JP6995024B2 - 分析装置 - Google Patents

分析装置 Download PDF

Info

Publication number
JP6995024B2
JP6995024B2 JP2018142593A JP2018142593A JP6995024B2 JP 6995024 B2 JP6995024 B2 JP 6995024B2 JP 2018142593 A JP2018142593 A JP 2018142593A JP 2018142593 A JP2018142593 A JP 2018142593A JP 6995024 B2 JP6995024 B2 JP 6995024B2
Authority
JP
Japan
Prior art keywords
signal
unit
delay correction
delay
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018142593A
Other languages
English (en)
Other versions
JP2020021560A (ja
Inventor
竜一 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2018142593A priority Critical patent/JP6995024B2/ja
Publication of JP2020021560A publication Critical patent/JP2020021560A/ja
Application granted granted Critical
Publication of JP6995024B2 publication Critical patent/JP6995024B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、分析装置に関する。
X線検出器を備えた走査電子顕微鏡(Scanning Electron Microscope、SEM)などの分析装置では、細く集束させた電子線で試料を走査することで、元素マップ像を得ることができる(例えば、特許文献1参照)。
このような分析装置は、走査制御部が偏向器を制御することによって、電子線で試料を走査できる。試料に電子線を照射することによって発生したX線は、X線検出器で検出される。X線検出器の出力信号は、アナライザーでX線エネルギー信号に変換される。画像処理部では、X線エネルギー信号、および走査制御部からの座標信号を受け付け、これらの信号に基づいて元素マップが生成される。
特開2010-164442号公報
上述したように、X線エネルギー信号は、X線検出器の出力信号をアナライザーで処理することによって生成される。アナライザーでは、処理時間(アナライザーの時定数)に起因する出力信号(すなわち、X線エネルギー信号)の遅延が生じる。X線エネルギー信号の遅延量(遅延時間)は、走査制御部で座標信号を生成する処理によって生じる遅延量に比べて大きい。
例えば、X線エネルギー信号の遅延量が、電子線が照射位置に滞在する時間よりも長くなると、画像処理部に入力される座標信号とX線エネルギー信号との間に時間的なずれが生じてしまう。すなわち、座標信号で特定される座標と実際にX線を検出した座標とがずれてしまう。この場合、正確な元素マップ像が得られない。
特に、電子線を高速に走査して、元素マップ像を取得する場合には、X線エネルギー信号の遅延量が、電子線が照射位置に滞在する時間よりも長くなるため、正確な元素マップ像が得られない場合がある。
本発明の目的は、正確な元素マップ像を得ることができる分析装置を提供することにある。
本発明に係る分析装置の一態様は、
電子線で試料を走査することによって元素マップ像を取得する分析装置であって、
電子源と、
前記電子源から放出された電子線を偏向させる偏向器と、
電子線の照射位置を示す座標信号を生成し、前記偏向器による電子線の走査を制御する走査制御部と、
電子線を前記試料に照射することによって前記試料から放出されるX線を検出するX線検出器と、
前記X線検出器の出力信号に基づいて、X線エネルギー信号を生成するX線エネルギー信号生成部と、
前記座標信号に対する前記X線エネルギー信号の遅延を補正する信号遅延補正部と、
前記信号遅延補正部で遅延が補正された前記座標信号および前記X線エネルギー信号に基づいて、前記元素マップ像を生成する画像処理部と、
を含む。
このような分析装置では、信号遅延補正部が座標信号に対するX線エネルギー信号の遅延を補正するため、座標信号およびX線エネルギー信号を適切なタイミングで画像処理部に入力できる。したがって、このような分析装置では、正確な元素マップ像を得ることができる。
本発明に係る分析装置の一態様は、
電子線で試料を走査することによって元素マップ像を取得する分析装置であって、
電子源と、
前記電子源から放出された電子線を偏向させる偏向器と、
電子線の照射位置を示す座標信号を生成し、前記偏向器による電子線の走査を制御する走査制御部と、
電子線を前記試料に照射することによって前記試料から放出されるX線を検出する第1X線検出器と、
前記第1X線検出器の出力信号に基づいて、第1X線エネルギー信号を生成する第1X線エネルギー信号生成部と、
前記座標信号に対する前記第1X線エネルギー信号の遅延を補正する第1信号遅延補正部と、
電子線を前記試料に照射することによって前記試料から放出されるX線を検出する第2X線検出器と、
前記第2X線検出器の出力信号に基づいて、第2X線エネルギー信号を生成する第2X線エネルギー信号生成部と、
前記座標信号に対する前記第2X線エネルギー信号の遅延を補正する第2信号遅延補正部と、
前記第1信号遅延補正部で遅延が補正された前記座標信号および前記第1X線エネルギー信号に基づいて前記第1元素マップ像を生成し、前記第2信号遅延補正部で遅延が補正された前記座標信号および前記第2X線エネルギー信号に基づいて、前記第2元素マップ像を生成する画像処理部と、
を含む。
このような分析装置では、第1信号遅延補正部が座標信号に対する第1X線エネルギー信号の遅延を補正し、第2信号遅延補正部が座標信号に対する第2X線エネルギー信号の遅延を補正するため、座標信号、第1X線エネルギー信号、および第2X線エネルギー信号を適切なタイミングで画像処理部に入力できる。したがって、このような分析装置では、正確な元素マップ像を得ることができる。
本発明に係る分析装置の一態様は、
一次線で試料を走査することによって元素マップ像を取得する分析装置であって、
一次線源と、
前記一次線源から放出された一次線を偏向させる偏向器と、
一次線の照射位置を示す座標信号を生成し、前記偏向器による一次線の走査を制御する走査制御部と、
前記一次線を前記試料に照射することによって前記試料から放出される信号を検出する信号検出器と、
前記信号検出器の出力信号に基づいて、エネルギー信号を生成するエネルギー信号生成部と、
前記座標信号に対する前記エネルギー信号の遅延を補正する信号遅延補正部と、
前記信号遅延補正部で遅延が補正された前記座標信号および前記エネルギー信号に基づいて、前記元素マップ像を生成する画像処理部と、
を含む。
このような分析装置では、信号遅延補正部が座標信号に対するエネルギー信号の遅延を補正するため、座標信号およびエネルギー信号を適切なタイミングで画像処理部に入力できる。したがって、このような分析装置では、正確な元素マップ像を得ることができる。
第1実施形態に係る分析装置の構成を示す図。 信号遅延補正部の構成を示す図。 信号遅延補正部の動作を説明するための図。 信号遅延補正部の動作を説明するための図。 信号遅延補正部の動作を説明するための図。 信号遅延補正部の変形例を示す図。 信号遅延補正部の動作を説明するための図。 第2実施形態に係る分析装置の構成を示す図。 第1信号遅延補正部、第2信号遅延補正部、および第3信号遅延補正部の構成を示す図。 第1信号遅延補正部、第2信号遅延補正部、および第3信号遅延補正部の動作を説明するための図。 第1信号遅延補正部、第2信号遅延補正部、および第3信号遅延補正部の動作を説明するための図。 第1信号遅延補正部、第2信号遅延補正部、および第3信号遅延補正部の動作を説明するための図。 第1信号遅延補正部、第2信号遅延補正部、および第3信号遅延補正部の動作を説明するための図。 第1信号遅延補正部、第2信号遅延補正部、および第3信号遅延補正部の動作を説明するための図。
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1. 第1実施形態
