JP6186156B2 - Silver powder, method for producing the same, paste, electronic circuit component, electric product - Google Patents

Silver powder, method for producing the same, paste, electronic circuit component, electric product Download PDF

Info

Publication number
JP6186156B2
JP6186156B2 JP2013075475A JP2013075475A JP6186156B2 JP 6186156 B2 JP6186156 B2 JP 6186156B2 JP 2013075475 A JP2013075475 A JP 2013075475A JP 2013075475 A JP2013075475 A JP 2013075475A JP 6186156 B2 JP6186156 B2 JP 6186156B2
Authority
JP
Japan
Prior art keywords
silver powder
silver
diameter
metal
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013075475A
Other languages
Japanese (ja)
Other versions
JP2014198893A (en
Inventor
徳昭 野上
徳昭 野上
藤野 剛聡
剛聡 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2013075475A priority Critical patent/JP6186156B2/en
Publication of JP2014198893A publication Critical patent/JP2014198893A/en
Application granted granted Critical
Publication of JP6186156B2 publication Critical patent/JP6186156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

本発明は、表面処理された銀粒子からなる銀粉およびその製造方法に関する。また、その銀粉を用いた導電性ペースト、電子回路部品、電気製品に関する。   The present invention relates to a silver powder comprising surface-treated silver particles and a method for producing the same. Moreover, it is related with the electrically conductive paste, electronic circuit component, and electric product using the silver powder.

従来、電子部品などの電極や回路を形成するための材料として、銀粉を有機成分中に分散させた焼成型導電性ペーストが知られている。一般的な焼成型導電性ペーストは、銀粉の他、例えばエチルセルロースやアクリル樹脂を有機溶剤に溶解したビヒクル、ガラスフリット、無機酸化物、分散剤などを構成成分として含有している。この種の導電性ペーストは、ディッピング、印刷などにより所定パターンに形成された後、焼成されて導体を形成するものであり、低温焼成多層基板(LTCC)、ハイブリッドIC、積層セラミックコンデンサ、チップ抵抗器などの用途に使用されている。   Conventionally, as a material for forming an electrode or a circuit of an electronic component or the like, a fired conductive paste in which silver powder is dispersed in an organic component is known. A general baked conductive paste contains, in addition to silver powder, for example, a vehicle in which ethyl cellulose or acrylic resin is dissolved in an organic solvent, glass frit, an inorganic oxide, a dispersant, and the like as constituent components. This type of conductive paste is formed into a predetermined pattern by dipping, printing, etc., and then fired to form a conductor. Low temperature fired multilayer substrate (LTCC), hybrid IC, multilayer ceramic capacitor, chip resistor It is used for such purposes.

上記焼成では、銀の融点(961℃)より低温で銀粉を焼結させる。その際、焼成温度が高いほど焼結体の電気抵抗低減には有利である。ただし、焼成に伴う種々の不具合の発生を防止するためには、目的の焼成温度に適した特性を有する銀粉を適用することが重要となる。例えば、ガラスフリットを含有するタイプの一般的な配合のペーストの場合、銀粉を焼成温度まで昇温したときの焼結に伴う収縮特性がガラスフリットの収縮特性とできるだけ近似していることが、良質な導体を形成する上で極めて有効である。   In the firing, the silver powder is sintered at a temperature lower than the melting point of silver (961 ° C.). At that time, the higher the firing temperature, the more advantageous is the reduction of the electrical resistance of the sintered body. However, in order to prevent the occurrence of various problems associated with firing, it is important to apply silver powder having characteristics suitable for the intended firing temperature. For example, in the case of a paste having a general composition of a type containing glass frit, the shrinkage characteristic accompanying sintering when the silver powder is heated to the firing temperature is as close as possible to the shrinkage characteristic of glass frit. It is extremely effective in forming a simple conductor.

特許文献1には、酸化物を被着した銀粉が記載されている。この文献では、貴金属粉末の表面を金属と有機酸との化合物で被覆したのち、不活性雰囲気中で熱処理して得られた貴金属粉末が高温焼成に適することを教示している。
特許文献2には、銀粉を用いた焼成型導電性ペーストにおいて、はんだ濡れ性と高温焼成を両立させる技術が示されている。
Patent Document 1 describes a silver powder coated with an oxide. This document teaches that the noble metal powder obtained by coating the surface of the noble metal powder with a compound of a metal and an organic acid and then heat-treating in an inert atmosphere is suitable for high-temperature firing.
Patent Document 2 discloses a technique for achieving both solder wettability and high-temperature firing in a fired conductive paste using silver powder.

