JP6997444B2 - Platinum paste - Google Patents

Platinum paste Download PDF

Info

Publication number
JP6997444B2
JP6997444B2 JP2017245722A JP2017245722A JP6997444B2 JP 6997444 B2 JP6997444 B2 JP 6997444B2 JP 2017245722 A JP2017245722 A JP 2017245722A JP 2017245722 A JP2017245722 A JP 2017245722A JP 6997444 B2 JP6997444 B2 JP 6997444B2
Authority
JP
Japan
Prior art keywords
powder
platinum
zirconia
ceramic
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017245722A
Other languages
Japanese (ja)
Other versions
JP2019114373A (en
Inventor
哲郎 川畑
哲也 青山
雄太 高橋
悠太 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2017245722A priority Critical patent/JP6997444B2/en
Publication of JP2019114373A publication Critical patent/JP2019114373A/en
Application granted granted Critical
Publication of JP6997444B2 publication Critical patent/JP6997444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)

Description

本発明は、セラミックス上への導電回路、発熱体回路等の導体材料として利用することができる白金ペーストに関する。 The present invention relates to a platinum paste that can be used as a conductor material for a conductive circuit on ceramics, a heating element circuit, or the like.

セラミックス上への導電回路、発熱体回路等の形成には、通常、白金等の貴金属粉末を含有する焼付け用ペーストが使用される。 A baking paste containing a precious metal powder such as platinum is usually used for forming a conductive circuit, a heating element circuit, or the like on ceramics.

焼付け用ペーストは、一般に、白金等の貴金属粉末、セラミック粉末、樹脂、溶剤等からなり、セラミックスなどの絶縁基板や各種素子等にスクリーン印刷等の方法で塗布した後、焼成することにより導電膜または発熱体回路の形成が行なわれる。 The baking paste is generally composed of precious metal powder such as platinum, ceramic powder, resin, solvent, etc., and is applied to an insulating substrate such as ceramics or various elements by a method such as screen printing, and then fired to form a conductive film. The heating element circuit is formed.

特に、発熱体回路を形成する電子部品やセンサー部品分野では、より電気抵抗率の低い発熱体回路を形成せしめることができるペーストが望まれている。 In particular, in the field of electronic parts and sensor parts that form a heating element circuit, a paste that can form a heating element circuit having a lower electrical resistivity is desired.

特許文献1には、湿式還元法で得られる、密度が理論密度より低い白金粉末の密度をより高め、理論密度の少なくとも92%の密度を有し且つ平均粒径が6μm以下である白金粉末を使用して作製された導電膜の電気抵抗が低減することが記載されている。 Patent Document 1 describes platinum powder obtained by the wet reduction method, which has a higher density of platinum powder having a density lower than the theoretical density, has a density of at least 92% of the theoretical density, and has an average particle size of 6 μm or less. It has been described that the electrical resistance of the conductive film produced using it is reduced.

特開2010-144215JP-A-2010-144215

低抵抗化の要請はますます強くなっており、白金粉末以外の要素により、作製された導電膜の電気抵抗率をさらに低くすることができるペーストを提供するという課題があった。 The demand for lower resistance is becoming stronger, and there is a problem of providing a paste capable of further lowering the electrical resistivity of the produced conductive film by using elements other than platinum powder.

本発明者らは、上記の目的を達成すべく鋭意検討した結果、セラミック粉末として、ジルコニアとチタニアを共に用いることでペースト膜により作製された導電膜の電気抵抗率を低くすることができることを見出し、本発明を完成するに至った。 As a result of diligent studies to achieve the above object, the present inventors have found that the electrical resistivity of a conductive film produced by a paste film can be lowered by using both zirconia and titania as a ceramic powder. , The present invention has been completed.