1.1. 分析装置の構成
まず、第1実施形態に係る分析装置について図面を参照しながら説明する。図1は、第1実施形態に係る分析装置100の構成を示す図である。
分析装置100は、X線検出器30が搭載された走査電子顕微鏡である。分析装置100では、電子線EBで試料Sを走査することによって元素マップ像を取得できる。
分析装置100は、図1に示すように、電子源2と、集束レンズ4と、対物レンズ6と、偏向器8と、試料ステージ10と、走査制御部12と、電子検出器20と、増幅器22と、イメージ信号生成部24と、X線検出器30と、アナライザー32(X線エネルギー信号生成部の一例)と、信号遅延補正部40と、画像処理部50と、表示部60と、操作
部62と、記憶部64と、を含む。
電子源2は、電子を発生させる。電子源2は、例えば、陰極から放出された電子を陽極で加速し電子線EBを放出する電子銃である。
集束レンズ4は、電子源2から放出された電子線EBを集束させて電子プローブを形成する。集束レンズ4によって、電子プローブの径やプローブ電流(照射電流量)を制御できる。
対物レンズ6は、試料Sの直前に配置された電子プローブを形成するためのレンズである。対物レンズ6は、例えば、コイルと、ヨークと、を含んで構成されている。対物レンズ6では、コイルで作られた磁力線を、鉄などの透磁率の高い材料で作られたヨークに閉じ込め、ヨークの一部に形成された切欠きから、高密度の磁力線を光軸上に漏洩させる。
偏向器8は、電子源2から放出された電子線EBを偏向させる。偏向器8は、集束レンズ4と対物レンズ6とによって形成された電子プローブ(集束された電子線EB)を偏向させる。偏向器8は、電子プローブで、試料S上を走査するために用いられる。なお、偏向器8は、図示の例では、2段であるが、1段であってもよいし、3段以上であってもよい。
試料ステージ10には、試料Sが載置される。試料ステージ10は、試料Sを移動させたり、試料Sを傾斜させたりするための駆動機構を有している。
走査制御部12は、偏向器8による電子線EBの走査を制御し、電子線EBの照射位置を示す座標信号を生成する。走査制御部12は、座標信号生成部12aと、偏向器制御装置12bと、を含む。
座標信号生成部12aは、電子線EBの照射位置を示す座標信号を生成する。座標信号は、電子線EBのX方向(水平方向)の走査を制御するX座標信号と、電子線EBのY方向(垂直方向)の走査を制御するY座標信号と、を含む。X座標信号は、試料S上における電子線EBの照射位置のX座標の情報を含む。Y座標信号は、試料S上における電子線EBの照射位置のY座標の情報を含む。座標信号は、偏向器制御装置12bおよび信号遅延補正部40に送られる。
偏向器制御装置12bは、X座標信号に基づいて電子線EBをX方向に走査させるためのX走査信号を生成し、Y座標信号に基づいて電子線EBをY方向に走査させるためのY走査信号を生成する。偏向器制御装置12bは、X走査信号およびY走査信号を偏向器8に送る。これにより、偏向器8は、X走査信号およびY走査信号に基づいて、電子線EBを偏向させる。この結果、電子プローブで試料S上を走査できる。
なお、上記では、座標信号生成部12aで生成された座標信号に基づいて、偏向器制御装置12bが走査信号を生成する場合について説明したが、偏向器制御装置12bで生成された走査信号に基づいて、座標信号生成部12aが座標信号を生成してもよい。
電子検出器20は、電子線EBが試料Sに照射されることにより試料Sから放出される電子(例えば二次電子または反射電子)を検出する。電子検出器20は、検出した電子の量に応じた信号を出力する。電子検出器20の出力信号は、増幅器22で増幅され、イメージ信号生成部24に送られる。
イメージ信号生成部24は、電子検出器20の出力信号に基づいて、イメージ信号を生
成する。イメージ信号生成部24は、電子検出器20の出力信号を、デジタル信号に変換して、イメージ信号として信号遅延補正部40に送る。イメージ信号は、電子検出器20で検出された電子の検出量の情報を含む。
X線検出器30は、電子線EBが試料Sに照射することにより試料Sから放出されるX線を検出する。X線検出器30は、例えば、エネルギー分散X線検出器(Energy dispersive X-ray Spectrometer、以下「EDS検出器」ともいう)である。なお、X線検出器30は、波長分散X線検出器(Wavelength Dispersive X-ray Spectrometer、以下「WDS検出器」ともいう)であってもよい。X線検出器30の出力信号は、アナライザー32に送られる。
アナライザー32は、X線検出器30の出力信号に基づいて、X線のエネルギー値を解析し、X線エネルギー信号を生成する。アナライザー32は、例えば、複数のチャンネルを持った多重波高分析器を含み、X線検出器30の出力信号のパルス波高値に基づいて、エネルギー値を解析し、X線エネルギー信号を生成する。X線エネルギー信号は、X線検出器30で検出されたX線のエネルギーの情報を含む。X線エネルギー信号は、信号遅延補正部40に送られる。
信号遅延補正部40は、座標信号に対するX線エネルギー信号の遅延を補正する。さらに、信号遅延補正部40は、イメージ信号に対するX線エネルギー信号の遅延を補正する。信号遅延補正部40で遅延が補正された座標信号、イメージ信号、およびX線エネルギー信号は、画像処理部50に送られる。
画像処理部50は、信号遅延補正部40で遅延が補正された座標信号およびイメージ信号に基づいて、走査電子像(二次電子像または反射電子像)を生成する。走査電子像は、各照射位置における電子の放出量を、各照射位置に対応する画素の明るさとすることで、生成することができる。電子の放出量の情報は、イメージ信号から得ることができる。照射位置を特定する座標の情報は、座標信号から得ることができる。
画像処理部50は、さらに、信号遅延補正部40で遅延が補正された座標信号およびX線エネルギー信号に基づいて、元素マップ像を生成する。元素マップ像は、各照射位置からのX線の放出量の違いを画像化することで生成できる。なお、照射位置は、座標信号により得ることができ、X線の放出量はX線エネルギー信号から得ることができる。
画像処理部50の機能は、各種プロセッサー(CPU(Central Processing Unit)など)でプログラムを実行することにより実現できる。
表示部60は、画像処理部50で生成された画像を出力する。表示部60は、例えば、LCD(liquid crystal display)などのディスプレイにより実現できる。
操作部62は、ユーザーからの指示を信号に変換して画像処理部50に送る処理を行う。操作部62は、例えば、ボタン、キー、トラックボール、タッチパネル型ディスプレイ、マイクなどの入力機器により実現できる。
記憶部64は、画像処理部50が各種計算処理や制御処理を行うためのプログラムやデータを記憶している。また、記憶部64は、画像処理部50のワーク領域としても用いられる。記憶部64は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、およびハードディスクなどにより実現できる。
1.2. 信号遅延補正部
図2は、信号遅延補正部40の構成を示す図である。
信号遅延補正部40は、シフトレジスタを含んで構成されている。なお、信号遅延補正部40は、FIFO(First In, First Out)バッファーを含んで構成されてもよいし、リングバッファーを含んで構成されてもよい。
信号遅延補正部40は、図2に示すように、第1格納部42aと、第2格納部42bと、第3格納部42cと、第4格納部42dと、第1遅延補正格納部44aと、第2遅延補正格納部44bと、第3遅延補正格納部44cと、フラグ部46a,46b,46c,46dと、フラグ部47a,47b,47cと、シフトクロック発生部48と、遅延量設定部49と、を含む。
第1格納部42aは、信号遅延補正部40に入力されたX座標信号SPXを格納する。第1格納部42aに格納されたX座標信号SPXは、シフトクロック発生部48からのクロック信号によりシフトし、第1遅延補正格納部44aに格納される。
第1遅延補正格納部44aは、X線エネルギー信号Sの遅延を補正するためにX座標信号SPXを格納する。1つの第1遅延補正格納部44aは、例えば、1クロック信号分の遅延を生じさせる。第1遅延補正格納部44aに格納されたX座標信号SPXは、シフトクロック発生部48からのクロック信号によりシフトし、画像処理部50に出力される。