特開平8−7644号公報JP-A-8-7644 特開2007−220332号公報JP 2007-220332 A

しかしながら、特許文献1に開示の技術では、銀粉の製造過程で350〜700℃という高温処理を行っているため、粉末の分散性が低下してしまう。特許文献2に開示の技術では、銀粉自体の結晶性が良好でないことから、所望の温度よりも低温で焼結が開始してしまう場合があり、高温焼成に供した際には銀粉とガラスフリットとの収縮特性の差が大きくなりやすいといった問題がある。
本発明は、粉末としての分散性が良く、かつ高温まで焼結しない特性を備えた高温焼成に適する銀粉を実現して、高温焼成に好適な焼成型導電性ペーストおよびそれを用いた電子回路部品、電気製品の提供に資することを目的とする。
However, in the technique disclosed in Patent Document 1, since the high temperature treatment of 350 to 700 ° C. is performed in the production process of silver powder, the dispersibility of the powder is lowered. In the technique disclosed in Patent Document 2, since the crystallinity of the silver powder itself is not good, the sintering may start at a temperature lower than the desired temperature, and when subjected to high-temperature firing, the silver powder and the glass frit are used. There is a problem that the difference in shrinkage characteristics tends to increase.
The present invention realizes a silver powder suitable for high-temperature firing that has good dispersibility as a powder and does not sinter to high temperatures, and a firing-type conductive paste suitable for high-temperature firing and an electronic circuit component using the same The purpose is to contribute to the provision of electrical products.

本発明者らは、上記課題を解決するために鋭意研究した結果、塩素を含む金属化合物を被着した銀粉において、銀の結晶子径が400nm以上であるとき、高温焼成用の銀粉としてより優れた特性を呈することを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors, as a silver powder coated with a metal compound containing chlorine, are more excellent as a silver powder for high-temperature firing when the crystallite diameter of silver is 400 nm or more. As a result, the present invention has been completed.

すなわち、本発明では、塩素を含有する金属化合物が被着した銀粒子からなる銀粉であって、当該銀粉中の前記金属含有量が0.01〜1.0質量%であり、銀の結晶子径が400nm以上である銀粉が提供される。前記金属化合物の金属は例えばスズである。
この銀粉は、円筒容器に入れた当該銀粉0.15gに荷重490Nを1分間付与して得た直径5mmのペレットを50℃から750℃まで昇温したときの直径変化から求まる収縮率δ750が0.5〜5%となる特性を有する。また、同様の方法で得た直径5mmのペレットを50℃から800℃まで昇温したときの直径変化から求まる収縮率δ800が2〜8%となる特性を有する。
That is, in this invention, it is silver powder which consists of silver particles which the metal compound containing chlorine adhere | attached, Comprising: The said metal content in the said silver powder is 0.01-1.0 mass%, Silver crystallite Silver powder having a diameter of 400 nm or more is provided. The metal of the metal compound is, for example, tin.
This silver powder has a shrinkage rate δ 750 determined from a change in diameter when a 5 mm diameter pellet obtained by applying a load of 490 N to 0.15 g of the silver powder placed in a cylindrical container for 1 minute is heated from 50 ° C. to 750 ° C. It has a characteristic of 0.5 to 5%. Further, the pellets having a diameter of 5 mm obtained by the same method have a characteristic that the shrinkage rate δ 800 obtained from the change in diameter when the temperature is raised from 50 ° C. to 800 ° C. is 2 to 8%.

上記銀粉の製造方法として、結晶子径が400nm以上の銀粒子が液中に分散したスラリー中において金属の塩化物を加水分解して塩素を含有する前記金属の化合物の沈殿を生じさせて、その沈殿を前記銀粒子に被着させる製造方法が提供される。前記金属の塩化物としては塩化スズが挙げられる。   As a method for producing the above silver powder, the metal chloride is hydrolyzed in a slurry in which silver particles having a crystallite diameter of 400 nm or more are dispersed in a liquid to cause precipitation of the metal compound containing chlorine. A manufacturing method is provided for depositing a precipitate on the silver particles. An example of the metal chloride is tin chloride.

上記銀粉は導電フィラーとして焼成型導電性ペーストに用いられる。特にガラスフリット含有タイプの導電性ペーストに好適である。また、その導電性ペーストを用いて作製された電子回路部品、さらにはその電気回路部品を用いて作製された電気製品が提供される。   The said silver powder is used for a baking type conductive paste as a conductive filler. It is particularly suitable for a glass frit-containing type conductive paste. In addition, an electronic circuit component manufactured using the conductive paste and an electric product manufactured using the electric circuit component are provided.

