JP2003329211A - Steam desuperheater - Google Patents

Steam desuperheater

Info

Publication number
JP2003329211A
JP2003329211A JP2002139556A JP2002139556A JP2003329211A JP 2003329211 A JP2003329211 A JP 2003329211A JP 2002139556 A JP2002139556 A JP 2002139556A JP 2002139556 A JP2002139556 A JP 2002139556A JP 2003329211 A JP2003329211 A JP 2003329211A
Authority
JP
Japan
Prior art keywords
steam
cooling fluid
passage
vortex generator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002139556A
Other languages
Japanese (ja)
Inventor
Hidenori Kubo
窪  英範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP2002139556A priority Critical patent/JP2003329211A/en
Publication of JP2003329211A publication Critical patent/JP2003329211A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam desuperheater capable of reducing a required installation space. <P>SOLUTION: A cooling water supply part 3 and a vortex generator 2 are integrally disposed in a central part of a steam passage 1. The water supply part 3 on the upstream side is provided with a plurality of injection nozzles 6. The injection nozzles 6 and a cooling water pipe 8 are communicated by a cooling water passage 7. The water pipe 8 is installed with automatic control valves 12, 13, 14 each allowing arbitrary adjustment of a valve opening. The triangle pole-shaped vortex generator 2 houses a piezoelectric element as a vortex detection means. The piezoelectric element and the control valves 12, 13, 14 are respectively electrically connected to a control part 4. A cooling water is supplied from the nozzles 6 to steam flowing down through the steam passage 1 to reduce a temperature to a prescribed temperature, and a Karman vortex is generated by the vortex generator 2 and is detected. Thereby, a steam flow rate flowing down through the passage 1 is measured. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、高圧高温状態の
蒸気を、所定の温度例えば飽和温度まで減温することの
できる蒸気減温装置に関する。 【0002】 【従来の技術】従来の蒸気減温装置としては例えば特開
昭62−141407号公報に示されているものが用い
られていた。これは、過熱蒸気配管に圧力調節弁と圧力
検出器と蒸気流量検出器と温度検出器、及び、過熱蒸気
中へ供給する水流量検出器をそれぞれ取り付けて、過熱
蒸気の圧力を検出して圧力調節弁を調節すると共に、過
熱蒸気の流量と温度を検出して水流量検出器から所定量
の水を過熱蒸気中へ供給することによって、過熱蒸気を
飽和温度の蒸気へ減温することができるものである。 【0003】 【発明が解決しようとする課題】上記従来の蒸気減温装
置では、過熱蒸気中へ冷却水を供給する部分とは別個に
蒸気流量検出器を取り付けなければならず、設置のため
の所要スペースが大きくなってしまう問題があった。 【0004】従って、本発明の課題は、冷却水供給部と
蒸気流量検出器とを一体化することにより、所要設置ス
ペースを小さくすることのできる蒸気減温装置を得るこ
とである。 【0005】 【課題を解決するための手段】上記の課題を解決するた
めに講じた本発明の手段は、蒸気通路を流下する高圧高
温蒸気の流量に基づいて冷却流体を供給し、当該高圧高
温蒸気を所定温度状態の蒸気へ減温するものにおいて、
蒸気通路中に当該通路を流下する蒸気量に応じたカルマ
ン渦を発生して検出する渦発生体を取り付け、当該渦発
生体とほぼ一体に蒸気通路中へ冷却流体を供給する冷却
流体供給部を複数設けると共に、渦発生体で検出した渦
数に応じて、複数の冷却流体供給部から冷却流体の供給
停止を制御する制御部を設けたものである。 【0006】 【発明の実施の形態】カルマン渦を検出して流量を測定
する渦式流量計は各種産業分野で幅広く使用されてい
る。渦式流量計の概要は、流れの中に置かれた渦発生体
の下流側に規則的に発生するカルマン渦の発生数から流
体の流速を求め、これに通路の断面積を乗じて流量を求
めるものである。 【0007】カルマン渦を発生する渦発生体とほぼ一体
に設けた冷却流体供給部から、蒸気通路中へ冷却流体を
供給することによって、高温高圧状態の蒸気は所定温度
まで減温されると共に、カルマン渦の発生数から通路を
流下する蒸気流量を検出することもできる。 【0008】渦発生体で検出した渦数に応じて、複数の
冷却流体供給部から冷却流体の供給停止を制御する制御
部を設けたことにより、渦数が多く通過蒸気量が多い場
合は数多くの冷却流体供給部から多量の冷却流体を噴射
し、反対に渦数が少なく通過蒸気量が少ない場合は少量
の冷却流体を噴射して、蒸気温度を所望値まで精度良く
減温することができる。 【0009】 【実施例】図1において、高圧高温の蒸気が流下する円
筒状の蒸気通路1と、この通路1を貫通して取り付けた
三角柱状の渦発生体2と、渦発生体2と一体に設けた冷
却流体供給部3、及び、検出したカルマン渦数から蒸気
流量を演算したり表示すると共に、複数の冷却流体供給
部3の供給停止を制御する制御部4とで蒸気減温装置を
構成する。 【0010】高圧高温状態の蒸気が通路1を左側から右
側へ流下する間に冷却流体供給部3から冷却流体を噴射
混合されて減温し、また、渦発生体2で流量に応じたカ
ルマン渦が発生し検出されて制御部4で通過蒸気流量が
演算される。 【0011】図1におけるA−A線断面の拡大図を図2
に示す。図2に示すように、蒸気通路1の中央部の上流
側に冷却流体供給部3を、下流側に渦発生体2を配置す
る。冷却流体供給部3は、半円筒状でその底面部を渦発
生体2の平面部5に固着して取り付け、半円筒状部に複
数のノズル6を放射状に設ける。冷却流体供給部3とノ
ズル6は、蒸気通路1の上下に渡り上段部と中段部と下
段部とに複数段配置する。 【0012】半円筒状部と渦発生体2の平面部5との間
に冷却流体通路7を設ける。冷却流体通路7は、蒸気通
路1を貫通して図1に示す上方の冷却流体管8と接続す
る。冷却流体管8には、制御部4と電気接続された自動
調節弁12,13,14をそれぞれ取り付ける。自動調
節弁12の出口側は上段部の冷却流体供給部3と接続
し、自動調節弁13の出口側は中段部の冷却流体供給部
3と接続し、また、自動調節弁14の出口側は下段部の
冷却流体供給部3と接続する。冷却流体管8から自動調
節弁12,13,14を介して冷却流体通路7へ供給さ
