JP6994712B2 - Soluble transparent polyimide polymerized in γ-butyrolactone solvent - Google Patents

Soluble transparent polyimide polymerized in γ-butyrolactone solvent Download PDF

Info

Publication number
JP6994712B2
JP6994712B2 JP2017161018A JP2017161018A JP6994712B2 JP 6994712 B2 JP6994712 B2 JP 6994712B2 JP 2017161018 A JP2017161018 A JP 2017161018A JP 2017161018 A JP2017161018 A JP 2017161018A JP 6994712 B2 JP6994712 B2 JP 6994712B2
Authority
JP
Japan
Prior art keywords
polyimide
solvent
acid
film
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017161018A
Other languages
Japanese (ja)
Other versions
JP2019038916A (en
Inventor
博 板谷
一章 西尾
誠治 石川
利宗 吉永
佳祐 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOLPIT INDUSTRIES, LTD.
Ube Corp
Original Assignee
SOLPIT INDUSTRIES, LTD.
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOLPIT INDUSTRIES, LTD., Ube Industries Ltd filed Critical SOLPIT INDUSTRIES, LTD.
Priority to JP2017161018A priority Critical patent/JP6994712B2/en
Publication of JP2019038916A publication Critical patent/JP2019038916A/en
Application granted granted Critical
Publication of JP6994712B2 publication Critical patent/JP6994712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、透明性に優れ、耐熱性および機械的特性にも優れた溶媒可溶性ポリイミド、およびその製造方法に関する。また、本発明は、透明性に優れ、耐熱性および機械的特性にも優れたポリイミド塗膜およびフィルムに関する。 The present invention relates to a solvent-soluble polyimide having excellent transparency, heat resistance and mechanical properties, and a method for producing the same. The present invention also relates to a polyimide coating film and a film having excellent transparency, heat resistance and mechanical properties.

近年、液晶ディスプレイや有機ELディスプレイ等の表示装置分野にも高分子材料の開発が進み、特に電気信頼性の高いポリイミド材料の展開が進められている。従来の表示装置はリジッドなガラス基板の上に作られていたが、これの代替として軽量でフレキシブル性に優れるプラスチック基板の開発も進められており、可視光領域において高い透明性と耐熱性を備えた材料が求められ、ポリイミド材料でも種々の提案がなされている。 In recent years, the development of polymer materials has progressed in the field of display devices such as liquid crystal displays and organic EL displays, and the development of polyimide materials having particularly high electrical reliability has been promoted. Conventional display devices are built on rigid glass substrates, but as an alternative to this, the development of lightweight and highly flexible plastic substrates is underway, and they have high transparency and heat resistance in the visible light region. There is a demand for materials, and various proposals have been made for polyimide materials.

ポリイミドの透明性を高めるためには、従来のポリイミドの着色原因である分子内共役や電荷移動錯体の形成を抑制することが効果的である。そのために、原料のテトラカルボン酸二無水物やジアミンに脂肪族や脂環式構造のモノマーや、側鎖に嵩高い基を備えたモノマーを用いることで透明なポリイミドとする方法が提案されている。 In order to enhance the transparency of the polyimide, it is effective to suppress the formation of intramolecular conjugation and charge transfer complex, which are the causes of conventional polyimide coloring. Therefore, a method has been proposed in which a transparent polyimide is obtained by using a monomer having an aliphatic or alicyclic structure or a monomer having a bulky group in the side chain as the raw material tetracarboxylic acid dianhydride or diamine. ..

また、ポリイミド膜の着色には、製造過程での溶媒からの着色物の残存の影響もあり、溶媒が残っている状態での高温長時間加熱は、膜の着色を強くしていた。ポリイミド膜の作製には、ポリイミド前駆体(ポリアミド酸)溶液から作製する方法と可溶性ポリイミド溶液から作製する方法がある。ポリアミド酸溶液からの方法では、ポリアミド酸の良溶媒であるアミド系溶媒を用いてポリアミド酸を合成した後、加熱してポリイミド膜を得る方法と、大過剰の無水酢酸とトリエチルアミンのような化学イミド化剤を用いてポリイミド膜を得る方法があるが、何れもアミド系溶媒を除去しイミド化を完結させるために高温長時間加熱を行うため着色が生じていた。また、可溶性ポリイミドからポリイミド膜を得る方法では、芳香族モノマーから得られる耐熱性の高いポリイミドは溶解性が低いためN-メチル-2-ピロリドン等のアミド系溶媒が用いられており、反応段階でも、溶媒を除去しポリイミド膜とする段階でも、高温長時間加熱を伴うため着色が避けられなかった。 In addition, the coloring of the polyimide film is also affected by the residual colored matter from the solvent in the manufacturing process, and high-temperature long-term heating with the solvent remaining has strengthened the coloring of the film. There are two methods for producing the polyimide film: a method of producing from a polyimide precursor (polyamic acid) solution and a method of producing from a soluble polyimide solution. In the method from a polyamic acid solution, a polyamic acid is synthesized using an amide solvent which is a good solvent for polyamic acid, and then heated to obtain a polyimide film, and a large excess of anhydrous acetic acid and a chemical imide such as triethylamine. There are methods for obtaining a polyimide film using an agent, but in each case, coloring occurs because the amide-based solvent is removed and the imidization is completed by heating at a high temperature for a long time. Further, in the method of obtaining a polyimide film from a soluble polyimide, an amide solvent such as N-methyl-2-pyrrolidone is used because the highly heat-resistant polyimide obtained from an aromatic monomer has low solubility, and even in the reaction stage. Even at the stage of removing the solvent to form a polyimide film, coloring was unavoidable because it was heated at a high temperature for a long time.

透明性ポリイミドとして、例えば、脂肪族や脂環式構造のモノマーを用いたポリイミドが特許文献1に開示されている。特許文献1は、特定の脂環式テトラカルボン酸二無水物と、スルホン基を含有する特定の芳香族ジアミンとを反応させて得られたポリイミドが、有機溶媒に可溶で、さらに、成形加工性に優れ、且つ得られるポリイミドフィルムが、透明性、耐熱性、靭性等に優れていることを開示している。しかしながら、脂環式テトラカルボン酸二無水物を使用する限り、ポリイミドの重合度(分子量)を劇的に高めることは容易ではなく、脂環式テトラカルボン酸二無水物を用いた脂環系ポリイミド樹脂において、透明性と膜靱性を両立させることはきわめて困難な課題であった。このため、ポリイミド膜の強度は数十MPaにとどまっていた。 As the transparent polyimide, for example, a polyimide using an aliphatic or alicyclic monomer is disclosed in Patent Document 1. In Patent Document 1, a polyimide obtained by reacting a specific alicyclic tetracarboxylic acid dianhydride with a specific aromatic diamine containing a sulfone group is soluble in an organic solvent and further molded. It is disclosed that the polyimide film obtained with excellent properties is excellent in transparency, heat resistance, toughness and the like. However, as long as the alicyclic tetracarboxylic acid dianhydride is used, it is not easy to dramatically increase the degree of polymerization (molecular weight) of the polyimide, and the alicyclic polyimide using the alicyclic tetracarboxylic acid dianhydride is not easy. In the resin, it has been an extremely difficult task to achieve both transparency and film toughness. Therefore, the strength of the polyimide film was only several tens of MPa.

また、特許文献2には、特定の脂環式テトラカルボン酸二無水物と脂環式ジアミンによる可溶性ポリイミドが開示されているが、分子量分布が広く溶液の安定性に課題があり、また膜の強度も数十MPaであった。 Further, Patent Document 2 discloses a soluble polyimide composed of a specific alicyclic tetracarboxylic dianhydride and an alicyclic diamine, but the molecular weight distribution is wide and there is a problem in solution stability, and the membrane has a problem. The strength was also several tens of MPa.

脂肪族や脂環式構造のモノマーは分子内や分子間の相互作用が小さくなるため、ポリイミドの溶解性が高くなり、得られる膜の透明性も高くなるが、耐熱性が低下する。そのため低分子量のモノマーを用いることによりポリイミド中のイミド結合の濃度を高くし耐熱性の低下を抑えているが、芳香族モノマーから得られるポリイミドに比べるとまだ耐熱性は低く、また、膜の強度も低いものであった。 Monomers having an aliphatic or alicyclic structure have small intramolecular and intermolecular interactions, so that the solubility of polyimide is high and the transparency of the obtained membrane is high, but the heat resistance is low. Therefore, by using a low molecular weight monomer, the concentration of imide bond in the polyimide is increased and the decrease in heat resistance is suppressed, but the heat resistance is still lower than that of the polyimide obtained from the aromatic monomer, and the strength of the film is also suppressed. Was also low.

さらに、嵩高い基を備えたモノマーを用いた透明なポリイミドも特許文献3に示されている。脂環式構造を含むユニットと脂環式構造を含まないユニットを同一分子鎖に有し、脂環式構造を含まないユニットが2個のトリフルオロメチル基を持つ芳香族フッ素ジアミンに由来する構造を含む、透明ポリイミドフィルムが特許文献3に開示されている。ここでも高い透明性を得るためには脂環式構造を含むユニットの比率を増す必要があるが、それとともに重合度を上げることが困難になり、膜強度の低化に繋がる。さらに厚さ50μmのフィルムでの波長400nmの光透過率も52%(20μm換算で76%)であり、十分とは言えなかった。実施例では、2つのユニットから成るポリアミド酸を合成し、これを化学イミド化し、溶媒を加熱除去することによりイミド化を完結させている。これら嵩高い基を備えたポリイミドは、溶媒可溶性も増すため、極性溶媒中で高温加熱重合することによっても得られる。しかしながら高温加熱重合によりポリイミドを調製すると、溶媒やモノマーが長時間高温に保たれるため、ポリイミドに着色が生じ易く透明性の低下に繋がり、特にアミド系溶媒の場合着色が激しくなる。 Further, Patent Document 3 also shows a transparent polyimide using a monomer having a bulky group. A structure derived from an aromatic fluorine diamine having a unit containing an alicyclic structure and a unit not containing an alicyclic structure in the same molecular chain, and the unit not containing an alicyclic structure having two trifluoromethyl groups. A transparent polyimide film containing the above is disclosed in Patent Document 3. Again, in order to obtain high transparency, it is necessary to increase the ratio of units containing an alicyclic structure, but at the same time, it becomes difficult to increase the degree of polymerization, which leads to a decrease in film strength. Further, the light transmittance of a film having a thickness of 50 μm at a wavelength of 400 nm was 52% (76% in terms of 20 μm), which was not sufficient. In the examples, the polyamic acid consisting of two units is synthesized, chemically imidized, and the solvent is removed by heating to complete the imidization. Since the polyimide having these bulky groups also has increased solvent solubility, it can also be obtained by high-temperature heat polymerization in a polar solvent. However, when the polyimide is prepared by high-temperature heat polymerization, the solvent and the monomer are kept at a high temperature for a long time, so that the polyimide tends to be colored, which leads to a decrease in transparency, and particularly in the case of an amide-based solvent, the coloring becomes intense.

