JP2020076124A - Method for producing metal composite material and metal composite material - Google Patents

Method for producing metal composite material and metal composite material Download PDF

Info

Publication number
JP2020076124A
JP2020076124A JP2018210145A JP2018210145A JP2020076124A JP 2020076124 A JP2020076124 A JP 2020076124A JP 2018210145 A JP2018210145 A JP 2018210145A JP 2018210145 A JP2018210145 A JP 2018210145A JP 2020076124 A JP2020076124 A JP 2020076124A
Authority
JP
Japan
Prior art keywords
metal particles
copper
metal
binder
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018210145A
Other languages
Japanese (ja)
Other versions
JP6988768B2 (en
Inventor
峻 猿楽
Shun Sarugaku
峻 猿楽
康友 谷原
Yasutomo Tanihara
康友 谷原
紀久 松本
Norihisa Matsumoto
紀久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018210145A priority Critical patent/JP6988768B2/en
Publication of JP2020076124A publication Critical patent/JP2020076124A/en
Application granted granted Critical
Publication of JP6988768B2 publication Critical patent/JP6988768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a metal composite material which is prevented from deforming due to its own weight and also has high strength.SOLUTION: A method for producing a metal composite material is provided that is comprised of: a bound body formation step of forming layers of metal particles, supplying an organic binder to the layers of the metal particles to bind the metal particles, sequentially laminating the layers of the bound metal particles, thereby forming a bound body; a porous body fabrication step of drying the bound body thereby fabricating a porous body having a vacancy part; and a step of heating copper or a copper alloy containing Ti in reduction atmosphere and infiltrating the copper or copper alloy in the porous body, reacting carbon of the binder and Ti in the copper or copper alloy, thereby forming a TiC phase on the interface of the metal particles and the copper or copper alloy.SELECTED DRAWING: Figure 5

Description

本発明は、金属を用いた溶浸処理により製造される造形体に関するものである。   The present invention relates to a shaped body manufactured by infiltration treatment using a metal.

三次元図面データをもとに、材料粒子から三次元造形体(以下、造形体という)を形成する新たな造形技術が注目されている。その1つである結合剤噴射法(以下、結着剤噴射法という)は、材料粒子である金属粒子を薄く敷き、金属粒子上に有機性の結着剤を噴射して、結着剤が噴射された部分の金属粒子を固め、固められた層を順次積層することにより複雑な形状の結着体を作製する。作製された結着体は、加熱により金属粒子同士が結合され、空孔部を有する多孔質の造形体となる。
この方法では、三次元図面データに基づく種々の形状を柔軟に作製できるが、造形体の空孔率が高いため、型を用いる鋳造体に比べて強度が劣り、特に加熱時に自重によって変形するおそれがあった。
そこで、金属の溶浸により強度を向上させる処理、例えば造形体より融点の低い金属又は合金を融解させ、造形体の空孔部に充填して再凝固させる処理が行われている(例えば、特許文献1参照)。
A new modeling technique for forming a three-dimensional model (hereinafter referred to as a model) from material particles based on three-dimensional drawing data is drawing attention. One of them is a binder injection method (hereinafter referred to as a binder injection method), in which metal particles, which are material particles, are thinly laid, and an organic binder is injected onto the metal particles so that the binder is The metal particles in the sprayed portion are solidified, and the solidified layers are sequentially laminated to produce a binder having a complicated shape. The produced bound body is heated to bond the metal particles to each other to form a porous shaped body having pores.
With this method, it is possible to flexibly create various shapes based on three-dimensional drawing data, but since the porosity of the shaped body is high, the strength is inferior to the cast body using the mold, and there is a risk of deformation due to its own weight during heating. was there.
Therefore, a process of improving strength by infiltration of a metal, for example, a process of melting a metal or an alloy having a lower melting point than that of the shaped body, filling the void portion of the shaped body and re-solidifying is performed (for example, patents Reference 1).

特表2018−510267号公報Japanese Patent Publication No. 2018-510267

しかしながら、金属の溶浸前に結着体形成時の結着剤を除去する必要があり、これが残留すると十分な強度が確保できないという課題があった。   However, there is a problem that it is necessary to remove the binder at the time of forming the binder before infiltration of the metal, and if this remains, sufficient strength cannot be secured.

本発明は、上述の課題を解決するためになされたもので、結着剤噴射法により製造された造形体の強度を向上させる金属複合体の製造方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for producing a metal composite that improves the strength of a shaped article produced by the binder injection method.

