JP6988768B2 - Metal complex manufacturing method and metal complex - Google Patents

Metal complex manufacturing method and metal complex Download PDF

Info

Publication number
JP6988768B2
JP6988768B2 JP2018210145A JP2018210145A JP6988768B2 JP 6988768 B2 JP6988768 B2 JP 6988768B2 JP 2018210145 A JP2018210145 A JP 2018210145A JP 2018210145 A JP2018210145 A JP 2018210145A JP 6988768 B2 JP6988768 B2 JP 6988768B2
Authority
JP
Japan
Prior art keywords
metal particles
metal
copper
binder
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018210145A
Other languages
Japanese (ja)
Other versions
JP2020076124A (en
Inventor
峻 猿楽
康友 谷原
紀久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018210145A priority Critical patent/JP6988768B2/en
Publication of JP2020076124A publication Critical patent/JP2020076124A/en
Application granted granted Critical
Publication of JP6988768B2 publication Critical patent/JP6988768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属を用いた溶浸処理により製造される造形体に関するものである。 The present invention relates to a modeled body manufactured by a immersion treatment using a metal.

三次元図面データをもとに、材料粒子から三次元造形体(以下、造形体という)を形成する新たな造形技術が注目されている。その1つである結合剤噴射法(以下、結着剤噴射法という)は、材料粒子である金属粒子を薄く敷き、金属粒子上に有機性の結着剤を噴射して、結着剤が噴射された部分の金属粒子を固め、固められた層を順次積層することにより複雑な形状の結着体を作製する。作製された結着体は、加熱により金属粒子同士が結合され、空孔部を有する多孔質の造形体となる。
この方法では、三次元図面データに基づく種々の形状を柔軟に作製できるが、造形体の空孔率が高いため、型を用いる鋳造体に比べて強度が劣り、特に加熱時に自重によって変形するおそれがあった。
そこで、金属の溶浸により強度を向上させる処理、例えば造形体より融点の低い金属又は合金を融解させ、造形体の空孔部に充填して再凝固させる処理が行われている(例えば、特許文献1参照)。
A new modeling technique for forming a three-dimensional model (hereinafter referred to as a model) from material particles based on three-dimensional drawing data is attracting attention. One of them, the binder injection method (hereinafter referred to as the binder injection method), is a method in which metal particles, which are material particles, are spread thinly, and an organic binder is injected onto the metal particles to obtain a binder. Metal particles in the injected portion are solidified, and the solidified layers are sequentially laminated to produce a binder having a complicated shape. The produced binder is heated to bond the metal particles to each other, resulting in a porous model having pores.
With this method, various shapes based on 3D drawing data can be flexibly produced, but the strength is inferior to that of a cast body using a mold because the pore ratio of the modeled body is high, and there is a risk of deformation due to its own weight, especially during heating. was there.
Therefore, a treatment for improving the strength by infiltration of a metal, for example, a treatment for melting a metal or alloy having a melting point lower than that of the modeled body, filling the pores of the modeled body, and resolidifying it (for example, a patent) is performed. See Document 1).

特表2018−510267号公報Japanese Patent Publication No. 2018-510267

しかしながら、金属の溶浸前に結着体形成時の結着剤を除去する必要があり、これが残留すると十分な強度が確保できないという課題があった。 However, it is necessary to remove the binder at the time of forming the binder before the metal is infiltrated, and if this remains, there is a problem that sufficient strength cannot be secured.

本発明は、上述の課題を解決するためになされたもので、結着剤噴射法により製造された造形体の強度を向上させる金属複合体の製造方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for producing a metal complex that improves the strength of a modeled body produced by a binder injection method.

本発明にかかる金属複合体の製造方法は、金属粒子の層を形成し、前記金属粒子の層に有機性の結着剤を供給して前記金属粒子同士を結着させ、結着された前記金属粒子の層を順次積層して結着体を形成する結着体形成工程と、前記結着体を乾燥し空孔部を有する多孔質体を作製する多孔質体作製工程と、前記多孔質体をTiを含む銅又は銅合金を還元雰囲気下で加熱して溶浸させ、前記結着剤の炭素と前記銅又は前記銅合金中のTiとを反応させ、前記金属粒子と前記銅又は前記銅合金との界面にTiC相を形成する工程とを備えたものである。 In the method for producing a metal composite according to the present invention, a layer of metal particles is formed, and an organic binder is supplied to the layer of the metal particles to bind the metal particles to each other, and the metal particles are bound to each other. A binder forming step of sequentially laminating layers of metal particles to form a binder, a porous body manufacturing step of drying the binder to produce a porous body having pores, and the porous body. The body is infiltrated by heating a copper or copper alloy containing Ti in a reducing atmosphere, and the carbon of the binder reacts with the copper or Ti in the copper alloy, and the metal particles and the copper or the copper are described. It is provided with a step of forming a TiC phase at an interface with a copper alloy.