本発明に従う導電ペーストを使用すると、銀の融点に近い高温で焼成した場合に、ボイド等の欠陥が少ない良質の導体を安定して形成することが容易に実現できる。そのペーストに適用する銀粉はペースト中における分散性が良好である。焼成によって得られた導体のはんだ濡れ性も良好である。また、銀粉を構成する銀粒子を球状粒子とすることができるので、焼成前の回路形成方法であるフォトリソ法、オフセット法、ディッピング法や印刷法への適用性が良好である。   When the conductive paste according to the present invention is used, it is easy to stably form a good-quality conductor with few defects such as voids when fired at a high temperature close to the melting point of silver. The silver powder applied to the paste has good dispersibility in the paste. The solder wettability of the conductor obtained by firing is also good. Moreover, since the silver particle which comprises silver powder can be made into a spherical particle, the applicability to the photolitho method, the offset method, the dipping method, and the printing method which are the circuit formation methods before baking is favorable.

実施例1で得られた銀粉のSEM写真。The SEM photograph of the silver powder obtained in Example 1. 比較例1で得られた銀粉のSEM写真。The SEM photograph of the silver powder obtained in Comparative Example 1.

本発明の対象となる銀粉は、レーザー回折法による体積基準の粒度分布における累積50%粒子径D50で表される平均粒子径が0.4〜10μmであることが望ましく、0.5〜5μmであることがより好ましい。粒子径が小さすぎると銀粉の熱収縮が大きくなり、銀の融点に近い高温での焼成に適さない。また、粒径が大きすぎるとファインライン化への対応が難しくなる。 The silver powder that is the subject of the present invention preferably has an average particle diameter of 0.4 to 10 μm represented by a cumulative 50% particle diameter D 50 in a volume-based particle size distribution by laser diffraction, and is 0.5 to 5 μm. It is more preferable that If the particle size is too small, the thermal contraction of the silver powder increases and is not suitable for firing at a high temperature close to the melting point of silver. In addition, if the particle size is too large, it becomes difficult to cope with fine lines.

銀粉に含まれる被着金属化合物の金属元素量(この化合物に由来しない同一金属元素を含む)は銀粉全体の0.01〜1.0質量%とする必要があり、0.03〜0.5質量%であることがより好ましい。この金属含有量が少なすぎると熱収縮が過大となり、銀の融点に近い高温での焼成に適するものを得ることが難しくなる。逆に上記金属含有量が多すぎると焼結体の抵抗値が高くなる。   The amount of metal element of the deposited metal compound contained in the silver powder (including the same metal element not derived from this compound) needs to be 0.01 to 1.0% by mass of the entire silver powder, and is in the range of 0.03 to 0.5. More preferably, it is mass%. If the metal content is too small, thermal shrinkage becomes excessive, and it becomes difficult to obtain a material suitable for firing at a high temperature close to the melting point of silver. On the other hand, if the metal content is too large, the resistance value of the sintered body increases.

銀粉に含まれる塩素の量は0.001〜0.6質量%であることが望ましく、0.001〜0.3質量%であることがより望ましく、0.001〜0.1質量%であることがさらに望ましい。塩素量が少なすぎるとはんだ濡れ性改善への寄与が低下し、多すぎると配線腐食が生じたり耐マイグレーション性が悪化したりする。   The amount of chlorine contained in the silver powder is preferably 0.001 to 0.6% by mass, more preferably 0.001 to 0.3% by mass, and 0.001 to 0.1% by mass. More desirable. If the amount of chlorine is too small, the contribution to improving the solder wettability will decrease, and if it is too large, wiring corrosion will occur or the migration resistance will deteriorate.

銀粉を構成する銀の結晶子径を大きくすることによって、焼結開始温度が上昇し、それに伴って高温まで昇温したときの銀粉の収縮率をガラスフリットに近い特性とすることが可能となる。種々検討の結果、結晶子径は400nm以上とすることが高温焼成に適用するペーストを構築する上で極めて有効であることがわかった。あまり大きい必要はなく、例えば1000nm以下の範囲とすればよい。結晶子径は、X線回折による2θ/θ法により求められる。   By increasing the crystallite diameter of silver constituting the silver powder, the sintering start temperature rises, and it becomes possible to make the shrinkage rate of the silver powder close to glass frit when the temperature is raised to a high temperature. . As a result of various studies, it has been found that setting the crystallite diameter to 400 nm or more is extremely effective in constructing a paste applied to high-temperature firing. It does not need to be too large, for example, it may be in the range of 1000 nm or less. The crystallite diameter is determined by the 2θ / θ method by X-ray diffraction.

