect a magnetic field in one direction.

241bは実施例1の縦磁場方向、241bは実施例1の横磁場方向の磁束密度を検知して、実施例1に示すような、縦磁場信号を241bが、横磁場信号を241cが出力する。 241b detects the magnetic flux density in the longitudinal magnetic field direction of Example 1, 241b detects the magnetic flux density in the transverse magnetic field direction of Example 1, and outputs the longitudinal magnetic field signal by 241b and the transverse magnetic field signal by 241c as shown in Example 1. ..

図に示すように、磁石251の着磁ピッチをPと置くと、ホールIC241bとホールIC241cは2.5ピッチ離れて配置される。 As shown in the figure, when the magnetizing pitch of the magnet 251 is set to P, the hole IC 241b and the hole IC 241c are arranged 2.5 pitches apart.

このため、それぞれのホールICで検知される磁束密度は図6(a)に縦磁束密度301、横磁束密度302で示すように磁極ピッチの半分だけずれた波形となる。 Therefore, the magnetic flux densities detected by the respective Hall ICs have waveforms deviated by half of the magnetic pole pitch as shown by the vertical magnetic flux density 301 and the horizontal magnetic flux density 302 in FIG. 6A.

当然、これらの磁束密度から得られる縦横磁場信号も磁極ピッチの半分だけずれた状態となる。よって、CPU150によって縦横磁場信号の排他的論理和を計算する事で、実施例1のパルス信号305と同等の信号を生成する事ができる。 As a matter of course, the vertical and horizontal magnetic field signals obtained from these magnetic flux densities are also in a state of being deviated by half of the magnetic pole pitch. Therefore, by calculating the exclusive OR of the longitudinal and transverse magnetic field signals by the CPU 150, it is possible to generate a signal equivalent to the pulse signal 305 of the first embodiment.

また、縦横磁場信号の変化状態から回転方向信号306を生成する事も可能となり、図8(b)に示したフローチャートと同等の処理を行う事で、回転操作部材200の回転を適切に検知する事が可能となる。 Further, it is also possible to generate the rotation direction signal 306 from the changed state of the longitudinal and transverse magnetic field signals, and by performing the same processing as the flowchart shown in FIG. 8 (b), the rotation of the rotation operating member 200 is appropriately detected. Things will be possible.

なお、2つのホールICの配置は2.5ピッチに限定されるものではなく、着磁ピッチの整数倍からずれた配置であれば同等の効果が得られる。 The arrangement of the two Hall ICs is not limited to 2.5 pitches, and the same effect can be obtained if the arrangement is deviated from an integral multiple of the magnetizing pitch.

但し、ホールICの相対的な位置が変化すると、縦磁場信号303と横磁場信号304のずれ量も変化するため、信号のずれが許容される範囲内でそれぞれのホールICを配置する必要がある。 However, when the relative position of the Hall IC changes, the amount of deviation between the longitudinal magnetic field signal 303 and the transverse magnetic field signal 304 also changes, so it is necessary to arrange each Hall IC within the range where the signal deviation is allowed. ..

本実施例に示すように、2つの検知部を配置する事で、実施例1,2で説明したような1つで2方向の磁場を検知できるような素子を使わずに済む。 By arranging the two detection units as shown in the present embodiment, it is not necessary to use an element capable of detecting a magnetic field in two directions with one as described in the first and second embodiments.

安価な1方向検知可能なホールICを使用した場合でも回転操作部材200の回転を検知する事が可能となるため、製造コストを低減させることが可能となる。 Even when an inexpensive Hall IC capable of one-way detection is used, it is possible to detect the rotation of the rotation operating member 200, so that the manufacturing cost can be reduced.

また、本発明は磁石251と2個のホールICのみに限定されるものではなく、フォトリフレクタを使用しても良い。 Further, the present invention is not limited to the magnet 251 and the two Hall ICs, and a photoreflector may be used.

