JPS5926245Y2 - Bypass type fluidic flow meter - Google Patents
Bypass type fluidic flow meterInfo
- Publication number
- JPS5926245Y2 JPS5926245Y2 JP11641081U JP11641081U JPS5926245Y2 JP S5926245 Y2 JPS5926245 Y2 JP S5926245Y2 JP 11641081 U JP11641081 U JP 11641081U JP 11641081 U JP11641081 U JP 11641081U JP S5926245 Y2 JPS5926245 Y2 JP S5926245Y2
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- flow
- bypass
- flow path
- detection device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Measuring Volume Flow (AREA)
Description
【考案の詳細な説明】
本考案は、主として、集団住宅或いは一定地域を対象に
して各戸に暖房用熱媒や冷房用冷媒などの熱運搬流体を
分配供給する場合などにおいて各戸における消費熱量を
積算するにあたっての因子である熱運搬流体の供給量、
つまり、流量を計測するもので、従来から使用されてき
た接線羽根車式流量計に比して、■機械式可動部がなく
、かつ、その部分の耐久性維持のための耐熱、耐蝕処理
が不要で全体を構造簡単、コンパクト、安価に構成し易
い、◎機械的可動部の摩擦負荷に起因する低流量域での
性能悪化がなく、計測流量範囲を広くとることができる
。[Detailed description of the invention] This invention is mainly used to integrate the amount of heat consumed in each unit when distributing and supplying a heat transfer fluid such as a heating medium or a cooling refrigerant to each unit in a housing complex or a certain area. The supply amount of heat transfer fluid, which is a factor in
In other words, it measures the flow rate, and compared to the tangential impeller type flow meter that has been used in the past, it has no mechanical moving parts, and has heat-resistant and corrosion-resistant treatment to maintain the durability of that part. It is unnecessary and the entire structure is simple, compact, and easy to construct at low cost. ◎ There is no performance deterioration in the low flow rate range due to frictional loads on mechanically moving parts, and the measurement flow rate range can be widened.
O流体中の気泡の蓄積、停留現象が広い据付は傾斜角度
内で発生せず、据付は容易にして計測誤差が非常に少な
い。Installation with a wide range of air bubble accumulation and stagnation phenomena in the O fluid does not occur within the inclined angle, making installation easy and with very little measurement error.
■流体の圧力、温度、或いは粘性、比重等の組成の影響
を受けにくく、いかなる流体であっても精度良く体積流
量を求めることができる。(2) It is not easily influenced by the pressure, temperature, viscosity, specific gravity, etc. of the fluid, and can accurately determine the volumetric flow rate of any fluid.
といった構造面、性能面で多くの利点を有する流体素子
利用のフルイデイク流量計で、詳しくは、流体流路中に
オリフィスを設け、このオリフィスの上流部と下流部と
において前記流路の軸線に対して直角又はほぼ直角姿勢
のバイパス流路を接続し、これら両バイパス流路間に亘
って、前記流路の軸線と平行又はほぼ平行姿勢で流体流
速に比例して周期的、自動的に流体流れ方向を変換する
流体素子を設け、この流体素子による流れ方向の周期的
な変化をパルス信号として捕捉する検出具を設けて構成
されるバイパス形フルイデイク流量計に関する。A fluidic flowmeter that uses a fluidic element has many advantages in terms of structure and performance. Specifically, an orifice is provided in the fluid flow path, and the upstream and downstream portions of the orifice are arranged with respect to the axis of the flow path. Bypass channels are connected at right angles or approximately at right angles, and fluid flows periodically and automatically in proportion to the fluid flow velocity between these two bypass flow channels in a parallel or nearly parallel attitude to the axis of the flow channel. The present invention relates to a bypass type fluidic flowmeter that is provided with a fluidic element that changes direction and is provided with a detection device that captures periodic changes in the flow direction caused by the fluidic element as a pulse signal.