焼成型導電性ペーストに適用する銀粉が高温焼成に適した性質を有しているかどうかは、例えば、その銀粉からなる圧粉体試料を50℃から750℃あるいは800℃まで昇温した場合の収縮率によって評価することができる。ここで、T℃まで昇温したときの収縮率δTは、評価対象である銀粉0.15gを円筒容器に入れ、荷重490Nを1分間付与することにより直径5mmのペレットとし、そのペレットを50℃からT℃まで昇温したときの直径変化から下記(1)式により求めることができる。
δT(%)=(L50−LT)/L50×100 …(1)
ここで、L50およびLTは、それぞれ試料温度が50℃およびT℃であるときのペレットの直径である。
Whether the silver powder applied to the firing type conductive paste has a property suitable for high-temperature firing is determined by, for example, shrinkage when a green compact sample made of the silver powder is heated from 50 ° C. to 750 ° C. or 800 ° C. Can be evaluated by rate. Here, the shrinkage ratio δ T when the temperature was raised to T ° C. was obtained by putting 0.15 g of silver powder to be evaluated into a cylindrical container and applying a load of 490 N for 1 minute to give a pellet having a diameter of 5 mm. From the change in diameter when the temperature is raised from 0 ° C. to T ° C., the following equation (1) can be used.
δ T (%) = (L 50 −L T ) / L 50 × 100 (1)
Here, L 50 and L T is the diameter of the pellets when the sample temperature, respectively is 50 ° C. and T ° C..

種々検討の結果、焼成温度700℃を超えるような高温焼成に供する場合には、収縮率δ750が0.5〜5%の範囲となることが好ましい。また収縮率δ800が2〜8%の範囲となることがより好ましい。このような性質を有する銀粉は、収縮率が高温域までガラスフリットの特性に比較的近く、ガラスフリット含有タイプの一般的配合を有する焼成型導電性ペースト用の銀粉として、高温焼成に適したものであると評価できる。 As a result of various investigations, when the firing temperature is subjected to a high temperature calcination exceeding 700 ° C. Preferably, the shrinkage rate [delta] 750 is in the range of 0.5% to 5%. More preferably, the shrinkage rate δ 800 is in the range of 2 to 8%. Silver powder having such properties is relatively suitable for high-temperature firing as a silver powder for firing type conductive paste having a general composition of glass frit-containing type with a shrinkage rate that is relatively close to the characteristics of glass frit up to a high temperature range. Can be evaluated.

本発明の対象である表面処理された上述の銀粉は、結晶子径が400nm以上に調整された原料銀粉を用いて、以下の手法により製造することができる。すなわち、金属の塩化物の加水分解により沈殿を生じさせ、その沈殿物質を原料銀粉を構成する銀粒子の表面へ被着させることによって製造できる。「被着」とは銀粉の銀粒子の表面に金属塩化物の加水分解による沈殿が着くことを意味する。この被着を行う処理を「被着処理」と呼ぶ。金属塩化物の加水分解により生じる沈殿は塩素を巻き込んでいるため、塩素を含む金属化合物により被着された銀粒子を容易に作製することができる。また、被着対象である原料の銀粒子からなる銀粉をアルコールを含まない水溶液に分散させて被着操作を行うことが望ましい。アルコール等の有機溶剤を含むと製造コストが大幅に上昇するからである。   The above-mentioned surface-treated silver powder that is an object of the present invention can be produced by the following method using raw material silver powder having a crystallite diameter adjusted to 400 nm or more. That is, it can be produced by causing precipitation by hydrolysis of a metal chloride and depositing the precipitated substance on the surface of silver particles constituting the raw silver powder. “Deposition” means that precipitation due to hydrolysis of metal chlorides adheres to the surface of silver particles of silver powder. The process of performing this deposition is called “deposition process”. Since precipitation generated by hydrolysis of metal chloride involves chlorine, silver particles deposited with a metal compound containing chlorine can be easily produced. Further, it is desirable to perform the deposition operation by dispersing silver powder composed of silver particles of the raw material to be deposited in an aqueous solution not containing alcohol. This is because if the organic solvent such as alcohol is included, the manufacturing cost is significantly increased.

被着処理を施す前の原料銀粉は、スズ、チタン、塩素などの不純物含有量が低く抑えられている純度99質量%以上の高純度銀粉であることが好ましく、レーザー回折法による平均粒子径D50が0.1〜10μmであることが望ましい。また、この原料銀粉を構成する個々の銀粒子は分散剤で被覆されていることが望ましい。分散剤としては、多糖類、ゼラチン、コラーゲンペプチド、ポリエチレンイミン等の高分子分散剤、脂肪酸、脂肪酸塩、界面活性剤、有機金属、キレート形成剤および保護コロイドのいずれか1種以上を選択して使用することができる。 The raw material silver powder before the deposition treatment is preferably a high-purity silver powder having a purity of 99% by mass or more in which impurities such as tin, titanium, and chlorine are kept low. 50 is preferably 0.1 to 10 μm. Further, it is desirable that the individual silver particles constituting the raw silver powder are coated with a dispersant. As the dispersant, select one or more of polymer dispersants such as polysaccharides, gelatin, collagen peptides, polyethyleneimine, fatty acids, fatty acid salts, surfactants, organometallics, chelating agents and protective colloids. Can be used.