高温で長時間加熱しても着色しづらい溶媒を用いる方法も開示されている。特許文献4には、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物と他の芳香族テトラカルボン酸二無水物を用いた光透過性の高い可溶性ポリイミドが開示されている。実施例では、芳香族フッ素ジアミンである2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)を芳香族テトラカルボン酸二無水物と重合することにより得られる可溶性ポリイミドが示されているが、重合溶媒にクレゾールを用いて高分子量ポリイミドを得ている。この場合、使用するクレゾールの沸点が高く、成膜工程で加熱除去が困難なため、溶媒置換して加熱除去可能な溶媒として膜を得ており、工程が煩雑であった。また、得られた膜も強度が110MPa程度であった。 A method using a solvent that is difficult to color even when heated at a high temperature for a long time is also disclosed. Patent Document 4 discloses a soluble polyimide having high light transmittance using 2,2', 3,3'-biphenyltetracarboxylic acid dianhydride and other aromatic tetracarboxylic acid dianhydrides. In the examples, a soluble polyimide obtained by polymerizing 2,2'-bis (trifluoromethyl) benzidine (TFMB), which is an aromatic fluorine diamine, with an aromatic tetracarboxylic acid dianhydride is shown. A high molecular weight polyimide is obtained by using cresol as a polymerization solvent. In this case, since the boiling point of the cresol used is high and it is difficult to remove by heating in the film forming process, a film is obtained as a solvent that can be removed by heating by replacing the solvent, which makes the process complicated. The strength of the obtained film was about 110 MPa.

さらに特許文献5には、重合溶媒にγ-ブチロラクトンを用いた透明な可溶性ポリイミドも開示されている。ここでは電子吸引性ジアミンを用いることで、分子内共役を抑え着色をさらに抑えている。しかしここで示されたポリイミドは可溶性を保つためモル比率をずらし酸過剰で合成されているため分子量が低く、その使用が塗膜用途に限られるものであった。 Further, Patent Document 5 also discloses a transparent soluble polyimide using γ-butyrolactone as a polymerization solvent. Here, by using an electron-withdrawing diamine, intramolecular conjugation is suppressed and coloring is further suppressed. However, the polyimide shown here has a low molecular weight because it is synthesized with an excess of acid by shifting the molar ratio in order to maintain solubility, and its use is limited to coating film applications.

特開2008-297360号公報Japanese Unexamined Patent Publication No. 2008-297360 特開2014-114429号公報Japanese Unexamined Patent Publication No. 2014-114429 特開2013-82774号公報Japanese Unexamined Patent Publication No. 2013-82774 特開2013-1899号公報Japanese Unexamined Patent Publication No. 2013-1899 特開2011-140563号公報Japanese Unexamined Patent Publication No. 2011-140563

本発明はこれらの課題を解決するためのもので、その目的は、優れた耐熱性および光透過性と共に高い機械的強度を有するポリイミドフィルムを得ることのできる溶媒可溶性ポリイミドおよびその製造方法を提供することにある。また本発明の目的は、優れた耐熱性および光透過性と共に高い機械的強度を有するポリイミド塗膜、ポリイミドフィルムを提供することにある。 The present invention is for solving these problems, and an object thereof is to provide a solvent-soluble polyimide capable of obtaining a polyimide film having high mechanical strength as well as excellent heat resistance and light transmission, and a method for producing the same. There is something in it. Another object of the present invention is to provide a polyimide coating film and a polyimide film having high mechanical strength as well as excellent heat resistance and light transmission.

本発明者らは、前記課題を解決すべく検討した結果、特定の芳香族テトラカルボン酸二無水物と、特定の芳香族ジアミンとをγ-ブチロラクトン溶媒中でイミド化触媒の共存下に反応させることで、分子量の高いポリイミドが得られ、且つそのポリイミドから得られるポリイミドフィルムが、透明性、耐熱性、および機械的強度に優れていることを見出した。本発明は、以下の各項に関する。 As a result of studies to solve the above problems, the present inventors react a specific aromatic tetracarboxylic acid dianhydride and a specific aromatic diamine in a γ-butyrolactone solvent in the coexistence of an imidization catalyst. As a result, it has been found that a polyimide having a high molecular weight can be obtained, and that the polyimide film obtained from the polyimide is excellent in transparency, heat resistance, and mechanical strength. The present invention relates to the following items.

1. 式(1)で表される繰り返し単位を含み、全ての前記式(1)で表される繰り返し単位中、40%以上のXが式(2)で表される基であるポリイミドであって、重量平均分子量が40,000以上であり、厚さ20μmのフィルムでの波長400nmの光透過率が80%以上である溶媒可溶性ポリイミド。 1. 1. Including the repeating unit represented by the formula (1), 40% or more of X 1 in all the repeating units represented by the formula (1) is the polyimide which is the group represented by the formula (2). , A solvent-soluble polyimide having a weight average molecular weight of 40,000 or more and a light transmittance of 80% or more at a wavelength of 400 nm in a film having a thickness of 20 μm.

Figure 0006994712000001
(式中、Xは芳香環を有する4価の基であり、Yは芳香環を有する2価の基である。)
Figure 0006994712000001
(In the formula, X 1 is a tetravalent group having an aromatic ring, and Y 1 is a divalent group having an aromatic ring.)

Figure 0006994712000002
Figure 0006994712000002

2. 全ての前記式(1)で表される繰り返し単位中、70%以上のYが、式(3)~(6)から選択される基である、上記項1に記載の溶媒可溶性ポリイミド。 2. 2. The solvent-soluble polyimide according to Item 1 above, wherein 70% or more of Y1 in all the repeating units represented by the formula ( 1 ) is a group selected from the formulas (3) to (6).

Figure 0006994712000003
Figure 0006994712000003

3. 全ての繰り返し単位中、前記式(1)で表される繰り返し単位を90モル%以上含む、上記項1または2に記載の溶媒可溶性ポリイミド。 3. 3. Item 2. The solvent-soluble polyimide according to Item 1 or 2, wherein the repeating unit represented by the formula (1) is contained in an amount of 90 mol% or more among all the repeating units.

4. ガラス転移温度が260℃以上であり、3%重量減少温度が480℃以上であり、フィルムでの引張り破断強度が100MPa以上である、上記項1~3のいずれか1項に記載の溶媒可溶性ポリイミド。 4. Item 2. The solvent-soluble polyimide according to any one of Items 1 to 3 above, wherein the glass transition temperature is 260 ° C. or higher, the 3% weight loss temperature is 480 ° C. or higher, and the tensile breaking strength of the film is 100 MPa or higher. ..

5. 上記項1~4のいずれか1項に記載のポリイミドを含むポリイミド塗膜またはポリイミドフィルム。 5. A polyimide coating film or a polyimide film containing the polyimide according to any one of the above items 1 to 4.

6. 上記項5に記載のポリイミド塗膜またはポリイミドフィルムを含むことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用の基板。 6. A substrate for a display, a touch panel, or a solar cell, which comprises the polyimide coating film or the polyimide film according to Item 5.

7. 2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を含む芳香族テトラカルボン酸二無水物と、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、2,2’-ビス(トリフルオロメチル)ベンジジン、およびジアミノ安息香酸の少なくも一つを含む芳香族ジアミンとを、3級アミン化合物とカルボン酸化合物の存在下にγ-ブチロラクトン溶媒中にて重縮合させることを特徴とする溶媒可溶性ポリイミドの製造方法。 7. Aromatic tetracarboxylic acid dianhydride containing 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 2,2 '-Bis (trifluoromethyl) benzidine and aromatic diamines containing at least one diaminobenzoic acid are polycondensed in a γ-butyrolactone solvent in the presence of a tertiary amine compound and a carboxylic acid compound. A method for producing a solvent-soluble polyimide.

8. 2,3,3’,4’-ビフェニルテトラカルボン酸二無水物の量が前記芳香族テトラカルボン酸二無水物の40モル%以上であり、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、ジアミノ安息香酸、および2,2’-ビス(トリフルオロメチル)ベンジジンの合計量が前記芳香族ジアミンの70モル%以上であることを特徴とする上記項7に記載の溶媒可溶性ポリイミドの製造方法。 8. The amount of 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride is 40 mol% or more of the aromatic tetracarboxylic acid dianhydride, and 4,4'-diaminodiphenyl sulfone, 3,3'. Item 7. The solvent-soluble item according to Item 7, wherein the total amount of -diaminodiphenyl sulfone, diaminobenzoic acid, and 2,2'-bis (trifluoromethyl) benzidine is 70 mol% or more of the aromatic diamine. Method for manufacturing polyimide.

9. 前記3級アミン化合物がピリジン、ピコリン、およびキノリンから成る群より選択され、前記カルボン酸化合物が酢酸、プロピオン酸、安息香酸、ヒドロキシ安息香酸、トルイル酸、サリチル酸、およびジアミノ安息香酸から成る群より選択されることを特徴とする上記項7または8に記載の溶媒可溶性ポリイミドの製造方法。 9. The tertiary amine compound is selected from the group consisting of pyridine, picolin, and quinoline, and the carboxylic acid compound is selected from the group consisting of acetic acid, propionic acid, benzoic acid, hydroxybenzoic acid, toluic acid, salicylic acid, and diaminobenzoic acid. Item 4. The method for producing a solvent-soluble polyimide according to Item 7 or 8, wherein the method is characterized by the above.