すなわち上記目的は、セラミック基材上に印刷される白金ペーストであって、
(1)白金粉末
(2)セラミック粉末
(3)樹脂
(4)溶剤
とから成り、
前記セラミック粉末がジルコニア粉末と、チタニア粉末と、からなり、
前記白金粉末と前記セラミック粉末とから成る固形分に対しセラミック粉末を1~30重量%含む白金ペーストによって達成される。
また、上記白金ペーストにおいて、セラミック粉末中におけるジルコニア粉末の割合は5~95重量%であり、チタニア粉末の割合は5~95重量%である。
That is, the above object is a platinum paste printed on a ceramic substrate.
It consists of (1) platinum powder (2) ceramic powder (3) resin (4) solvent.
The ceramic powder is composed of zirconia powder and titania powder.
It is achieved by a platinum paste containing 1 to 30% by weight of the ceramic powder with respect to the solid content of the platinum powder and the ceramic powder.
Further, in the platinum paste, the ratio of the zirconia powder in the ceramic powder is 5 to 95% by weight, and the ratio of the titania powder is 5 to 95% by weight.

本発明に従うと、セラミック基材との接合性に優れ、かつ低抵抗の電極膜を形成できる。 According to the present invention, an electrode film having excellent bondability to a ceramic substrate and having low resistance can be formed.

基体がアルミナの場合における、セラミック粉末中のジルコニアの比率と電気抵抗率との関係を示す。The relationship between the ratio of zirconia in the ceramic powder and the electrical resistivity when the substrate is alumina is shown.

以下、本発明の白金ペーストについて、さらに詳細に説明する。 Hereinafter, the platinum paste of the present invention will be described in more detail.

以下、本発明の白金ペーストについて、さらに詳細に説明する。 Hereinafter, the platinum paste of the present invention will be described in more detail.

本発明は、セラミック基材上に印刷される白金ペーストであって、白金粉末、セラミック粉末、樹脂、溶剤とから成り、セラミック粉末がジルコニア粉末と、チタニア粉末と、からなり、白金粉末と前記セラミック粉末とから成る固形分に対しセラミック粉末を1~30重量%含む白金ペーストである。 The present invention is a platinum paste printed on a ceramic substrate, which is composed of platinum powder, ceramic powder, resin, and solvent, and the ceramic powder is composed of zirconia powder and titania powder, and the platinum powder and the ceramic. A platinum paste containing 1 to 30% by weight of ceramic powder with respect to a solid content composed of powder.

本発明のペーストにかかる白金粉末は、その形状には特に制限はないが、一般に球状であることが好ましい。粒径にも特に制限はないが、例えば、0.3~10μmの白金粉末を使用することができる。 The shape of the platinum powder of the paste of the present invention is not particularly limited, but it is generally preferable that the platinum powder is spherical. The particle size is not particularly limited, but for example, platinum powder having a size of 0.3 to 10 μm can be used.

このような白金粉末は、例えば、以下に述べる製法によって製造することができるが、その方法に限定されるものではない。例えば、以下に述べる湿式還元法によって製造することができる。白金化合物を、水性媒体中に溶解又縣濁させた状態で還元剤を加えて還元することにより白金粉末にすることができる。還元に使用しうる還元剤としては、例えば、ヒドラジン水和物、塩酸ヒドラジン、硫酸ヒドラジン等のヒドラジン化合物を挙げることができる。 Such platinum powder can be produced, for example, by the production method described below, but the method is not limited thereto. For example, it can be produced by the wet reduction method described below. The platinum compound can be made into platinum powder by adding a reducing agent in a state of being dissolved or turbid in an aqueous medium to reduce the platinum compound. Examples of the reducing agent that can be used for reduction include hydrazine compounds such as hydrazine hydrate, hydrazine hydrochloride, and hydrazine sulfate.