原料銀粉の銀粒子表面に金属化合物を被着した後、固液分離を行い、その後、純水で洗浄する。粒子表面に付着している不純物を、過洗浄とならない範囲で適正に洗い落とす手段として、洗浄に使用した水(洗浄后液)の電気伝導度を測定し、その測定値が、当該設備において予め求めてある適正な表面状態が得られる洗浄后液の電気伝導度の範囲内にある時に洗浄を終了する手法が有効である。ある製造設備における例を挙げると、例えば洗浄后液の電気伝導度が5〜50mS/mの範囲で洗浄を終了する手法が有効である。洗浄后液の電気伝導度が設定範囲を上回る場合には、まだ過剰な不純物が付着している。逆に設定範囲を下回るまで洗浄を続けると、被着した塩素を含む金属化合物が過剰に洗い流され、製品に含有される塩素を含む金属化合物量を上述の適正範囲に維持することが困難となる。   After depositing a metal compound on the surface of the silver particles of the raw material silver powder, solid-liquid separation is performed, and then washing with pure water is performed. Measure the electrical conductivity of the water used for washing (after washing) as a means to properly wash off the impurities adhering to the particle surface as long as they are not overwashed. It is effective to terminate the cleaning when it is within the range of the electric conductivity of the post-cleaning solution that can obtain an appropriate surface state. To give an example in a certain manufacturing facility, for example, a method of terminating the cleaning in the range where the electric conductivity of the solution after cleaning is 5 to 50 mS / m is effective. If the electrical conductivity of the solution after washing exceeds the set range, excess impurities are still attached. On the other hand, if the cleaning is continued until it falls below the set range, the deposited metal compound containing chlorine is excessively washed away, and it becomes difficult to maintain the amount of the metal compound containing chlorine contained in the product within the above-mentioned appropriate range. .

〔実施例1〕
銀43.2gを含む硝酸銀水溶液3900gに、工業用のアンモニア水100gを加えて、銀のアンミン錯体溶液を生成した。この銀のアンミン錯体溶液にポリエチレンイミン0.022gを加えた後、還元剤として含水ヒドラジン水溶液を8mL加えた。その直後に、ベンゾトリアゾールナトリウム水溶液を銀粉に対して0.12質量%の割合で添加し、ベンゾトリアゾールナトリウムで被覆された銀粒子のスラリーを得た。この銀粒子のスラリーを濾過、水洗した後、乾燥して銀粉を得た。この銀粉を高速撹拌機で解砕して原料銀粉とした。原料銀粉のレーザー回折法による平均粒子径D50は3.6μmであり、結晶子径は460nmであった。
[Example 1]
100 g of industrial ammonia water was added to 3900 g of an aqueous silver nitrate solution containing 43.2 g of silver to form a silver ammine complex solution. After adding 0.022 g of polyethyleneimine to the silver ammine complex solution, 8 mL of a hydrous hydrazine aqueous solution was added as a reducing agent. Immediately thereafter, an aqueous solution of benzotriazole sodium was added at a ratio of 0.12% by mass with respect to the silver powder to obtain a slurry of silver particles coated with sodium benzotriazole. The silver particle slurry was filtered, washed with water, and dried to obtain silver powder. This silver powder was crushed with a high-speed stirrer to obtain a raw silver powder. The average particle diameter D 50 of the raw silver powder as determined by laser diffraction was 3.6 μm, and the crystallite diameter was 460 nm.

この原料銀粉1kgを純水2000gに加えて撹拌し、分散スラリーを得た。純水50gに塩化スズ(II)2水和物3gを添加した懸濁液を用意し、これを上記スラリーに添加した。さらに撹拌を続けた後、濾過、水洗した。水洗終了時点は洗浄后液の電気伝導度を測定することによって判断した。この例において、洗浄終了時の洗浄后液の電気伝導度は15mS/mであった。その後、乾燥して銀粉を得た。この銀粉をフードミキサー(松下電器産業社製、MK−61M)で解砕処理し、目的とする銀粉を得た。   1 kg of the raw silver powder was added to 2000 g of pure water and stirred to obtain a dispersed slurry. A suspension obtained by adding 3 g of tin (II) chloride dihydrate to 50 g of pure water was prepared, and this was added to the slurry. After further stirring, the mixture was filtered and washed with water. The end of washing was judged by measuring the electrical conductivity of the solution after washing. In this example, the electric conductivity of the solution after washing at the end of washing was 15 mS / m. Then, it dried and obtained silver powder. This silver powder was pulverized with a food mixer (MK-61M, manufactured by Matsushita Electric Industrial Co., Ltd.) to obtain the intended silver powder.