10. 前記3級アミン化合物の量が、得られるポリイミドのイミド基1モル当量に対して0.01~0.5モル当量であり、前記カルボン酸化合物の量がイミド基1モル当量に対して0.01~0.4モル当量であることを特徴とする上記項7~9のいずれか1項に記載の溶媒可溶性ポリイミドの製造方法。 10. The amount of the tertiary amine compound is 0.01 to 0.5 molar equivalent with respect to 1 molar equivalent of the imide group of the obtained polyimide, and the amount of the carboxylic acid compound is 0. The method for producing a solvent-soluble polyimide according to any one of Items 7 to 9, wherein the equivalent is 01 to 0.4 mol.

本発明によれば、透明性、耐熱性に優れ、機械的特性にも優れた溶媒可溶性ポリイミド、およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a solvent-soluble polyimide having excellent transparency, heat resistance, and mechanical properties, and a method for producing the same.

本発明のポリイミドは、耐熱性が高く、透明性が高く、且つ機械的強度に優れ、ディスプレイ用途などのカラー画像表示基板やフレキシブル基板を形成するために好適に用いることができる。また、本発明のポリイミドは、タッチパネル用、太陽電池用の基板にも好適に用いることができる。 The polyimide of the present invention has high heat resistance, high transparency, and excellent mechanical strength, and can be suitably used for forming a color image display substrate or a flexible substrate for display applications. Further, the polyimide of the present invention can be suitably used for a substrate for a touch panel and a solar cell.

本発明では、ポリイミドの着色原因である、分子内共役や電荷移動錯体の形成を抑制し、また、製造過程でのモノマーや溶媒からの着色物の発生も軽減した分子量の高い溶媒可溶性ポリイミドの溶液を得ることができる。 In the present invention, a solution of a solvent-soluble polyimide having a high molecular weight, which suppresses the formation of intramolecular conjugation and charge transfer complex, which are the causes of polyimide coloring, and also reduces the generation of colored substances from monomers and solvents in the manufacturing process. Can be obtained.

本発明のポリイミドは、式(1)で表される繰り返し単位を含む。 The polyimide of the present invention contains a repeating unit represented by the formula (1).

Figure 0006994712000004
(式中、Xは芳香環を有する4価の基であり、Yは芳香環を有する2価の基である。)
Figure 0006994712000004
(In the formula, X 1 is a tetravalent group having an aromatic ring, and Y 1 is a divalent group having an aromatic ring.)

本発明のポリイミドは、全ての式(1)で表される繰り返し単位中、少なくとも一部のXは、式(2)で表される基である。 In the polyimide of the present invention, among all the repeating units represented by the formula (1), at least a part of X 1 is a group represented by the formula (2).

Figure 0006994712000005
Figure 0006994712000005

全ての式(1)で表される繰り返し単位中、好ましくは40%以上、より好ましくは60%以上、さらに好ましくは80%以上、特に好ましくは100%のXが、式(2)で表される基である。Xが式(2)で表される基であることにより、溶解性とともに透明性、耐熱性、および機械的特性に優れたポリイミドとすることができる。その他のXの構造は、特に限定されない。具体的には、後述する本発明のポリイミドの製造方法において開示される芳香族テトラカルボン酸二無水物により導入される基が挙げられる。 Among all the repeating units represented by the formula ( 1 ), X1 of preferably 40% or more, more preferably 60% or more, still more preferably 80% or more, particularly preferably 100% is represented by the formula (2). Is the basis for being done. Since X 1 is a group represented by the formula (2), it is possible to obtain a polyimide having excellent solubility, transparency, heat resistance, and mechanical properties. The other structures of X 1 are not particularly limited. Specific examples thereof include groups introduced by the aromatic tetracarboxylic dianhydride disclosed in the method for producing polyimide of the present invention described later.

全ての式(1)で表される繰り返し単位中、少なくとも一部のYは、式(3)~(6)より選択される基であることが好ましい。 Of all the repeating units represented by the formula (1), at least a part of Y 1 is preferably a group selected from the formulas (3) to (6).

Figure 0006994712000006
Figure 0006994712000006

本発明のポリイミドは、全ての式(1)で表される繰り返し単位中、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは100%のYが、式(3)~(6)より選択される基である。Yが式(3)~(6)で表される基であることにより、溶解性とともに透明性、耐熱性、および機械的特性に優れたポリイミドとすることができる。その他のYの構造は、特に限定されない。具体的には、後述する本発明のポリイミドの製造方法において開示される芳香族ジアミンにより導入される基が挙げられる。 The polyimide of the present invention contains Y1 of preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, and particularly preferably 100% of the repeating units represented by the formula ( 1 ). It is a group selected from the formulas (3) to (6). Since Y 1 is a group represented by the formulas (3) to (6), it is possible to obtain a polyimide having excellent solubility, transparency, heat resistance, and mechanical properties. The other structures of Y 1 are not particularly limited. Specific examples thereof include a group introduced by an aromatic diamine disclosed in the method for producing a polyimide of the present invention described later.

本発明のポリイミドは、全繰り返し単位中、式(1)で表される繰り返し単位を、好ましくは90モル%以上、より好ましくは95モル%以上、特に好ましくは100モル%含む。芳香族基を多く含む式(1)で表される繰り返し単位の含有比率を上げることで、ポリイミドの耐熱性および機械的特性を向上できる。 The polyimide of the present invention contains the repeating unit represented by the formula (1) in all the repeating units, preferably 90 mol% or more, more preferably 95 mol% or more, and particularly preferably 100 mol%. By increasing the content ratio of the repeating unit represented by the formula (1) containing a large amount of aromatic groups, the heat resistance and mechanical properties of the polyimide can be improved.

本発明のポリイミドは、40,000以上、好ましくは50,000以上、より好ましくは60,000以上の重量平均分子量を有する。これらの範囲の重量平均分子量を有することにより、ポリイミドに優れた耐熱性および機械的特性を付与できる。本発明のポリイミドは、好ましくは300,000以下、より好ましくは200,000以下の重量平均分子量を有する。これらの範囲の重量平均分子量を有することにより、適切な溶解性を有するポリイミドとすることができる。 The polyimide of the present invention has a weight average molecular weight of 40,000 or more, preferably 50,000 or more, more preferably 60,000 or more. Having a weight average molecular weight in these ranges can impart excellent heat resistance and mechanical properties to polyimide. The polyimide of the present invention preferably has a weight average molecular weight of 300,000 or less, more preferably 200,000 or less. By having a weight average molecular weight in these ranges, a polyimide having appropriate solubility can be obtained.

本発明のポリイミドは、優れた光透過性を有し、厚さ20μmのフィルムでの波長400nmの光透過率が、80%以上であり、85%以上とすることもできる。 The polyimide of the present invention has excellent light transmittance, and the light transmittance at a wavelength of 400 nm in a film having a thickness of 20 μm is 80% or more, and can be 85% or more.

本発明のポリイミドは、高い耐熱性を有する。ポリイミドのガラス転移温度(Tg)は、好ましくは260℃以上、より好ましくは270℃以上、さらに好ましくは280℃以上、特に好ましくは300℃以上である。ポリイミドの3%重量減少温度は、好ましくは480℃以上、より好ましくは500℃以上、さらに好ましくは530℃以上である。 The polyimide of the present invention has high heat resistance. The glass transition temperature (Tg) of the polyimide is preferably 260 ° C. or higher, more preferably 270 ° C. or higher, still more preferably 280 ° C. or higher, and particularly preferably 300 ° C. or higher. The 3% weight loss temperature of the polyimide is preferably 480 ° C. or higher, more preferably 500 ° C. or higher, still more preferably 530 ° C. or higher.

本発明のポリイミドは、高い機械的強度を有し、フィルムでの引張り破断強度は、好ましくは100MPa以上、より好ましくは110MPa以上、さらに好ましくは120MPa以上である。 The polyimide of the present invention has high mechanical strength, and the tensile breaking strength of the film is preferably 100 MPa or more, more preferably 110 MPa or more, still more preferably 120 MPa or more.

本発明のポリイミドは、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を含む芳香族テトラカルボン酸二無水物と、芳香族ジアミンとを、3級アミン化合物とカルボン酸化合物の存在下にγ-ブチロラクトン溶媒中にて重縮合させることにより得られる。このような製造方法を採用することにより、透明性、耐熱性に優れ、機械的特性にも優れたポリイミドを得ることができる。 The polyimide of the present invention comprises an aromatic tetracarboxylic acid dianhydride containing 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride, an aromatic diamine, a tertiary amine compound and a carboxylic acid compound. It is obtained by polycondensing in the presence of a γ-butyrolactone solvent. By adopting such a manufacturing method, it is possible to obtain a polyimide having excellent transparency, heat resistance, and mechanical properties.

溶媒可溶性を損なわない範囲で、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物に加えて、その他の芳香族テトラカルボン酸二無水物を混合して重合してよい。その他の芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物等が例示され、これらは単独で又は2種以上を組み合わせて用いることができる。これらの中でも、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物は、ポリイミドの溶解性、透明性を保つので特に好ましい。また、ビシクロ[2.2.2]オクト-7-エン2,3,5,6テトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物を更に混合して重合してもよい。 In addition to 2,3,3', 4'-biphenyltetracarboxylic dianhydride, other aromatic tetracarboxylic dianhydrides may be mixed and polymerized as long as the solvent solubility is not impaired. Other aromatic tetracarboxylic acid dianhydrides include pyromellitic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride, 3,3', 4,4'-diphenyl ether tetra. Carboxydic dianhydride, 3,3', 4,4'-diphenylsulfonetetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic acid dianhydride, 2,2-bis (3) , 4-Dicarboxyphenyl) Hexafluoropropane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 1,4,5,8-naphthalenetetracarboxylic acid dianhydride, etc. Illustrated, these can be used alone or in combination of two or more. Among these, 3,3', 4,4'-diphenyl ether tetracarboxylic dianhydride and 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride are polyimide soluble and transparent. It is particularly preferable because it keeps the sex. Further, an alicyclic tetracarboxylic dianhydride such as bicyclo [2.2.2] octo-7-ene 2,3,5,6 tetracarboxylic dianhydride may be further mixed and polymerized.

