JP7000952B2 - 車両の走行を制御する制御装置、制御方法、及び、制御プログラム - Google Patents

車両の走行を制御する制御装置、制御方法、及び、制御プログラム Download PDF

Info

Publication number
JP7000952B2
JP7000952B2 JP2018061231A JP2018061231A JP7000952B2 JP 7000952 B2 JP7000952 B2 JP 7000952B2 JP 2018061231 A JP2018061231 A JP 2018061231A JP 2018061231 A JP2018061231 A JP 2018061231A JP 7000952 B2 JP7000952 B2 JP 7000952B2
Authority
JP
Japan
Prior art keywords
vehicle
operation amount
teacher data
sub
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018061231A
Other languages
English (en)
Other versions
JP2019172010A (ja
Inventor
文洋 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2018061231A priority Critical patent/JP7000952B2/ja
Publication of JP2019172010A publication Critical patent/JP2019172010A/ja
Application granted granted Critical
Publication of JP7000952B2 publication Critical patent/JP7000952B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Description

本明細書は、車両の走行を制御する制御装置、制御方法、及び、制御プログラムに関する。
車両に搭載されたカメラの画像データから機械学習アルゴリズムに基づいて車両の操作量を推定する技術が開発されている。さらに、車両が出荷された後に、カメラの画像データと車両の実操作量を教師データに用いて、このような機械学習アルゴリズムのパラメータを決定する技術が開発されており、その一例が特許文献1-4に開示されている。
特開平6-60300号公報 特開2015-135552号公報 特開2005-178518号公報 特開2009-193142号公報
車両を出荷した後に得られる教師データの多くは、車両が安全な位置を走行したときのデータで占められる。例えば、車両が道路上を走行するとき、走行レーン内を安全に走行する場合がほとんどであり、得られる教師データはそのような安全走行時のデータで占められる。このため、例えば走行レーンから外れた車両が走行レーン内に復帰するための教師データが不足する。これにより、機械学習アルゴリズムは、車両が走行レーンから外れて走行したときに、車両を走行レーン内に復帰させる操作量を良好に推定することができない。
上記したように、車両を出荷した後に、機械学習アルゴリズムのパラメータを決定する技術では、車両が安全でない位置を走行したときの教師データが不足するという問題がある。本明細書は、車両が安全でない位置を走行したときの教師データを効率的に取得し、そのような教師データを用いて機械学習アルゴリズムのパラメータを決定する技術を提供することを目的とする。