れた冷却流体、例えば冷却水が、複数のノズル6から通
路1を流下する蒸気中に噴射噴霧されることにより、蒸
気を減温する。 【0013】渦発生体2は図2に示すように三角柱状
で、平面部5の両端のエッジ部10,11で流量に比例
したカルマン渦を交互に発生させる。発生したカルマン
渦は発生体2内部に配置した圧電素子で検出され、制御
部4へ送られて流量換算される。 【0014】制御部4で換算された蒸気流量に応じて、
自動調節弁12,13,14の開閉弁あるいは弁開度を
制御することによって、通過蒸気量が多い場合は多量の
冷却流体を噴射し、反対に通過蒸気量が少ない場合は少
量の冷却流体を噴射して、蒸気温度を所望値まで精度良
く減温することができる。 【0015】 【発明の効果】上記のように本発明によれば、冷却流体
供給部と蒸気流量検出器とを一体化することにより、蒸
気減温装置の所要設置スペースを小さくすることができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam reducing device capable of reducing the temperature of steam in a high pressure and high temperature state to a predetermined temperature, for example, a saturation temperature. 2. Description of the Related Art As a conventional steam cooling device, for example, a device disclosed in Japanese Patent Application Laid-Open No. 62-141407 has been used. This is done by installing a pressure control valve, a pressure detector, a steam flow rate detector, a temperature detector, and a water flow rate detector to supply the superheated steam into the superheated steam pipe, and detecting the pressure of the superheated steam. By adjusting the control valve, detecting the flow rate and temperature of the superheated steam, and supplying a predetermined amount of water from the water flow rate detector into the superheated steam, the superheated steam can be reduced to the steam having the saturated temperature. Things. [0003] In the above-mentioned conventional steam desuperheater, a steam flow detector must be installed separately from a portion for supplying cooling water into the superheated steam. There was a problem that the required space became large. Accordingly, an object of the present invention is to provide a steam cooling device capable of reducing a required installation space by integrating a cooling water supply unit and a steam flow detector. [0005] Means for solving the above-mentioned problems according to the present invention is to supply a cooling fluid based on the flow rate of high-pressure high-temperature steam flowing down a steam passage, In the case of reducing the temperature of steam to steam at a predetermined temperature,
A vortex generator that generates and detects a Karman vortex corresponding to the amount of steam flowing down the passage in the steam passage is attached, and a cooling fluid supply unit that supplies a cooling fluid into the steam passage almost integrally with the vortex generator. A plurality of cooling fluid supply units are provided, and a control unit for controlling the supply of cooling fluid from the plurality of cooling fluid supply units is provided in accordance with the number of vortices detected by the vortex generator. DETAILED DESCRIPTION OF THE INVENTION A vortex flowmeter for detecting a Karman vortex and measuring a flow rate is widely used in various industrial fields. The outline of the vortex flow meter is as follows: The flow velocity of the fluid is calculated from the number of Karman vortices that occur regularly downstream of the vortex generator placed in the flow, and the flow rate is multiplied by the cross-sectional area of the passage. Is what you want. [0007] By supplying a cooling fluid into the steam passage from a cooling fluid supply section provided substantially integrally with a vortex generator that generates Karman vortices, the steam in a high-temperature and high-pressure state is reduced to a predetermined temperature, and The steam flow rate flowing down the passage can be detected from the number of Karman vortices generated. [0008] By providing a control unit for controlling the supply of cooling fluid from a plurality of cooling fluid supply units in accordance with the number of vortices detected by the vortex generator, the number of vortices is large and the amount of passing steam