好ましい芳香族ジアミンは、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、2,2’-ビス(トリフルオロメチル)ベンジジン、ジアミノ安息香酸である。ジアミノ安息香酸は、全ての構造異性体を包含するが、3,5-ジアミノ安息香酸が好ましい。 Preferred aromatic diamines are 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 2,2'-bis (trifluoromethyl) benzidine, and diaminobenzoic acid. Diaminobenzoic acid includes all structural isomers, but 3,5-diaminobenzoic acid is preferred.

他の芳香族ジアミンとしては、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン等の芳香族ジアミンが例示され、これらを単独で又は2種以上を適宜組み合わせて用いることができる。また、ジアミノポリシロキサン、ノルボルナンジアミン等の脂環式や脂肪族ジアミンを更に混合して重合してもよい。 Other aromatic diamines include p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) ) Benzene, 4,4'-bis (4-aminophenoxy) biphenyl, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 2,2-bis Fragrances of (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, etc. Group diamines are exemplified, and these can be used alone or in combination of two or more as appropriate. Further, an alicyclic diamine such as diaminopolysiloxane or norbornanediamine or an aliphatic diamine may be further mixed and polymerized.

本発明のポリイミドの製造において、γ-ブチロラクトンを含む溶媒(γ-ブチロラクトン溶媒)を使用する。γ-ブチロラクトンを溶媒に使用することにより、透明性の高いポリイミドが得られる。溶媒中のγ-ブチロラクトンの含有量は、全溶媒の50重量%以上とすることが好ましく、70重量%以上とすることがより好ましく、100重量%であってもよい。透明性を損なわない範囲で他の溶媒を併用することもできる。その他の有機溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチルイミダゾリドン等のアミド系溶媒、ジグライム、トリグライム、ジオキサン等のエーテル系溶媒、シクロヘキサノン、シクロペンタノン、安息香酸メチル、安息香酸エチル等のケトン、エステル系溶媒が例示される。これらγ-ブチロラクトン以外の溶媒の含有量は、透明性、可溶性を保つため、全溶媒の30重量%以下とすることが好ましく、全溶媒の10重量%以下とすることがより好ましい。 In the production of the polyimide of the present invention, a solvent containing γ-butyrolactone (γ-butyrolactone solvent) is used. By using γ-butyrolactone as a solvent, highly transparent polyimide can be obtained. The content of γ-butyrolactone in the solvent is preferably 50% by weight or more, more preferably 70% by weight or more, and may be 100% by weight. Other solvents can be used in combination as long as the transparency is not impaired. Examples of other organic solvents include amide solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide and 1,3-dimethylimidazolidone, and ethers such as diglime, triglime and dioxane. Examples thereof include a system solvent, a ketone such as cyclohexanone, cyclopentanone, methyl benzoate, and ethyl benzoate, and an ester solvent. The content of these solvents other than γ-butyrolactone is preferably 30% by weight or less of the total solvent, and more preferably 10% by weight or less of the total solvent in order to maintain transparency and solubility.

また、反応の際、イミド化反応により生成する水を系外へ効率良く取り出す目的で、γ-ブチロラクトンと相溶性がある非極性溶媒を混合して使用してもよく、非極性溶媒としては、トルエン、キシレンなどの芳香族炭化水素が挙げられる。その使用量は、通常、全溶媒の1~20重量%、好ましくは2~15重量%の範囲であってよい。 Further, in the reaction, a non-polar solvent compatible with γ-butyrolactone may be mixed and used for the purpose of efficiently taking out the water generated by the imidization reaction to the outside of the system, and the non-polar solvent may be used. Examples include aromatic hydrocarbons such as toluene and xylene. The amount used may be usually in the range of 1 to 20% by weight, preferably 2 to 15% by weight of the total solvent.

3級アミン化合物は、特に限定されないが、好ましくは、ピリジン、ピコリン、キノリンである。好適な3級アミン化合物の使用量は、得られるポリイミドのイミド基1モル当量に対して0.01~0.5モル当量であり、より好ましくは0.02~0.3モル当量である。3級アミン化合物が少ないと得られるポリイミドの重合度が低く、多いと重合度を高くする効果よりポリイミド膜の着色が強くなる。 The tertiary amine compound is not particularly limited, but is preferably pyridine, picoline, or quinoline. The suitable amount of the tertiary amine compound to be used is 0.01 to 0.5 molar equivalent, more preferably 0.02 to 0.3 molar equivalent, relative to 1 molar equivalent of the imide group of the obtained polyimide. When the amount of the tertiary amine compound is small, the degree of polymerization of the obtained polyimide is low, and when the amount is large, the coloring of the polyimide film becomes stronger than the effect of increasing the degree of polymerization.

カルボン酸化合物は、特に限定されないが、好ましくは、酢酸、プロピオン酸、安息香酸、ヒドロキシ安息香酸、トルイル酸、サリチル酸、ジアミノ安息香酸である。カルボン酸化合物が、カルボキシル基を有する芳香族ジアミンであり、ポリイミドの原料であってもよい。例えば、ジアミノ安息香酸は、ポリイミドの繰り返し単位を構成するモノマーであるが、カルボン酸化合物の1種でもあり、ジアミノ安息香酸をポリイミドの原料として用いる場合には、更に他のカルボン酸化合物を添加しなくてよい。カルボン酸化合物が、ポリイミドを形成する芳香族ジアミンでない場合において、好適なカルボン酸化合物の使用量は、得られるポリイミドのイミド基1モル当量に対して0.01~0.4モル当量であり、より好ましくは0.02~0.3モル当量である。カルボン酸化合物も少ないと得られるポリイミドの重合度が低くなり、多いと重合度を高くする効果が少なくなる。 The carboxylic acid compound is not particularly limited, but is preferably acetic acid, propionic acid, benzoic acid, hydroxybenzoic acid, toluic acid, salicylic acid, and diaminobenzoic acid. The carboxylic acid compound is an aromatic diamine having a carboxyl group, and may be a raw material for polyimide. For example, diaminobenzoic acid is a monomer constituting a repeating unit of polyimide, but it is also one of carboxylic acid compounds. When diaminobenzoic acid is used as a raw material for polyimide, another carboxylic acid compound is further added. It doesn't have to be. When the carboxylic acid compound is not the aromatic diamine forming the polyimide, the suitable amount of the carboxylic acid compound to be used is 0.01 to 0.4 mol equivalent with respect to 1 molar equivalent of the imide group of the obtained polyimide. More preferably, it is 0.02 to 0.3 molar equivalent. If the amount of the carboxylic acid compound is small, the degree of polymerization of the obtained polyimide is low, and if the amount is large, the effect of increasing the degree of polymerization is low.

得られるポリイミドの重合性、透明性を向上させるため、3級アミン化合物とカルボン酸化合物のモル比率は、3級アミン化合物1に対して、カルボン酸化合物が、0.2~5であることが好ましく、0.4~3であることがより好ましい。 In order to improve the polymerizable property and transparency of the obtained polyimide, the molar ratio of the tertiary amine compound to the carboxylic acid compound is 0.2 to 5 with respect to the tertiary amine compound 1. It is preferably 0.4 to 3, and more preferably 0.4 to 3.

本発明では、触媒量の3級アミン化合物とカルボン酸化合物を使うことによって、ポリイミドの重合溶液として好まれるN-メチル-2-ピロリドンのようなアミド系溶媒を用いることなく、γ-ブチロラクトン溶媒中で高重合度の溶媒可溶性ポリイミドを製造することができる。 In the present invention, by using a catalytic amount of a tertiary amine compound and a carboxylic acid compound, the γ-butyrolactone solvent can be used without using an amide solvent such as N-methyl-2-pyrrolidone, which is preferred as a polyimide polymerization solution. Can produce a solvent-soluble polyimide having a high degree of polymerization.

重合反応におけるテトラカルボン酸二無水物とジアミンの当量比は、得られるポリイミドの分子量を決定する因子である。テトラカルボン酸二無水物:ジアミンの当量比は100:102~100:96、より好ましくは、100:101~100:98の範囲にあることが好ましい。テトラカルボン酸二無水物およびジアミンの一方が多すぎると分子量が低く、得られる膜の強度が低いものとなる。特にジアミンが多過ぎる場合は、ポリイミド末端にジアミンが増加し着色の原因となる。さらに過剰のジアミンはポリイミドの解重合を引き起こすためポリイミドの溶解性を低化させることがあり好ましくない。 The equivalent ratio of tetracarboxylic dianhydride to diamine in the polymerization reaction is a factor that determines the molecular weight of the obtained polyimide. The equivalent ratio of tetracarboxylic dianhydride: diamine is preferably in the range of 100: 102 to 100: 96, more preferably 100: 101 to 100: 98. If either the tetracarboxylic dianhydride or the diamine is too much, the molecular weight will be low and the strength of the obtained film will be low. In particular, when the amount of diamine is too large, the amount of diamine increases at the end of the polyimide, which causes coloring. Further, excess diamine causes depolymerization of the polyimide, which may reduce the solubility of the polyimide, which is not preferable.

重合反応は公知の方法で行われてよい。γ-ブチロラクトン溶媒と全モノマーとの仕込み重量割合は、特に限定されるものではないが、得られるポリイミド溶液中のポリイミドの濃度が10重量%~40重量%となることが好ましく、15重量%~35重量%となることがより好ましい。濃度が低いと重合反応が低下し、また高すぎると得られるポリイミド溶液の粘度が高くなり均一な反応に支障が生じるため好ましくない。重合反応は、例えば、窒素等の不活性ガス気流下、テトラカルボン酸二無水物とジアミンをγ-ブチロラクトン溶媒に溶解し、反応温度120℃~220℃、好ましくは150~200℃で行うことができる。テトラカルボン酸二無水物とジアミンは、常温ではイミド化まで反応が進まずアミド酸となりγ-ブチロラクトン中で析出することがあるため、反応温度は当初から上げることが好ましい。反応時間は、通常、0.5~24時間が例示されるが反応の進行状況によって適宜決定される。 The polymerization reaction may be carried out by a known method. The charged weight ratio of the γ-butyrolactone solvent and all the monomers is not particularly limited, but the concentration of the polyimide in the obtained polyimide solution is preferably 10% by weight to 40% by weight, preferably 15% by weight to 40% by weight. It is more preferably 35% by weight. If the concentration is low, the polymerization reaction is lowered, and if it is too high, the viscosity of the obtained polyimide solution becomes high, which hinders a uniform reaction, which is not preferable. The polymerization reaction may be carried out, for example, by dissolving tetracarboxylic acid dianhydride and diamine in a γ-butyrolactone solvent under an inert gas stream such as nitrogen, and carrying out the reaction temperature at a reaction temperature of 120 ° C. to 220 ° C., preferably 150 to 200 ° C. can. Since the reaction of tetracarboxylic dianhydride and diamine does not proceed to imidization at room temperature and may become amid acid and precipitate in γ-butyrolactone, it is preferable to raise the reaction temperature from the beginning. The reaction time is usually 0.5 to 24 hours, but is appropriately determined depending on the progress of the reaction.