本明細書は、車両の走行を制御する制御装置を開示することができる。この制御装置は、前記車両に搭載されているメインカメラで撮影されたメイン画像データを取得するメイン画像データ取得部と、前記メインカメラから離れた位置で前記車両に搭載されているサブカメラで撮影されたサブ画像データを取得するサブ画像データ取得部と、前記車両が走行しているときの実操作量を取得する実操作量取得部と、前記メイン画像データから機械学習アルゴリズムに基づいて前記車両の操作量を推定する操作量推定部と、前記操作量推定部の前記機械学習アルゴリズムのパラメータを教師データに基づいて決定するパラメータ学習部と、を備えることができる。前記教師データは、第1教師データと第2教師データを有している。前記第1教師データは、前記メイン画像データと、前記車両の前記実操作量と、を含んでいる。前記第2教師データは、前記サブ画像データと、前記サブカメラの位置に前記メインカメラが存在したと仮定したときの仮想車両を前記車両の実走行経路に復帰させるために要する補正操作量と、含んでいる。この制御装置は、前記メイン画像データと前記車両の前記実操作量を含む前記第1教師データに加えて、前記サブ画像データと前記補正操作量を含む前記第2教師データを利用して前記機械学習アルゴリズムのパラメータを決定することができる。前記第2教師データを生成するために仮定される前記仮想車両は、車両から離れた位置を走行しており、安全でない位置を仮想的に走行し得る。このため、前記第2教師データは、車両が安全でない位置から安全な位置に復帰する走行を想定した教師データとなることができる。これにより、この制御装置は、車両が安全でない位置から安全な位置に復帰するための操作量を良好に推定することができる。
本明細書は、車両の走行を制御する制御方法を開示することができる。この制御方法は、メインカメラで撮影されたメイン画像データから機械学習アルゴリズムに基づいて車両の操作量を推定する工程と、前記機械学習アルゴリズムのパラメータを教師データに基づいて決定する工程と、を備えることができる。前記教師データは、第1教師データと第2教師データを有している。前記第1教師データは、前記メイン画像データと、前記車両の実操作量と、を含んでいる。前記第2教師データは、前記メインカメラから離れた位置で前記車両に搭載されているサブカメラで撮影されたサブ画像データと、前記サブカメラの位置に前記メインカメラが存在したと仮定したときの仮想車両を前記車両の実走行経路に復帰させるために要する補正操作量と、含んでいる。この制御方法は、前記メイン画像データと前記車両の前記実操作量を含む前記第1教師データに加えて、前記サブ画像データと前記補正操作量を含む前記第2教師データを利用して前記機械学習アルゴリズムのパラメータを決定することができる。前記第2教師データを生成するために仮定される前記仮想車両は、車両から離れた位置を走行しており、安全でない位置を仮想的に走行し得る。このため、前記第2教師データは、車両が安全でない位置から安全な位置に復帰する走行を想定した教師データとなることができる。これにより、この制御方法は、車両が安全でない位置から安全な位置に復帰するための操作量を良好に推定することができる。
本明細書は、車両の走行を制御する制御プログラムを開示することができる。この制御プログラムは、制御装置に、メインカメラで撮影されたメイン画像データから機械学習アルゴリズムに基づいて車両の操作量を推定する処理と、前記機械学習アルゴリズムのパラメータを教師データに基づいて決定させる処理と、を実行させるように構成されることができる。前記教師データは、第1教師データと第2教師データを有している。前記第1教師データは、前記メイン画像データと、前記車両の実操作量と、を含んでいる。前記第2教師データは、前記メインカメラから離れた位置で前記車両に搭載されているサブカメラで撮影されたサブ画像データと、前記サブカメラの位置に前記メインカメラが存在したとした仮定したときの仮想車両を前記車両の実走行経路に復帰させるために要する補正操作量と、含んでいる。この制御プログラムは、前記メイン画像データと前記車両の前記実操作量を含む前記第1教師データに加えて、前記サブ画像データと前記補正操作量を含む前記第2教師データを利用して前記機械学習アルゴリズムのパラメータを決定することができる。前記第2教師データを生成するために仮定される前記仮想車両は、車両から離れた位置を走行しており、安全でない位置を仮想的に走行し得る。このため、前記第2教師データは、車両が安全でない位置から安全な位置に復帰する走行を想定した教師データとなることができる。これにより、この制御プログラムは、車両が安全でない位置から安全な位置に復帰するための操作量を良好に推定することができる。