また、白金錯体及び金属錯体を水性媒体中で溶解して混合水溶液を調製し、混合水溶液に酸を添加して白金水酸化物と金属水酸化物を共晶出させることにより得られる晶出物を高温で焼成し、次いで得られる焼成物から金属酸化物を除去して、焼成後、焼成物から金属酸化物を選択的に除去することにより、白金粉末を得ることができる。金属酸化物の除去は、例えば、焼成物を酸で溶解処理することにより行なうことができる。この溶解処理に使用し得る酸としては、例えば、塩酸、硝酸、硫酸等が挙げられる。 Further, a crystallized product obtained by dissolving a platinum complex and a metal complex in an aqueous medium to prepare a mixed aqueous solution, and adding an acid to the mixed aqueous solution to co-crystallize the platinum hydroxide and the metal hydroxide. The platinum powder can be obtained by firing the metal oxide at a high temperature, then removing the metal oxide from the obtained fired product, and then selectively removing the metal oxide from the fired product after firing. The removal of the metal oxide can be performed, for example, by dissolving the fired product with an acid. Examples of the acid that can be used for this dissolution treatment include hydrochloric acid, nitric acid, sulfuric acid and the like.

セラミック粉末は、セラミックス基体への白金等の貴金属膜の密着性の付与や貴金属膜の抵抗調整材及びヒーター使用時の貴金属導電膜中の貴金属の結晶粒の粗大化を抑制するなどの目的で使用されるものであり、本発明では、ジルコニア(ZrO)粉末、チタニア(TiO)粉末を使用する。ジルコニア粉末としては、純ジルコニア粉末、安定化ジルコニア粉末、部分安定化ジルコニアを使用することができる。セラミック粉末の粒径に特に制限はないが、例えば、粒径0.1~5.0μmのセラミック粉末を使用することができる。 Ceramic powder is used for the purpose of imparting adhesion of a noble metal film such as platinum to a ceramic substrate, suppressing the coarsening of precious metal crystal grains in the noble metal conductive film when using a resistance adjusting material for the noble metal film and a heater. In the present invention, zirconia (ZrO 2 ) powder and titania (TiO 2 ) powder are used. As the zirconia powder, pure zirconia powder, stabilized zirconia powder, and partially stabilized zirconia can be used. The particle size of the ceramic powder is not particularly limited, but for example, a ceramic powder having a particle size of 0.1 to 5.0 μm can be used.

樹脂としては、例えば、エチルセルロース、アルキッド、ポリビニルブチラール、アクリル樹脂などを用いることができる。 As the resin, for example, ethyl cellulose, alkyd, polyvinyl butyral, acrylic resin and the like can be used.

溶剤としては、ターピネオール、ブチルカルビトール、ブチルカルビトールアセテート、セロソルブなどを使用することができる。 As the solvent, tarpineol, butyl carbitol, butyl carbitol acetate, cellosolve and the like can be used.

ペーストにおいて、白金粉末の粒径及び量、セラミック粉末の粒径及び量、樹脂および溶剤を含むビヒクルの組成及び量は、適宜変えることができる。白金粉末とセラミック粉末とから成る固形分に対するセラミック粉末は1~30mass%含むことが好ましい。 In the paste, the particle size and amount of the platinum powder, the particle size and amount of the ceramic powder, and the composition and amount of the vehicle containing the resin and the solvent can be appropriately changed. The ceramic powder is preferably contained in an amount of 1 to 30 mass% based on the solid content of the platinum powder and the ceramic powder.

白金ペーストが適用されるセラミック基体は、アルミナ基体、ジルコニア基体が挙げられるが、それらに限定されない。 Examples of the ceramic substrate to which the platinum paste is applied include, but are not limited to, an alumina substrate and a zirconia substrate.