また、本発明にかかる金属複合体は、複数の金属粒子が互いに接触し形成されたコア部と、前記コア部の外周を覆うとともに前記複数の金属粒子間に充填されたTiを含む銅又は銅合金から構成された基盤部と、前記コア部と前記基盤部との界面の少なくとも一部にTiC相が形成された界面部とを備えたものである。 Further, the metal composite according to the present invention covers a core portion formed by contacting a plurality of metal particles with each other and copper or copper containing Ti that covers the outer periphery of the core portion and is filled between the plurality of metal particles. It is provided with a base portion made of an alloy and an interface portion in which a TiC phase is formed at least a part of the interface between the core portion and the base portion.

本発明によれば、Tiを含む銅又は銅合金を多孔質体に溶浸させることによって、多孔質体を構成する金属粒子の表面に残留した炭素とTiとを反応させ、金属粒子と銅又は銅合金との界面にTiC相を形成することにより、炭素の残留を抑制でき、作製した金属複合体の強度を著しく向上できる。 According to the present invention, by infiltrating a copper or copper alloy containing Ti into a porous body, carbon remaining on the surface of the metal particles constituting the porous body reacts with Ti, and the metal particles and copper or By forming the TiC phase at the interface with the copper alloy, the residual carbon can be suppressed and the strength of the produced metal composite can be significantly improved.

本発明の実施の形態1にかかる三次元造形装置の概略構成図である。It is a schematic block diagram of the 3D modeling apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1にかかる多孔質体の概略構成図である。It is a schematic block diagram of the porous body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1にかかる多孔質体の溶浸処理の状態を示す概略構成図である。It is a schematic block diagram which shows the state of the infiltration treatment of the porous body which concerns on Embodiment 1 of this invention. 本発明の実施の形態1にかかる金属複合体片の造形方法を示す模式図である。It is a schematic diagram which shows the modeling method of the metal complex piece which concerns on Embodiment 1 of this invention. 本発明の実施の形態1にかかる金属複合体を示す模式図である。It is a schematic diagram which shows the metal complex which concerns on Embodiment 1 of this invention. 本発明の実施の形態2にかかる金属複合体の引張強度比を示す関係図である。It is a relational figure which shows the tensile strength ratio of the metal complex which concerns on Embodiment 2 of this invention.

実施の形態1.
発明者らは、従来の溶浸処理により製造された造形体の強度が不足する原因の一つが、結着剤の有機成分の残留であることに着目し、有機成分を変成できないか考えた。そして、鋭意検討の結果、有機成分中の炭素と金属とを反応させ、金属化合物として造形体内に残留させることが可能であることがわかった。
そして、特にチタンと炭素とを反応させてTiCとし、造形体を形成する金属粒子間、又は金属粒子と溶浸材との界面にTiC相として残留させた金属複合体とすることにより、強度を確保できることを確認した。以下、発明にかかる金属複合体の製造方法、及び金属複合体について説明する。
Embodiment 1.
The inventors focused on the fact that one of the causes of the lack of strength of the model produced by the conventional infiltration treatment was the residual organic component of the binder, and wondered if the organic component could be altered. As a result of diligent studies, it was found that it is possible to react carbon in an organic component with a metal and leave it as a metal compound in the modeling body.
Then, in particular, the strength is increased by reacting titanium and carbon to form TiC, and forming a metal composite that remains as a TiC phase between the metal particles forming the shaped body or at the interface between the metal particles and the infiltrating material. It was confirmed that it could be secured. Hereinafter, the method for producing the metal complex according to the invention and the metal complex will be described.