上記の制御装置、制御方法及び制御プログラムで用いられる前記第2教師データでは、前記補正操作量による前記仮想車両の仮想走行経路が、許容走行範囲内の移動であるデータよりも前記許容走行範囲外から前記許容走行範囲内への移動であるデータに重み付けされていてもよい。このような重み付けが行われていると、車両が安全でない位置から安全な位置に復帰する走行を効果的に学習することができる。
上記の制御装置、制御方法及び制御プログラムにおいて、前記メインカメラと前記サブカメラの間の距離が、前記車両の許容制御誤差以上であってもよい。これにより、前記車両の許容制御誤差よりも外れた位置、即ち、車両が安全でない位置から安全な位置に復帰するための操作量を良好に推定することができる。
上記の制御装置、制御方法及び制御プログラムで用いられる前記機械学習アルゴリズムの種類は特に限定されるものではなく、ディープニューラルネットワークに属する種類の機械学習アルゴリズムであってもよい。前記機械学習アルゴリズムは、例えば畳み込みニューラルネットワーク(Convolutional Neural Network)であってもよい。
ここで、上記の制御装置、制御方法及び制御プログラムにおける「仮想車両を前記車両の実走行経路に復帰させるために要する補正操作量」とは、仮想車両を車輌の実走行経路上に完全に一致するように復帰させる場合に限らず、仮想車両を車輌の実走行経路に近づける場合も含む。
第1実施形態の自動運転システムの構成を示す。 車両が道路上を走行する様子を示す。 第1実施形態の自動運転システムの学習モードの制御フローを示す。 第2実施形態の自動運転システムの構成を示す。 走行レーン幅が広い道路上を走行する車両の実走行経路と仮想走行経路を示す。 第2実施形態の自動運転システムの学習モードの制御フローを示す。
(第1実施形態)
図1に、第1実施形態の自動運転システム1の構成を示す。自動運転システム1は、操作部12、メインカメラ14、サブカメラ16、制御装置20及び駆動部30を備えている。制御装置20は、CPU、RAM、及び、後述する学習モード及び自動運転モードを実行するための機械学習プログラムを記述するプログラム等を記憶したROMを有するコンピュータで構成されており、実操作量取得部21、メイン画像データ取得部22、サブ画像データ取得部23、操作量推定部24、操作量補正部25及びパラメータ学習部26を有している。
操作部12は、車両の操作状況を監視する複数種類のセンサで構成されており、操舵ハンドルの操舵角を検出する操舵角センサを少なくとも含んでいる。操作部12は、操舵角センサの他に、車両の速度を検出する車速センサを含んでいてもよい。操作部12で得られた操舵角データ及び車両の速度データを含む実操作量は、制御装置20の実操作量取得部21に入力する。
メインカメラ14は、車両に搭載されており、車両の周囲の環境を撮影するように構成されている。特に、メインカメラ14は、車両の幅方向の中心付近に固定されており、車両前方の環境を撮影するように構成されている。メインカメラ14は、一定の間隔で撮影を実行し、撮影したメイン画像データを制御装置20のメイン画像データ取得部22に入力する。
サブカメラ16は、メインカメラ14から離れた位置で車両に搭載されており、車両の周囲の環境を撮影するように構成されている。特に、サブカメラ16は、車両の幅方向の中心から幅方向に沿って離れた位置に固定されており、車両前方の環境を撮影するように構成されている。サブカメラ16は、車両の幅方向の中心に対して一方側のみに搭載されていてもよく、車両の幅方向の中心に対して両側にそれぞれ搭載されていてもよい。メインカメラ14とサブカメラ16の間の幅方向の距離(以下、「幅方向オフセット距離」という)は、車両の許容制御誤差以上に設定されている。車両の許容制御誤差とは、車両をある直線経路に沿って1回走行させたときの基準位置(例えば、走行レーンの中心)からの幅方向のふらつきの大きさであり、車両の直線走行として許容される幅方向の制御誤差ということができる。換言すると、メインカメラ14とサブカメラ16の間の幅方向オフセット距離を小さくすると、車両の直線走行として許容される幅方向の制御誤差も小さくなり、車両の直線走行が高い精度で制御される。幅方向オフセット距離は、自動運転システム1に要求される仕様に応じて適宜に調整される。サブカメラ16は、一定の間隔で撮影を実行し、撮影したサブ画像データを制御装置20のサブ画像データ取得部23に入力する。