この銀粉について粒度分布、比表面積、スズ含量、収縮率などを調べた。
比表面積は、カウンタクローム社製モノソーブによりBET法で測定した。
粒度分布は、銀粉0.3gをイソプロピルアルコール30mLに入れ、45W超音波洗浄器にて5分間分散処理後、レーザー回折式粒度分布測定装置(ハネウエル−日機装製、マイクロトラック9320−X100)により測定した。その粒度分布から累積50質量%粒子径D50は4.0μmと求まった。
スズ含量は、銀粉を硫酸と硝酸を用いて溶解した後、ICPにて定量して求めた。
収縮率δTは、銀粉0.15gを円筒容器に入れ、荷重490Nを1分間付与することにより直径5mmのペレットとし、そのペレットを50℃から、600〜800℃の範囲にある種々の温度T℃まで昇温したときの直径変化を測定して、前述の(1)式に従って求めた。測定装置はマック・サイエンス/ブルカー・エイエックスエス社製、DILATO METER 5010型を使用し、昇温速度は10℃/分とした。
The silver powder was examined for particle size distribution, specific surface area, tin content, shrinkage, and the like.
The specific surface area was measured by the BET method with a counter chrome monosorb.
The particle size distribution was measured with a laser diffraction particle size distribution measuring device (Honeywell-Nikkiso, Microtrac 9320-X100) after putting 0.3 g of silver powder in 30 mL of isopropyl alcohol and dispersing for 5 minutes with a 45 W ultrasonic cleaner. . From the particle size distribution, the cumulative 50% by mass particle diameter D 50 was determined to be 4.0 μm.
The tin content was determined by ICP after dissolving silver powder using sulfuric acid and nitric acid.
The shrinkage rate δ T is obtained by putting 0.15 g of silver powder in a cylindrical container and applying a load of 490 N for 1 minute to form a pellet having a diameter of 5 mm. The pellet is subjected to various temperatures T ranging from 50 ° C. to 600 to 800 ° C. The change in diameter when the temperature was raised to ° C. was measured and determined according to the above-described equation (1). The measuring apparatus used was DILATO METER 5010 manufactured by Mac Science / Bruker AXS, Inc., and the temperature rising rate was 10 ° C./min.

〔比較例1〕
銀イオンとして12g/Lの硝酸銀溶液3600mLに、工業用のアンモニア水180mLを加えて、銀のアンミン錯体溶液を生成した。この銀のアンミン錯体溶液に水酸化ナトリウム7.5gを加えてpH調整した後、還元剤として工業用のホルマリン192mLを加えた。その直後に、ステアリン酸からなる飽和脂肪酸をエタノール溶液に溶解して、銀粉に対して0.2質量%の割合で添加し、この飽和脂肪酸により被覆された銀粒子のスラリーを得た。この銀粒子のスラリーを濾過、水洗した後、乾燥して銀粉を得た。この銀粉に高速撹拌機による表面平滑化処理を施した後、分級して8μmより大きい銀の凝集体を除去することにより原料銀粉を得た。原料銀粉のレーザー回折法による平均粒子径D50は1.8μmであり、結晶子径は345nmであった。
[Comparative Example 1]
180 mL of industrial ammonia water was added to 3600 mL of a 12 g / L silver nitrate solution as silver ions to form a silver ammine complex solution. After adjusting pH by adding sodium hydroxide 7.5g to this silver ammine complex solution, 192 mL of industrial formalin was added as a reducing agent. Immediately thereafter, a saturated fatty acid composed of stearic acid was dissolved in an ethanol solution and added at a ratio of 0.2% by mass with respect to the silver powder to obtain a slurry of silver particles coated with the saturated fatty acid. The silver particle slurry was filtered, washed with water, and dried to obtain silver powder. The silver powder was subjected to a surface smoothing treatment with a high-speed stirrer, and then classified to remove silver aggregates larger than 8 μm to obtain a raw silver powder. The average particle size D 50 by laser diffraction method of the raw material silver powder is 1.8 .mu.m, the crystallite diameter was 345 nm.