白金ペーストにジルコニア粉末とチタニア粉末を共に使用すると作製された導電膜の電気抵抗率が顕著に低下する理由は以下と考えられる。すなわち、ジルコニア粉末とチタニア粉末を共に使用することにより、ジルコニアの拡散活性化エネルギーが低下し、ジルコニアがセラミック基板とペースト焼成膜界面(以下界面とする)付近に拡散移動する現象が顕著に発現する。ジルコニアが界面に移動することより、導電性を有する白金の接触割合が増加することで抵抗値が低減する。さらに,界面のジルコニア比率が高くなることで、基板と焼成膜の密着力が向上する効果もある。 The reason why the electrical resistivity of the produced conductive film is remarkably lowered when the zirconia powder and the titania powder are used together in the platinum paste is considered to be as follows. That is, by using both zirconia powder and titania powder, the diffusion activation energy of zirconia is reduced, and the phenomenon that zirconia diffuses and moves to the vicinity of the interface between the ceramic substrate and the paste firing film (hereinafter referred to as the interface) is remarkably exhibited. .. As the zirconia moves to the interface, the contact ratio of the conductive platinum increases, and the resistance value decreases. Further, by increasing the zirconia ratio at the interface, there is also an effect of improving the adhesion between the substrate and the fired film.

セラミック粉末中におけるジルコニア粉末の割合は5~95重量%とすることができる。セラミック粉末中におけるジルコニア粉末の割合は10~90重量%であることが好ましい。セラミック粉末中におけるジルコニア粉末の割合は20~80重量%であることがより好ましい。セラミック粉末中におけるジルコニア粉末の割合は30~70重量%であることがさらに好ましい。 The proportion of zirconia powder in the ceramic powder can be 5 to 95% by weight. The proportion of the zirconia powder in the ceramic powder is preferably 10 to 90% by weight. The ratio of the zirconia powder in the ceramic powder is more preferably 20 to 80% by weight. The proportion of the zirconia powder in the ceramic powder is more preferably 30 to 70% by weight.

以下、本発明を実施例によりさらに具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

(実施例1~5)
実施例1は、セラミック粉末中に占めるジルコニアとチタニアの比率を表1に示す比率にしてペーストを製作した実施例である。
(Examples 1 to 5)
Example 1 is an example in which a paste is produced by setting the ratio of zirconia and titania in the ceramic powder to the ratio shown in Table 1.

白金粉末、アルミナ粉末、及びエチルセルロース(樹脂)とターピネオール(溶剤)等とからなる有機ビヒクルを、白金粉末、ジルコニア粉末、チタニア粉末及び有機ビヒクルを表1に示す成分組成となるように計量し、一次混練した後、3本ロールミルにて仕上げ混練を行い、白金ペースト20gを得た。 An organic vehicle composed of platinum powder, alumina powder, ethyl cellulose (resin), tarpineol (solvent), etc. is weighed so that the platinum powder, zirconia powder, titania powder, and organic vehicle have the composition shown in Table 1, and the primary composition is obtained. After kneading, finish kneading was performed with a 3-roll mill to obtain 20 g of platinum paste.

Figure 0006997444000001
Figure 0006997444000001

(比較例1)
比較例1は、セラミック粉末の比率を、ジルコニア100%としてペーストを製作した例である。
(Comparative Example 1)
Comparative Example 1 is an example in which a paste is produced by setting the ratio of the ceramic powder to 100% zirconia.

白金粉末、ジルコニア粉末、及びエチルセルロース(樹脂)とターピネオール(溶剤)等とからなる有機ビヒクルを、白金粉末76.66mass%、ジルコニア粉末10.94mass%及び有機ビヒクル12.4mass%の成分組成となるように計量し、一次混練した後、3本ロールミルにて仕上げ混練を行い、白金ペースト20gを得た。 An organic vehicle composed of platinum powder, zirconia powder, ethyl cellulose (resin), tarpineol (solvent), etc. has a composition of 76.66 mass% of platinum powder, 10.94 mass% of zirconia powder, and 12.4 mass% of organic vehicle. After primary kneading, finish kneading was performed with a 3-roll mill to obtain 20 g of platinum paste.