本発明にかかる金属複合体の製造方法は、金属粒子の層を形成し、前記金属粒子の層に有機性の結着剤を供給して前記金属粒子同士を結着させ、結着された前記金属粒子の層を順次積層して結着体を形成する結着体形成工程と、前記結着体を乾燥し空孔部を有する多孔質体を作製する多孔質体作製工程と、前記多孔質体をTiを含む銅又は銅合金を還元雰囲気下で加熱して溶浸させ、前記結着剤の炭素と前記銅又は前記銅合金中のTiとを反応させ、前記金属粒子と前記銅又は前記銅合金との界面にTiC相を形成する工程とを備えたものである。   The method for producing a metal composite according to the present invention comprises forming a layer of metal particles, supplying an organic binder to the layer of metal particles to bind the metal particles to each other, and binding the metal particles to each other. A binder forming step of sequentially laminating layers of metal particles to form a binder; a porous body preparing step of drying the binder to prepare a porous body having pores; The body is infiltrated by heating copper or a copper alloy containing Ti under a reducing atmosphere, reacting carbon of the binder with Ti in the copper or the copper alloy, the metal particles and the copper or the copper And a step of forming a TiC phase at the interface with the copper alloy.

また、本発明にかかる金属複合体は、複数の金属粒子が互いに接触し形成されたコア部と、前記コア部の外周を覆うとともに前記複数の金属粒子間に充填されたTiを含む銅又は銅合金から構成された基盤部と、前記コア部と前記基盤部との界面の少なくとも一部にTiC相が形成された界面部とを備えたものである。   Further, the metal composite according to the present invention is a core portion in which a plurality of metal particles are formed in contact with each other, and copper or copper containing Ti filled between the plurality of metal particles while covering the outer periphery of the core portion. A base portion made of an alloy and an interface portion in which a TiC phase is formed on at least a part of the interface between the core portion and the base portion are provided.

本発明によれば、Tiを含む銅又は銅合金を多孔質体に溶浸させることによって、多孔質体を構成する金属粒子の表面に残留した炭素とTiとを反応させ、金属粒子と銅又は銅合金との界面にTiC相を形成することにより、炭素の残留を抑制でき、作製した金属複合体の強度を著しく向上できる。   According to the present invention, by infiltrating a porous body with copper or a copper alloy containing Ti, carbon and Ti remaining on the surface of the metal particles constituting the porous body react with each other, and the metal particles and copper or By forming a TiC phase at the interface with the copper alloy, it is possible to suppress carbon residue and significantly improve the strength of the produced metal composite.

本発明の実施の形態1にかかる三次元造形装置の概略構成図である。It is a schematic block diagram of the three-dimensional modeling apparatus concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる多孔質体の概略構成図である。FIG. 3 is a schematic configuration diagram of a porous body according to the first exemplary embodiment of the present invention. 本発明の実施の形態1にかかる多孔質体の溶浸処理の状態を示す概略構成図である。It is a schematic block diagram which shows the state of the infiltration process of the porous body concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる金属複合体片の造形方法を示す模式図である。It is a schematic diagram which shows the modeling method of the metal composite piece concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる金属複合体を示す模式図である。It is a schematic diagram which shows the metal complex concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる金属複合体の引張強度比を示す関係図である。FIG. 6 is a relationship diagram showing a tensile strength ratio of the metal composite body according to the second embodiment of the present invention.

実施の形態1.
発明者らは、従来の溶浸処理により製造された造形体の強度が不足する原因の一つが、結着剤の有機成分の残留であることに着目し、有機成分を変成できないか考えた。そして、鋭意検討の結果、有機成分中の炭素と金属とを反応させ、金属化合物として造形体内に残留させることが可能であることがわかった。
そして、特にチタンと炭素とを反応させてTiCとし、造形体を形成する金属粒子間、又は金属粒子と溶浸材との界面にTiC相として残留させた金属複合体とすることにより、強度を確保できることを確認した。以下、発明にかかる金属複合体の製造方法、及び金属複合体について説明する。
Embodiment 1.
The inventors have paid attention to the fact that one of the causes of the insufficient strength of the molded body manufactured by the conventional infiltration treatment is the residual organic component of the binder, and wondered whether the organic component could be denatured. As a result of diligent studies, it was found that it is possible to react carbon in the organic component with a metal and leave the metal compound in the shaped body as a metal compound.
Then, in particular, titanium and carbon are reacted with each other to form TiC, and a metal composite is left as a TiC phase between the metal particles forming the shaped body or at the interface between the metal particles and the infiltrant. I confirmed that I could secure it. Hereinafter, a method for producing a metal composite and a metal composite according to the present invention will be described.