例えば、図13に示すホールIC241b、ホールIC241cをフォトリフレクタとして、磁石251を高反射部と無反射部が組み合わされた反射板としても良い。 For example, the Hall IC 241b and the Hall IC 241c shown in FIG. 13 may be used as a photoreflector, and the magnet 251 may be used as a reflector in which a high-reflection portion and a non-reflection portion are combined.

この場合、磁石251の白抜き部が高反射部、網掛け部が無反射部とすることで、2つのフォトリフレクタから図6(a)に示す縦磁場信号303と横磁場信号304と同等の信号(着磁ピッチの2倍の周期で変化する信号)が得られる。 In this case, the white portion of the magnet 251 is a high-reflection portion and the shaded portion is a non-reflection portion, so that the two photoreflectors are equivalent to the vertical magnetic field signal 303 and the transverse magnetic field signal 304 shown in FIG. 6A. A signal (a signal that changes at a cycle twice the magnetizing pitch) is obtained.

つまり、信号発生手段は、所定の回転角度の2倍の周期で光線反射率が変化する反射板と、所定の回転角度の整数倍と異なるピッチで配置された複数の光電変換素子からなる。 That is, the signal generating means includes a reflector whose light reflectance changes at a cycle of twice a predetermined rotation angle, and a plurality of photoelectric conversion elements arranged at a pitch different from an integral multiple of the predetermined rotation angle.

よって、上述の処理を行うことで回転操作部材200の回転を検知する事が可能である。 Therefore, it is possible to detect the rotation of the rotation operating member 200 by performing the above-mentioned processing.

また、241b、241cをブラシ接片として、251に着磁ピッチの2倍の周期で信号がHからLに変化する導通パターンを設けても同様の効果が得られる。 Further, the same effect can be obtained by using 241b and 241c as brush contact pieces and providing 251 with a conduction pattern in which the signal changes from H to L at a cycle twice the magnetizing pitch.

つまり、信号発生手段は、所定の回転角度の2倍の周期で抵抗値が変化する回路基板と、所定の回転角度の整数倍と異なるピッチで配置され、回路基板の抵抗値を検出する電気接片からなる。 That is, the signal generating means is arranged with a circuit board whose resistance value changes at a cycle of twice a predetermined rotation angle and a pitch different from an integral multiple of the predetermined rotation angle, and is electrically contacted to detect the resistance value of the circuit board. It consists of one piece.

また、本発明における回転操作部材200は、例えば、図14に示すカメラ400の、レンズ鏡筒401の周囲に配置された回転リング402であってもよい。 Further, the rotation operation member 200 in the present invention may be, for example, a rotation ring 402 arranged around the lens barrel 401 of the camera 400 shown in FIG.

カメラ400の回転リング402は、ユーザーが任意に機能を割り当てることが出来、回転リング402の回転量および回転方向による各機能の操作が可能となる。ここでいう任意の機能とは、撮影を補助するための機能を示す。 The rotation ring 402 of the camera 400 can be arbitrarily assigned a function by the user, and each function can be operated according to the rotation amount and the rotation direction of the rotation ring 402. The arbitrary function referred to here is a function for assisting shooting.

上述の回転操作部材200の構成と同様にして、回転リング402の内部には、不図示の磁石251が回転リング402側に保持されている。 Similar to the configuration of the rotation operation member 200 described above, a magnet 251 (not shown) is held on the rotation ring 402 side inside the rotation ring 402.

また、回転リング402と磁石251は一体的または連動して回転する。また、回転リング402はクリック機構を有しており、回転リング402の回転操作は1クリックを基本単位として行われる。 Further, the rotating ring 402 and the magnet 251 rotate integrally or in conjunction with each other. Further, the rotating ring 402 has a click mechanism, and the rotation operation of the rotating ring 402 is performed with one click as a basic unit.

さらに、不図示のホールIC241は、磁石251に対向する位置となるようにカメラ400側に固定される。 Further, the hall IC 241 (not shown) is fixed to the camera 400 side so as to be in a position facing the magnet 251.