図1は、本発明の実施の形態1にかかる三次元造形装置の概略構成図である。三次元造形装置4は、造形室壁5により囲まれ上下に昇降するテーブル6を備えた造形室7を有する。造形室7内には、タンク8に備えられた金属粒子供給部9からテーブル6へ、金属粒子10(例えば、ステンレス鋼粒子)が供給される。供給された金属粒子10は、スキージ11によりテーブル6上に敷き詰められ、押し固められて、厚みtの金属粒子層12となる。
形成された金属粒子層12に、溶媒に溶解又は混合された有機性の結着剤14がノズル13から噴射され、ノズル13が移動することにより金属粒子層12の任意の位置に結着剤14が供給される。これにより、複数の金属粒子10が結着剤14によって結着され、結着された金属粒子層12が順次積層され、三次元形状の結着体1が形成される。図1において、結着体1の一例として換気扇のファンの形状を示している。
FIG. 1 is a schematic configuration diagram of a three-dimensional modeling apparatus according to the first embodiment of the present invention. The three-dimensional modeling apparatus 4 has a modeling chamber 7 surrounded by a modeling chamber wall 5 and provided with a table 6 that moves up and down. Metal particles 10 (for example, stainless steel particles) are supplied from the metal particle supply unit 9 provided in the tank 8 to the table 6 in the modeling chamber 7. The supplied metal particles 10 are spread on the table 6 by the squeegee 11 and compacted to form a metal particle layer 12 having a thickness t D.
An organic binder 14 dissolved or mixed in a solvent is ejected from the nozzle 13 onto the formed metal particle layer 12, and the nozzle 13 moves to move the binder 14 to an arbitrary position on the metal particle layer 12. Is supplied. As a result, the plurality of metal particles 10 are bound by the binder 14, and the bound metal particle layers 12 are sequentially laminated to form a three-dimensionally shaped binder 1. FIG. 1 shows the shape of a fan of a ventilation fan as an example of the binder 1.

次に、得られた結着体1を造形室7から取り出して、乾燥させる。結着体1には結着剤14の溶媒成分が残留しているため、溶媒成分を乾燥によって飛ばすことにより結着を進行させ、結着体1の変形を防止する。残留した溶媒成分を飛ばす乾燥温度、乾燥時間は、例えば200℃、8時間程度である。 Next, the obtained binder 1 is taken out from the modeling chamber 7 and dried. Since the solvent component of the binder 14 remains in the binder 1, the solvent component is removed by drying to promote the binding and prevent the binder 1 from being deformed. The drying temperature and drying time for removing the remaining solvent component are, for example, about 200 ° C. and 8 hours.

次に、乾燥した結着体1を常温において冷却する。図2に示すように、結着体1は、複数の金属粒子10とそれらを互いに結着させる結着剤14とから構成され、空孔部を有する多孔質体2となる。多孔質体2の周囲には、結着剤14によって結着していない金属粒子が存在するため、これらを除去する。 Next, the dried binder 1 is cooled at room temperature. As shown in FIG. 2, the binder 1 is composed of a plurality of metal particles 10 and a binder 14 that binds them to each other, and becomes a porous body 2 having pores. Since metal particles that are not bound by the binder 14 are present around the porous body 2, they are removed.

次に、図3に示すように、乾燥及び冷却した多孔質体2に、例えば水素雰囲気下でTiを含む銅又はTiを含む銅合金を溶浸材15として接触させ、ヒータ16で加熱する。ここで、溶浸材15は粉末状とし、これに多孔質体2を浸漬させる。ブロック形状、短冊状のものを供給してもよい。 Next, as shown in FIG. 3, the dried and cooled porous body 2 is brought into contact with, for example, Ti-containing copper or a Ti-containing copper alloy as the infiltrating material 15 under a hydrogen atmosphere, and heated by the heater 16. Here, the infiltrating material 15 is made into a powder, and the porous body 2 is immersed therein. Block-shaped or strip-shaped ones may be supplied.