上記構成のバイパス形フルイデ゛イク流量計は、既述の
ような利点に加えて、流体流路に対するバイパス流路内
を流動する比較的少流量域に流体素子を組込むものであ
るから、流量計自身の圧力損失の低減化、及び、構造の
小形化を図れるばかりでなく、測定流量範囲や管寸法等
に応じて前記オノフイス径を設計変更するのみで広い流
量範囲に亘る流量検出を、比較的小形の一種類の流体素
子を用いて、経済面、製作面、および、強度面で有利に
実施することができる特長を有する。In addition to the above-mentioned advantages, the bypass fluidic flowmeter with the above configuration incorporates a fluid element in a relatively small flow area flowing in the bypass flow path with respect to the fluid flow path. In addition to reducing the pressure loss and making the structure more compact, it is possible to detect flow rate over a wide flow rate range by simply changing the design of the onofice diameter according to the measured flow rate range and pipe dimensions, etc. It has the advantage that it can be implemented advantageously in terms of economy, production, and strength by using one type of fluid element.
本考案は、上記の如き特長を有するバイパス形フレイデ
イク流量計を対象に、バイパス形故に得られる特異な現
象を有効利用することによって、流量検出精度の顕著な
向上を図らんとする点に目的を有する。The purpose of this invention is to significantly improve the flow rate detection accuracy of the bypass type Freydijk flowmeter, which has the above-mentioned features, by effectively utilizing the unique phenomenon obtained due to the bypass type. have
本考案によるバイパス形フルイデイク流量計は、冒頭詳
記の構成のものにおいて、前記検出具を、前記流体素子
から前記下流側バイパス流路への流体出口部で、前記の
流れ方向変換に伴なって左右交互に切換え発生される左
右の渦流域の一方に挿入位置された圧力検出素子から構
成しである事を特徴とする。In the bypass type fluidic flowmeter according to the present invention, in which the detection device is configured as described in detail at the beginning, the detection device is installed at the fluid outlet portion from the fluid element to the downstream side bypass flow path in accordance with the flow direction change. It is characterized by comprising a pressure detection element inserted into one of the left and right vortex areas which are alternately generated.
即ち、バイパス形流量計においては、流体流れ方向の周
期的な変換に伴なって、流体素子出口部の左右に交互に
渦流が発生することになる。That is, in the bypass type flowmeter, vortices are generated alternately on the left and right sides of the fluid element outlet due to periodic changes in the fluid flow direction.
そして、その渦流発生域は、流体素子のフィードバック
流路に比べて遥かに大きな圧力変化がある。The vortex generation region has a much larger pressure change than the feedback flow path of the fluid element.
本考案は、このようなバイパス形故に得られる特異な現
象であって、他の部分よりも圧力変化度合の大きい渦流
域の一方に圧力検出素子を挿入位置させて、その大きな
圧力変化をもって流れ方向の周期的変化をパルス信号と
して、確実、正確に検出することができ、従って、所期
の流量検出を、少流量域での検出であり乍らも、極めて
精度良く行なえるに至った。This invention is a unique phenomenon obtained due to such a bypass shape, and the pressure detection element is inserted into one side of the vortex area where the degree of pressure change is larger than other parts, and the pressure detection element is inserted in one side of the vortex area where the degree of pressure change is larger than other parts. It is possible to reliably and accurately detect periodic changes in the flow rate as a pulse signal, and therefore, the desired flow rate detection can be performed with extremely high accuracy even though the detection is in a small flow rate region.
次に、本考案の実施例を図に基づいて詳述すると、第1
図は積算熱量の計測にあたって必要な流量検出に適用し
たもので、熱エネルギー供給装置1と負荷装置2とに亘
って、高温水などの熱運搬流体を循環流動させる流路3
を形成し、前記負荷装置2に対する流体の供給温度を測
定する第1感温体4.及び、排出温度を測定する第2感
温体5、同感温体4,5による測定温度の温度差を電圧
差として検出する電圧検出部6と、その検出電圧差に正
比例して数が増減されるパルス信号を発生するV−F変
換部7とを有する差温検出装置8を設け、前記V−F変
換部7からのパルスの数をカウントするとともに、その
カウント数が設定値に達すると指令信号を発信する計数
機構9、および、その指令信号に基づいて作動する積算
表示機構10を有する表示装置11を設けである。Next, the embodiment of the present invention will be described in detail based on the figures.