図2に示す例では、第1遅延補正格納部44aは1つ(1段)であり、信号遅延補正部40では、X座標信号SPXに1クロック信号分の遅延を生じさせる。なお、信号遅延補正部40では、第1遅延補正格納部44aを複数設けることもできる。例えば、信号遅延補正部40にn個(n段)の第1遅延補正格納部44aを設けることで、X座標信号SPXにnクロック信号分の遅延を生じさせることができる。第1遅延補正格納部44aの数(段数)は、遅延量設定部49によって設定される。
フラグ部46aは、第1格納部42aにおけるX座標信号SPXの有無を示す。第1格納部42aにX座標信号SPXが格納されている場合には、フラグ部46aには「H(High)」が付与される。また、第1格納部42aにX座標信号SPXが格納されていない場合には、フラグ部46aには「L(Low)」が付与される。フラグ部46aに付与されるフラグは、クロック信号によりフラグ部47aにシフトする。
第1格納部42aに格納されたX座標信号SPXは、クロック信号によりシフトして、第1遅延補正格納部44aに格納される。
フラグ部47aは、第1遅延補正格納部44aにおけるX座標信号SPXの有無を示す。第1遅延補正格納部44aにX座標信号SPXが格納されている場合には、フラグ部47aには「H」が付与される。また、第1遅延補正格納部44aにX座標信号SPXが格納されていない場合には、フラグ部47aには「L」が付与される。
フラグ部47aに「H」のフラグが付与されている場合、第1遅延補正格納部44aに格納されたX座標信号SPXは、クロック信号によりシフトして、画像処理部50に出力される。一方、フラグ部47aに「L」のフラグが付与されている場合、第1遅延補正格納部44aでは、クロック信号により信号はシフトしない。
第2格納部42bは、信号遅延補正部40に入力されたY座標信号SPYを格納する。第2格納部42bに格納されたY座標信号SPYは、シフトクロック発生部48からのク
ロック信号によりシフトし、第2遅延補正格納部44bに格納される。
第2遅延補正格納部44bは、X線エネルギー信号Sの遅延を補正するためにY座標信号SPYを格納する。1つの第2遅延補正格納部44bは、例えば、1クロック信号分の遅延を生じさせる。第2遅延補正格納部44bに格納されたY座標信号SPYは、シフトクロック発生部48からのクロック信号によりシフトし、画像処理部50に出力される。
第2遅延補正格納部44bは、図示の例では、1段であるが、第1遅延補正格納部44aと同様に、複数段設けられてもよい。
フラグ部46bは、第2格納部42bにおけるY座標信号SPYの有無を示す。第2格納部42bにY座標信号SPYが格納されている場合には、フラグ部46bには「H」が付与される。また、第2格納部42bにY座標信号SPYが格納されていない場合には、フラグ部46bには「L」が付与される。フラグ部46bに付与されるフラグは、クロック信号によりフラグ部47bにシフトする。
第2格納部42bに格納されたY座標信号SPYは、クロック信号によりシフトして、第2遅延補正格納部44bに格納される。
フラグ部47bは、第2遅延補正格納部44bにおけるY座標信号SPYの有無を示す。第2遅延補正格納部44bにY座標信号SPYが格納されている場合には、フラグ部47bには「H」が付与される。また、第2遅延補正格納部44bにY座標信号SPYが格納されていない場合には、フラグ部47bには「L」が付与される。
フラグ部47bに「H」のフラグが付与されている場合、第2遅延補正格納部44bに格納されたY座標信号SPYは、クロック信号によりシフトして、画像処理部50に出力される。一方、フラグ部47bに「L」のフラグが付与されている場合、第2遅延補正格納部44bでは、クロック信号により信号はシフトしない。
第3格納部42cは、信号遅延補正部40に入力されたイメージ信号Sを格納する。第3格納部42cに格納されたイメージ信号Sは、シフトクロック発生部48からのクロック信号によりシフトし、第3遅延補正格納部44cに格納される。
第3遅延補正格納部44cは、X線エネルギー信号Sの遅延を補正するために、イメージ信号Sを格納する。1つの第3遅延補正格納部44cは、例えば、1クロック信号分の遅延を生じさせる。第3遅延補正格納部44cに格納されたイメージ信号Sは、シフトクロック発生部48からのクロック信号によりシフトし、画像処理部50に出力される。
第3遅延補正格納部44cは、図示の例では、1段であるが、第1遅延補正格納部44aと同様に、複数段設けられてもよい。
フラグ部46cは、第3格納部42cにおけるイメージ信号Sの有無を示す。第3格納部42cにイメージ信号Sが格納されている場合には、フラグ部46cには「H」が付与される。また、第3格納部42cにイメージ信号Sが格納されていない場合には、フラグ部46cには「L」が付与される。フラグ部46cに付与されるフラグは、クロック信号によりフラグ部47cにシフトする。
第3格納部42cに格納されたイメージ信号Sは、クロック信号によりシフトして、
第3遅延補正格納部44cに格納される。
フラグ部47cは、第3遅延補正格納部44cにおけるイメージ信号Sの有無を示す。第3遅延補正格納部44cにイメージ信号Sが格納されている場合には、フラグ部47cには「H」が付与される。また、第3遅延補正格納部44cにイメージ信号Sが格納されていない場合には、フラグ部47cには「L」が付与される。
フラグ部47cに「H」のフラグが付与されている場合、第3遅延補正格納部44cに格納されたイメージ信号Sは、クロック信号によりシフトして、画像処理部50に出力される。一方、フラグ部47cに「L」のフラグが付与されている場合、第3遅延補正格納部44cでは、クロック信号により信号はシフトしない。
第4格納部42dは、信号遅延補正部40に入力されたX線エネルギー信号Sを格納する。第4格納部42dに格納されたX線エネルギー信号Sは、シフトクロック発生部48からのクロック信号によりシフトし、画像処理部50に出力される。このように、X線エネルギー信号Sは、遅延補正格納部を介さずに、第4格納部42dから、直接、画像処理部50に出力される。
フラグ部46dは、第4格納部42dにおけるX線エネルギー信号Sの有無を示す。第4格納部42dにX線エネルギー信号Sが格納されている場合には、フラグ部46dには「H」が付与される。また、第4格納部42dにX線エネルギー信号Sが格納されていない場合には、フラグ部46dには「L」が付与される。
第4格納部42dに格納されたX線エネルギー信号Sは、クロック信号によりシフトして、画像処理部50に出力される。
上述したように、信号遅延補正部40では、各格納部および各遅延補正格納部にフラグ部を設けることにより、クロック信号により信号をシフトさせたときに、信号間の間隔(時間間隔)を変えることなく、X線エネルギー信号の遅延を補正できる。
シフトクロック発生部48は、一定の時間間隔でクロック信号を生じさせる。上述したように、シフトクロック発生部48からのクロック信号により、X座標信号SPX、Y座標信号SPY、イメージ信号S、およびX線エネルギー信号Sの同期をとることができる。
遅延量設定部49は、X座標信号SPXおよびY座標信号SPYに対するX線エネルギー信号Sの遅延量の情報に基づいて、X座標信号SPXおよびY座標信号SPYを遅延させる。すなわち、遅延量設定部49は、X座標信号SPXおよびY座標信号SPYに対するX線エネルギー信号Sの遅延量の情報に基づいて、第1遅延補正格納部44aの段数および第2遅延補正格納部44bの段数を設定する。
また、遅延量設定部49は、イメージ信号Sに対するX線エネルギー信号Sの遅延量の情報に基づいて、イメージ信号Sを遅延させる。すなわち、遅延量設定部49は、イメージ信号Sに対するX線エネルギー信号Sの遅延量の情報に基づいて、第3遅延補正格納部44cの段数を設定する。
座標信号SPX,SPYに対するX線エネルギー信号Sの遅延量は、例えば、実際に、座標信号SPX,SPYを基準として、X線エネルギー信号Sの遅延量を測定することで得られる。同様に、イメージ信号Sに対するX線エネルギー信号Sの遅延量は、例えば、実際に、イメージ信号Sを基準として、X線エネルギー信号Sの遅延量を測
定することで得られる。
ユーザーは、例えば、操作部62を介して、座標信号SPX,SPYに対するX線エネルギー信号Sの遅延量の情報、およびイメージ信号Sに対するX線エネルギー信号Sの遅延量の情報を入力することができる。すなわち、分析装置100では、操作部62が座標信号SPX,SPYに対するX線エネルギー信号Sの遅延量の情報、およびイメージ信号Sに対するX線エネルギー信号SXの遅延量の情報の入力を受け付ける入力部として機能する。