この銀粉1kgを600gのエタノールに撹拌機を用いて分散させた。この分散スラリーに純水1200gを加えて引き続き撹拌した。純水50gに塩化スズ(II)2水和物3gを添加した懸濁液を用意し、これを上記スラリーに添加した。さらに撹拌を続けた後、濾過、水洗した。水洗終了時の洗浄后液の電気伝導度は18mS/mであった。その後、乾燥して銀粉を得た。この銀粉をフードミキサー(松下電器産業社製、MK−61M)で解砕処理し、目的とする銀粉を得た。   1 kg of this silver powder was dispersed in 600 g of ethanol using a stirrer. To this dispersion slurry, 1200 g of pure water was added and subsequently stirred. A suspension obtained by adding 3 g of tin (II) chloride dihydrate to 50 g of pure water was prepared, and this was added to the slurry. After further stirring, the mixture was filtered and washed with water. The electric conductivity of the liquid after washing at the end of washing with water was 18 mS / m. Then, it dried and obtained silver powder. This silver powder was pulverized with a food mixer (MK-61M, manufactured by Matsushita Electric Industrial Co., Ltd.) to obtain the intended silver powder.

この銀粉について実施例1と同様に粒度分布、比表面積、スズ含量、収縮率などを調べた。D50は2.2μmであった。各調査結果を表1に示してある。 The silver powder was examined in the same manner as in Example 1 for particle size distribution, specific surface area, tin content, shrinkage rate and the like. D 50 was 2.2 μm. The results of each survey are shown in Table 1.

〔参考例〕
日本電気硝子社製のLTCC用のガラスフリットMLS−61Aについて、実施例1と同様に収縮率を測定した。
[Reference example]
Regarding the glass frit MLS-61A for LTCC manufactured by Nippon Electric Glass Co., Ltd., the shrinkage rate was measured in the same manner as in Example 1.

表1からわかるように、実施例1のものは比較例1のものよりも参考例の収縮率に近似しており、高温焼成用に適した銀粉であると評価される。   As can be seen from Table 1, the sample of Example 1 is closer to the shrinkage rate of the reference example than that of Comparative Example 1, and is evaluated as a silver powder suitable for high-temperature firing.

図1に実施例1で得られた銀粉のSEM写真を示す。球状粒子が得られていることがわかる。図2は比較例1で得られた銀粉のSEM写真である。   FIG. 1 shows an SEM photograph of the silver powder obtained in Example 1. It can be seen that spherical particles are obtained. FIG. 2 is an SEM photograph of the silver powder obtained in Comparative Example 1.

Claims (11)

塩素を含有する金属化合物が被着した銀粒子からなる銀粉であって、当該銀粉中の前記金属含有量が0.01〜1.0質量%であり、銀の結晶子径が400〜1000nmである銀粉。 A silver powder comprising silver particles coated with a metal compound containing chlorine, wherein the metal content in the silver powder is 0.01 to 1.0% by mass, and the crystallite diameter of silver is 400 to 1000 nm . A certain silver powder. 前記金属化合物の金属がスズである請求項1に記載の銀粉。   The silver powder according to claim 1, wherein the metal of the metal compound is tin. 円筒容器に入れた当該銀粉0.15gに荷重490Nを1分間付与して得た直径5mmのペレットを50℃から750℃まで昇温したときの直径変化から求まる収縮率δ750が0.5〜5%となる請求項1または2に記載の銀粉。 The shrinkage rate δ 750 determined from the change in diameter when a 5 mm diameter pellet obtained by applying a load of 490 N to 0.15 g of the silver powder placed in a cylindrical container from 50 ° C. to 750 ° C. is 0.5 to The silver powder according to claim 1 or 2 which becomes 5%. 円筒容器に入れた当該銀粉0.15gに荷重490Nを1分間付与して得た直径5mmのペレットを50℃から800℃まで昇温したときの直径変化から求まる収縮率δ800が2〜8%となる請求項1または2に記載の銀粉。 The shrinkage rate δ 800 obtained from the change in diameter when a 5 mm diameter pellet obtained by applying a load of 490 N to 0.15 g of the silver powder in a cylindrical container for 1 minute is increased from 50 ° C. to 800 ° C. is 2 to 8%. The silver powder according to claim 1 or 2. ガラスフリット含有タイプの導電性ペースト用である請求項1〜4のいずれか1項に記載の銀粉。   The silver powder according to any one of claims 1 to 4, which is for a glass frit-containing type conductive paste. 結晶子径が400〜1000nmの銀粒子が液中に分散したスラリー中において金属の塩化物を加水分解して塩素を含有する前記金属の化合物の沈殿を生じさせて、その沈殿を前記銀粒子に被着させる銀粉の製造方法。 In a slurry in which silver particles having a crystallite diameter of 400 to 1000 nm are dispersed in a liquid, the metal chloride is hydrolyzed to cause precipitation of the metal compound containing chlorine, and the precipitate is converted into the silver particles. A method for producing silver powder to be deposited. 前記金属の塩化物が塩化スズである請求項6に記載の銀粉の製造方法。   The method for producing silver powder according to claim 6, wherein the metal chloride is tin chloride. 請求項1〜4のいずれかに記載の銀粉を用いて作製された導電性ペースト。   The electrically conductive paste produced using the silver powder in any one of Claims 1-4. 請求項5に記載の銀粉を用いて作製されたガラスフリット含有タイプの導電性ペースト。   A glass frit-containing type conductive paste produced using the silver powder according to claim 5. 請求項8または9に記載の導電性ペーストを用いて作製された電子回路部品。   An electronic circuit component produced using the conductive paste according to claim 8. 請求項10に記載の電子回路部品を用いて作製された電気製品。   An electrical product produced using the electronic circuit component according to claim 10.
JP2013075475A 2013-03-30 2013-03-30 Silver powder, method for producing the same, paste, electronic circuit component, electric product Expired - Fee Related JP6186156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075475A JP6186156B2 (en) 2013-03-30 2013-03-30 Silver powder, method for producing the same, paste, electronic circuit component, electric product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075475A JP6186156B2 (en) 2013-03-30 2013-03-30 Silver powder, method for producing the same, paste, electronic circuit component, electric product