The figure shows a flow path 3 in which a heat transport fluid such as high-temperature water is circulated between a thermal energy supply device 1 and a load device 2.
a first temperature sensing element 4 for measuring the temperature of the fluid supplied to the load device 2; A second temperature sensing element 5 measures the discharge temperature, a voltage detection section 6 detects the temperature difference between the temperatures measured by the temperature sensing elements 4 and 5 as a voltage difference, and the number increases or decreases in direct proportion to the detected voltage difference. A temperature difference detection device 8 having a V-F converter 7 that generates a pulse signal is provided, and counts the number of pulses from the V-F converter 7, and issues a command when the count reaches a set value. A display device 11 having a counting mechanism 9 that transmits a signal and an integration display mechanism 10 that operates based on the command signal is provided.
また、前記負荷装置2を通過した流体量を検出する流量
検出装置12(本案のフルイデイク流量計を指し、具体
構成は後述する。Further, a flow rate detection device 12 (referring to the fluidic flow meter of the present invention, the specific configuration of which will be described later) detects the amount of fluid that has passed through the load device 2.
)を設けるとともに、この流量検出装置12による測定
値が一定値に達する毎に、設定されたパルス巾のパルス
信号を発信するパルス発信装置13、及び、このパルス
発信装置13がらのパルス信号の巾を設定変更するため
のパルス巾調整装置14を設けである。), and a pulse transmitter 13 that transmits a pulse signal with a set pulse width each time the measured value by the flow rate detection device 12 reaches a certain value, and a pulse transmitter 13 that transmits a pulse signal with a set pulse width. A pulse width adjustment device 14 is provided for changing the settings.
前記同感温体4,5は、PN接合された半導体を利用し
て構成されてあり、熱運搬流体の温度変化に伴なう半導
体の順方向電圧降下の変化を利用して、熱運搬流体の温
度変化を電圧変化に変換すべく構成されている。The temperature sensing elements 4 and 5 are constructed using a PN junction semiconductor, and utilize changes in the forward voltage drop of the semiconductor due to changes in the temperature of the heat transport fluid to increase the temperature of the heat transport fluid. The device is configured to convert temperature changes into voltage changes.
前記流体流路3の途中には、第2図、第3図で示すよう
にその流線方向の両端に接合フランジ26A、26Aを
もった管26が接続されてあり、この管26内の流路3
中に圧力損失を発生させるオノフイス27が設けられ、
このオリフィス27の上流部と下流部とにおいて前記流
路3の軸線に対して直角又はほぼ直角で上向き姿勢のバ
イパス流路28、29が接続され、この両バイパス流路
28.29の上端部間に亘って、前記流路3の軸線と平
行又はほぼ平行な水平姿勢で流体素子24を利用した前
記の流量検出装置12が設置されている。As shown in FIGS. 2 and 3, a pipe 26 having joining flanges 26A, 26A at both ends of the fluid flow path 3 is connected in the middle of the fluid flow path 3, and the flow inside this pipe 26 is Road 3
An onofice 27 that generates pressure loss is provided inside,
Bypass passages 28 and 29 are connected to the upstream and downstream parts of the orifice 27 and are oriented upward at right angles or substantially at right angles to the axis of the flow passage 3, and between the upper ends of both bypass passages 28 and 29. The flow rate detection device 12 using the fluid element 24 is installed in a horizontal position parallel or substantially parallel to the axis of the flow path 3.
前記流量検出装置12は、第4図で明示されているよう
に、流体自身の自己発信により、その流れ方向を周期的
、かつ、自動的に変換する流体素子24を組込んだもの
であり、その作用を詳述すると、15の点から流入した
流体は絞りの存在によってその流速を上げ、20の点で
コアンダ効果により一方の壁面16に付着するように流
路を屈曲して流れ、17の点で一方に分かれ、主噴流イ
は15の入口部分と同一断面積を有する出口部18を経
て前記の下流側バイパス流路29へと流動する一方、分
岐された流れ口は、フィードバック流路19を通って前
記の20に至り、主噴流に影響を及ぼして、その流れを
他方の壁面16′に付着するよう゛・に屈曲させる。As clearly shown in FIG. 4, the flow rate detection device 12 incorporates a fluid element 24 that periodically and automatically changes the flow direction of the fluid by its own self-oscillation. To explain the effect in detail, the fluid flowing in from point 15 increases its flow velocity due to the presence of the throttle, bends the flow path at point 20 so as to adhere to one wall surface 16 due to the Coanda effect, and flows at point 17. The main jet stream A flows into the downstream bypass passage 29 via the outlet part 18 having the same cross-sectional area as the inlet part 15, while the branched flow opening flows into the feedback passage 19. 20, which influences the main jet and bends it so that it adheres to the other wall 16'.