なお、座標信号SPX,SPYに対するX線エネルギー信号Sの遅延量およびイメージ信号Sに対するX線エネルギー信号Sの遅延量は、あらかじめ設定された値に固定されていてもよい。すなわち、第1遅延補正格納部44aの段数、第2遅延補正格納部44bの段数、および第3遅延補正格納部44cの段数は、固定であってもよい。
1.3. 動作
分析装置100の動作について説明する。図3~図5は、信号遅延補正部40の動作を説明するための図である。以下では、座標信号SPX,SPYを基準とした場合に、イメージ信号Sには遅れがなく、X線エネルギー信号Sには1クロック信号分の遅れがある場合について説明する。
座標信号生成部12aは、X座標信号SPXおよびY座標信号SPYを生成し、偏向器制御装置12bおよび信号遅延補正部40に送る。偏向器制御装置12bは、X座標信号SPXおよびY座標信号SPYに基づいて、X走査信号およびY走査信号を生成し、偏向器8に送る。これにより、偏向器8は、X走査信号およびY走査信号に基づいて電子線EBを偏向させる。この結果、電子線EBで試料S上が走査される。
このとき、試料Sから放出される電子(二次電子または反射電子)は、電子検出器20で検出される。電子検出器20の出力信号は、増幅器22で増幅された後、イメージ信号生成部24に送られ、イメージ信号生成部24でイメージ信号が生成される。イメージ信号生成部24で生成されたイメージ信号は、信号遅延補正部40に送られる。
一方、試料Sから放出されるX線(例えば特性X線)は、X線検出器30で検出される。X線検出器30の出力信号は、アナライザー32でX線エネルギー信号に変換され、信号遅延補正部40に送られる。
図3に示すように、信号遅延補正部40において、座標信号生成部12aからのX座標信号SPXは、第1格納部42aに格納され、フラグ部46aに「H」が付与される。同様に、座標信号生成部12aからのY座標信号SPYは、第2格納部42bに格納され、フラグ部46bに「H」が付与される。同様に、イメージ信号生成部24からのイメージ信号Sは、第3格納部42cに格納され、フラグ部46cに「H」が付与される。
図4に示すように、シフトクロック発生部48からのクロック信号により、第1格納部42aに格納されていたX座標信号SPXはシフトし、第1遅延補正格納部44aに格納され、フラグ部47aに「H」が付与される。さらに、第2格納部42bに格納されていたY座標信号SPYはシフトし、第2遅延補正格納部44bに格納され、フラグ部47bに「H」が付与される。さらに、第3格納部42cに格納されていたイメージ信号Sはシフトし、第3遅延補正格納部44cに格納され、フラグ部47cに「H」が付与される。このように、X座標信号SPX、Y座標信号SPY、およびイメージ信号Sは、クロック信号により同期してシフトする。
このとき、第1格納部42a、第2格納部42b、および第3格納部42cには、信号が格納されていないため、フラグ部46a、フラグ部46b、およびフラグ部46cには、「L」が付与される。
また、信号遅延補正部40において、アナライザー32からのX線エネルギー信号Sは、座標信号SPX,SPYに対して1クロック信号分遅れて、第4格納部42dに格納され、フラグ部46dに「H」が付与される。
図5に示すように、シフトクロック発生部48からのクロック信号により、第1遅延補正格納部44aに格納されていたX座標信号SPXはシフトし、画像処理部50に出力される。さらに、第2遅延補正格納部44bに格納されていたY座標信号SPYはシフトし、画像処理部50に出力される。さらに、第3遅延補正格納部44cに格納されていたイメージ信号Sはシフトし、画像処理部50に出力される。さらに、第4格納部42dに格納されていたX線エネルギー信号Sはシフトし、画像処理部50に出力される。このように、X座標信号SPX、Y座標信号SPY、イメージ信号S、およびX線エネルギー信号Sは、クロック信号により同期して、信号遅延補正部40から同時に出力される。
このようにして、1つの照射位置に対応する、X座標信号SPX、Y座標信号SPY、イメージ信号S、およびX線エネルギー信号Sが画像処理部50に送られる。なお、ここでは、便宜上、1つの照射位置に対して、イメージ信号SおよびX線エネルギー信号Sが1つとして説明したが、1つの照射位置に対して、複数のイメージ信号および複数のX線エネルギー信号がある場合も同様である。
例えば、電子線EBが座標(X1,Y1)の次に座標(X2,Y2)に移動する場合、座標(X1,Y1)を示す座標信号SPX,SPYが画像処理部50に入力されてから、座標(X2,Y2)を示す座標信号SPX,SPYが画像処理部50に入力されるまでの間に、画像処理部50に入力された、イメージ信号SおよびX線エネルギー信号Sを、座標(X1,Y1)でのデータとしてもよい。
電子線EBの照射位置ごとに上記の処理が行われることにより、画像処理部50は、電子線EBの照射位置ごとに、X座標信号SPX、Y座標信号SPY、イメージ信号S、およびX線エネルギー信号Sを取得できる。画像処理部50は、このようにして取得した、X座標信号SPX、Y座標信号SPY、イメージ信号S、およびX線エネルギー信号Sに基づいて、走査電子像(二次電子像または反射電子像)および元素マップ像を生成する。また、画像処理部50は、走査電子像と元素マップ像とを合成した合成像を生成してもよい。
画像処理部50は、生成した走査電子像および元素マップ像を表示部60に表示させる制御を行う。
1.4. 特徴
分析装置100は、例えば、以下の特徴を有する。
分析装置100では、信号遅延補正部40は、座標信号SPX,SPYに対するX線エネルギー信号Sの遅延を補正し、画像処理部50は、X座標信号SPX、Y座標信号SPY、およびX線エネルギー信号Sに基づいて、元素マップ像を生成する。そのため、分析装置100では、X線エネルギー信号Sにアナライザー32の処理による遅延が生じたとしても、X座標信号SPX、Y座標信号SPY、およびX線エネルギー信号Sを適切なタイミングで画像処理部50に入力できる。したがって、分析装置100では、正
確な元素マップ像を得ることができる。
分析装置100では、信号遅延補正部40は、さらに、イメージ信号Sに対するX線エネルギー信号Sの遅延を補正し、画像処理部50は、X座標信号SPX、Y座標信号SPY、およびイメージ信号Sに基づいて、走査電子像を生成する。そのため、分析装置100では、イメージ信号Sにイメージ信号生成部24の処理による遅延が生じたとしても、イメージ信号S、およびX線エネルギー信号Sを適切なタイミングで画像処理部50に入力できる。したがって、分析装置100では、走査電子像と元素マップ像との間にずれが生じることを防ぐことができる。
分析装置100では、座標信号SPX,SPYに対するX線エネルギー信号Sの遅延量の情報の入力を受け付ける入力部としての操作部62を含み、信号遅延補正部40は、当該情報に基づいて、座標信号SPX,SPYを遅延させる。そのため、分析装置100では、座標信号SPX,SPYの遅延量を可変にできる。
また、分析装置100では、イメージ信号Sに対するX線エネルギー信号Sの遅延量の情報の入力を受け付ける入力部としての操作部62を含み、信号遅延補正部40は、当該情報に基づいて、イメージ信号Sを遅延させる。そのため、分析装置100では、イメージ信号Sの遅延量を可変にできる。
1.5. 変形例
次に、分析装置100の変形例について説明する。以下では、上述した分析装置100の例と異なる点について説明し、同様の点については説明を省略する。
1.5.1. 第1変形例
図6は、信号遅延補正部40の変形例を示す図である。図6に示すように、信号遅延補正部40は、第1格納部42a、第2格納部42b、第3格納部42c、および第4格納部42dを有さなくてもよい。この場合、信号遅延補正部40に入力されたX座標信号SPXは、第1遅延補正格納部44aに格納される。第1遅延補正格納部44aに格納されたX座標信号SPXは、シフトクロック発生部48からのクロック信号によりシフトし、画像処理部50に出力される。
また、信号遅延補正部40に入力されたY座標信号SPYは、第2遅延補正格納部44bに格納される。第2遅延補正格納部44bに格納されたY座標信号SPYは、クロック信号によりシフトし、画像処理部50に出力される。
また、信号遅延補正部40に入力されたイメージ信号Sは、第3遅延補正格納部44cに格納される。第3遅延補正格納部44cに格納されたイメージ信号Sは、クロック信号によりシフトし、画像処理部50に出力される。
信号遅延補正部40に入力されたX線エネルギー信号Sは、直接、画像処理部50に出力される。この結果、上述した図3および図4に示す例と同様に、座標信号SPX,SPYに対するX線エネルギー信号Sの遅延、およびイメージ信号Sに対するX線エネルギー信号Sの遅延を補正できる。