この場合においても、上述の回転操作部材200の構成と同様にして、磁石251の分極数と回転リング402のクリック数を等しくして、上述した処理を行う事で、リング形状の回転リング402の回転を検知する事が可能となる。 Also in this case, in the same manner as the configuration of the rotation operation member 200 described above, the number of polarizations of the magnet 251 and the number of clicks of the rotation ring 402 are made equal to each other, and the above processing is performed to obtain the ring-shaped rotation ring 402. It is possible to detect rotation.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and modifications can be made within the scope of the gist thereof.

200 回転操作部材
230f 凹凸形状
241 ホールIC
251 磁石
301 縦磁束密度
302 横磁束密度
303 縦磁場信号
304 横磁場信号
305 回転信号
306 回転方向信号
200 Rotation operation member 230f Concavo-convex shape 241 Hall IC
251 Magnet 301 Vertical magnetic flux density 302 Horizontal magnetic flux density 303 Vertical magnetic field signal 304 Horizontal magnetic field signal 305 Rotation signal 306 Rotation direction signal

Claims (2)

回転軸に対して第1の方向及び前記第1の方向と反対の第2の方向の両方向に回転可能に保持された回転操作部材と、前記回転操作部材に対して、所定の回転角度毎にクリック感を発生させるクリック機構と、前記所定の回転角度の2倍の周期を持つ第1の信号および第2の信号を、前記所定の回転角度以下の所定のずれ量を持って発生させる信号発生手段と、前記第1の信号及び前記第2の信号を用いて、前記所定の回転角度と同等の周期で立上りエッジ及び立下りエッジを持つ前記回転操作部材の回転量を示すパルス信号と前記回転操作部材の回転方向を示す回転方向信号を生成する信号発生手段と、を有する電子機器であって、
前記回転方向信号の出力が前記第1の方向の場合、前記パルス信号の立上りエッジで回転検知を行い、前記回転方向信号の出力が前記第2の方向の場合、前記パルス信号の立下がりエッジで回転検知を行う回転検知制御手段を有し、
前記信号発生手段は、前記所定の回転角度と等しいピッチで磁極が変化する磁場生成部材と、前記磁場生成部材の着磁面に垂直な第1の方向の磁場と、前記磁場生成部材の着磁面及び前記第1の方向の磁場と直交する方向の第2の方向の磁場を検知可能な磁場検知部と、を有し、
前記磁場検知部は単一の電気素子であることを特徴とする電子機器。
A rotation operating member rotatably held in both a first direction with respect to the rotation axis and a second direction opposite to the first direction, and a rotation operation member with respect to the rotation operation member at predetermined rotation angles. A click mechanism that generates a click feeling, and a signal generation that generates a first signal and a second signal having a period twice the predetermined rotation angle with a predetermined deviation amount equal to or less than the predetermined rotation angle. Using the means and the first signal and the second signal, a pulse signal indicating the amount of rotation of the rotation operating member having a rising edge and a falling edge at a period equivalent to the predetermined rotation angle and the rotation. An electronic device having a signal generating means for generating a rotation direction signal indicating the rotation direction of the operating member.
When the output of the rotation direction signal is in the first direction, rotation detection is performed at the rising edge of the pulse signal, and when the output of the rotation direction signal is in the second direction, it is at the falling edge of the pulse signal. It has a rotation detection control means that detects rotation, and has
The signal generating means includes a magnetic field generating member whose magnetic pole changes at a pitch equal to the predetermined rotation angle, a magnetic field in a first direction perpendicular to the magnetizing surface of the magnetic field generating member, and magnetism of the magnetic field generating member. It has a surface and a magnetic field detecting unit capable of detecting a magnetic field in a second direction orthogonal to the magnetic field in the first direction.
The magnetic field detection unit is an electronic device characterized by being a single electric element.
前記信号発生手段は、前記所定の回転角度と等しいピッチで磁極が変化する磁場生成部材と、特定の方向の磁場を検知可能で、前記所定の回転角度の整数倍と異なるピッチで配置された複数の磁場検知部からなり、前記複数の磁場検知部はそれぞれ異なる方向の磁場を検知する請求項1に記載の電子機器。 The signal generating means includes a magnetic field generating member whose magnetic pole changes at a pitch equal to the predetermined rotation angle, and a plurality of magnetic field generating members arranged at a pitch different from an integral multiple of the predetermined rotation angle capable of detecting a magnetic field in a specific direction. The electronic device according to claim 1, further comprising a magnetic field detection unit of the above, wherein the plurality of magnetic field detection units detect magnetic fields in different directions.
JP2017171177A 2017-09-06 2017-09-06 Electronics Active JP7005237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017171177A JP7005237B2 (en) 2017-09-06 2017-09-06 Electronics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017171177A JP7005237B2 (en) 2017-09-06 2017-09-06 Electronics