is large. A large amount of cooling fluid is injected from the cooling fluid supply unit, and conversely, when the number of vortices is small and the amount of passing steam is small, a small amount of cooling fluid is injected to accurately reduce the steam temperature to a desired value. . In FIG. 1, a cylindrical steam passage 1 through which high-pressure and high-temperature steam flows, a triangular-pillar-shaped vortex generator 2 attached through the passage 1, and a vortex generator 2 are integrated. And a controller 4 that calculates and displays the steam flow rate from the detected Karman vortex number and controls the supply stop of the plurality of cooling fluid supply units 3 to form a steam desuperheater. Constitute. While the high-pressure and high-temperature steam flows down the passage 1 from left to right, the cooling fluid is injected and mixed from the cooling fluid supply unit 3 to reduce the temperature. Is generated and detected, and the control section 4 calculates the passing steam flow rate. FIG. 2 is an enlarged view of a cross section taken along line AA in FIG.
Shown in As shown in FIG. 2, a cooling fluid supply unit 3 is disposed upstream of a central portion of the steam passage 1, and a vortex generator 2 is disposed downstream thereof. The cooling fluid supply unit 3 has a semi-cylindrical shape, and a bottom surface portion thereof is fixedly attached to the flat portion 5 of the vortex generator 2, and a plurality of nozzles 6 are radially provided on the semi-cylindrical portion. The cooling fluid supply unit 3 and the nozzle 6 are arranged in a plurality of stages in an upper stage, a middle stage, and a lower stage over and below the steam passage 1. A cooling fluid passage 7 is provided between the semi-cylindrical portion and the flat portion 5 of the vortex generator 2. The cooling fluid passage 7 penetrates through the steam passage 1 and is connected to the upper cooling fluid pipe 8 shown in FIG. Automatic cooling valves 12, 13, and 14 electrically connected to the control unit 4 are attached to the cooling fluid pipe 8, respectively. The outlet side of the automatic control valve 12 is connected to the cooling fluid supply unit 3 in the upper part, the outlet side of the automatic control valve 13 is connected to the cooling fluid supply part 3 in the middle part, and the outlet side of the automatic control valve 14 is It is connected to the cooling fluid supply unit 3 in the lower part. A cooling fluid, for example, cooling water supplied from the cooling fluid pipe 8 to the cooling fluid passage 7 via the automatic control valves 12, 13, 14 is sprayed and sprayed into steam flowing down the passage 1 from the plurality of nozzles 6. Reduces the temperature of the steam. As shown in FIG. 2, the vortex generator 2 has a triangular prism shape, and alternately generates Karman vortices proportional to the flow rate at the edge portions 10 and 11 at both ends of the flat portion 5. The generated Karman vortex is detected by a piezoelectric element arranged inside the generator 2 and sent to the control unit 4 where the flow rate is converted. According to the steam flow rate converted by the control unit 4,
By controlling the opening / closing valves or the valve opening of the automatic control valves 12, 13, and 14, a large amount of cooling fluid is injected when the amount of passing steam is large, and a small amount of cooling fluid is injected when the amount of passing steam is small. By jetting, the steam temperature can be accurately reduced to a desired value. As described above, according to the present invention, the required space for installing the steam temperature reducing device can be reduced by integrating the cooling fluid supply unit and the steam flow rate detector.