このようにして得られたポリイミドの溶液は、そのまま用いてもよく、また貧溶媒中に添加することによって固体状に析出させた後に他の溶媒に溶解して用いることもできる。 The polyimide solution thus obtained may be used as it is, or it may be added to a poor solvent to precipitate it in a solid state and then dissolved in another solvent for use.

さらに、本発明の溶媒可溶性ポリイミド、およびこれを溶解したポリイミド溶液には、必要に応じて例えば、有機シラン、顔料、導電性のカーボンブラック及び金属粒子のような充填剤、摩滅剤、誘電体、潤滑剤等の公知の添加物を本発明の効果を損なわない範囲で添加することができる。また、他の重合体を本発明の効果を損なわない範囲で添加することができる。特に本発明の可溶性ポリイミドは可視光領域の光吸収が少ないため、ポリイミド溶液中に着色顔料を分散することで、鮮明な着色ポリイミド溶液を得ることができる。 Further, the solvent-soluble polyimide of the present invention and the polyimide solution in which the polyimide solution is dissolved may be used, for example, as an organic silane, a pigment, a filler such as conductive carbon black and metal particles, an abrasive, a dielectric, and the like. Known additives such as lubricants can be added as long as the effects of the present invention are not impaired. Further, other polymers can be added as long as the effects of the present invention are not impaired. In particular, since the soluble polyimide of the present invention absorbs less light in the visible light region, a clear colored polyimide solution can be obtained by dispersing the coloring pigment in the polyimide solution.

本発明のポリイミドを成形して、ポリイミド塗膜やポリイミドフィルムを得ることができる。ポリイミド塗膜は、ポリイミド溶液を基材上に塗工し、乾燥して溶媒を除去して製造され得る。例えばガラス、シリコンウェハー等の基材上にポリイミド溶液をスピンコート法、スプレイコート法、浸漬法等の公知の方法により塗工し、溶媒を乾燥除去することにより基材上に透明なポリイミド膜を形成することができる。ポリイミドフィルムは、ポリイミド溶液をスリット状ノズルから押し出し、またはアプリケーター等により基材上に塗工し、乾燥して溶媒を除去した後、基材上から剥離することにより製造され得る。 The polyimide of the present invention can be molded to obtain a polyimide coating film or a polyimide film. The polyimide coating film can be produced by applying a polyimide solution on a substrate and drying it to remove a solvent. For example, a polyimide solution is applied onto a substrate such as glass or a silicon wafer by a known method such as a spin coating method, a spray coating method, or a dipping method, and the solvent is dried and removed to form a transparent polyimide film on the substrate. Can be formed. The polyimide film can be produced by extruding a polyimide solution from a slit-shaped nozzle, applying it on a base material with an applicator or the like, drying it to remove a solvent, and then peeling it off from the base material.

本発明で得られるポリイミド溶液は、透明性が高く、耐熱性が高いポリイミド膜とすることができるため、ディスプレイ材料や太陽電池の保護膜など、透明性と電気信頼性の両立を求められる用途に適している。さらに、ポリイミド溶液から得られるポリイミドフィルムは、強度にも優れ、無色透明性基板材料として極めて好ましい。 Since the polyimide solution obtained in the present invention can be a polyimide film having high transparency and high heat resistance, it is used for applications such as display materials and protective films for solar cells, which require both transparency and electrical reliability. Are suitable. Further, the polyimide film obtained from the polyimide solution has excellent strength and is extremely preferable as a colorless and transparent substrate material.

以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例により何ら制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to these examples.

実施例および比較例で得られたポリイミド溶液、ポリイミドフィルムの評価は以下のように行った。 The polyimide solutions and polyimide films obtained in Examples and Comparative Examples were evaluated as follows.

(1)重量平均分子量(ポリスチレン換算 Mw)
・装置;高速液体クロマトグラフ(TOSOH HLC-8320GPC、東ソー(株)製)
・カラム;充填品TSK-GEL α-M、2本
・展開液;臭化カリウム、リン酸を少量添加したNMP。検出器はRI。
・測定条件;流量0.8ml/min、カラム温度40℃(圧力約3.8MPa)
・検量線;14種類の標準ポリスチレン分子量による。
・試料;ポリイミドのNMP溶液から0.3g採り、NMP展開液10gと均一混合し、測定試料とした。
(1) Weight average molecular weight (polystyrene equivalent Mw)
-Equipment: High Performance Liquid Chromatograph (TOSOH HLC-8320GPC, manufactured by Tosoh Corporation)
-Column: Filled product TSK-GEL α-M, 2 bottles-Development solution; NMP with a small amount of potassium bromide and phosphoric acid added. The detector is RI.
-Measurement conditions: Flow rate 0.8 ml / min, column temperature 40 ° C (pressure approx. 3.8 MPa)
-Calibration curve: According to 14 standard polystyrene molecular weights.
-Sample: 0.3 g was taken from the NMP solution of polyimide and uniformly mixed with 10 g of the NMP developing solution to prepare a measurement sample.

(2)熱分析
<試験フィルムの作製>
ポリイミド溶液を、厚さ300μmスペーサーを用いてガラス板上に塗布し、80℃のホットプレート上で20分間静置乾燥し、粘着性の無くなったポリイミドフィルムをガラス板より剥ぎ取り、金属枠に固定して250℃で30分間乾燥した。
<3%重量減少温度>
得られたポリイミドフィルムをMcScience社製TG-DTA装置で窒素気流下、昇温速度10℃/minの条件でDTG測定を行い、3%重量減少温度を求めた。
<ガラス転移温度>
得られたポリイミドフィルムを島津製作所社製TMA-60装置で窒素気流下、昇温速度10℃/min、荷重5gの条件で膨張変化を測定し、変曲点を求めた。
(2) Thermal analysis <Preparation of test film>
The polyimide solution is applied onto a glass plate using a spacer with a thickness of 300 μm, allowed to stand and dry on a hot plate at 80 ° C. for 20 minutes, and the polyimide film having no adhesiveness is peeled off from the glass plate and fixed to a metal frame. Then, it was dried at 250 ° C. for 30 minutes.
<3% weight loss temperature>
The obtained polyimide film was subjected to DTG measurement under the condition of a temperature rise rate of 10 ° C./min under a nitrogen stream with a TG-DTA apparatus manufactured by McScience, and a 3% weight loss temperature was determined.
<Glass transition temperature>
The obtained polyimide film was measured for expansion change under the conditions of a nitrogen stream, a temperature rise rate of 10 ° C./min, and a load of 5 g using a TMA-60 device manufactured by Shimadzu Corporation, and an inflection point was determined.

(3)機械強度
熱分析用に作製したポリイミドフィルムを5mm幅の短冊状に切り出し、チャック間2cmで引張試験機(INSTRON社製 3342型)を用いて5mm/minの引張り速度で引張り破断強度を測定した。
(3) Mechanical strength A polyimide film prepared for thermal analysis is cut into strips with a width of 5 mm, and the tensile breaking strength is determined at a tensile speed of 5 mm / min using a tensile tester (3342 type manufactured by INSTRON) with a chuck spacing of 2 cm. It was measured.

(4)400nm光透過率
熱分析用に作製したポリイミドフィルムを分光光度計(アズワンASV11D)により波長400nmの吸光度を測定し、厚さ20μmに換算した光透過率を求めた。
(4) 400 nm light transmittance The polyimide film produced for thermal analysis was measured for absorbance at a wavelength of 400 nm with a spectrophotometer (AS ONE ASV11D), and the light transmittance converted to a thickness of 20 μm was determined.

[実施例1]
ステンレススチール製の碇型撹拌器を取り付けたガラス製の500mlセパラブル3ッ口フラスコに、水分分離トラップを備えた玉付き冷却管を取り付けた。窒素ガスを通しながら、上記フラスコをシリコーンオイル浴につけて、加熱、撹拌した。2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(以後a-BPDAという)29.42g(100ミリモル)と、3,3’-ジアミノジフェニルスルホン(以後m-DADSという)12.42g(50ミリモル)と、2,2’-ビス(トリフルオロメチル)ベンジジン(以後TFMBという)16.01g(50ミリモル)をフラスコに投入し、γ-ブチロラクトン140.0gと、ピリジン1.58g(20ミリモル)と、酢酸1.20g(20ミリモル)を加え、160℃のシリコーンオイル浴に浸し加熱撹拌した。モノマーの溶解後、トルエン10gを加え、窒素を通じるとともにシリコーンオイル浴温度180℃で留出するトルエン・水を除きながら6時間加熱、撹拌した。淡黄色透明な粘稠液体が得られ、重量平均分子量を測定したところMw67,500であった。このポリイミド溶液をガラス板上に塗布乾燥し、250℃30分オーブン(空気雰囲気)中で加熱処理したところ無色透明な膜が得られた。この膜の20μm厚さでの400nm透過率は85%であり、ガラス転移温度は312℃であり、熱分解温度(3%減量)は532℃であり、膜の破断強度は120MPaであった。
[Example 1]
A glass 500 ml separable three-necked flask equipped with a stainless steel Ikari-type stirrer was fitted with a beaded cooling tube equipped with a moisture separation trap. The flask was placed in a silicone oil bath, heated and stirred while passing nitrogen gas. 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride (hereinafter referred to as a-BPDA) 29.42 g (100 mmol) and 3,3'-diaminodiphenyl sulfone (hereinafter referred to as m-DADS) 12. 42 g (50 mmol) and 2,2'-bis (trifluoromethyl) benzidine (hereinafter referred to as TFMB) 16.01 g (50 mmol) were placed in a flask, and 140.0 g of γ-butyrolactone and 1.58 g of pyridine (hereinafter referred to as TFMB) were added. 20 mmol) and 1.20 g (20 mmol) of acetic acid were added, and the mixture was immersed in a silicone oil bath at 160 ° C. and heated and stirred. After the monomer was dissolved, 10 g of toluene was added, and the mixture was heated and stirred for 6 hours while passing through nitrogen and removing toluene and water distilling at a silicone oil bath temperature of 180 ° C. A pale yellow transparent viscous liquid was obtained, and the weight average molecular weight was measured to be Mw67,500. This polyimide solution was applied onto a glass plate, dried, and heat-treated in an oven (air atmosphere) at 250 ° C. for 30 minutes to obtain a colorless and transparent film. The 400 nm transmittance of this film at a thickness of 20 μm was 85%, the glass transition temperature was 312 ° C., the thermal decomposition temperature (3% weight loss) was 532 ° C., and the breaking strength of the film was 120 MPa.