1.5.2. 第2変形例
例えば、上述した第1実施形態では、座標信号SPX,SPYに対するイメージ信号Sの遅延がない場合について説明したが、座標信号SPX,SPYに対するイメージ信号Sの遅延がある場合にも、上述した第1実施形態と同様に、信号遅延補正部40によってイメージ信号Sの遅延の補正が可能である。
図7は、座標信号SPX,SPYとイメージ信号Sとの間に遅延がある場合の信号遅延補正部40の動作を説明するための図である。図7に示す例では、座標信号SPX,SPYを基準とした場合に、イメージ信号Sには1クロック信号分の遅れがあり、X線エネルギー信号Sには2クロック信号分の遅れがあるものとする。
図7に示すように、信号遅延補正部40において、第1遅延補正格納部44aおよび第2遅延補正格納部44bを2段とし、第3遅延補正格納部44cを1段とする。これにより、座標信号SPX,SPYに対するイメージ信号Sの遅延、および座標信号SPX,SPYに対するX線エネルギー信号Sの遅延を補正できる。
2. 第2実施形態
2.1. 分析装置の構成
次に、第2実施形態に係る分析装置について、図面を参照しながら説明する。図8は、第2実施形態に係る分析装置200の構成を示す図である。以下、第2実施形態に係る分析装置200において、第1実施形態に係る分析装置100の構成部材と同様の機能を有する部材については同一の符号を付し、その詳細な説明を省略する。
上述した分析装置100では、図1に示すように、X線検出器30が1つ搭載されていた。これに対して、分析装置200では、図8に示すように、複数のX線検出器が搭載されている。
分析装置200は、複数のX線検出器に対応して、複数のアナライザーおよび複数の信号遅延補正部を有している。図示の例では、分析装置200は、第1X線検出器30aと、第2X線検出器30bと、第3X線検出器30cと、第1アナライザー32a(第1X線エネルギー信号生成部の一例)と、第2アナライザー32b(第2X線エネルギー信号生成部の一例)と、第3アナライザー32cと、第1信号遅延補正部40aと、第2信号遅延補正部40bと、第3信号遅延補正部40cと、を有している。なお、分析装置200に搭載されるX線検出器の数は特に限定されない。
第1アナライザー32aは、第1X線検出器30aの出力信号に基づいて、X線のエネルギー値を解析し、第1X線エネルギー信号を生成する。第1信号遅延補正部40aは、座標信号に対する第1X線エネルギー信号の遅延を補正する。さらに、第1信号遅延補正部40aは、イメージ信号に対する第1X線エネルギー信号の遅延を補正する。
第2アナライザー32bは、第2X線検出器30bの出力信号に基づいて、X線のエネルギー値を解析し、第2X線エネルギー信号を生成する。第2信号遅延補正部40bは、座標信号に対する第2X線エネルギー信号の遅延を補正する。さらに、第2信号遅延補正部40bは、イメージ信号に対する第2X線エネルギー信号の遅延を補正する。
第3アナライザー32cは、第3X線検出器30cの出力信号に基づいて、X線のエネルギー値を解析し、第3X線エネルギー信号を生成する。第3信号遅延補正部40cは、座標信号に対する第3X線エネルギー信号の遅延を補正する。さらに、第3信号遅延補正部40cは、イメージ信号に対する第3X線エネルギー信号の遅延を補正する。
第1アナライザー32a、第2アナライザー32b、および第3アナライザー32cは、互いに時定数が異なる。アナライザーの時定数を変えることで、測定条件を変えることができる。例えば、アナライザーの時定数を大きくすることで、SN比(signal-noise ratio)の良いX線スペクトルを得ることができる。また、例えば、アナライザーの時定数を小さくすることで、時間分解能を良くすることができる。ここでは、第1アナライザー
32aの時定数が最も大きく、第3アナライザー32cの時定数が最も小さく、第2アナライザー32bの時定数が第1アナライザー32aの時定数よりも小さく第3アナライザー32cの時定数よりも大きい。
2.2. 信号遅延補正部
図9は、第1信号遅延補正部40a、第2信号遅延補正部40b、および第3信号遅延補正部40cの構成を示す図である。
上述したように、第1アナライザー32aは、時定数が大きいため、座標信号SPX,SPYに対する第1X線エネルギー信号SX1の遅延も大きくなる。これに対して、第3アナライザー32cは、時定数が小さいため、座標信号SPX,SPYに対する第3X線エネルギー信号SX3の遅延は小さい。そのため、第1信号遅延補正部40aにおける第1遅延補正格納部44a、第2遅延補正格納部44b、および第3遅延補正格納部44cの段数は、第3信号遅延補正部40cにおける第1遅延補正格納部44a、第2遅延補正格納部44b、および第3遅延補正格納部44cの段数よりも多い。
また、上述したように、第2アナライザー32bの時定数は、第1アナライザー32aの時定数よりも小さく第3アナライザー32cの時定数よりも大きい。そのため、第2信号遅延補正部40bにおける第1遅延補正格納部44a、第2遅延補正格納部44b、および第3遅延補正格納部44cの段数は、第1信号遅延補正部40aにおける第1遅延補正格納部44a、第2遅延補正格納部44b、および第3遅延補正格納部44cの段数よりも少なく、第3信号遅延補正部40cにおける第1遅延補正格納部44a、第2遅延補正格納部44b、および第3遅延補正格納部44cの段数よりも多い。
2.3. 動作
分析装置200の動作について説明する。図10~図14は、第1信号遅延補正部40a、第2信号遅延補正部40b、および第3信号遅延補正部40cの動作を説明するための図である。なお、以下では、上述した分析装置100の動作と異なる点について説明し、同様の点については説明を省略する。
また、以下では、座標信号SPX,SPYを基準とした場合に、イメージ信号Sには遅れがなく、第1X線エネルギー信号SX1には3クロック信号分の遅れがあり、第2X線エネルギー信号SX2には2クロック信号分の遅れがあり、第3X線エネルギー信号SX3には1クロック信号分の遅れがある場合について説明する。
座標信号生成部12aは、X座標信号SPXおよびY座標信号SPYを生成し、偏向器制御装置12b、第1信号遅延補正部40a、第2信号遅延補正部40b、および第3信号遅延補正部40cに送る。
偏向器制御装置12bは、X座標信号SPXおよびY座標信号SPYに基づいて、X走査信号およびY走査信号を生成し、偏向器8に送る。これにより、偏向器8は、X走査信号およびY走査信号に基づいて電子線EBを偏向させる。この結果、電子線EBで試料S上が走査される。
このとき、試料Sから放出される電子(二次電子または反射電子)は、電子検出器20で検出される。電子検出器20の出力信号は、増幅器22で増幅された後、イメージ信号生成部24に送られ、イメージ信号生成部24でイメージ信号が生成される。イメージ信号生成部24で生成されたイメージ信号は、第1信号遅延補正部40a、第2信号遅延補正部40b、および第3信号遅延補正部40cに送られる。
一方、試料Sから放出されるX線(例えば特性X線)は、第1X線検出器30a、第2X線検出器30b、および第3X線検出器30cで検出される。
第1X線検出器30aの出力信号は、第1アナライザー32aで第1X線エネルギー信号に変換され、第1信号遅延補正部40aに送られる。第2X線検出器30bの出力信号は、第2アナライザー32bで第2X線エネルギー信号に変換され、第2信号遅延補正部40bに送られる。第3X線検出器30cの出力信号は、第3アナライザー32cで第3X線エネルギー信号に変換され、第3信号遅延補正部40cに送られる。
図10に示すように、第1信号遅延補正部40a、第2信号遅延補正部40b、および第3信号遅延補正部40cにおいて、座標信号生成部12aからのX座標信号SPXは、第1格納部42aに格納され、フラグ部46aに「H」が付与される。同様に、座標信号生成部12aからのY座標信号SPYは、第2格納部42bに格納され、フラグ部46bに「H」が付与される。同様に、イメージ信号生成部24からのイメージ信号Sは、第3格納部42cに格納され、フラグ部46cに「H」が付与される。
図11に示すように、第1信号遅延補正部40a、第2信号遅延補正部40b、および第3信号遅延補正部40cにおいて、シフトクロック発生部48からのクロック信号により、第1格納部42aに格納されていたX座標信号SPXはシフトし、1段目の第1遅延補正格納部44aに格納され、1段目のフラグ部47aに「H」が付与される。さらに、第2格納部42bに格納されていたY座標信号SPYはシフトし、1段目の第2遅延補正格納部44bに格納され、1段目のフラグ部47aに「H」が付与される。さらに、第3格納部42cに格納されていたイメージ信号Sはシフトし、1段目の第3遅延補正格納部44cに格納され、1段目のフラグ部47cに「H」が付与される。