(参考例1)
参考例1は、セラミック粉末の比率を、チタニア100%としてペーストを製作した例である。
(Reference example 1)
Reference Example 1 is an example in which a paste is produced by setting the ratio of the ceramic powder to 100% titania.

該白金粉末、ジルコニア粉末、及びエチルセルロース(樹脂)とターピネオール(溶剤)等とからなる有機ビヒクルを、白金粉末79.52mass%、チタニア粉末8.08mass%及び有機ビヒクル12.4mass%の成分組成となるように計量し、一次混練した後、3本ロールミルにて仕上げ混練を行い、白金ペースト20gを得た。 The organic vehicle composed of the platinum powder, zirconia powder, ethyl cellulose (resin), tarpineol (solvent) and the like has a component composition of 79.52 mass% of platinum powder, 8.08 mass% of titania powder and 12.4 mass% of organic vehicle. After the primary kneading, finish kneading was performed with a 3-roll mill to obtain 20 g of platinum paste.

実施例、参考例及び比較例で得られたペーストをアルミナ基体にスクリーン印刷した後、80℃で30分間乾燥後、1500℃で10分間保持焼成して導電膜を形成した。得られた導電膜について、マルチテスター及び表面粗さ計を用いて電気抵抗率を求めた。その結果を表1に示す。また、セラミック粉末中のチタニアの比率と電気抵抗率との関係を図1に示す。 The pastes obtained in Examples, Reference Examples and Comparative Examples were screen-printed on an alumina substrate, dried at 80 ° C. for 30 minutes, and then held and fired at 1500 ° C. for 10 minutes to form a conductive film. The electrical resistivity of the obtained conductive film was determined using a multitester and a surface roughness meter. The results are shown in Table 1. Further, FIG. 1 shows the relationship between the ratio of titania in the ceramic powder and the electrical resistivity.

Figure 0006997444000002
Figure 0006997444000002

実施例3で得られたペーストをジルコニア基体にスクリーン印刷した後、80℃で30分間乾燥後、1500℃で10分間保持焼成して導電膜を形成した。得られた導電膜について、マルチテスター及び表面粗さ計を用いて比抵抗値を求めた。その結果は12.6(μΩ・cm)であった。 The paste obtained in Example 3 was screen-printed on a zirconia substrate, dried at 80 ° C. for 30 minutes, and then held and fired at 1500 ° C. for 10 minutes to form a conductive film. The specific resistance value of the obtained conductive film was determined using a multi-tester and a surface roughness meter. The result was 12.6 (μΩ · cm).

Claims (1)

電気抵抗率(μΩ・cm)が14.5~19.5の低電気抵抗の電極膜の形成に用いられ、セラミック基材上に印刷される白金ペーストであって、
(1)白金粉末
(2)セラミック粉末
(3)樹脂
(4)溶剤
とから成り、
前記セラミック粉末がジルコニア粉末と、チタニア粉末と、からなり、
前記セラミック粉末中におけるジルコニア粉末の割合は5~95重量%であり、チタニア粉末の割合は5~95重量%であり、
前記白金粉末と前記セラミック粉末とから成る固形分に対しセラミック粉末を1~30重量%含み、
前記固形分全体に対する前記セラミック粉末の比率(mass%)が、10.1%~12.3%である、白金ペースト。
A platinum paste that is used to form a low electrical resistance electrode film with an electrical resistivity (μΩ · cm) of 14.5 to 19.5 and is printed on a ceramic substrate.
It consists of (1) platinum powder (2) ceramic powder (3) resin (4) solvent.
The ceramic powder is composed of zirconia powder and titania powder.
The proportion of the zirconia powder in the ceramic powder is 5 to 95% by weight, and the proportion of the titania powder is 5 to 95% by weight.
The ceramic powder is contained in an amount of 1 to 30% by weight based on the solid content of the platinum powder and the ceramic powder.
A platinum paste in which the ratio (mass%) of the ceramic powder to the total solid content is 10.1% to 12.3% .
JP2017245722A 2017-12-22 2017-12-22 Platinum paste Active JP6997444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017245722A JP6997444B2 (en) 2017-12-22 2017-12-22 Platinum paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017245722A JP6997444B2 (en) 2017-12-22 2017-12-22 Platinum paste