図1は、本発明の実施の形態1にかかる三次元造形装置の概略構成図である。三次元造形装置4は、造形室壁5により囲まれ上下に昇降するテーブル6を備えた造形室7を有する。造形室7内には、タンク8に備えられた金属粒子供給部9からテーブル6へ、金属粒子10(例えば、ステンレス鋼粒子)が供給される。供給された金属粒子10は、スキージ11によりテーブル6上に敷き詰められ、押し固められて、厚みtの金属粒子層12となる。
形成された金属粒子層12に、溶媒に溶解又は混合された有機性の結着剤14がノズル13から噴射され、ノズル13が移動することにより金属粒子層12の任意の位置に結着剤14が供給される。これにより、複数の金属粒子10が結着剤14によって結着され、結着された金属粒子層12が順次積層され、三次元形状の結着体1が形成される。図1において、結着体1の一例として換気扇のファンの形状を示している。
FIG. 1 is a schematic configuration diagram of a three-dimensional modeling apparatus according to the first embodiment of the present invention. The three-dimensional modeling apparatus 4 has a modeling chamber 7 that is surrounded by a modeling chamber wall 5 and includes a table 6 that moves up and down. Metal particles 10 (for example, stainless steel particles) are supplied into the modeling chamber 7 from the metal particle supply unit 9 provided in the tank 8 to the table 6. The supplied metal particles 10 are spread on the table 6 by a squeegee 11 and pressed to form a metal particle layer 12 having a thickness t D.
An organic binder 14 dissolved or mixed in a solvent is jetted from the nozzle 13 to the formed metal particle layer 12, and the binder 14 is moved to an arbitrary position on the metal particle layer 12 as the nozzle 13 moves. Is supplied. As a result, the plurality of metal particles 10 are bound by the binder 14, and the bound metal particle layers 12 are sequentially stacked to form the three-dimensional bound body 1. In FIG. 1, the shape of a fan of a ventilation fan is shown as an example of the binder 1.

次に、得られた結着体1を造形室7から取り出して、乾燥させる。結着体1には結着剤14の溶媒成分が残留しているため、溶媒成分を乾燥によって飛ばすことにより結着を進行させ、結着体1の変形を防止する。残留した溶媒成分を飛ばす乾燥温度、乾燥時間は、例えば200℃、8時間程度である。   Next, the obtained binder 1 is taken out from the modeling room 7 and dried. Since the solvent component of the binder 14 remains in the binder 1, the solvent component is removed by drying to promote the binding and prevent the binder 1 from being deformed. The drying temperature and the drying time for removing the remaining solvent components are, for example, 200 ° C. and about 8 hours.

次に、乾燥した結着体1を常温において冷却する。図2に示すように、結着体1は、複数の金属粒子10とそれらを互いに結着させる結着剤14とから構成され、空孔部を有する多孔質体2となる。多孔質体2の周囲には、結着剤14によって結着していない金属粒子が存在するため、これらを除去する。   Next, the dried binder 1 is cooled at room temperature. As shown in FIG. 2, the binder 1 is composed of a plurality of metal particles 10 and a binder 14 that binds them to each other, and becomes a porous body 2 having pores. Since there are metal particles not bound by the binder 14 around the porous body 2, these are removed.

次に、図3に示すように、乾燥及び冷却した多孔質体2に、例えば水素雰囲気下でTiを含む銅又はTiを含む銅合金を溶浸材15として接触させ、ヒータ16で加熱する。ここで、溶浸材15は粉末状とし、これに多孔質体2を浸漬させる。ブロック形状、短冊状のものを供給してもよい。   Next, as shown in FIG. 3, the dried and cooled porous body 2 is brought into contact with copper containing Ti or a copper alloy containing Ti as an infiltrant 15 in a hydrogen atmosphere, and heated by a heater 16. Here, the infiltrant 15 is in the form of powder, and the porous body 2 is dipped therein. Block-shaped or strip-shaped ones may be supplied.

この溶浸処理によって、図4(a)に示す多孔質体2の空孔部17にTiを含む銅又は銅合金が充填され、多孔質体2は、複数の金属粒子10が互いに接触し形成されたコア部18と、コア部18の外周を覆うとともに複数の金属粒子10間に充填された溶浸材15により構成された基盤部19とにより形成された金属複合体3となる(図4(b))。
また、金属複合体3はさらに、図5に示すように、コア部18と基盤部19との界面の少なくとも一部に、TiC相20が形成された界面部21を有する。
By this infiltration treatment, the pores 17 of the porous body 2 shown in FIG. 4A are filled with copper or copper alloy containing Ti, and the porous body 2 is formed by a plurality of metal particles 10 contacting each other. The metal composite 3 is formed by the core portion 18 and the base portion 19 that covers the outer periphery of the core portion 18 and that is composed of the infiltrant 15 filled between the plurality of metal particles 10 (FIG. 4). (B)).
Further, as shown in FIG. 5, the metal composite 3 further has an interface portion 21 in which the TiC phase 20 is formed on at least a part of the interface between the core portion 18 and the base portion 19.

TiC相20は溶浸材15中のTi含有量及び多孔質体2中の結着剤14の量に依存して形状が異なる。界面部21に点在又は覆うように形成されたTiC相20の他、TiC相20は基盤部19にも存在する。金属粒子10間に存在する場合もある。また、図5に示すように、金属複合体3には炭素22が残留する場合もある。   The TiC phase 20 has a different shape depending on the Ti content in the infiltrant 15 and the amount of the binder 14 in the porous body 2. In addition to the TiC phase 20 formed so as to be scattered or cover the interface portion 21, the TiC phase 20 also exists in the base portion 19. It may exist between the metal particles 10. Further, as shown in FIG. 5, carbon 22 may remain in the metal composite body 3.

このような溶浸処理、即ちTiを含む銅又は銅合金を多孔質体2に接触させ加熱、保持することによって、多孔質体2を構成する金属粒子10の表面に残留した炭素22とTiとを反応させ、金属粒子10と銅又は銅合金との界面にTiC相20を形成することにより、炭素22の残留を抑制でき、作製した金属複合体3の強度を著しく向上できる。   By such infiltration treatment, that is, copper or copper alloy containing Ti is brought into contact with the porous body 2 and heated and held, carbon 22 and Ti remaining on the surface of the metal particles 10 constituting the porous body 2 And the TiC phase 20 is formed at the interface between the metal particles 10 and copper or copper alloy, the carbon 22 can be prevented from remaining, and the strength of the produced metal composite 3 can be remarkably improved.

また、余剰の有機成分を脱脂処理してもよいが、本発明においては、有機成分の炭素22はTiと反応するため、脱脂処理を省略できる。通常の脱脂処理では、多孔質体2を作製した後、500℃前後、真空雰囲気下において1〜24時間程度の加熱処理を行うため、脱脂処理を省略した場合、作業効率が向上する。   Further, the surplus organic component may be degreased, but in the present invention, the carbon 22 of the organic component reacts with Ti, so the degreasing treatment can be omitted. In a normal degreasing process, after the porous body 2 is manufactured, a heating process is performed at about 500 ° C. in a vacuum atmosphere for about 1 to 24 hours. Therefore, when the degreasing process is omitted, work efficiency is improved.

ここで、金属粒子10を構成する金属粒子10の平均粒径が1μm以上50μm以下程度であれば、その金属粒子10は高い流動性を持つため、結着剤噴射法において、均一な金属粒子層12を形成でき、高精度な多孔質体2を得ることができる。   Here, if the average particle diameter of the metal particles 10 constituting the metal particles 10 is about 1 μm or more and 50 μm or less, the metal particles 10 have high fluidity, and therefore a uniform metal particle layer is obtained in the binder injection method. 12 can be formed, and the highly accurate porous body 2 can be obtained.

金属粒子10の充填密度を増して均一な金属粒子層12を得るためには、金属粒子10はアスペクト比が1.0の球形状であることが好ましいが、アスペクト比が1.0以上2.0以下の球形状、楕円形状、多面体形状等の扁平形状であってもよい。   In order to increase the packing density of the metal particles 10 and obtain a uniform metal particle layer 12, the metal particles 10 are preferably spherical with an aspect ratio of 1.0, but the aspect ratio is 1.0 or more.2. It may be a flat shape such as a spherical shape of 0 or less, an elliptical shape, or a polyhedral shape.