また、第3信号遅延補正部40cにおいて、第3アナライザー32cからの第3X線エネルギー信号SX3は、座標信号SPX,SPYに対して1クロック信号分遅れて、第4格納部42dに格納され、フラグ部46dに「H」が付与される。
図12に示すように、第1信号遅延補正部40aおよび第2信号遅延補正部40bにおいて、シフトクロック発生部48からのクロック信号により、1段目の第1遅延補正格納部44aに格納されていたX座標信号SPXはシフトし、2段目の第1遅延補正格納部44aに格納され、2段目のフラグ部47aに「H」が付与される。さらに、1段目の第2遅延補正格納部44bに格納されていたY座標信号SPYはシフトし、2段目の第2遅延補正格納部44bに格納され、2段目のフラグ部47aに「H」が付与される。さらに、1段目の第3遅延補正格納部44cに格納されていたイメージ信号Sはシフトし、2段目の第3遅延補正格納部44cに格納され、2段目のフラグ部47cに「H」が付与される。
また、第2信号遅延補正部40bにおいて、第2アナライザー32bからの第2X線エネルギー信号SX2は、座標信号SPX,SPYに対して2クロック信号分遅れて、第4格納部42dに格納され、フラグ部46dに「H」が付与される。
また、第3信号遅延補正部40cにおいて、シフトクロック発生部48からのクロック信号により、第1遅延補正格納部44aに格納されていたX座標信号SPXはシフトし、画像処理部50に出力される。さらに、第2遅延補正格納部44bに格納されていたY座標信号SPYはシフトし、画像処理部50に出力される。さらに、第3遅延補正格納部44cに格納されていたイメージ信号Sはシフトし、画像処理部50に出力される。さらに、第4格納部42dに格納されていた第3X線エネルギー信号SX3はシフトし、画像処理部50に出力される。
図13に示すように、第1信号遅延補正部40aにおいて、シフトクロック発生部48からのクロック信号により、2段目の第1遅延補正格納部44aに格納されていたX座標信号SPXはシフトし、3段目の第1遅延補正格納部44aに格納され、3段目のフラグ部47aに「H」が付与される。さらに、2段目の第2遅延補正格納部44bに格納されていたY座標信号SPYはシフトし、3段目の第2遅延補正格納部44bに格納され、3段目のフラグ部47bに「H」が付与される。さらに、2段目の第3遅延補正格納部44cに格納されていたイメージ信号Sはシフトし、3段目の第3遅延補正格納部44cに格納され、3段目のフラグ部47cに「H」が付与される。
また、第1信号遅延補正部40aにおいて、第1アナライザー32aからの第1X線エネルギー信号SX1は、座標信号SPX,SPYに対して3クロック信号分遅れて、第4格納部42dに格納され、フラグ部46dに「H」が付与される。
また、第2信号遅延補正部40bにおいて、シフトクロック発生部48からのクロック信号により、2段目の第2遅延補正格納部44bに格納されていたX座標信号SPXはシフトし、画像処理部50に出力される。さらに、2段目の第2遅延補正格納部44bに格納されていたY座標信号SPYはシフトし、画像処理部50に出力される。さらに、2段目の第3遅延補正格納部44cに格納されていたイメージ信号Sはシフトし、画像処理部50に出力される。さらに、第4格納部42dに格納されていた第2X線エネルギー信号SX2はシフトし、画像処理部50に出力される。
図14に示すように、第1信号遅延補正部40aにおいて、シフトクロック発生部48からのクロック信号により、3段目の第1遅延補正格納部44aに格納されていたX座標信号SPXはシフトし、画像処理部50に出力される。さらに、3段目の第2遅延補正格納部44bに格納されていたY座標信号SPYはシフトし、画像処理部50に出力される。さらに、3段目の第3遅延補正格納部44cに格納されていたイメージ信号Sはシフトし、画像処理部50に出力される。さらに、第4格納部42dに格納されていた第1X線エネルギー信号SX1はシフトし、画像処理部50に出力される。
画像処理部50は、X座標信号SPX、Y座標信号SPY、イメージ信号S、第1X線エネルギー信号SX1、第2X線エネルギー信号SX2、および第3X線エネルギー信号SX3を受け付けて、これらの信号に基づき走査電子像(二次電子像または反射電子像)および元素マップ像を生成する。さらに、画像処理部50は、走査電子像と元素マップ像とを合成して合成像を生成してもよい。
具体的には、画像処理部50は、X座標信号SPX、Y座標信号SPY、およびイメージ信号Sに基づいて走査電子像を生成する。画像処理部50は、X座標信号SPX、Y座標信号SPY、および第1X線エネルギー信号SX1に基づいて、第1元素マップ像を生成する。画像処理部50は、X座標信号SPX、Y座標信号SPY、および第2X線エネルギー信号SX2に基づいて、第2元素マップ像を生成する。画像処理部50は、X座標信号SPX、Y座標信号SPY、および第3X線エネルギー信号SX3に基づいて、第3元素マップ像を生成する。
画像処理部50は、生成した走査電子像、第1元素マップ像、第2元素マップ像、および第3元素マップ像を表示部60に表示させる制御を行う。
2.4. 特徴
分析装置200は、例えば、以下の特徴を有する。
分析装置200では、第1信号遅延補正部40aが座標信号SPX,SPYに対する第1X線エネルギー信号SX1の遅延を補正し、第2信号遅延補正部40bが座標信号SPX,SPYに対する第2X線エネルギー信号SX2の遅延を補正し、第3信号遅延補正部40cが座標信号SPX,SPYに対する第3X線エネルギー信号SX3の遅延を補正する。そのため、分析装置200では、X座標信号SPX、Y座標信号SPY、第1X線エネルギー信号SX1、第2X線エネルギー信号SX2、および第3X線エネルギー信号SX3を適切なタイミングで画像処理部50に入力できる。したがって、分析装置200では、正確な元素マップ像を得ることができる。
3. その他
なお、本発明は上述した実施形態に限定されず、本発明の要旨の範囲内で種々の変形実施が可能である。
上述した第1実施形態では、分析装置100が、X線検出器30が搭載された走査電子顕微鏡である場合について説明したが、本発明に係る分析装置は、一次線で試料を走査することによって元素マップ像を取得することが可能な分析装置であれば特に限定されない。
このような分析装置としては、上述した走査電子顕微鏡の他に、透過電子顕微鏡、走査透過電子顕微鏡、電子線マイクロアナライザー、集束イオンビーム装置、蛍光X線分析装置などが挙げられる。また、一次線源としては、上述した電子線を放出する電子銃の他に、一次線としてイオンビームを照射するイオンビーム銃、一次線としてX線を放出するX線源などが挙げられる。また、一次線を試料に照射することによって試料から放出される信号(例えば、電子、特性X線など)を検出する信号検出器としては、上述したEDS検出器、WDS検出器の他に、電子エネルギー損失分光検出器などが挙げられる。
なお、上述した実施形態及び変形例は一例であって、これらに限定されるわけではない。例えば各実施形態及び各変形例は、適宜組み合わせることが可能である。
本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
2…電子源、4…集束レンズ、6…対物レンズ、8…偏向器、10…試料ステージ、12…走査制御部、12a…座標信号生成部、12b…偏向器制御装置、20…電子検出器、22…増幅器、24…イメージ信号生成部、30…X線検出器、30a…第1X線検出器、30b…第2X線検出器、30c…第3X線検出器、32…アナライザー、32a…第1アナライザー、32b…第2アナライザー、32c…第3アナライザー、40…信号遅延補正部、40a…第1信号遅延補正部、40b…第2信号遅延補正部、40c…第3信号遅延補正部、42a…第1格納部、42b…第2格納部、42c…第3格納部、42d…第4格納部、44a…第1遅延補正格納部、44b…第2遅延補正格納部、44c…第3遅延補正格納部、46a…フラグ部、46b…フラグ部、46c…フラグ部、46d…フラグ部、47a…フラグ部、47b…フラグ部、47c…フラグ部、48…シフトクロック発生部、49…遅延量設定部、50…画像処理部、60…表示部、62…操作部、64…記憶部、100…分析装置、200…分析装置