Publications (2)

Publication Number Publication Date
JP2014198893A JP2014198893A (en) 2014-10-23
JP6186156B2 true JP6186156B2 (en) 2017-08-23

Family

ID=52355977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075475A Expired - Fee Related JP6186156B2 (en) 2013-03-30 2013-03-30 Silver powder, method for producing the same, paste, electronic circuit component, electric product

Country Status (1)

Country Link
JP (1) JP6186156B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111292872A (en) * 2020-02-21 2020-06-16 大连海外华昇电子科技有限公司 5G ceramic dielectric filter conductive silver paste and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105719725A (en) * 2016-01-22 2016-06-29 绵阳市奇帆科技有限公司 Luminous solar positive electrode slurry
JP7084730B2 (en) * 2017-02-01 2022-06-15 Dowaエレクトロニクス株式会社 Silver alloy powder and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001706A (en) * 1998-06-17 2000-01-07 Tanaka Kikinzoku Kogyo Kk High crystal silver particle, its production and conductor paste consisting of high crystal silver particle
JP4150638B2 (en) * 2002-06-28 2008-09-17 三井金属鉱業株式会社 Inorganic oxide-coated metal powder and method for producing the inorganic oxide-coated metal powder
JP4961601B2 (en) * 2006-02-14 2012-06-27 Dowaエレクトロニクス株式会社 Silver powder, method for producing the same, paste using the same, electronic circuit component, and electric product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111292872A (en) * 2020-02-21 2020-06-16 大连海外华昇电子科技有限公司 5G ceramic dielectric filter conductive silver paste and preparation method thereof

Also Published As

Publication number Publication date
JP2014198893A (en) 2014-10-23

Similar Documents

Publication Publication Date Title
TWI351998B (en) Spherical silver powder and method for producing s
JP4821014B2 (en) Copper powder manufacturing method
KR101927476B1 (en) Silver powder and manufacturing method of the same
JP6168837B2 (en) Copper fine particles and method for producing the same
JP2018523758A (en) Method for producing silver powder for high-temperature sintered conductive paste
WO2008059789A1 (en) Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
TW200920857A (en) Nickel powder or alloy powder comprising nickel as main component and manufacturing method thereof, conductive paste and multi-layer ceramic condenser
JP2007270334A (en) Silver powder and its manufacturing method
JP6186156B2 (en) Silver powder, method for producing the same, paste, electronic circuit component, electric product
JP4961601B2 (en) Silver powder, method for producing the same, paste using the same, electronic circuit component, and electric product
JP6213584B2 (en) Method for producing copper powder and method for producing conductive paste
JP2017206763A (en) Silver powder and manufacturing method therefor and conductive paste
JP6159505B2 (en) Flat copper particles
JP5590289B2 (en) Method for producing silver paste
JP2017166048A (en) Copper powder and manufacturing method therefor, and conductive paste
CN110114175B (en) High-temperature sintered silver powder and method for producing same
JP6407850B2 (en) Method for producing platinum powder
JP2009079269A (en) Copper powder for electroconductive paste, production method therefor and electroconductive paste
JP4164010B2 (en) Inorganic ultrafine particle coated metal powder and method for producing the same
JP5942791B2 (en) Method for producing nickel powder
JP4149385B2 (en) Aluminum oxide coated fine silver powder and method for producing the same
JP2018204042A (en) Silver-coated powder and method for producing same, and conductive paste
JP6491595B2 (en) Method for producing platinum palladium rhodium alloy powder
JP6065699B2 (en) Method for producing nickel powder
JP2018043925A (en) Ruthenium-containing perovskite compound, thick film resistor paste, thick film resistor and methods for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170605

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170731

R150 Certificate of patent or registration of utility model

Ref document number: 6186156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees