JP6993626B2 - Carbonated water generator - Google Patents

Carbonated water generator Download PDF

Info

Publication number
JP6993626B2
JP6993626B2 JP2015080937A JP2015080937A JP6993626B2 JP 6993626 B2 JP6993626 B2 JP 6993626B2 JP 2015080937 A JP2015080937 A JP 2015080937A JP 2015080937 A JP2015080937 A JP 2015080937A JP 6993626 B2 JP6993626 B2 JP 6993626B2
Authority
JP
Japan
Prior art keywords
carbonated water
carbon dioxide
pressure
dioxide gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015080937A
Other languages
Japanese (ja)
Other versions
JP2016198726A (en
Inventor
敏彦 大林
耕平 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takara Belmont Corp
Original Assignee
Takara Belmont Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Belmont Corp filed Critical Takara Belmont Corp
Priority to JP2015080937A priority Critical patent/JP6993626B2/en
Priority to TW105109726A priority patent/TWI694859B/en
Priority to KR1020160040941A priority patent/KR20160121412A/en
Publication of JP2016198726A publication Critical patent/JP2016198726A/en
Application granted granted Critical
Publication of JP6993626B2 publication Critical patent/JP6993626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/54Mixing with gases
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D44/00Other cosmetic or toiletry articles, e.g. for hairdressers' rooms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/214Measuring characterised by the means for measuring
    • B01F35/2142Measuring characterised by the means for measuring using wireless sensors introduced in the mixture, e.g. transponders or RFID tags, for measuring the parameters of the mixture or components to be mixed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2213Pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Devices For Medical Bathing And Washing (AREA)
  • Accessories For Mixers (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、理美容院等での洗髪や美顔施術等に使用される炭酸水の炭酸ガス濃度を調整可能とする炭酸水生成装置に関する。 The present invention relates to a carbonated water generator capable of adjusting the carbon dioxide gas concentration of carbonated water used for hair washing, facial treatment, etc. at a hairdressing salon or the like.

例えば、炭酸水の炭酸ガス濃度を制御する装置の一例として下記特許文献1に係る発明が提案されている。この特許文献1では、原水の流量によらず、常に一定の炭酸ガス濃度の炭酸水を低コストかつ簡便な操作で製造できる装置が開示されている。具体的には、あらかじめ原水の流量と炭酸ガスの供給圧力で得られる炭酸水の炭酸ガス濃度との相関データが記録され、炭酸水の製造時に原水の流量が検出される。そして、この検出した流量と記録した相関データとに基づいて、得られる炭酸水が目標炭酸ガス濃度となるように炭酸ガスの供給圧力を調節するようにした炭酸水製造装置が開示されている。 For example, the invention according to the following Patent Document 1 has been proposed as an example of a device for controlling the carbon dioxide concentration of carbonated water. This Patent Document 1 discloses an apparatus capable of producing carbonated water having a constant carbon dioxide gas concentration at low cost and by a simple operation regardless of the flow rate of raw water. Specifically, correlation data between the flow rate of raw water and the carbon dioxide gas concentration of carbonated water obtained by the supply pressure of carbon dioxide gas is recorded in advance, and the flow rate of raw water is detected during the production of carbonated water. Then, a carbonated water producing apparatus is disclosed in which the supply pressure of carbon dioxide gas is adjusted so that the obtained carbonated water has a target carbon dioxide gas concentration based on the detected flow rate and the recorded correlation data.

特開2001-293342号公報Japanese Unexamined Patent Publication No. 2001-293342

上記特許文献1で提案されている炭酸水製造装置では、炭酸水を所望の濃度とするために、流量計(フローセンサー)を用いて炭酸を混合する原水の量を計測して把握し、把握した原水の量から炭酸を混合する量を制御している。採用可能な流量計としては、例えば、羽根車式、差圧式、電波、超音波、渦流量計、容積式、熱式等の多様な例を挙げることができる。しかし、これら例に挙げた流量計は利便性が高いものの、炭酸水が流れる炭酸水供給ライン内に流量計を設ける必要がある。したがって、流量計の存在によって、流量及び圧力損失が発生する虞がある。また、流量計は炭酸水供給ライン内で常時、流水と接触するために消耗が早く、そのうえスペースを必要とするため装置が大型化する傾向にあり問題である。 In the carbonated water production apparatus proposed in Patent Document 1, the amount of raw water mixed with carbonic acid is measured and grasped by using a flow meter (flow sensor) in order to obtain a desired concentration of carbonated water. The amount of carbonic acid mixed is controlled from the amount of raw water. Examples of the flowmeter that can be adopted include various examples such as an impeller type, a differential pressure type, a radio wave, an ultrasonic wave, a vortex flowmeter, a positive displacement type, and a thermal type. However, although the flowmeters mentioned in these examples are highly convenient, it is necessary to install a flowmeter in the carbonated water supply line through which carbonated water flows. Therefore, the presence of the flow meter may cause flow rate and pressure loss. In addition, the flow meter is constantly consumed in contact with running water in the carbonated water supply line, and moreover, it requires space, so that the device tends to be large, which is a problem.

他の理美容用の炭酸水製造装置では、炭酸濃度の調節ができないものが多い。理美容用の炭酸水製造装置は、例えば、理美容施術、特に、カラーリング施術を行う場合に適用され、アルカリ性のカラーリング剤が塗布された毛髪に炭酸水を吐出することで、毛髪を中性に近づけ、カラーリング剤による毛髪のダメージを低減する効果を得ている。しかしながら、炭酸濃度の調節ができずに高濃度の炭酸水を吐出してしまった場合、炭酸水とカラーリング剤とが過剰に反応し、意図したカラーリングが行えないで毛髪が変色してしまう等の問題が指摘されていた。 Many other carbonated water production equipment for hairdressing and beauty cannot adjust the carbonic acid concentration. A carbonated water producing device for hairdressing and beauty is applied, for example, when performing hairdressing and beauty treatment, especially coloring, and by discharging carbonated water to hair coated with an alkaline coloring agent, the hair is squeezed. It is close to sex and has the effect of reducing hair damage caused by coloring agents. However, if the carbonated water concentration cannot be adjusted and a high concentration of carbonated water is discharged, the carbonated water reacts excessively with the coloring agent, and the intended coloring cannot be performed and the hair is discolored. Problems such as were pointed out.

本発明は上記実情に鑑み提案され、流量計を不要としても、理美容院等での洗髪や美顔施術等に使用される炭酸水の炭酸ガス濃度を調整可能とする炭酸水生成装置を提供することを目的とする。 The present invention has been proposed in view of the above circumstances, and provides a carbonated water generating device capable of adjusting the carbon dioxide gas concentration of carbonated water used for hair washing, facial treatment, etc. at a hairdressing salon, etc., even if a flow meter is not required. The purpose is.

本発明に係る炭酸水生成装置は、炭酸ガス供給源と、一方が給水源に接続され、他方の先端に吐出手段を有する炭酸水供給ラインと、この炭酸水供給ライン内に設けられたセンス部位で、水流に対する前記吐出手段の抵抗によって発生する圧力を計測する圧力センサと、前記炭酸ガス供給源から前記炭酸水供給ラインへ供給する炭酸ガスの量を調整する炭酸量調整部と、を備え、前記圧力センサで計測される圧力計測値に基づいて、前記炭酸ガスの量が前記炭酸量調整部で調整され、前記吐出手段から濃度制御された炭酸水が吐出されることを特徴とする。 The carbonated water generator according to the present invention has a carbonated water supply source, a carbonated water supply line in which one is connected to a water supply source and a discharge means at the tip of the other, and a sense portion provided in the carbonated water supply line. A pressure sensor that measures the pressure generated by the resistance of the discharge means to the water flow and a carbonated water amount adjusting unit that adjusts the amount of carbonated water supplied from the carbonated water supply source to the carbonated water supply line are provided. The amount of the carbonated water is adjusted by the carbon dioxide amount adjusting unit based on the pressure measurement value measured by the pressure sensor, and the concentration-controlled carbonated water is discharged from the discharge means.

特に、上記炭酸水生成装置において、前記圧力を増圧する増圧手段を備えることを特徴とする。この増圧手段の表面には凹凸が形成され、この凹凸によって前記炭酸ガスが撹拌されることを特徴とする。 In particular, the carbonated water generator is characterized by comprising a pressure increasing means for increasing the pressure. The surface of the pressure increasing means has irregularities, and the carbon dioxide gas is agitated by the irregularities.

また、前記炭酸水供給ラインにおける前記センス部位よりも前記給水源側に、逆止弁が設けられていることを特徴とする。さらに、前記炭酸水供給ラインにおける前記逆止弁と前記吐出手段との間に、前記炭酸ガスを供給する炭酸ガス供給管が接続されていることを特徴とする。 Further, the check valve is provided on the water supply source side of the sense portion in the carbonated water supply line. Further, it is characterized in that a carbon dioxide gas supply pipe for supplying the carbon dioxide gas is connected between the check valve and the discharge means in the carbonated water supply line.

このほか、前記炭酸量調整部が前記炭酸ガスの量を調整するか否かを決定する基準となる調整基準値を予め炭酸量調整部に入力可能としたことを特徴とする。前記炭酸量調整部に複数のモードが記憶され、このモードのうち1つが選択されることに基づいて、前記炭酸量調整部で調整される炭酸ガスの量が変化することを特徴とする。 In addition, the carbon dioxide amount adjusting unit is characterized in that an adjustment reference value, which is a reference for determining whether or not to adjust the amount of the carbon dioxide gas, can be input to the carbon dioxide amount adjusting unit in advance. A plurality of modes are stored in the carbon dioxide amount adjusting unit, and the amount of carbon dioxide gas adjusted by the carbon dioxide amount adjusting unit changes based on the selection of one of the modes.

本発明に係る炭酸水生成装置は、炭酸水供給ラインにセンス部位を有する圧力センサから得た圧力計測値に基づき、吐出する炭酸水中の炭酸ガス濃度を調整する構成である。したがって、圧力センサ自体が炭酸水供給ライン内に設置されないので、圧力センサの存在による流量損失及び圧力損失を無くす又は軽減することができる。また、圧力センサが早く消耗してしまうといった問題も起こらない。圧力センサは一般的に、流量センサ等の流量計測手段に比べて小型であって、その設置が既存設備の微細な改良で済むため、新規に設置するスペース等も不要である点でも有利である。 The carbonated water generator according to the present invention has a configuration in which the concentration of carbonic acid gas in the discharged carbonated water is adjusted based on a pressure measurement value obtained from a pressure sensor having a sense portion in the carbonated water supply line. Therefore, since the pressure sensor itself is not installed in the carbonated water supply line, it is possible to eliminate or reduce the flow rate loss and the pressure loss due to the presence of the pressure sensor. In addition, there is no problem that the pressure sensor is quickly consumed. Pressure sensors are generally smaller than flow rate measuring means such as flow rate sensors, and since their installation requires only minor improvements to existing equipment, they are also advantageous in that they do not require space for new installation. ..

本発明は、水流に対する吐出手段の抵抗により発生する圧力に加え、炭酸水供給ライン内の圧力を増幅させるための増圧する増圧手段を備える構成である。流量が少なく、吐出手段での抵抗が微少にしか発生しない場合に、増圧手段によって炭酸水供給ライン内の圧力が増幅され、的確に圧力を計測することができ、これによって炭酸水中の炭酸ガス濃度の制御を容易にすることができる。さらに、この増圧手段の表面に凹凸が形成され、この凹凸によって炭酸ガスが撹拌される構成とすれば、流水中に炭酸ガスを効率よく溶解させることができる。 The present invention is configured to include a pressure increasing means for increasing the pressure in the carbonated water supply line in addition to the pressure generated by the resistance of the discharge means to the water flow. When the flow rate is small and the resistance in the discharge means is very small, the pressure in the carbonated water supply line is amplified by the pressure boosting means, and the pressure can be measured accurately, whereby the carbon dioxide gas in the carbonated water can be measured accurately. The concentration can be easily controlled. Further, if the surface of the pressure increasing means is formed with irregularities and the carbon dioxide gas is agitated by the irregularities, the carbon dioxide gas can be efficiently dissolved in the running water.

本発明は、炭酸水供給ラインにおけるセンス部位よりも給水源側に逆止弁が設けられている構成であるので、炭酸水の逆流を防ぐことができ、流量損失なく、かつ、効率よく炭酸ガスを流水中で撹拌し、溶解させることができる。また、炭酸水の水流に基づく吐出手段の抵抗を正確に把握することにもつながる。 Since the present invention has a configuration in which a check valve is provided on the water supply source side of the sense portion in the carbonated water supply line, it is possible to prevent the backflow of carbonated water, and there is no flow loss and the carbon dioxide gas is efficiently used. Can be dissolved by stirring in running water. It also leads to an accurate grasp of the resistance of the discharge means based on the water flow of carbonated water.

本発明は、炭酸量調整部が炭酸ガスの量を調整するか否かを決定する基準となる調整基準値を予め炭酸量調整部に入力可能とした構成である。これにより、炭酸ガスの量を調整する基準が設定できるので、炭酸水中の炭酸ガス濃度の制御をより正確に行うことができる。さらに、本発明は、炭酸量調整部に複数のモードが記憶され、このモードのうち1つが選択されること基づいて、炭酸量調整部で調整される炭酸ガスの量が変化する構成である。このため、例えば、高濃度モード、中濃度モード、低濃度モードといった炭酸ガス濃度の大凡の設定を予め行い、その上で、圧力計測値に基づいた炭酸水の炭酸ガス濃度を制御することができるので、適切な炭酸ガス濃度を有する炭酸水を用途毎に提供することが可能となる。 The present invention has a configuration in which an adjustment reference value, which is a reference for determining whether or not the carbon dioxide amount adjusting unit adjusts the amount of carbon dioxide gas, can be input to the carbon dioxide amount adjusting unit in advance. As a result, a standard for adjusting the amount of carbon dioxide can be set, so that the concentration of carbon dioxide in the carbon dioxide water can be controlled more accurately. Further, the present invention has a configuration in which a plurality of modes are stored in the carbon dioxide amount adjusting unit, and the amount of carbon dioxide gas adjusted by the carbon dioxide amount adjusting unit changes based on the selection of one of the modes. Therefore, for example, it is possible to roughly set the carbon dioxide concentration such as the high concentration mode, the medium concentration mode, and the low concentration mode in advance, and then control the carbon dioxide concentration of the carbonated water based on the pressure measurement value. Therefore, it is possible to provide carbonated water having an appropriate carbon dioxide gas concentration for each application.

本発明に係る炭酸水生成装置の概略構成を説明するブロック図である。It is a block diagram explaining the schematic structure of the carbonated water generation apparatus which concerns on this invention. 本発明に係る炭酸水生成装置における要部である炭酸水発生部の概略を一部断面で説明した一部断面要部説明図である。It is a partial cross-section main part explanatory drawing explaining the outline of the carbonated water generation part which is a main part in the carbonated water generation apparatus which concerns on this invention in a part cross section. 炭酸量調整部が炭酸ガスの量を調整するか否かの基準となる調整基準値を決定する迄のフローを説明するフローチャートである。It is a flowchart explaining the flow until the carbon dioxide amount adjusting part determines the adjustment reference value which becomes the standard whether or not the amount of carbon dioxide gas is adjusted. 炭酸量調整部に記憶された複数のモードからその1つが選択されて、その上で、圧力計測値に基づいて炭酸水の炭酸ガス濃度を制御するフローを説明するフローチャートである。It is a flowchart explaining the flow which controls the carbon dioxide gas concentration of the carbonated water based on the pressure measurement value, that one is selected from the plurality of modes stored in the carbonic acid amount adjustment unit.

以下、本発明に係る炭酸水生成装置の一実施形態について図面を参照しつつ説明する。この実施形態は、本発明の構成を具現化した例示に過ぎず、本発明は、特許請求の範囲に記載した事項を逸脱することがなければ、種々の設計変更を行うことができる。 Hereinafter, an embodiment of the carbonated water generator according to the present invention will be described with reference to the drawings. This embodiment is merely an example embodying the configuration of the present invention, and the present invention can make various design changes as long as it does not deviate from the matters described in the claims.

本発明に係る炭酸水生成装置Xは、図1に示すように、炭酸ガス供給源(ボンベ)11を備える装置本体1と、水又は湯である原水Wを排出し、例えば、ボイラー等からなる給水源としての給湯装置2とを有している。さらに、原水Wの流路となる水路31及び、この水路31に組み込まれる構造体であって、装置本体1から供給される炭酸ガスGを原水Wへ混合し、溶解させて炭酸水Sを得る炭酸水発生部32を備える炭酸水供給ライン3を有している。炭酸水供給ライン3の先端は吐出手段4に接続されている。吐出手段4は、具体的には、洗髪等を行うボウル(図示省略)に設けられたシャワーホース41とシャワーヘッド42とからなる。炭酸水供給ライン3の先端が、ボウルに設けられている配管を介し、シャワーホース41に接続されている。 As shown in FIG. 1, the carbonated water generating device X according to the present invention comprises an apparatus main body 1 provided with a carbon dioxide gas supply source (cylinder) 11 and raw water W which is water or hot water, and is composed of, for example, a boiler or the like. It has a hot water supply device 2 as a water supply source. Further, a water channel 31 which is a flow path of the raw water W and a structure incorporated in the water channel 31, the carbon dioxide gas G supplied from the apparatus main body 1 is mixed with the raw water W and dissolved to obtain the carbonated water S. It has a carbonated water supply line 3 including a carbonated water generating unit 32. The tip of the carbonated water supply line 3 is connected to the discharge means 4. Specifically, the discharge means 4 includes a shower hose 41 and a shower head 42 provided in a bowl (not shown) for washing hair and the like. The tip of the carbonated water supply line 3 is connected to the shower hose 41 via a pipe provided in the bowl.

また、炭酸水生成装置Xは、使用者が吐出手段4から炭酸水Sを吐出するか又は、原水Wを吐出するかを使用者の足等で操作して決定することができるフットスイッチ5を備えている。例えば、フットスイッチ5がオンとされれば、炭酸水生成装置Xは、後述する制御基板15による制御を通じて炭酸ガスG濃度が制御された炭酸水Sを吐出手段4から吐出する。フットスイッチ5がオフとされれば、原水Wがそのまま吐出手段4から吐出する。 Further, the carbonated water generation device X has a foot switch 5 capable of determining whether the user discharges the carbonated water S from the discharge means 4 or the raw water W by operating the user's feet or the like. I have. For example, when the foot switch 5 is turned on, the carbonated water generating device X discharges the carbonated water S whose carbon dioxide gas G concentration is controlled through the control by the control board 15 described later from the discharging means 4. When the foot switch 5 is turned off, the raw water W is discharged from the discharge means 4 as it is.

装置本体1は、ボンベ11と、ボンベ11からレギュレータ12を介して供給される炭酸ガスGの流路となるガス路13と、ガス路13中の炭酸ガスGの圧力を測定する本体側圧力センサ14とで構成されている。また、装置本体1は、本体側圧力センサ14で測定された炭酸ガスGの圧力計測値、フットスイッチ5からの操作信号及び、後述する供給ライン側圧力センサで計測された圧力測定値等が入力される炭酸量調整部としての制御基板15を備えている。さらに、制御基板15によって制御される電磁弁16、電磁弁16に隣接して設けられるオリフィス17を備えている。 The main body 1 of the apparatus is a pressure sensor on the main body side that measures the pressure of the cylinder 11, the gas passage 13 that is the flow path of the carbon dioxide gas G supplied from the cylinder 11 via the regulator 12, and the pressure of the carbon dioxide gas G in the gas passage 13. It is composed of 14. Further, the device main body 1 is input with a pressure measurement value of carbon dioxide gas G measured by the main body side pressure sensor 14, an operation signal from the foot switch 5, a pressure measurement value measured by the supply line side pressure sensor described later, and the like. A control board 15 is provided as a carbon dioxide amount adjusting unit. Further, the solenoid valve 16 controlled by the control board 15 and the orifice 17 provided adjacent to the solenoid valve 16 are provided.

本体側圧力センサ14は、ボンベ11からレギュレータ12を通じ、ガス路13に供給された炭酸ガスGの圧力を測定する。本体側圧力センサ14は公知のものを採用することができる。ボンベ11及びレギュレータ12は装置本体1の内外のどちらに設置しても構わない。制御基板15は、演算処理に用いるデータを記憶する記憶部151と、演算処理の場となる制御部152とを備えている。 The main body side pressure sensor 14 measures the pressure of the carbon dioxide gas G supplied from the cylinder 11 to the gas passage 13 through the regulator 12. As the pressure sensor 14 on the main body side, a known one can be adopted. The cylinder 11 and the regulator 12 may be installed inside or outside the apparatus main body 1. The control board 15 includes a storage unit 151 that stores data used for arithmetic processing, and a control unit 152 that serves as a place for arithmetic processing.

制御基板15は、制御部152における第1の機能として、本体側圧力センサ14から出力された圧力計測値に基づいて、原水Wへ混合する単位時間当たりの炭酸ガスGの吐出量が均一になるように、電磁弁16の開閉を制御する。 As the first function of the control unit 152, the control board 15 makes the discharge amount of carbonic acid gas G to be mixed with the raw water W uniform per unit time based on the pressure measurement value output from the main body side pressure sensor 14. As a result, the opening and closing of the solenoid valve 16 is controlled.

また、制御基板15は、装置本体1に設けられ、フットスイッチ5のスイッチがオンとされたときに併せて入力され、炭酸水S中の炭酸ガスG濃度をどの程度に設定するのかを決定するモード選択スイッチの入力に基づく処理を制御部152で行う。具体的には、制御部152における第2の機能として、入力される各モードとしての例えば、高濃度、中濃度、低濃度に相当する大凡の炭酸ガスGの濃度制御を行うために、電磁弁16の開閉を制御する。なお、制御基板15は、フットスイッチ5による動作のコマンド(スイッチオン)があって初めて電磁弁16の開の動作を制御する。 Further, the control board 15 is provided on the main body 1 of the apparatus and is also input when the switch of the foot switch 5 is turned on to determine how much the carbonic acid gas G concentration in the carbonated water S is set. The control unit 152 performs processing based on the input of the mode selection switch. Specifically, as a second function of the control unit 152, an electromagnetic valve is used to control the concentration of carbon dioxide gas G corresponding to, for example, high concentration, medium concentration, and low concentration as each input mode. Controls the opening and closing of 16. The control board 15 controls the opening operation of the solenoid valve 16 only when there is an operation command (switch on) by the foot switch 5.

本発明では、給湯装置2から排出された原水Wが通る水路31において、給湯装置2から炭水発生部32に至るまでの間に止水栓31aが設けられている。止水栓31aによって水路31を通る原水Wの時間当たりの流量を調整することができる。また、止水栓31aから水路31を進んだ位置に配設された炭水発生部32の入口部32aに逆止弁33が設けられている。逆止弁33によって炭酸水発生部32で発生した炭酸水Sが給湯装置2の方向に逆流するのを防ぐことができる。 In the present invention, in the water channel 31 through which the raw water W discharged from the hot water supply device 2 passes, a water stop valve 31a is provided between the hot water supply device 2 and the carbonated water generation unit 32. The flow rate of the raw water W passing through the water channel 31 can be adjusted by the water stop valve 31a. Further, a check valve 33 is provided at the inlet portion 32a of the carbonated water generating portion 32 arranged at a position advanced from the water stop plug 31a to the water channel 31. The check valve 33 can prevent the carbonated water S generated in the carbonated water generating portion 32 from flowing back in the direction of the hot water supply device 2.

炭酸水発生部32は、水路31に沿って、かつ、水路31に一体化させて設けられる金属製又は合成樹脂製の筒状の構造体である。図2に示すように、炭酸水発生部32はその構造体内に、給湯装置2側の水路31に連続する入口部32a、第1孔部32b、第2孔部32c及び吐出手段4側の水路31に連続する出口部32dが形成されている。入口部32aには上述のように、逆止弁33が設けられている。第1孔部32bに、炭酸水Sの水流に対する吐出手段4の抵抗によって発生する圧力を計測する供給ライン側圧力センサ34のセンス部位34aが接続される。第2孔部32cに、装置本体1から吐出された炭酸ガスGを誘導する炭酸ガス供給管35が接続される。また、出口部32dには、その開口を塞いで流体を通りにくくすることにより、炭酸水発生部32で発生した炭酸水Sの圧力(水圧)を増幅し、かつ炭酸水Sを撹拌する増圧手段としての増圧撹拌部品36が収容されている。 The carbonated water generation unit 32 is a tubular structure made of metal or synthetic resin, which is provided along the water channel 31 and integrated with the water channel 31. As shown in FIG. 2, the carbonated water generating portion 32 has an inlet portion 32a, a first hole portion 32b, a second hole portion 32c, and a water channel on the discharge means 4 side continuous with the water channel 31 on the hot water supply device 2 side. A continuous outlet portion 32d is formed at 31. As described above, the check valve 33 is provided at the inlet portion 32a. The sense portion 34a of the supply line side pressure sensor 34 that measures the pressure generated by the resistance of the discharge means 4 to the water flow of the carbonated water S is connected to the first hole portion 32b. A carbon dioxide gas supply pipe 35 for guiding the carbon dioxide gas G discharged from the apparatus main body 1 is connected to the second hole portion 32c. Further, the outlet portion 32d is closed to prevent the fluid from passing through the outlet portion 32d, thereby amplifying the pressure (water pressure) of the carbonated water S generated in the carbonated water generating portion 32 and increasing the pressure to stir the carbonated water S. A pressure-increasing stirring component 36 as a means is housed.

供給ライン側圧力センサ34を、炭酸水発生部32の構造体上又は外部に設けてもよい。ただし、供給ライン側圧力センサ34を水路31内に配設するのは好ましくない。圧力センサは一般的に流量センサに比べて小型であるものの、供給ライン側圧力センサ34の存在で流量損失又は圧力損失が起こる虞があるからである。供給ライン側圧力センサ34が早く消耗してしまう可能性もある。 The pressure sensor 34 on the supply line side may be provided on or outside the structure of the carbonated water generating portion 32. However, it is not preferable to dispose the pressure sensor 34 on the supply line side in the water channel 31. This is because the pressure sensor is generally smaller than the flow rate sensor, but the presence of the pressure sensor 34 on the supply line side may cause a flow rate loss or a pressure loss. There is a possibility that the pressure sensor 34 on the supply line side will be consumed quickly.

供給ライン側圧力センサ34は、そのセンス部位34aで、炭酸水Sの水流に対する吐出手段4の抵抗によって発生する圧力を計測する。センス部位34aでセンシングされた圧力(圧力計測値)は、装置本体1の制御基板15へ出力される。制御基板15は、制御部152における第3の機能として、供給ライン側圧力センサ34から出力された圧力計測値に基づいて、炭酸ガスGの炭酸水供給ライン3への吐出量を決定する。具体的には、原水Wへ混合する単位当たりの炭酸ガスG量を、圧力計測値に対応した所定量となるように、電磁弁15の開閉を制御する。なお、圧力計測値に対応する所定量は後述するように、制御基板15の記憶部151に予め記憶されている。 The pressure sensor 34 on the supply line side measures the pressure generated by the resistance of the discharge means 4 to the water flow of the carbonated water S at the sense portion 34a. The pressure (pressure measurement value) sensed at the sense portion 34a is output to the control board 15 of the apparatus main body 1. As a third function of the control unit 152, the control board 15 determines the discharge amount of the carbonic acid gas G to the carbonated water supply line 3 based on the pressure measurement value output from the pressure sensor 34 on the supply line side. Specifically, the opening and closing of the solenoid valve 15 is controlled so that the amount of carbon dioxide G per unit mixed with the raw water W becomes a predetermined amount corresponding to the pressure measurement value. The predetermined amount corresponding to the pressure measurement value is stored in advance in the storage unit 151 of the control board 15, as will be described later.

炭酸ガス供給管35は、センス部位34aが接続される第1孔部32aと出口部32dとの間の第2孔部32cに接続される。これにより、装置本体1から誘導されてきた炭酸ガスGは、流路31においてセンス部位34aよりも下流で原水Wと混合されることになる。また、炭酸水発生部32の入口部32aに逆止弁33が設けられている。このため、センス部位34aでセンシングされる圧力計測値は、炭酸水Sの水流に対する吐出手段4の抵抗によって発生するものを忠実に反映する値となる。炭酸ガス供給管35にも、その管中に逆止弁351が設けられ、これにより炭酸ガスGや水等が装置本体1に逆流することを防いでいる(図1参照)。 The carbon dioxide gas supply pipe 35 is connected to the second hole portion 32c between the first hole portion 32a and the outlet portion 32d to which the sense portion 34a is connected. As a result, the carbonic acid gas G induced from the apparatus main body 1 is mixed with the raw water W downstream of the sense portion 34a in the flow path 31. Further, a check valve 33 is provided at the inlet portion 32a of the carbonated water generating portion 32. Therefore, the pressure measurement value sensed at the sense portion 34a is a value that faithfully reflects what is generated by the resistance of the discharge means 4 to the water flow of the carbonated water S. The carbon dioxide gas supply pipe 35 is also provided with a check valve 351 in the pipe, thereby preventing the carbon dioxide gas G, water, and the like from flowing back into the apparatus main body 1 (see FIG. 1).

出口部32dに収容される増圧撹拌部品36は、出口部32dの開口のほとんどを覆って設けられ、原水Wと炭酸ガスGを混合して発生させた炭酸水Sが出口部32dを通過する際に、その圧力(水圧)を高める役割を果たす。増圧撹拌部品36は、例えば、公知のスタティックミキサーを採用することができる。特に、スタティックミキサーの表面に、凹凸が形成された形状のものを採用とすることが、この凹凸によって炭酸ガスGが撹拌され、炭酸ガスGをより良く溶解することができるので好ましい。増圧撹拌部品36により、発生した炭酸水Sに対する吐出手段4の実質的な圧力を増加又は増幅させた状態にし、この状態の圧力をセンス部位34aで圧力測定値として検知させることができる。このため、増圧撹拌部品36により、実際の圧力変化が僅かであっても、その変化を明確なものとして制御基板15で把握することができるので、炭酸水S中の炭酸ガスG濃度を上下させる等の制御を容易にすることができる。 The pressure-increasing stirring component 36 housed in the outlet portion 32d is provided so as to cover most of the opening of the outlet portion 32d, and the carbonated water S generated by mixing the raw water W and the carbon dioxide gas G passes through the outlet portion 32d. In some cases, it plays a role in increasing the pressure (water pressure). As the pressure-increasing stirring component 36, for example, a known static mixer can be adopted. In particular, it is preferable to adopt a static mixer having a shape in which irregularities are formed, because the carbonic acid gas G is agitated by the irregularities and the carbonic acid gas G can be better dissolved. The pressure-increasing agitation component 36 makes it possible to increase or amplify the substantial pressure of the discharge means 4 with respect to the generated carbonated water S, and to detect the pressure in this state as a pressure measurement value at the sense portion 34a. Therefore, even if the actual pressure change is slight, the pressure-increasing agitation component 36 can be grasped by the control board 15 as a clear change, so that the carbonic acid gas G concentration in the carbonated water S can be increased or decreased. It is possible to facilitate control such as making it.

炭酸水発生部32の出口部32dから排出された炭酸水Sが通る水路31の先端は、ボウルに設けたシャワーホース41に接続されている。シャワーホース41にシャワーヘッド42が連続しているので、このシャワーヘッド42から外部へ炭酸水Sが吐出される。このとき、吐出される炭酸水Sは、制御基板15の第1の機能、第2の機能及び第3の機能に基づいて制御された炭酸ガスGの濃度を有することになる。したがって、本発明に係る炭酸水生成装置Xでは、炭酸水発生部32において所望の濃度の炭酸ガスGを含む炭酸水Sを得ることができ、制御された炭酸ガスG濃度の炭酸水Sをシャワーヘッド42から外部へ吐出することができる。 The tip of the water channel 31 through which the carbonated water S discharged from the outlet portion 32d of the carbonated water generating portion 32 passes is connected to a shower hose 41 provided in the bowl. Since the shower head 42 is continuous with the shower hose 41, the carbonated water S is discharged from the shower head 42 to the outside. At this time, the discharged carbonated water S has a concentration of carbonic acid gas G controlled based on the first function, the second function, and the third function of the control board 15. Therefore, in the carbonated water generation device X according to the present invention, the carbonated water S containing the carbonated gas G having a desired concentration can be obtained in the carbonated water generating unit 32, and the carbonated water S having a controlled carbonic acid gas G concentration is showered. It can be discharged from the head 42 to the outside.

ここで、制御基板15における第1の機能、第2の機能及び第3の機能の関係性について簡単に説明する。まず、制御基板15の制御部152はフットスイッチ5によるオンのコマンドから、第1の機能によって、単位時間当たり一定量(例えば、本実施例で低濃度と称する一定量)の炭酸ガスGを炭酸水供給ライン3へ供給する。第2の機能によって、装置本体1のモード選択スイッチから選択されたモードに基づき、第1の機能を通じて供給しようとする単位時間当たりの炭酸ガスG量そのものを増減する処理を行う。例えば、低濃度が選択されれば増減せず、中濃度が選択されれば低濃度の2倍量とし、高濃度が選択されれば低濃度の3倍量とした炭酸ガスGを供給するように電磁弁16の開閉を制御し、その量の炭酸ガスGを炭酸水供給ライン3へ供給する。 Here, the relationship between the first function, the second function, and the third function in the control board 15 will be briefly described. First, the control unit 152 of the control board 15 carbonates a constant amount of carbon dioxide gas G per unit time (for example, a constant amount referred to as a low concentration in this embodiment) by the first function from the on command by the foot switch 5. Supply to the water supply line 3. The second function performs a process of increasing or decreasing the amount of carbonic acid gas G per unit time to be supplied through the first function based on the mode selected from the mode selection switch of the apparatus main body 1. For example, if a low concentration is selected, the amount does not increase or decrease, if a medium concentration is selected, the amount is twice the low concentration, and if a high concentration is selected, the amount is three times the low concentration. It controls the opening and closing of the electromagnetic valve 16 and supplies the amount of carbon dioxide gas G to the carbonated water supply line 3.

また、第3の機能によって、供給ライン側圧力センサ34が検知した圧力測定値に基づき、第2の機能で決定された単位時間当たりの炭酸ガスG量を調整する処理を行う。例えば、供給ライン側圧力センサ34が検知した圧力測定値が、所定圧以下であれば炭酸を供給しないように電磁弁16を制御する。供給ライン側圧力センサ34が検知した圧力測定値が所定圧以上、第二所定圧未満であれば第2の機能で決定された単位時間当たりの炭酸ガスG量に係数αを乗じた量の炭酸ガスGを供給するように電磁弁16を制御する。また、第二所定圧以上であれば第2の機能で決定された単位時間当たりの炭酸ガスG量に係数βを乗じた量の炭酸ガスGを供給するように電磁弁16を制御する。なお、係数α、βはいずれも正の数であって、α<βの関係が成立する。また、第三所定圧、第四所定圧等と炭酸ガスGを供給する量を変化させるべき臨界点となる圧力値を増やし、これらの圧力値を制御基板15に設定することも可能である。 Further, the third function performs a process of adjusting the amount of carbon dioxide G per unit time determined by the second function based on the pressure measurement value detected by the pressure sensor 34 on the supply line side. For example, if the pressure measurement value detected by the pressure sensor 34 on the supply line side is equal to or lower than a predetermined pressure, the solenoid valve 16 is controlled so as not to supply carbonic acid. If the pressure measurement value detected by the pressure sensor 34 on the supply line side is equal to or higher than the predetermined pressure and lower than the second predetermined pressure, the amount of carbon dioxide obtained by multiplying the amount of carbon dioxide G per unit time determined by the second function by the coefficient α is carbon dioxide. The electromagnetic valve 16 is controlled so as to supply the gas G. Further, if the pressure is equal to or higher than the second predetermined pressure, the solenoid valve 16 is controlled so as to supply the amount of carbon dioxide G obtained by multiplying the amount of carbon dioxide G per unit time determined by the second function by the coefficient β. The coefficients α and β are both positive numbers, and the relationship of α <β is established. Further, it is also possible to increase the pressure value which is a critical point at which the amount of carbon dioxide gas G supplied to the third predetermined pressure, the fourth predetermined pressure and the like should be changed, and set these pressure values on the control board 15.

以下、本実施形態において、炭酸水発生部32で原水Wへ混合する炭酸ガスG量を、供給ライン側圧力センサ34の圧力計測値に基づいて制御基板15で所定量に制御する仕組みに関し、図3及び図4に示したフローチャートに基づいて説明する。 Hereinafter, in the present embodiment, the present invention relates to a mechanism for controlling the amount of carbon dioxide gas G mixed with the raw water W by the carbonated water generating unit 32 to a predetermined amount by the control board 15 based on the pressure measurement value of the pressure sensor 34 on the supply line side. 3 and the flowchart shown in FIG. 4 will be described.

まず、図3に基づいて、制御基板15が炭酸水発生部32で原水Wへ混合する炭酸ガスG量を決定する制御フローに至る迄の制御基板15における条件設定について説明する。 First, based on FIG. 3, the condition setting in the control board 15 up to the control flow in which the control board 15 reaches the control flow for determining the amount of carbonic acid gas G mixed with the raw water W in the carbonated water generation unit 32 will be described.

図3に示すように、本発明に係る炭酸水生成装置Xに接続される吐出手段4であるシャワーホース41の固有の水流に対する抵抗値及びシャワーヘッド42の固有の水流に対する抵抗値を、制御基板15の記憶部151に入力し、記憶させる。本実施形態では、A種のシャワーホース(抵抗値:P1a)、B種のシャワーホース(抵抗値:P1b)、A種のシャワーヘッド(抵抗値:P2a)及びB種のシャワーヘッド(抵抗値:P2b)が用意されている。制御基板15では、これらの抵抗値に基づき、吐出手段4として合計4通りの圧力流量係数(N1、N2、N3、N4)が決定され、これらが記憶部151に記憶される。 As shown in FIG. 3, a control board is used to determine the resistance value of the shower hose 41, which is the discharge means 4 connected to the carbonated water generator X according to the present invention, to the unique water flow and the resistance value of the shower head 42 to the unique water flow. It is input to the storage unit 151 of 15 and stored. In this embodiment, a type A shower hose (resistance value: P1a), a type B shower hose (resistance value: P1b), a type A shower head (resistance value: P2a), and a type B shower head (resistance value: P1b). P2b) is prepared. In the control board 15, a total of four pressure flow coefficients (N1, N2, N3, N4) are determined as the discharge means 4 based on these resistance values, and these are stored in the storage unit 151.

圧力流量係数(N1~N4)は、制御基板15が供給する炭酸ガスGの量を調整するか否かを決定する基準である調整基準値となる。なお、図3及び図4中でPaとは、登録されたA種及びB種のシャワーホース41又はシャワーヘッド42に対し、単位時間当たりの流量がaL(リットル)であるときに、供給ライン側圧力センサ34がセンシングする圧力(圧力測定値)の圧力単位をいう。 The pressure flow coefficient (N1 to N4) is an adjustment reference value that is a standard for determining whether or not to adjust the amount of carbonic acid gas G supplied by the control board 15. In addition, in FIGS. 3 and 4, Pa means the supply line side when the flow rate per unit time is aL (liter) with respect to the registered shower hose 41 or shower head 42 of type A and type B. It refers to the pressure unit of the pressure (measured pressure value) sensed by the pressure sensor 34.

次に、炭酸水発生部32に供給ライン側圧力センサ34のセンス部位34aを配設し、固有の各抵抗値を記憶させたシャワーホース41及びシャワーヘッド42が備わるボウルに炭酸水生成装置Xを接続する。制御基板15のゼロ点調整等の前処理を行った上で、制御基板15の制御部152において以下の処理を行う。 Next, the carbonated water generator X is placed in a bowl provided with a shower hose 41 and a shower head 42 in which a sense portion 34a of the pressure sensor 34 on the supply line side is arranged in the carbonated water generation unit 32 and each unique resistance value is stored. Connecting. After performing preprocessing such as zero point adjustment of the control board 15, the control unit 152 of the control board 15 performs the following processing.

制御部152は、ステップ1(S1)として、接続されたシャワーホース41及びシャワーヘッド42が登録されたものかどうかを判断する。ステップ1がYESの場合、ステップ2(S2)としてシャワーホースがA種かつシャワーヘッドがA種であるかどうかを判断する。 As step 1 (S1), the control unit 152 determines whether or not the connected shower hose 41 and shower head 42 are registered. If YES in step 1, it is determined in step 2 (S2) whether the shower hose is of type A and the shower head is of type A.

ステップ2がYESの場合、調整基準値としてN1を記憶部151から出力し、N1に基づいて炭酸ガスG量を決定する制御フロー(図4)に進む。 If the step 2 is YES, N1 is output from the storage unit 151 as an adjustment reference value, and the process proceeds to a control flow (FIG. 4) for determining the amount of carbon dioxide gas G based on N1.

ステップ2がNOの場合、ステップ3(S3)としてシャワーホースがA種かつシャワーヘッドがB種であるかどうかを判断し、YESの場合、調整基準値としてN2を記憶部151から出力し、N2に基づいて炭酸ガスG量を決定する制御フロー(図4)に進む。 If step 2 is NO, it is determined in step 3 (S3) whether the shower hose is class A and the shower head is class B, and if YES, N2 is output from the storage unit 151 as an adjustment reference value and N2. The process proceeds to a control flow (FIG. 4) for determining the amount of carbon dioxide G based on the above.

ステップ3がNOの場合、ステップ4(S4)としてシャワーホースがB種かつシャワーヘッドがA種であるかどうかを判断し、YESの場合、調整基準値としてN3を記憶部151から出力し、N3に基づいて炭酸ガスG量を決定する制御フロー(図4)に進む。 If step 3 is NO, it is determined in step 4 (S4) whether the shower hose is class B and the shower head is class A, and if YES, N3 is output from the storage unit 151 as an adjustment reference value and N3. The process proceeds to a control flow (FIG. 4) for determining the amount of carbon dioxide G based on the above.

ステップ4がNOの場合、シャワーホースがB種かつシャワーヘッドがB種であるので調整基準圧力値としてN4を記憶部151から出力し、N4に基づいて炭酸ガスG量を決定する制御フロー(図4)に進む。 When step 4 is NO, since the shower hose is type B and the shower head is type B, N4 is output from the storage unit 151 as the adjustment reference pressure value, and the control flow for determining the amount of carbon dioxide gas G based on N4 (FIG. Proceed to 4).

また、ステップ1がNOの場合、制御部152には、炭酸水生成装置Xの組立時に予め設定した調整基準値(例えば、組立時にシャワーから吐出される流量等を計測し、シャワーヘッド及びシャワーホースの抵抗値をもとに設定した係数)であって、記憶部151に記憶されているNn(図3において、ステップ1がNOの場合、例えば、原水Wの流量は任意の定数nであり、このときに現れる圧力単位をkPnとする。)を記憶部151から出力し、Nnに基づいて炭酸ガスG量を決定する制御フローに進む。この場合において制御部152は、例えば、供給ライン側圧力センサ34が計測する圧力計測値が、Nnに定数xを乗じて得られるXkPn以下であれば、炭酸を供給しないと決定する。供給ライン側圧力センサ34が計測する圧力計測値が、XkPnより高く、Nnに他の定数yを乗じて得られるYkPn以下であれば、所定の第1炭酸量を供給すると決定する。YkPnより高ければ、所定の第2炭酸量を供給すると決定する。炭酸水生成装置Xは、これらの決定に基づいて電磁弁16を開閉する。なお、定数x、yはいずれも正の数であって、x<yの関係が成立する。YはXよりも大きい値であり、したがって、第1炭酸量より第2炭酸量の方が供給量は多くなる。 When step 1 is NO, the control unit 152 measures the adjustment reference value (for example, the flow rate discharged from the shower at the time of assembly) preset at the time of assembling the carbonated water generator X, and measures the shower head and the shower hose. Nn stored in the storage unit 151 (when step 1 is NO in FIG. 3, for example, the flow rate of the raw water W is an arbitrary constant n), which is a coefficient set based on the resistance value of. The pressure unit appearing at this time is kPn) is output from the storage unit 151, and the process proceeds to a control flow for determining the amount of carbon dioxide gas G based on Nn. In this case, the control unit 152 determines that carbonic acid is not supplied if, for example, the pressure measurement value measured by the pressure sensor 34 on the supply line side is XkPn or less obtained by multiplying Nn by a constant x. If the pressure measurement value measured by the pressure sensor 34 on the supply line side is higher than XkPn and is YkPn or less obtained by multiplying Nn by another constant y, it is determined to supply a predetermined first carbonic acid amount. If it is higher than YkPn, it is determined to supply a predetermined amount of secondary carbonic acid. The carbonated water generator X opens and closes the solenoid valve 16 based on these decisions. The constants x and y are both positive numbers, and the relationship of x <y is established. Y is a value larger than X, and therefore, the supply amount of the second carbonic acid amount is larger than that of the first carbonic acid amount.

次に、N1~N4が記憶部151から出力されて制御部152に入力され、N1~N4に基づいて炭酸ガスG量を決定する制御フローについて図4に基づいて説明する。 Next, a control flow in which N1 to N4 are output from the storage unit 151 and input to the control unit 152 and the amount of carbonic acid gas G is determined based on N1 to N4 will be described with reference to FIG.

まず、制御部152では、N1~N4のうち1つ(例えば、N1)が設定される一方、実際に供給ライン側圧力センサ34によって圧力が計測され、その圧力測定値が出力されてくる。その上で、制御部152は、ステップ5(S5)として第2の機能によってモード選択スイッチから選択されたモードに従う処理(高濃度か、低濃度かの選択)を行う。 First, in the control unit 152, one of N1 to N4 (for example, N1) is set, while the pressure is actually measured by the pressure sensor 34 on the supply line side, and the pressure measurement value is output. Then, the control unit 152 performs a process (selection of high density or low density) according to the mode selected from the mode selection switch by the second function as step 5 (S5).

高濃度が選択された場合、制御部152にN1が設定されたと仮定する例において、制御部152は、供給ライン側圧力センサ34が計測する圧力計測値が、N1に定数xを乗じて得られるSkPa以下であれば、炭酸を供給しないと決定する。供給ライン側圧力センサ34が計測する圧力計測値が、SkPより高く、N1に他の定数yを乗じて得られるTkP以下であれば、所定の第3炭酸量を供給すると決定する。TkPより高ければ、所定の第4炭酸量を供給すると決定する。炭酸水生成装置Xは、これらの決定に基づいて電磁弁16を開閉する。なお、定数x、yはいずれも正の数であって、x<yの関係が成立する。TはSよりも大きい値であり、したがって、第3炭酸量より第4炭酸量の方が供給量は多くなる。 In the example assuming that N1 is set in the control unit 152 when a high concentration is selected, the control unit 152 obtains the pressure measurement value measured by the pressure sensor 34 on the supply line side by multiplying N1 by a constant x. If it is SkPa or less, it is determined not to supply carbonic acid. If the pressure measurement value measured by the pressure sensor 34 on the supply line side is higher than SkP a and is TkP a or less obtained by multiplying N1 by another constant y, it is determined to supply a predetermined tertiary carbonic acid amount. If it is higher than TkP a , it is determined to supply a predetermined amount of tetracarbonate. The carbonated water generator X opens and closes the solenoid valve 16 based on these decisions. The constants x and y are both positive numbers, and the relationship of x <y is established. T is a value larger than S, and therefore, the supply amount of the fourth carbonic acid amount is larger than that of the third carbonic acid amount.

また、低濃度が選択された場合、制御部152にN1が設定されたと仮定する例において、制御部152は、供給ライン側圧力センサ34が計測する圧力計測値が、N1に定数xを乗じて得られるSkPa以下であれば、炭酸を供給しないと決定する。供給ライン側圧力センサ34が計測する圧力計測値が、SkPより高く、N1に他の定数yを乗じて得られるTkP以下であれば、所定の第5炭酸量を供給すると決定する。TkPより高ければ、所定の第6炭酸量を供給すると決定する。炭酸水生成装置Xは、これらの決定に基づいて電磁弁16が開閉する。なお、定数x、yはいずれも正の数であって、x<yの関係が成立する。TはSよりも大きい値であり、したがって、第5炭酸量より第6炭酸量の方が供給量は多くなる。また、第6炭酸量よりも第3炭酸量の方が供給量は多い。 Further, in the example assuming that N1 is set in the control unit 152 when a low concentration is selected, in the control unit 152, the pressure measurement value measured by the pressure sensor 34 on the supply line side is N1 multiplied by a constant x. If it is less than or equal to the obtained SkPa, it is determined not to supply carbonic acid. If the pressure measurement value measured by the pressure sensor 34 on the supply line side is higher than SkP a and is TkP a or less obtained by multiplying N1 by another constant y, it is determined to supply a predetermined fifth carbonic acid amount. If it is higher than TkP a , it is determined to supply a predetermined amount of sixth carbonic acid. In the carbonated water generator X, the solenoid valve 16 opens and closes based on these determinations. The constants x and y are both positive numbers, and the relationship of x <y is established. T is a value larger than S, and therefore, the supply amount of the sixth carbonic acid amount is larger than that of the fifth carbonic acid amount. In addition, the supply amount of the third carbonic acid amount is larger than that of the sixth carbonic acid amount.

N2、N3、N4が制御部152に設定される例においても、同様な処理がなされ、これらの決定に基づいて電磁弁16が開閉し、炭酸ガスG量の調整が行われる。すなわち、本発明では、制御基板15が炭酸ガスGの量を調整するか否かを決定する基準となる調整基準値(N1~N4)を予め入力可能としたことで、この調整基準値を基準に、炭酸水S中の炭酸ガスG濃度の制御をより正確かつ柔軟に行うことができることが分かる。さらに、制御基板15に複数のモードが記憶され、このモードのうち1つが選択されることによっても、炭酸水S中の炭酸ガスG濃度を変化させることができる。これにより、例えば、高濃度モード、中濃度モード、低濃度モードといった炭酸水S中の炭酸ガスG濃度の大凡の設定を予め行い、その上で圧力計測値に基づいた炭酸ガスG濃度が制御でき、様々な用途において適切な炭酸ガスG濃度の炭酸水Sを提供することができる。 In the example in which N2, N3, and N4 are set in the control unit 152, the same processing is performed, the solenoid valve 16 is opened and closed based on these determinations, and the amount of carbon dioxide gas G is adjusted. That is, in the present invention, the adjustment reference value (N1 to N4), which is a reference for determining whether or not the control board 15 adjusts the amount of carbon dioxide gas G, can be input in advance, and the adjustment reference value is used as a reference. In addition, it can be seen that the carbon dioxide gas G concentration in the carbonated water S can be controlled more accurately and flexibly. Further, a plurality of modes are stored in the control board 15, and by selecting one of these modes, the carbon dioxide gas G concentration in the carbonated water S can be changed. Thereby, for example, the carbon dioxide G concentration in the carbonated water S such as the high concentration mode, the medium concentration mode, and the low concentration mode can be roughly set in advance, and then the carbon dioxide G concentration based on the pressure measurement value can be controlled. , It is possible to provide carbonated water S having an appropriate carbon dioxide gas G concentration in various uses.