Publications (2)

Publication Number Publication Date
JP2019114373A JP2019114373A (en) 2019-07-11
JP6997444B2 true JP6997444B2 (en) 2022-01-17

Family

ID=67222774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017245722A Active JP6997444B2 (en) 2017-12-22 2017-12-22 Platinum paste

Country Status (1)

Country Link
JP (1) JP6997444B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259500A (en) 2003-02-25 2004-09-16 Daiken Kagaku Kogyo Kk Electrode paste, intermediate solution for electrode paste, and manufacturing method of ceramic electronic component
JP2005150120A (en) 2003-11-19 2005-06-09 E I Du Pont De Nemours & Co Thick film conductor paste composition for ltcc tape
JP2014086243A (en) 2012-10-23 2014-05-12 Agc Seimi Chemical Co Ltd Paste for forming an electroconductive film, electroconductive film, method for manufacturing an electroconductive film, and article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106347A (en) * 1996-09-30 1998-04-24 Tanaka Kikinzoku Kogyo Kk Porous electrode and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259500A (en) 2003-02-25 2004-09-16 Daiken Kagaku Kogyo Kk Electrode paste, intermediate solution for electrode paste, and manufacturing method of ceramic electronic component
JP2005150120A (en) 2003-11-19 2005-06-09 E I Du Pont De Nemours & Co Thick film conductor paste composition for ltcc tape
JP2014086243A (en) 2012-10-23 2014-05-12 Agc Seimi Chemical Co Ltd Paste for forming an electroconductive film, electroconductive film, method for manufacturing an electroconductive film, and article

Also Published As

Publication number Publication date
JP2019114373A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
JP5189705B1 (en) Sensor electrode, manufacturing method thereof, and metal paste for electrode formation
CN102714072A (en) Conductive microparticles for forming an electrode, metal paste, and electrode
TW201840484A (en) Ruthenium oxide powder, composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2013053030A (en) Plate-like ruthenium oxide powder, method for producing the same, and thick film resistor composition using the same
WO2018074562A1 (en) Resistive paste and resistor produced by firing same
JP2006193796A (en) Noble metal powder for electrically conductive paste and its production method
WO2013047465A1 (en) Conductive particles, metal paste, and electrode
JP6377504B2 (en) Conductive paste for electrode formation
JP5237781B2 (en) Method for producing noble metal powder for conductive paste
JP6997444B2 (en) Platinum paste
JP2006278162A (en) Conductive paste and electronic component using the same
JPH07242845A (en) Electrically-conductive coating compound for electrode and its production
JP2022137855A (en) platinum paste
JP7305117B2 (en) platinum paste
JP6186156B2 (en) Silver powder, method for producing the same, paste, electronic circuit component, electric product
JP5942791B2 (en) Method for producing nickel powder
JP6131773B2 (en) Nickel powder, method for producing the same, and nickel paste using the same
CN111133535B (en) Composition for thick film resistor, thick film resistor paste, and thick film resistor
JP2018049900A (en) Resistance paste and resistor produced by firing the same
JP6174445B2 (en) Method for producing platinum powder
JP4893786B2 (en) Conductive paste
JP2007227114A (en) Resistor paste and thick membrane resistor using it
JP2020155344A (en) Conductive paste and electrode
JP6152808B2 (en) Conductive paste for multilayer ceramic capacitor internal electrode and multilayer ceramic capacitor
JP7468273B2 (en) Lead ruthenate powder and method for producing lead ruthenate powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211210

R150 Certificate of patent or registration of utility model

Ref document number: 6997444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250