そして、この噴流は17′に至り、主噴流イ′は出口部
18を経て前記の下流側バイパス流路29へと流動する
一方、分岐された流れ口′はフィードバック流路19′
を通って20に至り、前述同様に主噴流に影響を及ぼし
て流れの方向を変える。Then, this jet flow reaches 17', and the main jet flow A' flows through the outlet part 18 to the downstream bypass flow path 29, while the branched flow port ' flows into the feedback flow path 19'.
20 and, as before, influences the main jet and changes the direction of the flow.
このように主噴流の流れ方向がバイパス流体の流速に比
例して周期的、自動的に変換されるが、その際、前記流
体素子24から前記下流側バイパス流路・29への流体
出口部29Aには、第5図イ9口で示すように前記の流
体流れ方向の変換に伴なって左右交互に渦流a、a’が
切換え発生されることになる。In this way, the flow direction of the main jet flow is periodically and automatically changed in proportion to the flow velocity of the bypass fluid. In this case, as shown in FIG. 5, vortices a and a' are alternately generated on the left and right as the fluid flow direction is changed.
それ故に、左右何れか一方の渦流域に圧力検出素子21
を挿入位置させることによって、流体素子24による流
れ方向の周期的な変化を捕捉して、それを前述のパルス
発信装置13を経由してパルス信号として前記計数機構
9に送信すれば積算熱量を表示することができるのであ
る。Therefore, the pressure detection element 21 is located in either the left or right vortex area.
By positioning the fluid element 24 in the inserted position, periodic changes in the flow direction due to the fluid element 24 are captured, and this is transmitted as a pulse signal to the counting mechanism 9 via the pulse transmitting device 13 described above to display the cumulative amount of heat. It is possible to do so.
尚、第1図において23は、前記電圧検出部6、V−F
変換部7、計数機構9及び、表示機構10に対する電源
装置22からの電力供給機構中に介装した節電用スイッ
チである。In FIG. 1, 23 indicates the voltage detection section 6, V-F.
This is a power saving switch interposed in a power supply mechanism from a power supply device 22 to the converter 7, the counting mechanism 9, and the display mechanism 10.
上記実施例において、前記圧力検出素子21は一定量の
熱運搬流体の通過により1回感応作動するから、パルス
発信装置13から送られるパルスの数によって通過熱運
搬流体量を知ることができ、さらに、パルス発信装置1
3からのパルス信号のパルス巾は一定であるから、V−
F変換部7から計数機構9に1回の送信で送られるパル
スの数は前記同感温体4,5の測定温度差により決定さ
れ、結局、計数機構9でのパルス数のカウントが負荷装
置2の消費熱量となり、これが表示されるに至る。In the above embodiment, since the pressure detection element 21 is actuated once when a certain amount of heat transfer fluid passes, the amount of heat transfer fluid that has passed can be determined by the number of pulses sent from the pulse transmitter 13. , pulse transmitter 1
Since the pulse width of the pulse signal from 3 is constant, V-
The number of pulses sent from the F converter 7 to the counting mechanism 9 in one transmission is determined by the difference in temperature measured by the thermosensors 4 and 5, and as a result, the number of pulses counted by the counting mechanism 9 is the same as that of the load device 2. The amount of heat consumed is , and this is what is displayed.
図面は本考案に係るバイパス形フルイデイク流量計の実
施例を示し、第1図は積算熱量計測器に適用した状態の
ブロック図、第2図は要部の拡大一部切欠斜視図、第3
図は第2図III−III線での縦断面図、第4図は流
体素子の拡大平面図、第5図イ9口は流体素子の作用説
明図である。
3・・・・・・流体流路、21・・・・・・検出具、2
4・・・・・・流体素子、27・・・・・・オリフィス
、28.29・・・・・・バイパス流路。The drawings show an embodiment of the bypass type fluidic flowmeter according to the present invention, in which Fig. 1 is a block diagram of the state in which it is applied to an integral calorimeter, Fig. 2 is an enlarged partially cutaway perspective view of the main part, and Fig. 3
The figures are a vertical sectional view taken along the line III--III in FIG. 2, FIG. 4 is an enlarged plan view of the fluid element, and FIG. 3... Fluid flow path, 21... Detection tool, 2
4... Fluid element, 27... Orifice, 28.29... Bypass channel.