なお、上記実施形態では、制御基板15が供給する炭酸ガスGの量を調整するか否かを決定する基準である調整基準値としての圧力流量係数(N1~N4、Nn)を予め記憶部151に記憶させた例を説明した。しかしながら、本発明では、圧力流量係数(N)を制御基板15へ実際に手動で入力し、これに基づいて炭酸水S中の炭酸ガスG濃度を制御しながら炭酸水生成を実施することも当然に可能である。また、シャワーホース、シャワーヘッドの抵抗値も制御基板15へ実際に手動で入力することができる。 In the above embodiment, the pressure flow coefficient (N1 to N4, Nn) as an adjustment reference value, which is a standard for determining whether or not to adjust the amount of carbonic acid gas G supplied by the control substrate 15, is stored in advance in the storage unit 151. I explained an example that was memorized in. However, in the present invention, it is natural that the pressure flow coefficient (N) is actually manually input to the control board 15 and the carbonated water generation is performed while controlling the carbon dioxide gas G concentration in the carbonated water S based on the pressure flow coefficient (N). Is possible. Further, the resistance values of the shower hose and the shower head can also be actually manually input to the control board 15.

以上、本発明の一実施形態を例示して説明したが、本発明は、特許請求の範囲に記載された事項を逸脱することがなければ、種々の設計変更を行うことが可能である。例えば、上述したように、本発明に係る炭酸水生成装置は、圧力センサに関し、そのセンス部が炭酸水発生部において、水流に対する吐出手段の抵抗によって発生する圧力をセンシング可能である構成であれば、本体部を装置外に設けることができる。上記実施形態では、モード選択スイッチを装置本体に備える構成を例示したが、これに限定されず、例えば、フットスイッチにモード選択スイッチを備えさせることができる。また、増圧手段はあくまで、吐出手段に基づく圧力が微小な場合に求められる手段であって、本発明において必須となる構成ではないことに留意すべきである。そして、増圧手段を採用する場合には、炭酸ガスGの十分な撹拌が得られる限り、多種多様な形状を取り得る可能性がある。増圧手段の形状を検討する際には、流量損失等を最小限にとどめることを考慮することによって好ましい効果を得ることができる。 Although one embodiment of the present invention has been described above as an example, the present invention can be modified in various ways as long as it does not deviate from the matters described in the claims. For example, as described above, the carbonated water generator according to the present invention has a configuration in which the sense portion of the pressure sensor can sense the pressure generated by the resistance of the discharge means to the water flow in the carbonated water generating portion. , The main body can be provided outside the device. In the above embodiment, the configuration in which the mode selection switch is provided in the main body of the apparatus is illustrated, but the present invention is not limited to this, and for example, the foot switch may be provided with the mode selection switch. Further, it should be noted that the pressure increasing means is a means required when the pressure based on the discharging means is very small, and is not an essential configuration in the present invention. When the pressure increasing means is adopted, there is a possibility that a wide variety of shapes can be taken as long as sufficient stirring of the carbon dioxide gas G can be obtained. When examining the shape of the pressure increasing means, a preferable effect can be obtained by considering keeping the flow rate loss or the like to a minimum.

例えば、増圧手段の形状に関し、以下のような構造のスタティックミキサーを採用することが、炭酸水供給ライン内の水流に対する吐出手段の抵抗によって発生する圧力の増幅において好ましい。すなわち、炭酸水供給ラインに、その同心状に炭酸水供給ラインの流路より大径なスタティックミキサー本体を配設する。スタティックミキサー本体は、本体筒状部と、その端部に取り付けられる流入口を有した流入口側端面部と、流出口を有した流出口側端面部とから構成される。そして、ミキサー本体内に、その流入口の径以上の径の開口を有した衝突筒体を、その開口側を流入口側に向けて固定して収納し、上記衝突筒体の底面部の内側部位、流出口側端面部の内面部位、衝突筒体の筒体部の内周面部位、ミキサー本体筒部の内周面部位等に多数の凹部を配設する構造とする。 For example, regarding the shape of the pressure increasing means, it is preferable to adopt a static mixer having the following structure in the amplification of the pressure generated by the resistance of the discharging means to the water flow in the carbonated water supply line. That is, in the carbonated water supply line, a static mixer main body having a diameter larger than that of the flow path of the carbonated water supply line is arranged concentrically with the carbonated water supply line. The static mixer main body is composed of a main body cylindrical portion, an inlet side end face portion having an inlet attached to the end portion thereof, and an outlet side end face portion having an outlet. Then, a collision cylinder having an opening having a diameter equal to or larger than the diameter of the inflow port is fixedly stored in the mixer main body with the opening side facing the inflow port side, and the inside of the bottom surface portion of the collision cylinder. The structure is such that a large number of recesses are arranged in a portion, an inner surface portion of the end surface portion on the outlet side, an inner peripheral surface portion of the cylinder portion of the collision cylinder, an inner peripheral surface portion of the cylinder portion of the mixer body, and the like.

この構造により、流入口よりミキサー本体内に流入した流体は、衝突筒体内に流入して、その底面に衝突し、流れの方向を反転させて乱流となるので、衝突筒体の底部付近に大きな渦流が発生する。また、ミキサー本体が流体流路より大径であるので、ミキサー本体内で流体が減圧され、底面に衝突して方向を転換した流れを引き戻すため、流入口付近で順次進入してくる流体と、逆流してくる流体とが衝突して激しく撹拌・混合される。さらに、衝突筒体の底面内側部位、流入口側端面中空盤部の内面部位、流出口側端面中空盤部の内面部位、衝突筒体の筒体部の内周面部位、ミキサー本体筒部の内周面部位等の凹部に流体が衝突することで、多数の小さな渦流が発生して流体を撹拌・混合し、全体的にも大きな渦流が発生して撹拌・混合し、流体の流れをより複雑に乱す。これらを通じ、吐出手段から発生する圧力を効果的に増幅させることができる。 Due to this structure, the fluid that has flowed into the mixer body from the inflow port flows into the collision cylinder, collides with the bottom surface, reverses the direction of flow, and becomes a turbulent flow. A large vortex is generated. In addition, since the mixer body has a larger diameter than the fluid flow path, the fluid is decompressed in the mixer body, and the fluid that collides with the bottom surface and changes direction is pulled back, so that the fluid that enters sequentially near the inflow port and the fluid that enters sequentially. It collides with the backflowing fluid and is vigorously agitated and mixed. Further, the inner surface portion of the bottom surface of the collision cylinder, the inner surface portion of the inflow port side end surface hollow plate portion, the inner surface portion of the outlet side end surface hollow plate portion, the inner peripheral surface portion of the collision cylinder portion cylinder portion, and the mixer body cylinder portion. When the fluid collides with the recesses such as the inner peripheral surface, a large number of small vortices are generated to stir and mix the fluid, and a large vortex is generated as a whole to stir and mix, and the fluid flow is further increased. Disturb in a complicated way. Through these, the pressure generated from the discharge means can be effectively amplified.

このほか、図示を省略したが、上述のステップ1がNOの場合に実行される調整基準値(圧力流量係数:Nn)を用いた制御フローにおいても、モード選択スイッチにより高濃度又は低濃度又は中濃度を選択した上で、供給する所定の炭酸量を決定するためのフローを進めることが可能である。 In addition, although not shown, even in the control flow using the adjustment reference value (pressure flow coefficient: Nn) executed when the above step 1 is NO, the concentration is high, low, or medium depending on the mode selection switch. After selecting the concentration, it is possible to proceed with the flow for determining the predetermined amount of carbon dioxide to be supplied.

X・・・炭酸水生成装置
1・・・装置本体
11・・ボンベ(炭酸ガス供給源)
12・・レギュレータ
13・・ガス路
14・・本体側圧力センサ
15・・制御基板(炭酸量調整部)
151・記憶部
152・制御部
16・・電磁弁
17・・オリフィス
2・・・給湯装置(給水源)
3・・・炭酸水供給ライン
31・・水路
31a・止水栓
32・・炭酸水発生部
32a・入り口部
32b・第1孔部
32c・第2孔部
32d・出口部
33・・逆止弁
34・・供給ライン側圧力センサ
34a・センス部位
35・・炭酸ガス供給管
351・逆止弁
36・・増圧撹拌部品(増圧手段)
4・・・吐出手段
41・・シャワーホース
42・・シャワーヘッド
5・・・フットスイッチ
W・・・原水
G・・・炭酸ガス
S・・・炭酸水
X ... Carbonated water generator 1 ... Device body 11 ... Cylinder (carbon dioxide gas supply source)
12 ・ ・ Regulator 13 ・ ・ Gas path 14 ・ ・ Main body side pressure sensor 15 ・ ・ Control board (carbonic acid amount adjustment part)
151 ・ Storage unit 152 ・ Control unit 16 ・ ・ Solenoid valve 17 ・ ・ Orifice 2 ・ ・ ・ Hot water supply device (water supply source)
3 ・ ・ ・ Carbonated water supply line 31 ・ ・ Water channel 31a ・ Water stop valve 32 ・ ・ Carbonated water generation part 32a ・ Inlet part 32b ・ First hole part 32c ・ Second hole part 32d ・ Outlet part 33 ・ ・ Check valve 34 ・ ・ Supply line side pressure sensor 34a ・ Sense part 35 ・ ・ Carbonated gas supply pipe 351 ・ Check valve 36 ・ ・ Pressure boosting stirring parts (pressure boosting means)
4 ... Discharge means 41 ... Shower hose 42 ... Shower head 5 ... Foot switch W ... Raw water G ... Carbon dioxide gas S ... Carbonated water

Claims (6)

炭酸ガス供給源と、
一方が給水源に接続され、他方の先端に吐出手段を有する炭酸水供給ラインと、
この炭酸水供給ラインの炭酸水発生部内に設けられたセンス部位で、水流に対する前記吐出手段の抵抗によって発生する圧力を圧力計測値として計測する圧力センサと、
前記炭酸ガス供給源から前記炭酸水発生部へ供給する炭酸ガスの量を調整する炭酸量調整部と、
を備え、
炭酸水が前記吐出手段から吐出している最中に変化した前記圧力計測値に応じて、前記炭酸ガスの量が、前記圧力計測値と予め定めた前記吐出手段の抵抗に基づく値とによって自動的に変化し、炭酸水が濃度制御される、
ことを特徴とする炭酸水生成装置。
Carbon dioxide source and
A carbonated water supply line, one connected to a water source and having a discharge means at the other end,
A pressure sensor that measures the pressure generated by the resistance of the discharge means to the water flow as a pressure measurement value at the sense portion provided in the carbonated water generation section of the carbonated water supply line.
A carbon dioxide amount adjusting unit that adjusts the amount of carbon dioxide gas supplied from the carbon dioxide gas supply source to the carbonated water generating unit, and
Equipped with
The amount of the carbon dioxide gas is automatically adjusted according to the pressure measurement value changed while the carbonated water is being discharged from the discharge means by the pressure measurement value and a predetermined value based on the resistance of the discharge means. The concentration of carbonated water is controlled .
A carbonated water generator characterized by that.
前記圧力を増圧する増圧手段を備える、
ことを特徴とする請求項1に記載の炭酸水生成装置。
A pressure increasing means for increasing the pressure is provided.
The carbonated water generator according to claim 1.
前記増圧手段の表面に凹凸が形成され、この凹凸によって前記炭酸ガスが撹拌される、
ことを特徴とする請求項2に記載の炭酸水生成装置。
Unevenness is formed on the surface of the pressure increasing means, and the carbon dioxide gas is agitated by the unevenness.
The carbonated water generator according to claim 2.
前記炭酸水供給ラインにおける前記センス部位よりも前記給水源側に、逆止弁が設けられている、
ことを特徴とする請求項1から請求項3までの何れか1項に記載の炭酸水生成装置。
A check valve is provided on the water supply source side of the sense portion in the carbonated water supply line.
The carbonated water generator according to any one of claims 1 to 3, wherein the carbonated water generator is characterized by the above.
前記炭酸水供給ラインにおける前記逆止弁と前記吐出手段との間に、前記炭酸ガスを供給する炭酸ガス供給管が接続されている、
ことを特徴とする請求項4に記載の炭酸水生成装置。
A carbon dioxide gas supply pipe for supplying the carbon dioxide gas is connected between the check valve and the discharge means in the carbonated water supply line.
The carbonated water generator according to claim 4.
前記給水源から前記炭酸水発生部までの間に止水栓が設けられ、この止水栓が閉まることで、前記圧力計測値が所定値以下となり、自動的に炭酸ガスの供給が止まる、
ことを特徴とする請求項1から請求項5までの何れか1項に記載の炭酸水生成装置。
A water stop valve is provided between the water supply source and the carbonated water generating portion, and when the water stop valve is closed, the pressure measurement value becomes a predetermined value or less, and the supply of carbon dioxide gas is automatically stopped. ,
The carbonated water generator according to any one of claims 1 to 5, wherein the carbonated water generator is characterized by the above.
JP2015080937A 2015-04-10 2015-04-10 Carbonated water generator Active JP6993626B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015080937A JP6993626B2 (en) 2015-04-10 2015-04-10 Carbonated water generator
TW105109726A TWI694859B (en) 2015-04-10 2016-03-28 Carbonated water generator
KR1020160040941A KR20160121412A (en) 2015-04-10 2016-04-04 Apparatus for generating carbonated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015080937A JP6993626B2 (en) 2015-04-10 2015-04-10 Carbonated water generator

Publications (2)

Publication Number Publication Date
JP2016198726A JP2016198726A (en) 2016-12-01
JP6993626B2 true JP6993626B2 (en) 2022-01-13

Family

ID=57250900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015080937A Active JP6993626B2 (en) 2015-04-10 2015-04-10 Carbonated water generator

Country Status (3)

Country Link
JP (1) JP6993626B2 (en)
KR (1) KR20160121412A (en)
TW (1) TWI694859B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112237376B (en) * 2019-07-17 2022-10-21 佛山市美的清湖净水设备有限公司 Bubble water preparation device, control method and device, water dispenser and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117364A (en) 2001-10-19 2003-04-22 Mitsubishi Heavy Ind Ltd Apparatus and method of dissolving gas in liquid and method of manufacturing gas-dissolved liquid
JP2005137452A (en) 2003-11-04 2005-06-02 Shimadzu Corp Artificial carbonated spring manufacturing apparatus
JP2013529130A (en) 2010-05-03 2013-07-18 アパイク インコーポレイテッド Method of solubilizing carbon dioxide in water using high energy collisions
JP2014237084A (en) 2013-06-07 2014-12-18 タカラベルモント株式会社 Soda water discharge device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293342A (en) 2000-04-18 2001-10-23 Mitsubishi Rayon Eng Co Ltd Device and process for carbonated water
CN102036742B (en) * 2008-05-19 2015-02-11 恩特格里公司 Gasification systems and methods for making bubble free solutions of gas in liquid
JP5686296B2 (en) * 2011-10-21 2015-03-18 タカラベルモント株式会社 Carbonated water discharge device
JP5594541B2 (en) * 2012-02-09 2014-09-24 Smc株式会社 Pressure detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117364A (en) 2001-10-19 2003-04-22 Mitsubishi Heavy Ind Ltd Apparatus and method of dissolving gas in liquid and method of manufacturing gas-dissolved liquid
JP2005137452A (en) 2003-11-04 2005-06-02 Shimadzu Corp Artificial carbonated spring manufacturing apparatus
JP2013529130A (en) 2010-05-03 2013-07-18 アパイク インコーポレイテッド Method of solubilizing carbon dioxide in water using high energy collisions
JP2014237084A (en) 2013-06-07 2014-12-18 タカラベルモント株式会社 Soda water discharge device

Also Published As

Publication number Publication date
KR20160121412A (en) 2016-10-19
JP2016198726A (en) 2016-12-01
TW201636094A (en) 2016-10-16
TWI694859B (en) 2020-06-01

Similar Documents

Publication Publication Date Title
US7810988B2 (en) Fluid mixer for mixing fluids at an accurate mixing ratio
JP4197648B2 (en) Pulse shot type flow control device and pulse shot type flow control method
US6695281B2 (en) Water flow control device incorporating water limiting valve
JP2006506608A5 (en)
KR20050053660A (en) Valve for prevention of low flow rates through flow meter
JP7027151B2 (en) Concentration control device, gas control system, film formation device, concentration control method, and program for concentration control device
JP6993626B2 (en) Carbonated water generator
IT201900012693A1 (en) DEVICE AND PROCEDURE FOR THE PREPARATION OF FOAMED MILK
JP6300221B2 (en) Carbonated water discharge device
JP2010223839A (en) Bubble injection device used in doppler type ultrasonic flow rate measuring apparatus
JP4288643B2 (en) Fixed stop valve device
JP2004057873A (en) Mixing apparatus
CN113587429A (en) Water heater with micro-nano bubble water generating device and control method thereof
US3528281A (en) Pulp stock consistency regulator
KR101749949B1 (en) Mass Flow Controller Having a Hole Making Flows to Bypass Valve
JP2008139254A (en) Flow measuring device and flow controlling device
JPH04122227A (en) Shower device
JP3338574B2 (en) Flowmeter
KR20180023594A (en) Instance water heating device and bidet having the same
JP3530645B2 (en) Flow meter structure
JP2003329211A (en) Steam desuperheater
JP6389361B2 (en) Faucet device
JPH0933107A (en) Measuring method for remaining amount of bath water
TWM599380U (en) Control structure of constant temperature water mixing valve for electric water heater without water flow switch
JP2003329213A (en) Steam desuperheater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200602

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210511

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210713

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211005

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211109

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211124

R150 Certificate of patent or registration of utility model

Ref document number: 6993626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150