Claims (6)

  1. 電子線で試料を走査することによって元素マップ像を取得する分析装置であって、
    電子源と、
    前記電子源から放出された電子線を偏向させる偏向器と、
    電子線の照射位置を示す座標信号を生成し、前記偏向器による電子線の走査を制御する走査制御部と、
    電子線を前記試料に照射することによって前記試料から放出されるX線を検出するX線検出器と、
    前記X線検出器の出力信号に基づいて、X線エネルギー信号を生成するX線エネルギー信号生成部と、
    前記座標信号に対する前記X線エネルギー信号の遅延を補正する信号遅延補正部と、
    前記信号遅延補正部で遅延が補正された前記座標信号および前記X線エネルギー信号に基づいて、前記元素マップ像を生成する画像処理部と、
    を含む、分析装置。
  2. 請求項1において、
    電子線を前記試料に照射することによって前記試料から放出される電子を検出する電子検出器と、
    前記電子検出器の出力信号に基づいて、イメージ信号を生成するイメージ信号生成部と、
    を含み、
    前記信号遅延補正部は、さらに、前記イメージ信号に対する前記X線エネルギー信号の遅延を補正し、
    前記画像処理部は、さらに、前記座標信号および前記イメージ信号に基づいて、走査電子像を生成する、分析装置。
  3. 請求項1または2において、
    前記座標信号に対する前記X線エネルギー信号の遅延量の情報の入力を受け付ける入力部を含む、分析装置。
  4. 請求項3において、
    前記信号遅延補正部は、前記情報に基づいて、前記座標信号を遅延させる、分析装置。
  5. 電子線で試料を走査することによって元素マップ像を取得する分析装置であって、
    電子源と、
    前記電子源から放出された電子線を偏向させる偏向器と、
    電子線の照射位置を示す座標信号を生成し、前記偏向器による電子線の走査を制御する走査制御部と、
    電子線を前記試料に照射することによって前記試料から放出されるX線を検出する第1X線検出器と、
    前記第1X線検出器の出力信号に基づいて、第1X線エネルギー信号を生成する第1X線エネルギー信号生成部と、
    前記座標信号に対する前記第1X線エネルギー信号の遅延を補正する第1信号遅延補正部と、
    電子線を前記試料に照射することによって前記試料から放出されるX線を検出する第2X線検出器と、
    前記第2X線検出器の出力信号に基づいて、第2X線エネルギー信号を生成する第2X線エネルギー信号生成部と、
    前記座標信号に対する前記第2X線エネルギー信号の遅延を補正する第2信号遅延補正
    部と、
    前記第1信号遅延補正部で遅延が補正された前記座標信号および前記第1X線エネルギー信号に基づいて第1元素マップ像を生成し、前記第2信号遅延補正部で遅延が補正された前記座標信号および前記第2X線エネルギー信号に基づいて、第2元素マップ像を生成する画像処理部と、
    を含む、分析装置。
  6. 一次線で試料を走査することによって元素マップ像を取得する分析装置であって、
    一次線源と、
    前記一次線源から放出された一次線を偏向させる偏向器と、
    一次線の照射位置を示す座標信号を生成し、前記偏向器による一次線の走査を制御する走査制御部と、
    一次線を前記試料に照射することによって前記試料から放出される信号を検出する信号検出器と、
    前記信号検出器の出力信号に基づいて、エネルギー信号を生成するエネルギー信号生成部と、
    前記座標信号に対する前記エネルギー信号の遅延を補正する信号遅延補正部と、
    前記信号遅延補正部で遅延が補正された前記座標信号および前記エネルギー信号に基づいて、前記元素マップ像を生成する画像処理部と、
    を含む、分析装置。
JP2018142593A 2018-07-30 2018-07-30 分析装置 Active JP6995024B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018142593A JP6995024B2 (ja) 2018-07-30 2018-07-30 分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018142593A JP6995024B2 (ja) 2018-07-30 2018-07-30 分析装置