この溶浸処理によって、図4(a)に示す多孔質体2の空孔部17にTiを含む銅又は銅合金が充填され、多孔質体2は、複数の金属粒子10が互いに接触し形成されたコア部18と、コア部18の外周を覆うとともに複数の金属粒子10間に充填された溶浸材15により構成された基盤部19とにより形成された金属複合体3となる(図4(b))。
また、金属複合体3はさらに、図5に示すように、コア部18と基盤部19との界面の少なくとも一部に、TiC相20が形成された界面部21を有する。
By this infiltration treatment, the pores 17 of the porous body 2 shown in FIG. 4A are filled with copper or a copper alloy containing Ti, and the porous body 2 is formed by the plurality of metal particles 10 in contact with each other. The metal composite 3 is formed by the core portion 18 formed therein and the base portion 19 composed of the infiltrating material 15 that covers the outer periphery of the core portion 18 and is filled between the plurality of metal particles 10. (FIG. 4). (B)).
Further, as shown in FIG. 5, the metal complex 3 further has an interface portion 21 on which the TiC phase 20 is formed at least a part of the interface between the core portion 18 and the base portion 19.

TiC相20は溶浸材15中のTi含有量及び多孔質体2中の結着剤14の量に依存して形状が異なる。界面部21に点在又は覆うように形成されたTiC相20の他、TiC相20は基盤部19にも存在する。金属粒子10間に存在する場合もある。また、図5に示すように、金属複合体3には炭素22が残留する場合もある。 The TiC phase 20 has a different shape depending on the Ti content in the infiltrating material 15 and the amount of the binder 14 in the porous body 2. In addition to the TiC phase 20 formed so as to be scattered or covered at the interface portion 21, the TiC phase 20 also exists in the base portion 19. It may exist between the metal particles 10. Further, as shown in FIG. 5, carbon 22 may remain in the metal complex 3.

このような溶浸処理、即ちTiを含む銅又は銅合金を多孔質体2に接触させ加熱、保持することによって、多孔質体2を構成する金属粒子10の表面に残留した炭素22とTiとを反応させ、金属粒子10と銅又は銅合金との界面にTiC相20を形成することにより、炭素22の残留を抑制でき、作製した金属複合体3の強度を著しく向上できる。 By such infiltration treatment, that is, by contacting copper or a copper alloy containing Ti with the porous body 2, heating and holding the porous body 2, the carbon 22 and Ti remaining on the surface of the metal particles 10 constituting the porous body 2 are formed. By reacting and forming a TiC phase 20 at the interface between the metal particles 10 and copper or a copper alloy, the residue of carbon 22 can be suppressed and the strength of the produced metal composite 3 can be significantly improved.

また、余剰の有機成分を脱脂処理してもよいが、本発明においては、有機成分の炭素22はTiと反応するため、脱脂処理を省略できる。通常の脱脂処理では、多孔質体2を作製した後、500℃前後、真空雰囲気下において1〜24時間程度の加熱処理を行うため、脱脂処理を省略した場合、作業効率が向上する。 Further, the surplus organic component may be degreased, but in the present invention, the carbon 22 of the organic component reacts with Ti, so that the degreasing treatment can be omitted. In the normal degreasing treatment, after the porous body 2 is produced, the heat treatment is performed at about 500 ° C. for about 1 to 24 hours in a vacuum atmosphere. Therefore, if the degreasing treatment is omitted, the work efficiency is improved.

ここで、金属粒子10を構成する金属粒子10の平均粒径が1μm以上50μm以下程度であれば、その金属粒子10は高い流動性を持つため、結着剤噴射法において、均一な金属粒子層12を形成でき、高精度な多孔質体2を得ることができる。 Here, if the average particle size of the metal particles 10 constituting the metal particles 10 is about 1 μm or more and 50 μm or less, the metal particles 10 have high fluidity, so that a uniform metal particle layer is used in the binder injection method. 12 can be formed, and a highly accurate porous body 2 can be obtained.

金属粒子10の充填密度を増して均一な金属粒子層12を得るためには、金属粒子10はアスペクト比が1.0の球形状であることが好ましいが、アスペクト比が1.0以上2.0以下の球形状、楕円形状、多面体形状等の扁平形状であってもよい。 In order to increase the packing density of the metal particles 10 to obtain a uniform metal particle layer 12, it is preferable that the metal particles 10 have a spherical shape with an aspect ratio of 1.0, but the aspect ratio is 1.0 or more. It may be a flat shape such as a spherical shape, an elliptical shape, or a polyhedron shape of 0 or less.