Publications (2)

Publication Number Publication Date
JP2019045420A JP2019045420A (en) 2019-03-22
JP7005237B2 true JP7005237B2 (en) 2022-01-21

Family

ID=65815621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017171177A Active JP7005237B2 (en) 2017-09-06 2017-09-06 Electronics

Country Status (1)

Country Link
JP (1) JP7005237B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267439A (en) 2001-03-06 2002-09-18 Sony Corp Rotational angle detector
JP2004028600A (en) 2002-06-21 2004-01-29 Matsushita Electric Ind Co Ltd Rotation detection device
JP2005093420A (en) 2003-08-08 2005-04-07 Omron Corp Input device, and electronic apparatus and cell phone using it
JP2010176971A (en) 2009-01-28 2010-08-12 Omron Corp Operation mode selecting device and electronic device using the same
JP2016046024A (en) 2014-08-21 2016-04-04 パナソニックIpマネジメント株式会社 Revolving dial device and imaging apparatus
JP2017072474A (en) 2015-10-07 2017-04-13 キヤノン株式会社 Electronic equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045804B2 (en) * 1978-02-28 1985-10-12 日本電気株式会社 angle detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267439A (en) 2001-03-06 2002-09-18 Sony Corp Rotational angle detector
JP2004028600A (en) 2002-06-21 2004-01-29 Matsushita Electric Ind Co Ltd Rotation detection device
JP2005093420A (en) 2003-08-08 2005-04-07 Omron Corp Input device, and electronic apparatus and cell phone using it
JP2010176971A (en) 2009-01-28 2010-08-12 Omron Corp Operation mode selecting device and electronic device using the same
JP2016046024A (en) 2014-08-21 2016-04-04 パナソニックIpマネジメント株式会社 Revolving dial device and imaging apparatus
JP2017072474A (en) 2015-10-07 2017-04-13 キヤノン株式会社 Electronic equipment

Also Published As

Publication number Publication date
JP2019045420A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6957276B2 (en) Electronics
US9426366B2 (en) Digital photographing apparatus and method of controlling the same
JP7005397B2 (en) Rotation control unit and electronic equipment
JP2010015107A (en) Imaging apparatus to correct blurring
US11476027B2 (en) Rotation operation device using magnetic force and electronic apparatus using this
KR100541268B1 (en) Image pickup apparatus
KR101388995B1 (en) Image pickup lens, image pickup apparatus, and lens controlling method
JP7005237B2 (en) Electronics
JP7150582B2 (en) Rotary operating unit and electronics
JP2013073726A (en) Rotational operation unit and electronic apparatus
JP2014092565A (en) Interchangeable lens barrel
JP2019197711A (en) Electronic apparatus
US10321063B2 (en) Electronic apparatus and image pickup apparatus
JP2020038792A (en) Rotational operation unit and electronic apparatus
JP2019185977A (en) Rotation operation unit, electronic device including the same, and imaging apparatus
JP7057170B2 (en) Input devices and electronic devices
JP2019056773A (en) Electronic device
JP2019056772A (en) Electronic device
JP2020136273A (en) Rotation operation device and electronic device using the same
US20220373859A1 (en) Rotatable operation apparatus and electronic apparatus
US11682511B2 (en) Electronic apparatus
JP2015203786A (en) Lens barrel, and optical instrument
JP2001201310A (en) Rotation detector and lens barrel having rotation detector
JP2022169394A (en) Rotating operation device and electronic apparatus
JP6184227B2 (en) Lens barrel and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220105