[実施例2]
実施例1と同様にa-BPDA27.07g(92ミリモル)と、4,4’-ジアミノジフェニルスルホン(以後p-DADSという)11.42g(46ミリモル)と、TFMB14.73g(46ミリモル)をフラスコに投入し、γ-ブチロラクトン149.7gと、ピリジン1.42g(18ミリモル)と、酢酸1.62g(27ミリモル)を加え、160℃のシリコーンオイル浴に浸し加熱撹拌した。モノマーの溶解後、トルエン10gを加え、窒素を通じるとともにシリコーンオイル浴温度180℃で留出するトルエン・水を除きながら6時間加熱、撹拌した。淡黄色透明な重量平均分子量Mw64,000の粘稠液体が得られた。このポリイミド溶液をガラス板上に塗布乾燥し、250℃30分オーブン(空気雰囲気)中で加熱処理したところ無色透明な膜が得られた。この膜の20μm厚さでの400nm透過率は80%であり、ガラス転移温度は360℃であり、熱分解温度(3%減量)は553℃であり、膜の破断強度は116MPaであった。
[Example 2]
Flasks of a-BPDA 27.07 g (92 mmol), 4,4'-diaminodiphenyl sulfone (hereinafter referred to as p-DADS) 11.42 g (46 mmol), and TFMB 14.73 g (46 mmol) as in Example 1. 149.7 g of γ-butyrolactone, 1.42 g (18 mmol) of pyridine, and 1.62 g (27 mmol) of acetic acid were added thereto, and the mixture was immersed in a silicone oil bath at 160 ° C. and heated and stirred. After the monomer was dissolved, 10 g of toluene was added, and the mixture was heated and stirred for 6 hours while passing through nitrogen and removing toluene and water distilling at a silicone oil bath temperature of 180 ° C. A pale yellow transparent viscous liquid having a weight average molecular weight of Mw64,000 was obtained. This polyimide solution was applied onto a glass plate, dried, and heat-treated in an oven (air atmosphere) at 250 ° C. for 30 minutes to obtain a colorless and transparent film. The 400 nm transmittance of this film at a thickness of 20 μm was 80%, the glass transition temperature was 360 ° C., the thermal decomposition temperature (3% weight loss) was 553 ° C., and the breaking strength of the film was 116 MPa.

[実施例3]
実施例1と同様にa-BPDA30.01g(102ミリモル)と、m-DADS21.11g(85ミリモル)と、3,5-ジアミノ安息香酸(以後DABzという)2.59g(17ミリモル)をフラスコに投入し、γ-ブチロラクトン150gと、ピリジン1.58g(20ミリモル)を加え、160℃のシリコーンオイル浴に浸し加熱撹拌した。モノマーの溶解後、トルエン8gを加え、窒素を通じるとともにシリコーンオイル浴温度180℃で留出するトルエン・水を除きながら6時間加熱、撹拌した。重量平均分子量Mw128,000の淡黄色透明な高粘稠液体が得られた。このポリイミド溶液をガラス板上に塗布乾燥し、250℃30分オーブン(空気雰囲気)中で加熱処理したところ無色透明な膜が得られた。この膜の20μm厚さでの400nm透過率は83%であり、ガラス転移温度は294℃であり、熱分解温度(3%減量)は482℃であり、膜の破断強度は130MPaであった。
[Example 3]
Similar to Example 1, a-BPDA 30.01 g (102 mmol), m-DADS 21.11 g (85 mmol), and 3,5-diaminobenzoic acid (hereinafter referred to as DABz) 2.59 g (17 mmol) are placed in a flask. The mixture was charged, 150 g of γ-butyrolactone and 1.58 g (20 mmol) of pyridine were added, and the mixture was immersed in a silicone oil bath at 160 ° C. and heated and stirred. After dissolving the monomer, 8 g of toluene was added, and the mixture was heated and stirred for 6 hours while passing through nitrogen and removing toluene and water distilling at a silicone oil bath temperature of 180 ° C. A pale yellow transparent highly viscous liquid having a weight average molecular weight of Mw128,000 was obtained. This polyimide solution was applied onto a glass plate, dried, and heat-treated in an oven (air atmosphere) at 250 ° C. for 30 minutes to obtain a colorless and transparent film. The 400 nm transmittance of this film at a thickness of 20 μm was 83%, the glass transition temperature was 294 ° C, the thermal decomposition temperature (3% weight loss) was 482 ° C, and the breaking strength of the film was 130 MPa.

[実施例4]
フラスコにa-BPDA14.42g(49ミリモル)と、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物(以後ODPAという)15.20g(49ミリモル)と、m-DADS24.33g(98ミリモル)を投入し、γ-ブチロラクトン151.3gと、ピリジン1.58g(20ミリモル)と、酢酸1.20g(20ミリモル)を加え、160℃のシリコーンオイル浴に浸し加熱撹拌した。モノマーの溶解後、トルエン12gを加え、窒素を通じるとともにシリコーンオイル浴温度180℃で留出するトルエン・水を除きながら6時間加熱、撹拌した。淡黄色透明な粘稠液体が得られ、重量平均分子量を測定したところMw78,000であった。このポリイミド溶液をガラス板上に塗布乾燥し、250℃30分オーブン(空気雰囲気)中で加熱処理したところ無色透明な膜が得られた。この膜の20μm厚さでの400nm透過率は82%であり、ガラス転移温度は275℃であり、熱分解温度(3%減量)は531℃であり、膜の破断強度は145MPaであった。
[Example 4]
14.42 g (49 mmol) of a-BPDA, 15.20 g (49 mmol) of 3,3', 4,4'-diphenyl ether tetracarboxylic acid dianhydride (hereinafter referred to as ODPA) and 24.33 g of m-DADS (hereinafter referred to as ODPA) in a flask. 98 mmol) was added, 151.3 g of γ-butyrolactone, 1.58 g (20 mmol) of pyridine, and 1.20 g (20 mmol) of acetic acid were added, and the mixture was immersed in a silicone oil bath at 160 ° C. and heated and stirred. After dissolving the monomer, 12 g of toluene was added, and the mixture was heated and stirred for 6 hours while passing through nitrogen and removing toluene and water distilling at a silicone oil bath temperature of 180 ° C. A pale yellow transparent viscous liquid was obtained, and the weight average molecular weight was measured to be Mw78,000. This polyimide solution was applied onto a glass plate, dried, and heat-treated in an oven (air atmosphere) at 250 ° C. for 30 minutes to obtain a colorless and transparent film. The 400 nm transmittance of this film at a thickness of 20 μm was 82%, the glass transition temperature was 275 ° C, the thermal decomposition temperature (3% weight loss) was 531 ° C, and the breaking strength of the film was 145 MPa.

[実施例5]
フラスコにa-BPDA14.71g(50ミリモル)と、ODPA15.51g(50ミリモル)と、m-DADS20.73g(83.5ミリモル)と、DABz2.51g(16.5ミリモル)を投入し、γ-ブチロラクトン149.8gと、ピリジン1.58g(20ミリモル)を加え、160℃のシリコーンオイル浴に浸し加熱撹拌した。モノマーの溶解後、トルエン10gを加え、窒素を通じるとともにシリコーンオイル浴温度180℃で留出するトルエン・水を除きながら6時間加熱、撹拌した。重量平均分子量Mw123,000の淡黄色透明な高粘稠液体が得られた。このポリイミド溶液をガラス板上に塗布乾燥し、250℃30分オーブン(空気雰囲気)中で加熱処理したところ無色透明な膜が得られた。この膜の20μm厚さでの400nm透過率は84%であり、ガラス転移温度は284℃であり、熱分解温度(3%減量)は487℃であり、膜の破断強度は147MPaであった。
[Example 5]
14.71 g (50 mmol) of a-BPDA, 15.51 g (50 mmol) of ODPA, 20.73 g (83.5 mmol) of m-DADS, and 2.51 g (16.5 mmol) of DABz were put into a flask, and γ- 149.8 g of butyrolactone and 1.58 g (20 mmol) of pyridine were added, and the mixture was immersed in a silicone oil bath at 160 ° C. and heated and stirred. After the monomer was dissolved, 10 g of toluene was added, and the mixture was heated and stirred for 6 hours while passing through nitrogen and removing toluene and water distilling at a silicone oil bath temperature of 180 ° C. A pale yellow transparent highly viscous liquid having a weight average molecular weight of Mw123,000 was obtained. This polyimide solution was applied onto a glass plate, dried, and heat-treated in an oven (air atmosphere) at 250 ° C. for 30 minutes to obtain a colorless and transparent film. The 400 nm transmittance of this film at a thickness of 20 μm was 84%, the glass transition temperature was 284 ° C, the thermal decomposition temperature (3% weight loss) was 487 ° C, and the breaking strength of the film was 147 MPa.