また、平均粒径1μm未満の金属粒子10は、そのままでは流動性が低く均一な金属粒子層12を形成することが困難であるため、これらの金属粒子10を予め樹脂又は有機溶剤と混合し、平均粒径が1μm以上50μm以下である複合粒子又は分散体として流動性を向上させ、用いることができる。 Further, since it is difficult for the metal particles 10 having an average particle size of less than 1 μm to form a uniform metal particle layer 12 with low fluidity as it is, these metal particles 10 are mixed with a resin or an organic solvent in advance. It can be used with improved fluidity as a composite particle or dispersion having an average particle size of 1 μm or more and 50 μm or less.

また、本実施の形態では、金属粒子10であるステンレス鋼粉末として平均粒径10μmのSUS316L粉末を用いたが、同様の流動性を示す、他の金属粒子に対しても適応可能である。 Further, in the present embodiment, SUS316L powder having an average particle size of 10 μm is used as the stainless steel powder which is the metal particles 10, but it can also be applied to other metal particles showing similar fluidity.

また、溶浸処理は、水素雰囲気下以外でも可能であるが、炭素を酸化させないために還元雰囲気下であることが好ましい。溶浸処理の加熱温度、加熱時間は、例えば1100℃、30分である。 Further, the infiltration treatment can be performed in a non-hydrogen atmosphere, but it is preferably in a reducing atmosphere so as not to oxidize carbon. The heating temperature and heating time of the infiltration treatment are, for example, 1100 ° C. and 30 minutes.

また、結着体1を中空構造としてもよい。このとき、中空構造内の結着していない金属粒子10を取り除けるように、結着体1形成時に予め除去用の穴を設けてもよい。除去された金属粒子10は、三次元造形装置4において再利用が可能である。 Further, the binder 1 may have a hollow structure. At this time, a hole for removal may be provided in advance at the time of forming the binder 1 so that the metal particles 10 that are not bound in the hollow structure can be removed. The removed metal particles 10 can be reused in the three-dimensional modeling apparatus 4.

また、金属複合体3として換気扇のファンを製造する例を示したが、TiC相20を形成することにより金属複合体3の強度を向上できることから、自動車用部品、航空機の駆動部品等、応力がかかり強度確保が必要となる金属部品にも適用できる。 Further, although an example of manufacturing a fan of a ventilation fan as the metal complex 3 is shown, since the strength of the metal complex 3 can be improved by forming the TiC phase 20, stress is applied to automobile parts, aircraft drive parts, and the like. It can also be applied to metal parts that need to secure the strength.

また、溶浸処理後、金属複合体3に切削加工等を行い、形状変更してもよい。 Further, after the infiltration treatment, the metal complex 3 may be cut or the like to change its shape.

本発明においては、金属粒子10の層に有機性の結着剤14を供給して金属粒子10同士を結着する工程を繰り返し行うことにより、三次元形状の結着体1を形成する(結着体形成工程)。結着体1は乾燥されることで空孔部17を有する多孔質体2となり(多孔質体作製工程)、多孔質体2をTiを含む銅又は銅合金に溶浸させ、還元雰囲気下で加熱して、結着剤14の炭素22と銅又は銅合金中のTiとを反応させる。
これにより、複数の金属粒子10が互いに接触し形成されたコア部18と、コア部18の外周を覆うとともに複数の金属粒子10間に充填されたTiを含む銅又は銅合金から構成された基盤部19と、コア部18と基盤部19との界面の少なくとも一部にTiC相20が形成された界面部21とが得られる。
In the present invention, the binding body 1 having a three-dimensional shape is formed by repeating the steps of supplying the organic binder 14 to the layer of the metal particles 10 and binding the metal particles 10 to each other (binding). Body formation process). The binder 1 becomes a porous body 2 having pores 17 by being dried (porous body manufacturing step), and the porous body 2 is impregnated in copper or a copper alloy containing Ti in a reducing atmosphere. It is heated to react carbon 22 of the binder 14 with Ti in copper or a copper alloy.
As a result, a substrate composed of a core portion 18 formed by contacting a plurality of metal particles 10 with each other and a copper or a copper alloy containing Ti that covers the outer periphery of the core portion 18 and is filled between the plurality of metal particles 10. A portion 19 and an interface portion 21 in which the TiC phase 20 is formed at least a part of the interface between the core portion 18 and the base portion 19 are obtained.

そして、多孔質体2を構成する金属粒子10の表面に残留した炭素22とTiとを反応させ、金属粒子10と銅又は銅合金との界面にTiC相20を形成することにより、簡易な処理で強度を確保した金属複合体3を得ることができる。 Then, the carbon 22 remaining on the surface of the metal particles 10 constituting the porous body 2 and Ti are reacted to form a TiC phase 20 at the interface between the metal particles 10 and copper or a copper alloy, whereby a simple treatment is performed. It is possible to obtain the metal composite 3 whose strength is ensured by the above method.

実施の形態2.
実施の形態1において説明した金属複合体3の強度について説明する。金属複合体3の強度を確認するために、実施の形態1と同様にして幅20mm、長さ100mm、厚さ5mmの金属複合体片を作製した。また、比較のためにTiを含まない銅を用いて溶浸した試料片を作製した。
Embodiment 2.
The strength of the metal complex 3 described in the first embodiment will be described. In order to confirm the strength of the metal complex 3, a metal complex piece having a width of 20 mm, a length of 100 mm, and a thickness of 5 mm was produced in the same manner as in the first embodiment. For comparison, a sample piece infiltrated with copper containing no Ti was prepared.

図6は、金属複合体片の引張強度比と溶浸材15中のTi含有量の関係図であり、Tiを含まない銅を用いて溶浸した試料片の引張強度を1とし、溶浸材15のTi含有量を変化させた時の金属複合体片の引張強度比を示している。
図6に示すように、Ti含有量が0.01重量%を超えると、Tiを含まない銅を用いた場合の引張強度よりも大きくなることがわかる。溶浸材15中に0.1重量%のTiを含むと、引張強度比は1.5倍となった。さらにTi含有量を増やすと、0.3重量%で約2.5倍となり、それ以上は引張強度上昇がみられなかった。さらに0.5重量%を超えると、徐々に低下がみられた。Ti含有量が2.0重量%以上となると、Tiを含まない銅を用いた場合との差がみられなくなった。
これは、Tiが、例えばチタン水素化物を形成し、金属粒子10の表面に残留してTiC相20の形成を阻害したためと推測される。また、Ti含有量が2.0重量%以上となると界面部21にTiC相が形成されにくくなると思われる。
FIG. 6 is a diagram showing the relationship between the tensile strength ratio of the metal composite piece and the Ti content in the infiltrating material 15, and the tensile strength of the sample piece infiltrated using copper containing no Ti is set to 1, and infiltration is performed. The tensile strength ratio of the metal composite piece when the Ti content of the material 15 is changed is shown.
As shown in FIG. 6, it can be seen that when the Ti content exceeds 0.01% by weight, the tensile strength is higher than that when copper containing no Ti is used. When 0.1% by weight of Ti was contained in the infiltration material 15, the tensile strength ratio became 1.5 times. When the Ti content was further increased, it increased by about 2.5 times at 0.3% by weight, and no increase in tensile strength was observed beyond that. Further, when it exceeded 0.5% by weight, a gradual decrease was observed. When the Ti content was 2.0% by weight or more, there was no difference from the case where copper containing no Ti was used.
It is presumed that this is because Ti formed, for example, titanium hydride and remained on the surface of the metal particles 10 to inhibit the formation of the TiC phase 20. Further, when the Ti content is 2.0% by weight or more, it seems that the TiC phase is less likely to be formed at the interface portion 21.

つまり、溶浸材15中のTi含有量が0.01重量%未満の場合、得られる金属複合体片中のTiC相20の形成量が十分でなく、Ti含有量が2.0重量%以上の場合、形成されるTiC相20が形成されにくいため、Ti含有量としては0.01重量%以上2.0重量%未満が好ましい。さらには、0.01重量%以上0.5重量%以下、0.1重量%以上0.5重量%以下、0.3重量%以上0.5重量%以下が好ましい。 That is, when the Ti content in the infiltrating material 15 is less than 0.01% by weight, the amount of TiC phase 20 formed in the obtained metal composite piece is not sufficient, and the Ti content is 2.0% by weight or more. In the above case, since the formed TiC phase 20 is difficult to be formed, the Ti content is preferably 0.01% by weight or more and less than 2.0% by weight. Further, 0.01% by weight or more and 0.5% by weight or less, 0.1% by weight or more and 0.5% by weight or less, and 0.3% by weight or more and 0.5% by weight or less are preferable.

このように、Tiを含む銅又は銅合金を多孔質体2に溶浸させることによって、多孔質体2を構成する金属粒子10の表面に残留した炭素22とTiとを反応させ、金属粒子10と銅又は銅合金との界面にTiC相20を形成することにより、炭素22の残留を抑制でき、作製した金属複合体3の強度を著しく向上できる。 By infiltrating the copper or copper alloy containing Ti into the porous body 2 in this way, the carbon 22 remaining on the surface of the metal particles 10 constituting the porous body 2 and Ti are reacted with each other, and the metal particles 10 are formed. By forming the TiC phase 20 at the interface between copper and copper or a copper alloy, the residue of carbon 22 can be suppressed and the strength of the produced metal composite 3 can be significantly improved.

なお、本発明は、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。 In the present invention, each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.

1 結着体、2 多孔質体、3 金属複合体、4 三次元造形装置、5 造形室壁、
6 テーブル、7 造形室、8 タンク、9 金属粒子供給部、10 金属粒子、
11 スキージ、12 金属粒子層、13 ノズル、14 結着剤、15 溶浸材、
16 ヒータ、17 空孔部、18 コア部、19 基盤部、20 TiC相、
21 界面部、22 炭素。
1 Bound body, 2 Porous body, 3 Metal composite, 4 3D modeling device, 5 Modeling chamber wall,
6 tables, 7 modeling chambers, 8 tanks, 9 metal particle feeders, 10 metal particles,
11 squeegees, 12 metal particle layers, 13 nozzles, 14 binders, 15 wetting materials,
16 heater, 17 vacancies, 18 cores, 19 bases, 20 TiC phase,
21 interface, 22 carbon.

Claims (6)

金属粒子の層を形成し、前記金属粒子の層に有機性の結着剤を供給して前記金属粒子同士を結着させ、結着された前記金属粒子の層を順次積層して結着体を形成する結着体形成工程と、
前記結着体を乾燥し空孔部を有する多孔質体を作製する多孔質体作製工程と、
前記多孔質体をTiを含む銅又は銅合金を還元雰囲気下で加熱して溶浸させ、前記結着剤の炭素と前記銅又は前記銅合金中のTiとを反応させ、前記金属粒子と前記銅又は前記銅合金との界面にTiC相を形成する工程と、
を備えた金属複合体の製造方法。
A layer of metal particles is formed, an organic binder is supplied to the layer of the metal particles to bind the metal particles to each other, and the bonded layers of the metal particles are sequentially laminated to form a binder. And the binding body forming process to form
The process of producing a porous body by drying the binder to produce a porous body having pores, and the process of producing the porous body.
The porous body is infiltrated by heating a copper or copper alloy containing Ti in a reducing atmosphere to react the carbon of the binder with the copper or Ti in the copper alloy, and the metal particles and the copper alloy are reacted. The step of forming a TiC phase at the interface with copper or the copper alloy, and
A method for manufacturing a metal complex.
Tiを含む銅又は銅合金のTi含有量は、0.01重量%以上2.0重量%未満とすることを特徴とする、請求項1に記載の金属複合体の製造方法。 The method for producing a metal composite according to claim 1, wherein the Ti content of copper or a copper alloy containing Ti is 0.01% by weight or more and less than 2.0% by weight. 還元雰囲気は、水素雰囲気とすることを特徴とする、請求項1又は2に記載の金属複合体の製造方法。 The method for producing a metal complex according to claim 1 or 2, wherein the reducing atmosphere is a hydrogen atmosphere. 金属粒子の平均粒径は、1μm以上50μm以下であることを特徴とする、請求項1〜3のいずれか1項に記載の金属複合体の製造方法。 The method for producing a metal complex according to any one of claims 1 to 3, wherein the average particle size of the metal particles is 1 μm or more and 50 μm or less. 金属粒子は、ステンレス鋼粒子とすることを特徴とする、請求項1〜4のいずれか1項に記載の金属複合体の製造方法。 The method for producing a metal complex according to any one of claims 1 to 4, wherein the metal particles are stainless steel particles. 複数の金属粒子が互いに接触し形成されたコア部と、
前記コア部の外周を覆うとともに前記複数の金属粒子間に充填されたTiを含む銅又は銅合金から構成された基盤部と、
前記コア部と前記基盤部との界面の少なくとも一部にTiC相が形成された界面部と、
を有する金属複合体。
A core part formed by contacting multiple metal particles with each other,
A base portion made of copper or a copper alloy containing Ti that covers the outer periphery of the core portion and is filled between the plurality of metal particles.
An interface portion in which a TiC phase is formed at least a part of the interface between the core portion and the base portion,
Metal complex with.
JP2018210145A 2018-11-08 2018-11-08 Metal complex manufacturing method and metal complex Active JP6988768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018210145A JP6988768B2 (en) 2018-11-08 2018-11-08 Metal complex manufacturing method and metal complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018210145A JP6988768B2 (en) 2018-11-08 2018-11-08 Metal complex manufacturing method and metal complex

Publications (2)

Publication Number Publication Date
JP2020076124A JP2020076124A (en) 2020-05-21
JP6988768B2 true JP6988768B2 (en) 2022-01-05

Family

ID=70723684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018210145A Active JP6988768B2 (en) 2018-11-08 2018-11-08 Metal complex manufacturing method and metal complex

Country Status (1)

Country Link
JP (1) JP6988768B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111719062A (en) * 2020-07-06 2020-09-29 北京交通大学 TiC/stainless steel composite porous material and preparation method thereof
JPWO2022168202A1 (en) * 2021-02-03 2022-08-11

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518776B2 (en) * 1972-09-30 1980-05-21
JP2003129862A (en) * 2001-10-23 2003-05-08 Toshiba Corp Turbine blade production method
JP2003342700A (en) * 2002-05-27 2003-12-03 Komatsu Ltd Sintered sliding material, sintered sliding member, and production method thereof
WO2005024076A1 (en) * 2003-09-03 2005-03-17 Komatsu Ltd. Sintered sliding material, sliding member, connection device and device provided with sliding member
CA2538358A1 (en) * 2003-09-11 2005-03-24 The Ex One Company Layered manufactured articles having small-width fluid conduction vents and methods of making same
US20100279007A1 (en) * 2007-08-14 2010-11-04 The Penn State Research Foundation 3-D Printing of near net shape products
CN108067622A (en) * 2016-11-17 2018-05-25 斯伦贝谢技术有限公司 Use more material function components of increasing material manufacturing

Also Published As

Publication number Publication date
JP2020076124A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
JP7345450B2 (en) Additive manufacturing of articles containing beryllium
JP7318982B2 (en) Thermoplastic binders for use in binder jetting additive manufacturing
JP6722676B2 (en) Additive manufacturing method, object data processing method, data carrier, object data processor, and object manufactured by the same
JP6519100B2 (en) Sinter-forming method, liquid binder, and sinter-formed product
JP4421477B2 (en) Casting method
EP3540099B1 (en) Regenerating an additively manufactured component
JP6988768B2 (en) Metal complex manufacturing method and metal complex
TW201936296A (en) Geometry for debinding 3D printed parts
JP2020529516A (en) Additional manufacturing components and methods
CN104609867A (en) Densifying method for selective laser sintered ceramic parts
KR20170102999A (en) A laminate processing method, a object data processing method, a data carrier, a object data processor, and a manufactured object
WO2015112366A1 (en) Nanoparticle enhancement for additive manufacturing
KR102433025B1 (en) Ceramic article and manufacturing method thereof
US10232437B1 (en) Method and system of metallic part fabrication
JP2010202928A (en) Method for producing metal shaped-article and metal resin composite powder for rapid prototyping
EP3815812B1 (en) Method and pattern for improving a surface finish of an investment casting
WO2022168202A1 (en) Metal composite and method for manufacturing metal composite material
JP7138826B1 (en) Sealed metal composite and mold, and method for producing sealed metal composite
JP2019081958A (en) Sintering shaping method, liquid binder, and sintered shaped article
RU2802607C1 (en) Method for additive manufacturing of metal, ceramic or composite products
CN115872758B (en) BJ3DP printed reaction sintering silicon carbide ceramic and preparation method thereof
CN109475928B (en) Method for producing a shell mould
JP4942038B2 (en) Joining method and joined body
JPH057982A (en) Metallic mold for lost foam pattern and production of thin metallic mold
CN116516209A (en) Ceramic-metal composite material based on binder jet printing and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R151 Written notification of patent or utility model registration

Ref document number: 6988768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151