制御装置20は、実操作量取得部21に入力する実操作量、メイン画像データ取得部22に入力するメイン画像データ及びサブ画像データ取得部23に入力するサブ画像データに基づいて機械学習アルゴリズムのパラメータを決定し、その機械学習アルゴリズムを利用して駆動部30の操作量を推定するように構成されている。駆動部30は、車両の駆動を制御する複数種類のアクチュエータで構成されており、車両の進行方向を決定する操舵角を変更するためのステアリングアクチュエータを少なくとも含んでいる。駆動部30は、ステアリングアクチュエータの他に、スロットルの開度を調節してエンジンの出力を調節するスロットルアクチュエータを含んでいてもよい。制御装置20は、ステアリングアクチュエータの操舵角の変更を指示する指示信号及びスロットルの開度の調節を指示する指示信号を含む操作量を推定し、この推定された操作量を駆動部30に提供する。
制御装置20の操作量推定部24は、機械学習アルゴリズムであるディープニューラルネットワークを用いて、実操作量取得部21の実操作量及びメイン画像データ取得部22のメイン画像データから駆動部30の操作量を推定するように構成されている。具体的には、操作量推定部24は、畳み込みニューラルネットワーク(Convolutional Neural Network:以下、「CNN」という)を用いて駆動部30の操作量を推定するように構成されている。ここで、画像データ(x)と操作量(y)は、CNNによって表現される関数(f)とCNNのパラメータ(θ)を用いて以下の数式で記述できる。
Figure 0007000952000001
制御装置20のパラメータ学習部26は、教師データを用いて上記数1のパラメータ(θ)を決定するように構成されている。パラメータ学習部26では、教師データに含まれるN個のサンプル (xi,yi),i ∈ N を用いて、以下の式で定義される誤差Eを最小化するようにパラメータ(θ)を決定する。
Figure 0007000952000002
ここで、上記数2で用いられる教師データのN個のサンプルには、次の(1)第1教師データと、(2)第2教師データが含まれる。
(1)メイン画像データ取得部22に入力するメイン画像データと実操作量取得部21に入力する実操作量のデータのペア。
(2)サブ画像データ取得部23に入力するサブ画像データと操作量補正部25で計算された補正操作量のデータのペア。
図2を参照し、操作量補正部25で計算される補正操作量について説明する。図2は、車両42が時刻(t)から時刻(t+1)の間で走行レーン内を移動する様子を示している。車両42に搭載されるメインカメラ14が黒三角で示されており、サブカメラ16が白三角で示されている。なお、時刻(t)及び時刻(t+1)は、メインカメラ14及びサブカメラ16が撮影するタイミングに対応している。車両42の実走行経路が実線の矢印52で示されている。仮想線で示される符号44は、時刻(t)において、サブカメラ16の位置にメインカメラ14が存在したと仮定したときの仮想車両の位置を示している。この仮想車両44は、メインカメラ14からのサブカメラ16の幅方向オフセット距離(d)の分だけ車両42から幅方向にずれた位置を走行しており、走行レーンの右端を超えて走行している。即ち、仮想車両44は、安全でない位置を走行する状況が仮想的に想定された車両である。仮想線で示される矢印54は、仮想車両44が時刻(t)から時刻(t+1)の間において車両42の実走行経路52に復帰するための仮想走行経路である。
操作量補正部25で計算される補正操作量は、仮想車両44が仮想走行経路54に沿って車両42の実走行経路52に復帰するのに要する操作量であり、関数(g)を用いて以下の数式で記述される。
Figure 0007000952000003
「yハット」が補正操作量であり、「d」がサブカメラ16のメインカメラ14からの幅方向オフセット距離であり、「L」が時刻(t)から時刻(t+1)の間で車両42が移動した移動距離であり、「k」が操舵角と幅オフセット距離を変換する係数であり、「y」が車両42の実操作量である。上記数3に示されるように、補正操作量は、車両の実操作量から計算される。
このように、第2教師データは、仮想車両44が仮想走行経路54に沿って車両42の実走行経路52に復帰する走行を想定した教師データとなっており、安全でない位置を走行する仮想車両44が安全な位置に復帰する走行を想定した教師データである。
次に、自動運転システム1の制御について説明する。自動運転システム1は、手動運転による学習モードと自動運転による自動運転モードを有している。学習モードは、教師データを用いて上記数2のパラメータ(θ)を最適化し、上記数1のパラメータ(θ)を変更するモードである。自動運転モードは、上記数1に基づいてメイン画像データから車両の操作量を推定し、車両を自動運転するモードである。学習モードと自動運転モードの切り替えは、特に限定されるものではない。例えば、学習モードが成功している場合(上記数2の誤差Eが閾値以下の場合、学習に用いた教師データ数が閾値以上の場合など)、自動運転モードに移行するようにしてもよい。また、自動運転モードが不適切な場合(運転者によって自動運転モードの中断が要求された場合、推定された操作量が上下限を超えた場合など)、学習モードに移行するようにしてもよい。
図3に、自動運転システム1の制御装置20が実行する学習モードの制御フローを示す。まず、ステップS12において、制御装置20の各取得部21,22,23は、実操作量、メイン画像データ及びサブ画像データの各種のデータを取得する。次に、ステップS14において、操作量補正部25は、上記数3に基づいて、取得された実操作量から補正操作量を計算する。次に、ステップS16において、パラメータ学習部26は、収集された教師データ数が閾値以上であるか否かを判定する。収集された教師データ数が閾値よりも少なく、十分な学習精度が得られない判定した場合、パラメータ学習部26は、ステップS12に戻り、各種のデータを取得する。収集された教師データ数が閾値以上であり、十分な学習精度が得られると判定した場合、パラメータ学習部26は、ステップ18に進み、上記数2を用いてパラメータ(θ)の最適化を実施し、上記数1のパラメータ(θ)を変更する。
このように、自動運転システム1の制御装置20は、メイン画像データと車両の実操作量を含む第1教師データに加えて、サブ画像データと補正操作量を含む第2教師データを利用して上記数2のパラメータ(θ)を最適化し、上記数1のパラメータ(θ)を変更することができる。図2に示されるように、第2教師データを生成するために仮定される仮想車両44は、車両42から離れた位置を走行しており、安全でない位置を仮想的に走行し得る。このため、第2教師データは、車両が安全でない位置から安全な位置に復帰する走行を想定した教師データとなることができる。これにより、自動運転システム1の制御装置20は、車両が安全でない位置から安全な位置に復帰するための操作量を良好に推定することができる。この結果、自動運転システム1の制御装置20は、自動運転モードにおいて、車両が安全でない位置を走行したときに、その車両を安全な走行位置に良好に復帰させることができる。
車両が安全でない位置から安全な位置に復帰するときの教師データは、例えばシミュレーションによって作成することができ、また、試験場等の特殊な環境下で再現して作成することもできる。しかしながら、前者の作成方法では、実環境とシミュレーション環境の差によって高精度な学習が難しいという問題がある。また、後者の作成方法では、特殊な環境を用意するコストが大きく、効率的に教師データを収集できないという問題がある。一方、自動運転システム1の制御装置20では、メインカメラ14から離れた位置にサブカメラ16を搭載するだけで、実環境における教師データを低いコストで収集することができる。
(第2実施形態)
図4に、第2実施形態の自動運転システム2の構成を示す。図1の自動運転システム1と対比すると、自動運転システム2の制御装置20は、重み付け部27が追加されていることを特徴とする。重み付け部27は、教師データに重み付けを行うように構成されている。
図5に、走行レーン幅が広い道路上を走行する車両の実走行経路と仮想走行経路を示す。実線の矢印が実走行経路62であり、仮想線の矢印が仮想走行経路64,66である。なお、仮想走行経路64,66は、第1実施形態の自動運転システム1と同様の手順で計算されるものである。また、この第2実施形態の自動運転システム2では、車両の幅方向において、メインカメラ14の両側にサブカメラ16がそれぞれ搭載されている。このため、仮想走行経路64は、メインカメラ14に対して車両の右側に搭載されたサブカメラ16のサブ画像データを教師データに用いるときに計算される仮想走行経路であり、仮想走行経路66は、メインカメラ14に対して車両の左側に搭載されたサブカメラ16のサブ画像データを教師データに用いるときに計算される仮想走行経路である。
走行レーン内にグレーで示される範囲は、許容走行範囲68である。許容走行範囲68は、安全走行として許容される走行範囲である。走行レーン内の走行位置は、運転者の運転バラツキによって幅を有する。即ち、同一の運転者が運転する車両であっても、走行レーン内において一定の幅内を走行することが多い。許容走行範囲68とは、車両をある直線経路に沿って複数回走行させたときの走行経路の平均位置からの幅方向のバラツキの大きさとすることができる。後述するように、許容走行範囲68は、教師データに含まれる画像データの類似度から推定されてもよい。運転者の運転バラツキは、類似した画像データとなる走行範囲に収まると推定されるからである。これに代えて、許容走行範囲62は、走行レーンの中央から両端に向けて所定幅をそれぞれ広げた範囲として設定されてもよく、走行レーンの両端から中央に向けて所定幅をそれぞれ減じた範囲として設定されてもよく、走行レーンの中央寄りの走行レーン幅に対する所定割合の範囲として設定されてもよい。
図5に示されるように、仮想走行経路64b,66bはいずれも、許容走行範囲62内の移動である。このため、このような仮想走行経路64b,66bに基づく第2教師データは、運転者の運転バラツキの範囲内での移動を示すデータであり、重要度が低い。一方、仮想走行経路64a,66aはいずれも、許容走行範囲62外から許容走行範囲62内への移動である。このため、仮想走行経路64a,66aに基づく第2教師データは、安全でない位置を走行する仮想車両が安全な位置に復帰する走行を想定したデータであり、重要度が高い。
図6に、自動運転システム2の制御装置20が実行する学習モードの制御フローを示す。図3の自動運転システム1の学習モードと対比すると、ステップS14とステップS16の間にステップS15が追加されていることを特徴とする。ステップS15において、重み付け部27が、上記した重要度の差に基づいて第2教師データの重み付けを行う。即ち、ステップS15において、重み付け部27は、補正操作量による仮想車両の仮想走行経路が許容走行範囲内の移動(図5の仮想走行経路64b,66bに対応)である第2教師データよりも、補正操作量による仮想車両の仮想走行経路が許容走行範囲外から許容走行範囲内への移動(図5の仮想走行経路64a,66aに対応)である第2教師データに重み付けを行う。例えば、教師データとして蓄積された画像データと、サブカメラ16で新たに取得されたサブ画像データの類似度に基づいて重み付けを行う。類似度の高いサブ画像データを含む第2教師データは、仮想走行経路が許容走行範囲内の移動と推定され、その重みは低く設定される。一方、類似度の低いサブ画像データを含む第2教師データは、仮想走行経路が許容走行範囲外から許容走行範囲内への移動と推定され、その重みが高く設定される。類似度の算出は、正規化相互相関等の輝度値の差分に基づく演算でもよいし、主成分分析や、画像から特徴ベクトルを算出するように構成されたCNNでもよい。
自動運転システム2の制御装置20は、上記した重要度の差に基づいて第2教師データの重み付けを行うことにより、車両が安全でない位置から安全な位置に復帰する走行を効果的に学習することができる。これにより、自動運転システム2の制御装置20は、自動運転モードにおいて、車両を許容走行範囲62内で走行させることができる。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
1:自動運転システム
12:操作部
14:メインカメラ
16:サブカメラ
20:制御装置
21:実操作量取得部
22:メイン画像データ取得部
23:サブ画像データ取得部
24:操作量推定部
25:操作量補正部
26:パラメータ学習部
30:駆動部