[実施例6]
フラスコにa-BPDA18.24g(62ミリモル)と、TFMB9.93g(31ミリモル)をとり、γ-ブチロラクトン80gと、ピリジン1.50g(19ミリモル)と、ヒドロキシ安息香酸2.62g(19ミリモル)を加え、160℃のシリコーンオイル浴に浸し、さらにトルエン10gを加え窒素を通じながら加熱撹拌した。30分後、ODPA9.62g(31ミリモル)と、p-DADS15.39g(62ミリモル)をγ-ブチロラクトン70gとともに加え、窒素を通じシリコーンオイル浴温度180℃で留出するトルエン・水を除きながら6時間加熱、撹拌した。重量平均分子量Mw59,000の淡黄色透明な粘稠液体が得られた。このポリイミド溶液をガラス板上に塗布乾燥し、250℃30分オーブン(空気雰囲気)中で加熱処理したところ無色透明な膜が得られた。この膜の20μm厚さでの400nm透過率は81%であり、ガラス転移温度は348℃であり、熱分解温度(3%減量)は540℃であり、膜の破断強度は118MPaであった。
[Example 6]
Take 18.24 g (62 mmol) of a-BPDA and 9.93 g (31 mmol) of TFMB in a flask, and add 80 g of γ-butyrolactone, 1.50 g (19 mmol) of pyridine and 2.62 g (19 mmol) of hydroxybenzoic acid. In addition, the mixture was immersed in a silicone oil bath at 160 ° C., 10 g of toluene was further added, and the mixture was heated and stirred while passing nitrogen. After 30 minutes, 9.62 g (31 mmol) of ODPA and 15.39 g (62 mmol) of p-DADS were added together with 70 g of γ-butyrolactone, and 6 hours while removing toluene and water distilled at a silicone oil bath temperature of 180 ° C. through nitrogen. It was heated and stirred. A pale yellow transparent viscous liquid having a weight average molecular weight of Mw59,000 was obtained. This polyimide solution was applied onto a glass plate, dried, and heat-treated in an oven (air atmosphere) at 250 ° C. for 30 minutes to obtain a colorless and transparent film. The 400 nm transmittance of this film at a thickness of 20 μm was 81%, the glass transition temperature was 348 ° C, the thermal decomposition temperature (3% weight loss) was 540 ° C, and the breaking strength of the film was 118 MPa.

[実施例7]
フラスコにa-BPDA11.77g(40ミリモル)と、ODPA12.41g(40ミリモル)と、p-DADS19.86g(80ミリモル)を投入し、γ-ブチロラクトン164.6gと、ピリジン1.26g(16ミリモル)と、ヒドロキシ安息香酸2.21g(16ミリモル)を加え、160℃のシリコーンオイル浴に浸し加熱撹拌した。モノマーの溶解後、トルエン12gを加え、窒素を通じるとともにシリコーンオイル浴温度180℃で留出するトルエン・水を除きながら6時間加熱、撹拌した。淡黄色透明な粘稠液体が得られ、重量平均分子量を測定したところMw54,000であった。このポリイミド溶液をガラス板上に塗布乾燥し、250℃30分オーブン(空気雰囲気)中で加熱処理したところ無色透明な膜が得られた。この膜の20μm厚さでの400nm透過率は86%であり、ガラス転移温度は352℃であり、熱分解温度(3%減量)は533℃であり、膜の破断強度は127MPaであった。
[Example 7]
11.77 g (40 mmol) of a-BPDA, 12.41 g (40 mmol) of ODPA and 19.86 g (80 mmol) of p-DADS are placed in a flask, 164.6 g of γ-butyrolactone and 1.26 g (16 mmol) of pyridine. ) And 2.21 g (16 mmol) of hydroxybenzoic acid were added, and the mixture was immersed in a silicone oil bath at 160 ° C. and heated and stirred. After dissolving the monomer, 12 g of toluene was added, and the mixture was heated and stirred for 6 hours while passing through nitrogen and removing toluene and water distilling at a silicone oil bath temperature of 180 ° C. A pale yellow transparent viscous liquid was obtained, and the weight average molecular weight was measured to be Mw54,000. This polyimide solution was applied onto a glass plate, dried, and heat-treated in an oven (air atmosphere) at 250 ° C. for 30 minutes to obtain a colorless and transparent film. The 400 nm transmittance of this film at a thickness of 20 μm was 86%, the glass transition temperature was 352 ° C, the thermal decomposition temperature (3% weight loss) was 533 ° C, and the breaking strength of the film was 127 MPa.

[実施例8~12]
3級アミン化合物とカルボン酸化合物の種類、量を変えた他は実施例4と同様に重合し、得られたポリイミドの分子量および透過率の測定結果を表1に示した。
[Examples 8 to 12]
Table 1 shows the measurement results of the molecular weight and transmittance of the polyimide obtained by polymerizing in the same manner as in Example 4 except that the types and amounts of the tertiary amine compound and the carboxylic acid compound were changed.

[比較例1~5]
3級アミン化合物および/またはカルボン酸化合物を用いないで実施例4と同様に重合し、得られたポリイミドの分子量および透過率の測定結果を表1に示した。
[Comparative Examples 1 to 5]
Table 1 shows the measurement results of the molecular weight and transmittance of the obtained polyimide obtained by polymerizing in the same manner as in Example 4 without using the tertiary amine compound and / or the carboxylic acid compound.

[比較例6]
重合溶媒にγ-ブチロラクトンを用いないで、N-メチル-2-ピロリドン(NMP)を用い比較例2と同様に重合し、得られたポリイミドの分子量および透過率の測定結果を表1に示した。得られたポリイミドの分子量は実施例4に比べ低く、透過率は、実施例4ならびに比較例2に比べ低く、透明性が悪かった。
[Comparative Example 6]
Table 1 shows the measurement results of the molecular weight and transmittance of the obtained polyimide obtained by polymerization in the same manner as in Comparative Example 2 using N-methyl-2-pyrrolidone (NMP) without using γ-butyrolactone as the polymerization solvent. .. The molecular weight of the obtained polyimide was lower than that of Example 4, the transmittance was lower than that of Example 4 and Comparative Example 2, and the transparency was poor.

[比較例7]
実施例1と同様にODPA11.17g(36ミリモル)とm-DADS17.88g(72ミリモル)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)10.59g(36ミリモル)をフラスコに投入し、γ-ブチロラクトン111.2gと、ピリジン1.14g(14ミリモル)と、酢酸0.86g(14ミリモル)を加え、160℃のシリコーンオイル浴に浸し加熱撹拌した。モノマーの溶解後、トルエン10gを加え、窒素を通じるとともにシリコーンオイル浴温度180℃で留出するトルエン・水を除きながら6時間加熱、撹拌した。黄色透明な高粘稠液体が得られ、重量平均分子量を測定したところMw62,500であった。このポリイミド溶液をガラス板上に塗布乾燥し、250℃30分オーブン(空気雰囲気)中で加熱処理したところ無色透明な膜が得られた。この膜の20μm厚さでの400nm透過率は58%であり、ガラス転移温度は272℃であり、熱分解温度(3%減量)は497℃であり、膜の破断強度は152MPaであった。また、ポリイミド溶液を密栓して常温に保管したところ翌日には流動性が失われており、溶解安定性が乏しかった。
[Comparative Example 7]
Similar to Example 1, ODPA 11.17 g (36 mmol) and m-DADS 17.88 g (72 mmol), 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (s-BPDA) 10.59 g ( 36 mmol) was placed in a flask, 111.2 g of γ-butyrolactone, 1.14 g (14 mmol) of pyridine, and 0.86 g (14 mmol) of acetic acid were added, and the mixture was immersed in a silicone oil bath at 160 ° C. and heated and stirred. After the monomer was dissolved, 10 g of toluene was added, and the mixture was heated and stirred for 6 hours while passing through nitrogen and removing toluene and water distilling at a silicone oil bath temperature of 180 ° C. A yellow transparent highly viscous liquid was obtained, and the weight average molecular weight was measured to be Mw62,500. This polyimide solution was applied onto a glass plate, dried, and heat-treated in an oven (air atmosphere) at 250 ° C. for 30 minutes to obtain a colorless and transparent film. The 400 nm transmittance of this film at a thickness of 20 μm was 58%, the glass transition temperature was 272 ° C, the thermal decomposition temperature (3% weight loss) was 497 ° C, and the breaking strength of the film was 152 MPa. Further, when the polyimide solution was sealed and stored at room temperature, the fluidity was lost the next day, and the dissolution stability was poor.

Figure 0006994712000007
Figure 0006994712000007

Claims (9)

式(1)で表される繰り返し単位を含み、全ての前記式(1)で表される繰り返し単位中、40%以上のXが式(2)で表される基であり、70%以上のY が、式(3)~(6)から選択される基であるポリイミドであって、重量平均分子量が40,000以上であり、厚さ20μmのフィルムでの波長400nmの光透過率が80%以上であり、
原料のテトラカルボン酸二無水物とジアミン化合物を、3級アミン化合物とカルボン酸化合物の存在下にγ-ブチロラクトン溶媒中にて重縮合させて得られる溶媒可溶性ポリイミド。
Figure 0006994712000008
(式中、Xは芳香環を有する4価の基であり、Yは芳香環を有する2価の基である。)
Figure 0006994712000009
Figure 0006994712000010
Including the repeating unit represented by the formula (1), 40% or more of X 1 is the group represented by the formula (2) among all the repeating units represented by the formula (1), and 70%. The above Y 1 is a polyimide which is a group selected from the formulas (3) to (6) , has a weight average molecular weight of 40,000 or more, and transmits light at a wavelength of 400 nm in a film having a thickness of 20 μm. The rate is 80% or more ,
A solvent-soluble polyimide obtained by polycondensing a raw material tetracarboxylic acid dianhydride and a diamine compound in the presence of a tertiary amine compound and a carboxylic acid compound in a γ-butyrolactone solvent .
Figure 0006994712000008
(In the formula, X 1 is a tetravalent group having an aromatic ring, and Y 1 is a divalent group having an aromatic ring.)
Figure 0006994712000009
Figure 0006994712000010
全ての繰り返し単位中、前記式(1)で表される繰り返し単位を90モル%以上含む、請求項に記載の溶媒可溶性ポリイミド。 The solvent-soluble polyimide according to claim 1 , which contains 90 mol% or more of the repeating units represented by the formula (1) among all the repeating units. ガラス転移温度が260℃以上であり、3%重量減少温度が480℃以上であり、フィルムでの引張り破断強度が100MPa以上である、請求項1または2に記載の溶媒可溶性ポリイミド。 The solvent-soluble polyimide according to claim 1 or 2 , wherein the glass transition temperature is 260 ° C. or higher, the 3% weight loss temperature is 480 ° C. or higher, and the tensile breaking strength of the film is 100 MPa or higher. 請求項1~のいずれか1項に記載のポリイミドを含むポリイミド塗膜またはポリイミドフィルム。 A polyimide coating film or a polyimide film containing the polyimide according to any one of claims 1 to 3 . 請求項に記載のポリイミド塗膜またはポリイミドフィルムを含むことを特徴とするディスプレイ用、タッチパネル用、または太陽電池用の基板。 A substrate for a display, a touch panel, or a solar cell, which comprises the polyimide coating film or the polyimide film according to claim 4 . 2,3,3’,4’-ビフェニルテトラカルボン酸二無水物を含む芳香族テトラカルボン酸二無水物と、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、2,2’-ビス(トリフルオロメチル)ベンジジン、およびジアミノ安息香酸の少なくも一つを含む芳香族ジアミンとを、3級アミン化合物とカルボン酸化合物の存在下にγ-ブチロラクトン溶媒中にて重縮合させることを特徴とする溶媒可溶性ポリイミドの製造方法。 Aromatic tetracarboxylic acid dianhydride containing 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 2,2 '-Bis (trifluoromethyl) benzidine and aromatic diamines containing at least one diaminobenzoic acid are polycondensed in a γ-butyrolactone solvent in the presence of a tertiary amine compound and a carboxylic acid compound. A method for producing a solvent-soluble polyimide. 2,3,3’,4’-ビフェニルテトラカルボン酸二無水物の量が前記芳香族テトラカルボン酸二無水物の40モル%以上であり、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、ジアミノ安息香酸、および2,2’-ビス(トリフルオロメチル)ベンジジンの合計量が前記芳香族ジアミンの70モル%以上であることを特徴とする請求項に記載の溶媒可溶性ポリイミドの製造方法。 The amount of 2,3,3', 4'-biphenyltetracarboxylic acid dianhydride is 40 mol% or more of the aromatic tetracarboxylic acid dianhydride, and 4,4'-diaminodiphenyl sulfone, 3,3'. The solvent-soluble according to claim 6 , wherein the total amount of -diaminodiphenyl sulfone, diaminobenzoic acid, and 2,2'-bis (trifluoromethyl) benzidine is 70 mol% or more of the aromatic diamine. Method for manufacturing polyimide. 前記3級アミン化合物がピリジン、ピコリン、およびキノリンから成る群より選択され、前記カルボン酸化合物が酢酸、プロピオン酸、安息香酸、ヒドロキシ安息香酸、トルイル酸、サリチル酸、およびジアミノ安息香酸から成る群より選択されることを特徴とする請求項6または7に記載の溶媒可溶性ポリイミドの製造方法。 The tertiary amine compound is selected from the group consisting of pyridine, picolin, and quinoline, and the carboxylic acid compound is selected from the group consisting of acetic acid, propionic acid, benzoic acid, hydroxybenzoic acid, toluic acid, salicylic acid, and diaminobenzoic acid. The method for producing a solvent-soluble polyimide according to claim 6 or 7 , wherein the solvent-soluble polyimide is produced. 前記3級アミン化合物の量が、得られるポリイミドのイミド基1モル当量に対して0.01~0.5モル当量であり、前記カルボン酸化合物の量がイミド基1モル当量に対して0.01~0.4モル当量であることを特徴とする請求項6~8のいずれか1項に記載の溶媒可溶性ポリイミドの製造方法。 The amount of the tertiary amine compound is 0.01 to 0.5 molar equivalent with respect to 1 molar equivalent of the imide group of the obtained polyimide, and the amount of the carboxylic acid compound is 0. The method for producing a solvent-soluble polyimide according to any one of claims 6 to 8 , wherein the amount is 01 to 0.4 molar equivalent.
JP2017161018A 2017-08-24 2017-08-24 Soluble transparent polyimide polymerized in γ-butyrolactone solvent Active JP6994712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017161018A JP6994712B2 (en) 2017-08-24 2017-08-24 Soluble transparent polyimide polymerized in γ-butyrolactone solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017161018A JP6994712B2 (en) 2017-08-24 2017-08-24 Soluble transparent polyimide polymerized in γ-butyrolactone solvent

Publications (2)

Publication Number Publication Date
JP2019038916A JP2019038916A (en) 2019-03-14
JP6994712B2 true JP6994712B2 (en) 2022-01-14

Family

ID=65727204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017161018A Active JP6994712B2 (en) 2017-08-24 2017-08-24 Soluble transparent polyimide polymerized in γ-butyrolactone solvent

Country Status (1)

Country Link
JP (1) JP6994712B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115975192B (en) * 2022-12-13 2023-10-27 江西沃格光电股份有限公司 Polyimide slurry, polyimide film, and preparation methods and applications thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030212243A1 (en) 2002-04-05 2003-11-13 Administrator Of The National Aeronautics And Space Administration Polyimides from 2,3,3',4'-biphenyltetracarboxylic dianhydride and aromatic diamines
JP2013001899A (en) 2011-06-22 2013-01-07 Jsr Corp Soluble polyimide, method for producing the same, vanish and polyimide film
WO2014148441A1 (en) 2013-03-18 2014-09-25 旭化成イーマテリアルズ株式会社 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
WO2014208704A1 (en) 2013-06-27 2014-12-31 宇部興産株式会社 Polyimide precursor and polyimide
WO2015046019A1 (en) 2013-09-27 2015-04-02 東レ株式会社 Polyimide precursor, polyimide resin film produced from said polyimide precursor, display element, optical element, light-receiving element, touch panel and circuit board each equipped with said polyimide resin film, organic el display, and methods respectively for producing organic el element and color filter
JP2015531997A (en) 2012-07-27 2015-11-05 アウトラスト テクノロジーズ,リミテッド ライアビリティ カンパニー Systems, structures and materials for cooling electronic devices
JP2017025163A (en) 2015-07-17 2017-02-02 Jnc株式会社 Resin solution composition and polyimide film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141732A (en) * 1984-12-14 1986-06-28 Ube Ind Ltd Transparent aromatic polyimide and composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030212243A1 (en) 2002-04-05 2003-11-13 Administrator Of The National Aeronautics And Space Administration Polyimides from 2,3,3',4'-biphenyltetracarboxylic dianhydride and aromatic diamines
JP2013001899A (en) 2011-06-22 2013-01-07 Jsr Corp Soluble polyimide, method for producing the same, vanish and polyimide film
JP2015531997A (en) 2012-07-27 2015-11-05 アウトラスト テクノロジーズ,リミテッド ライアビリティ カンパニー Systems, structures and materials for cooling electronic devices
WO2014148441A1 (en) 2013-03-18 2014-09-25 旭化成イーマテリアルズ株式会社 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
WO2014208704A1 (en) 2013-06-27 2014-12-31 宇部興産株式会社 Polyimide precursor and polyimide
WO2015046019A1 (en) 2013-09-27 2015-04-02 東レ株式会社 Polyimide precursor, polyimide resin film produced from said polyimide precursor, display element, optical element, light-receiving element, touch panel and circuit board each equipped with said polyimide resin film, organic el display, and methods respectively for producing organic el element and color filter
JP2017025163A (en) 2015-07-17 2017-02-02 Jnc株式会社 Resin solution composition and polyimide film

Also Published As

Publication number Publication date
JP2019038916A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP6853870B2 (en) Polyimide-polybenzoxazole precursor solution, polyimide-polybenzoxazole film, and method for producing the same.
CN108473677B (en) Polyamide acid composition with improved adhesive strength and polyimide film comprising same
KR101961512B1 (en) Polyimide precursor solution composition and method for producing polyimide precursor solution composition
JP2020090681A (en) Polyamide-imide precursor, polyamide-imide film and display device including the same
CN110099946B (en) Transparent polyimide film
JP7387742B2 (en) Polyamic acid composition and transparent polyimide film using the same
JPWO2020138360A1 (en) Imid-amidic acid copolymer and its production method, varnish, and polyimide film
WO2020100904A1 (en) Polyimide resin, varnish, and polyimide film
JPWO2019188380A1 (en) Polyamic acid and its manufacturing method, polyamic acid solution, polyimide, polyimide film, laminate and its manufacturing method, and flexible device and its manufacturing method
JP7084755B2 (en) A method for producing a polyamic acid, a polyamic acid solution, a polyimide, a polyimide film, a laminate and a flexible device, and a polyimide film.
JPH03121132A (en) New polyimide
JP7317123B2 (en) Novel method for producing a polyamic acid composition containing a dicarbonyl compound, a polyamic acid composition, a method for producing a polyamide-imide film using the same, and a polyamide-imide film produced by the production method
JP2024028411A (en) Polyamic acid composition and transparent polyimide film using the same
JP7349253B2 (en) A polyamic acid, a polyamic acid solution, a polyimide, a polyimide film, a laminate, a flexible device, and a method for producing a polyimide film.
JP6994712B2 (en) Soluble transparent polyimide polymerized in γ-butyrolactone solvent
JPH08225645A (en) Colorless clear polyimide molding and production thereof
KR102003772B1 (en) Composition for preparinig polyimide-based film and transparent polyimide-based film prepared by using same
TWI826669B (en) Method for producing colorless transparent resin film
WO2021210641A1 (en) Imide-amic acid copolymer and method for producing same, varnish, and polyimide film
JP2021505744A (en) Method for producing polyamic acid, polyamic acid, polyimide resin, and polyimide film produced from this
JP6932349B2 (en) Solvent-soluble polyimide and polyimide solution composition
TWI783504B (en) Polymer film and its manufacturing method (2)
JP3824533B2 (en) Colorless transparent polyimide
JP2008189881A (en) Manufacturing process of polyimide solution and soluble polyimide resin and optical member using the same
WO2023182038A1 (en) Method for producing polymer, varnish, and method for producing varnish

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211203

R150 Certificate of patent or registration of utility model

Ref document number: 6994712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350