【図面の簡単な説明】 【図1】本発明の蒸気減温装置の実施例を示す一部断面
構成図。 【図2】図1におけるA−A線断面拡大図。 【符号の説明】 1 蒸気通路 2 渦発生体 3 冷却流体供給部 4 制御部 6 ノズル 7 冷却流体通路 8 冷却流体管 12,13,14 自動調節弁
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial sectional configuration view showing an embodiment of a steam desuperheater of the present invention. FIG. 2 is an enlarged cross-sectional view taken along line AA in FIG. [Description of Signs] 1 Steam passage 2 Vortex generator 3 Cooling fluid supply unit 4 Control unit 6 Nozzle 7 Cooling fluid passage 8 Cooling fluid pipes 12, 13, 14 Automatic control valve

Claims (1)

【特許請求の範囲】 【請求項1】 蒸気通路を流下する高圧高温蒸気の流量
に基づいて冷却流体を供給し、当該高圧高温蒸気を所定
温度状態の蒸気へ減温するものにおいて、蒸気通路中に
当該通路を流下する蒸気量に応じたカルマン渦を発生し
て検出する渦発生体を取り付け、当該渦発生体とほぼ一
体に蒸気通路中へ冷却流体を供給する冷却流体供給部を
複数設けると共に、渦発生体で検出した渦数に応じて、
複数の冷却流体供給部から冷却流体の供給停止を制御す
る制御部を設けたことを特徴とする蒸気減温装置。
Claims 1. A cooling fluid is supplied based on the flow rate of high-pressure high-temperature steam flowing down a steam passage to reduce the temperature of the high-pressure high-temperature steam to steam at a predetermined temperature. A vortex generator for generating and detecting a Karman vortex corresponding to the amount of steam flowing down the passage, and a plurality of cooling fluid supply units for supplying a cooling fluid into the steam passage almost integrally with the vortex generator. , According to the number of vortices detected by the vortex generator,
A steam desuperheater comprising a control unit for controlling a stop of supply of cooling fluid from a plurality of cooling fluid supply units.
JP2002139556A 2002-05-15 2002-05-15 Steam desuperheater Pending JP2003329211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002139556A JP2003329211A (en) 2002-05-15 2002-05-15 Steam desuperheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002139556A JP2003329211A (en) 2002-05-15 2002-05-15 Steam desuperheater

Publications (1)

Publication Number Publication Date
JP2003329211A true JP2003329211A (en) 2003-11-19

Family

ID=29700666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002139556A Pending JP2003329211A (en) 2002-05-15 2002-05-15 Steam desuperheater

Country Status (1)

Country Link
JP (1) JP2003329211A (en)

Similar Documents

Publication Publication Date Title
US11226641B2 (en) Fluid control device
JP2004305925A (en) Fluid mixing apparatus
EP1041367A1 (en) Flowmeter
JP2806602B2 (en) Fluidic flow meter
JP4351495B2 (en) Flow rate ratio controller
JP2005121262A (en) Controller of steam quality
US6904810B2 (en) Purge type vortex flowmeter
KR940007793Y1 (en) Fluid flow meter
JP2003329211A (en) Steam desuperheater
JP2003329213A (en) Steam desuperheater
JP2003329210A (en) Steam desuperheater
JP2003185477A (en) Flowmeter
JP2003329212A (en) Steam desuperheater
JPH08297038A (en) Karman vortex flowmeter
CA2977630A1 (en) Device and method for mixing combustible gas and combustion air, hot water installation provided therewith, corresponding thermal mass flow sensor and method for measuring a mass flow rate of a gas flow
JPH11173896A (en) Flowmeter
JP3623125B2 (en) Flow rate measuring method and flow rate measuring device
GB2472511A (en) Pressure measurement for flow metering device
JP2001194193A (en) Flow meter
JP6993626B2 (en) Carbonated water generator
JP2002214002A (en) Flow meter
JPS5926245Y2 (en) Bypass type fluidic flow meter
JP2002243612A (en) Control device for vapor dryness or wetness
JPH11183211A (en) Governor-integrated gas meter
KR101064506B1 (en) Heating apparatus and method of controlling the same