Claims (12)

  1. 車両の走行を制御する制御装置であって、
    前記車両に搭載されているメインカメラで撮影されたメイン画像データを取得するメイン画像データ取得部と、
    前記メインカメラから離れた位置で前記車両に搭載されているサブカメラで撮影されたサブ画像データを取得するサブ画像データ取得部と、
    前記車両が走行しているときの実操作量を取得する実操作量取得部と、
    前記メイン画像データから機械学習アルゴリズムに基づいて前記車両の操作量を推定する操作量推定部と、
    前記操作量推定部の前記機械学習アルゴリズムのパラメータを教師データに基づいて決定するパラメータ学習部と、を備えており、
    前記教師データは、第1教師データと第2教師データを有しており、
    前記第1教師データは、前記メイン画像データと、前記車両の前記実操作量と、を含んでおり、
    前記第2教師データは、前記サブ画像データと、前記サブカメラの位置に前記メインカメラが存在したと仮定したときの仮想車両を前記車両の実走行経路に復帰させるために要する補正操作量と、含む、制御装置。
  2. 前記第2教師データでは、前記補正操作量による前記仮想車両の仮想走行経路が、許容走行範囲内の移動であるデータよりも前記許容走行範囲外から前記許容走行範囲内への移動であるデータに重み付けされている、請求項1に記載の制御装置。
  3. 前記メインカメラと前記サブカメラの間の距離は、前記車両の許容制御誤差以上である、請求項1又は2に記載の制御装置。
  4. 前記機械学習アルゴリズムは、畳み込みニューラルネットワーク(Convolutional Neural Network)である、請求項1~3のいずれか一項に記載の制御装置。
  5. 車両の走行を制御する制御方法であって、
    メインカメラで撮影されたメイン画像データから機械学習アルゴリズムに基づいて車両の操作量を推定する工程と、
    前記機械学習アルゴリズムのパラメータを教師データに基づいて決定する工程と、を備えており、
    前記教師データは、第1教師データと第2教師データを有しており、
    前記第1教師データは、前記メイン画像データと、前記車両の実操作量と、を含んでおり、
    前記第2教師データは、前記メインカメラから離れた位置で前記車両に搭載されているサブカメラで撮影されたサブ画像データと、前記サブカメラの位置に前記メインカメラが存在したと仮定したときの仮想車両を前記車両の実走行経路に復帰させるために要する補正操作量と、含む、方法。
  6. 前記第2教師データでは、前記補正操作量による前記仮想車両の仮想走行経路が、許容走行範囲内の移動であるデータよりも前記許容走行範囲外から前記許容走行範囲内への移動であるデータに重み付けされている、請求項5に記載の方法。
  7. 前記メインカメラと前記サブカメラの間の距離は、前記車両の許容制御誤差以上である、請求項5又は6に記載の方法。
  8. 前記機械学習アルゴリズムは、畳み込みニューラルネットワーク(Convolutional Neural Network)である、請求項5~7のいずれか一項に記載の方法。
  9. 車両の走行を制御する制御プログラムであって、
    制御装置に、
    メインカメラで撮影されたメイン画像データから機械学習アルゴリズムに基づいて車両の操作量を推定する処理と、
    前記機械学習アルゴリズムのパラメータを教師データに基づいて決定させる処理と、を実行させるように構成されており、
    前記教師データは、第1教師データと第2教師データを有しており、
    前記第1教師データは、前記メイン画像データと、前記車両の実操作量と、を含んでおり、
    前記第2教師データは、前記メインカメラから離れた位置で前記車両に搭載されているサブカメラで撮影されたサブ画像データと、前記サブカメラの位置に前記メインカメラが存在したとした仮定したときの仮想車両を前記車両の実走行経路に復帰させるために要する補正操作量と、含む、制御プログラム。
  10. 前記第2教師データでは、前記補正操作量による前記仮想車両の仮想走行経路が、許容走行範囲内の移動であるデータよりも前記許容走行範囲外から前記許容走行範囲内への移動であるデータに重み付けされている、請求項9に記載の制御プログラム。
  11. 前記メインカメラと前記サブカメラの間の距離は、前記車両の許容制御誤差以上である、請求項9又は10に記載の制御プログラム。
  12. 前記機械学習アルゴリズムは、畳み込みニューラルネットワーク(Convolutional Neural Network)である、請求項9~11のいずれか一項に記載の制御プログラム。
JP2018061231A 2018-03-28 2018-03-28 車両の走行を制御する制御装置、制御方法、及び、制御プログラム Active JP7000952B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018061231A JP7000952B2 (ja) 2018-03-28 2018-03-28 車両の走行を制御する制御装置、制御方法、及び、制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018061231A JP7000952B2 (ja) 2018-03-28 2018-03-28 車両の走行を制御する制御装置、制御方法、及び、制御プログラム

Publications (2)

Publication Number Publication Date
JP2019172010A JP2019172010A (ja) 2019-10-10
JP7000952B2 true JP7000952B2 (ja) 2022-01-19

Family

ID=68169941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018061231A Active JP7000952B2 (ja) 2018-03-28 2018-03-28 車両の走行を制御する制御装置、制御方法、及び、制御プログラム

Country Status (1)

Country Link
JP (1) JP7000952B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154725A (ja) 2015-04-21 2017-09-07 パナソニックIpマネジメント株式会社 情報処理システム、情報処理方法、およびプログラム
JP2017204145A (ja) 2016-05-11 2017-11-16 株式会社豊田中央研究所 走行経路生成装置、モデル学習装置、及びプログラム
JP2017220197A (ja) 2016-06-12 2017-12-14 バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド 車両制御方法と装置及び判断モジュールの獲得方法と装置
WO2018020954A1 (ja) 2016-07-29 2018-02-01 株式会社日立製作所 機械学習用データベース作成システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154725A (ja) 2015-04-21 2017-09-07 パナソニックIpマネジメント株式会社 情報処理システム、情報処理方法、およびプログラム
JP2017204145A (ja) 2016-05-11 2017-11-16 株式会社豊田中央研究所 走行経路生成装置、モデル学習装置、及びプログラム
JP2017220197A (ja) 2016-06-12 2017-12-14 バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド 車両制御方法と装置及び判断モジュールの獲得方法と装置
WO2018020954A1 (ja) 2016-07-29 2018-02-01 株式会社日立製作所 機械学習用データベース作成システム

Also Published As

Publication number Publication date
JP2019172010A (ja) 2019-10-10

Similar Documents

Publication Publication Date Title
US10065654B2 (en) Online learning and vehicle control method based on reinforcement learning without active exploration
JP7212486B2 (ja) 位置推定装置
JP6412460B2 (ja) 走行路推定装置
JP2019087096A (ja) 行動決定システム及び自動運転制御装置
JP6946255B2 (ja) 学習装置、推定装置、学習方法およびプログラム
JP2005339241A (ja) モデル予測制御装置および車両用推奨操作量生成装置
JP2006151081A (ja) 運転意図推定装置、車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP2012208789A5 (ja)
CN103620191A (zh) 车辆的驱动力控制装置
CN110147041B (zh) 一种基于梯度校正估计预瞄时间的车辆横向控制方法
JPWO2020152977A1 (ja) 車両制御装置、車両制御方法、及び車両制御システム
Yokoyama et al. Autonomous mobile robot with simple navigation system based on deep reinforcement learning and a monocular camera
JP2023525543A (ja) 経路制御モジュール、関連する経路制御デバイスおよび関連する方法
JP7125286B2 (ja) 行動予測装置及び自動運転装置
JP2012058984A (ja) 車線推定装置
KR20130017403A (ko) 액추에이터 제어 장치 및 방법
JPH03113513A (ja) 自律走行車両の車速感応操舵制御装置
JP6462557B2 (ja) 車両ピッチ角推定装置
CN113661106A (zh) 基于模型的预测控制确定车辆致动器的输入变量
JP7000952B2 (ja) 車両の走行を制御する制御装置、制御方法、及び、制御プログラム
JP4591177B2 (ja) エンジン試験装置
JP2006285493A (ja) 道路モデル推定装置及び道路モデル推定方法
CN117922561A (zh) 基于三维模型的智能碾压轨迹纠偏系统及方法
CN111095133A (zh) 一种用于提供用于部署在目标现场设备上的自适应自学习控制程序的方法和装置
CN118270098A (zh) 车辆的方向盘运动控制方法及设备、车辆和存储介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 7000952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150