Publications (2)

Publication Number Publication Date
JP2020021560A JP2020021560A (ja) 2020-02-06
JP6995024B2 true JP6995024B2 (ja) 2022-01-14

Family

ID=69589898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018142593A Active JP6995024B2 (ja) 2018-07-30 2018-07-30 分析装置

Country Status (1)

Country Link
JP (1) JP6995024B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107870A (ja) 2004-10-04 2006-04-20 Jeol Ltd 分析走査電子顕微鏡
JP2008082767A (ja) 2006-09-26 2008-04-10 Shimadzu Corp 粒子線分析装置
JP2011153858A (ja) 2010-01-26 2011-08-11 Shimadzu Corp X線分析用表示処理装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750045B2 (ja) * 1988-07-14 1995-05-31 株式会社島津製作所 X線分光分析装置
JP3499690B2 (ja) * 1996-09-13 2004-02-23 株式会社東芝 荷電粒子顕微鏡

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107870A (ja) 2004-10-04 2006-04-20 Jeol Ltd 分析走査電子顕微鏡
JP2008082767A (ja) 2006-09-26 2008-04-10 Shimadzu Corp 粒子線分析装置
JP2011153858A (ja) 2010-01-26 2011-08-11 Shimadzu Corp X線分析用表示処理装置

Also Published As

Publication number Publication date
JP2020021560A (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
US4894541A (en) Apparatus utilizing charged-particle beam
JP6326303B2 (ja) 収差計測角度範囲計算装置、収差計測角度範囲計算方法、および電子顕微鏡
US10373797B2 (en) Charged particle beam device and image forming method using same
JP2005310602A (ja) 荷電粒子線調整方法、及び荷電粒子線装置
JP6403196B2 (ja) 画像評価方法および荷電粒子ビーム装置
JP4194526B2 (ja) 荷電粒子線の調整方法、及び荷電粒子線装置
EP3588532B1 (en) Charged particle beam apparatus and image acquisition method
JP6995024B2 (ja) 分析装置
JP4621098B2 (ja) 走査型電子顕微鏡および画像信号処理方法
JP2006173038A (ja) 荷電粒子線装置、試料像表示方法及びイメージシフト感度計測方法
JP2016025048A (ja) コントラスト・ブライトネス調整方法、及び荷電粒子線装置
KR20210018014A (ko) 화상 생성 방법, 비일시적 컴퓨터 가독 매체, 및 시스템
JP2011003480A (ja) Sem式外観検査装置およびその画像信号処理方法
JP2010272398A (ja) 荷電粒子線応用装置
JP2005174883A (ja) 走査電子顕微鏡
CN111146062B (zh) 电子显微镜和图像处理方法
JP2022015158A (ja) 走査透過電子顕微鏡
JP4431624B2 (ja) 荷電粒子線調整方法、及び荷電粒子線装置
JP2012049049A (ja) 画像形成装置
JP2007324467A (ja) パターン検査方法及びその装置
JP2010015731A (ja) 走査型電子顕微鏡、および走査型電子顕微鏡における画像の改良方法
EP4120316A1 (en) Electron microscope and image generation method
US20230402252A1 (en) Charged Particle Beam Device and Image Acquisition Method
JPH1167138A (ja) 微小領域観察装置
JP2018190622A (ja) 電子顕微鏡及び制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211214

R150 Certificate of patent or registration of utility model

Ref document number: 6995024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150