Claims (1)
27の上流部と下流部とにおいて前記流路3の軸線に対
して直角又はほぼ直角姿勢のバイパス流路28.29を
接続し、これら両バイパス流路28、29間に亘って、
前記流路3の軸線と平行又はほぼ平行姿勢で流体流速に
比例して周期的、自動的に流体流れ方向を変換する流体
素子24を設け、この流体素子24による流れ方向の周
期的な変化をパルス信号として捕捉する検出具21を設
けて構成されるバイパス形フルイデイク流量計において
、前記検出具21を、前記流体素子24から前記下流側
バイパス流路29への流体出口部29Aで、前記の流れ
方向変換に伴なって左右交互に切換え発生される左右の
渦流域の一方に挿入位置された圧力検出素子から構成し
である事を特徴とするバイパス形フルイデイク流量計。An orifice 27 is provided in the fluid flow path 3, and bypass flow paths 28 and 29 that are perpendicular or approximately perpendicular to the axis of the flow path 3 are connected at the upstream and downstream portions of the orifice 27, and these Across the flow paths 28 and 29,
A fluid element 24 that periodically and automatically changes the fluid flow direction in proportion to the fluid flow velocity in a posture parallel or substantially parallel to the axis of the flow path 3 is provided, and the periodic change in the flow direction by the fluid element 24 is In a bypass fluidic flow meter configured with a detection device 21 that captures pulse signals, the detection device 21 is connected to the fluid outlet section 29A from the fluid element 24 to the downstream bypass channel 29 to detect the flow. A bypass type fluidic flowmeter characterized in that it consists of a pressure detection element inserted into one of the left and right vortex areas that are alternately switched and generated as the direction changes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11641081U JPS5926245Y2 (en) | 1981-08-04 | 1981-08-04 | Bypass type fluidic flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11641081U JPS5926245Y2 (en) | 1981-08-04 | 1981-08-04 | Bypass type fluidic flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5821820U JPS5821820U (en) | 1983-02-10 |
JPS5926245Y2 true JPS5926245Y2 (en) | 1984-07-31 |
Family
ID=29910632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11641081U Expired JPS5926245Y2 (en) | 1981-08-04 | 1981-08-04 | Bypass type fluidic flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5926245Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2205947B (en) * | 1987-06-19 | 1991-09-04 | British Gas Plc | Flowmeter |
-
1981
- 1981-08-04 JP JP11641081U patent/JPS5926245Y2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5821820U (en) | 1983-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102124417B (en) | Flow control system | |
US4538925A (en) | Thermal power measuring device | |
CN102288232A (en) | Molded flow restrictor | |
EP0940657B1 (en) | Air flow meter | |
US20020023485A1 (en) | Split-flow-type flowmeter | |
WO2002057721A3 (en) | Non-invasive time of light flow measurement in a capillary | |
JPS5926245Y2 (en) | Bypass type fluidic flow meter | |
JPS59136617A (en) | Method and device for measuring volume flow rate | |
JP2003185477A (en) | Flowmeter | |
TW580565B (en) | Purge type vortex flowmeter | |
JP2003315126A5 (en) | ||
GB2218519A (en) | A trapped-vortex flowmeter | |
CN2564996Y (en) | Large range heat balance type flow sensor | |
JP3398251B2 (en) | Flowmeter | |
JPH03152365A (en) | Refrigerator | |
CN212409803U (en) | Tee bend device with stationary flow function | |
JP3408341B2 (en) | Flow meter | |
JPH06288805A (en) | Air flowmeter | |
JP2002357362A (en) | Hot-water supplier | |
JPH0412423Y2 (en) | ||
JPS6161603B2 (en) | ||
JPH0138494Y2 (en) | ||
JPH031748Y2 (en) | ||
JPS60185118A (en) | Air flowmeter | |
JP2002243612A (en) | Control device for vapor dryness or wetness |