また、平均粒径1μm未満の金属粒子10は、そのままでは流動性が低く均一な金属粒子層12を形成することが困難であるため、これらの金属粒子10を予め樹脂又は有機溶剤と混合し、平均粒径が1μm以上50μm以下である複合粒子又は分散体として流動性を向上させ、用いることができる。   Further, since the metal particles 10 having an average particle diameter of less than 1 μm are difficult to form a uniform metal particle layer 12 having low fluidity as they are, the metal particles 10 are mixed with a resin or an organic solvent in advance, The composite particles or dispersions having an average particle size of 1 μm or more and 50 μm or less can be used by improving the fluidity.

また、本実施の形態では、金属粒子10であるステンレス鋼粉末として平均粒径10μmのSUS316L粉末を用いたが、同様の流動性を示す、他の金属粒子に対しても適応可能である。   Further, in the present embodiment, SUS316L powder having an average particle size of 10 μm is used as the stainless steel powder which is the metal particles 10, but it is applicable to other metal particles having the same fluidity.

また、溶浸処理は、水素雰囲気下以外でも可能であるが、炭素を酸化させないために還元雰囲気下であることが好ましい。溶浸処理の加熱温度、加熱時間は、例えば1100℃、30分である。   Further, the infiltration treatment can be performed under a hydrogen atmosphere, but it is preferably under a reducing atmosphere so as not to oxidize carbon. The heating temperature and heating time for the infiltration treatment are, for example, 1100 ° C. and 30 minutes.

また、結着体1を中空構造としてもよい。このとき、中空構造内の結着していない金属粒子10を取り除けるように、結着体1形成時に予め除去用の穴を設けてもよい。除去された金属粒子10は、三次元造形装置4において再利用が可能である。   Further, the binder 1 may have a hollow structure. At this time, a hole for removal may be provided in advance when the binder 1 is formed so that the unbound metal particles 10 in the hollow structure can be removed. The removed metal particles 10 can be reused in the three-dimensional modeling apparatus 4.

また、金属複合体3として換気扇のファンを製造する例を示したが、TiC相20を形成することにより金属複合体3の強度を向上できることから、自動車用部品、航空機の駆動部品等、応力がかかり強度確保が必要となる金属部品にも適用できる。   Also, an example of manufacturing a fan of a ventilation fan as the metal composite 3 has been shown, but since the strength of the metal composite 3 can be improved by forming the TiC phase 20, the stress of automobile parts, aircraft drive parts, etc. It can also be applied to metal parts where it is necessary to secure strength.

また、溶浸処理後、金属複合体3に切削加工等を行い、形状変更してもよい。   After the infiltration treatment, the metal composite 3 may be subjected to a cutting process or the like to change its shape.

本発明においては、金属粒子10の層に有機性の結着剤14を供給して金属粒子10同士を結着する工程を繰り返し行うことにより、三次元形状の結着体1を形成する(結着体形成工程)。結着体1は乾燥されることで空孔部17を有する多孔質体2となり(多孔質体作製工程)、多孔質体2をTiを含む銅又は銅合金に溶浸させ、還元雰囲気下で加熱して、結着剤14の炭素22と銅又は銅合金中のTiとを反応させる。
これにより、複数の金属粒子10が互いに接触し形成されたコア部18と、コア部18の外周を覆うとともに複数の金属粒子10間に充填されたTiを含む銅又は銅合金から構成された基盤部19と、コア部18と基盤部19との界面の少なくとも一部にTiC相20が形成された界面部21とが得られる。
In the present invention, the step of supplying the organic binder 14 to the layer of the metal particles 10 and binding the metal particles 10 to each other is repeated to form the three-dimensionally-shaped binder 1. Body formation process). The binder 1 becomes a porous body 2 having pores 17 by being dried (a porous body producing step), the porous body 2 is infiltrated with copper or copper alloy containing Ti, and the porous body 2 is subjected to a reducing atmosphere. By heating, the carbon 22 of the binder 14 and the Ti in the copper or copper alloy are reacted.
Accordingly, the core portion 18 formed by the plurality of metal particles 10 in contact with each other, and the base made of copper or copper alloy containing Ti filled between the plurality of metal particles 10 and covering the outer periphery of the core portion 18. The part 19 and the interface part 21 in which the TiC phase 20 is formed on at least a part of the interface between the core part 18 and the base part 19 are obtained.

そして、多孔質体2を構成する金属粒子10の表面に残留した炭素22とTiとを反応させ、金属粒子10と銅又は銅合金との界面にTiC相20を形成することにより、簡易な処理で強度を確保した金属複合体3を得ることができる。   Then, the carbon 22 remaining on the surface of the metal particles 10 constituting the porous body 2 and Ti are reacted with each other to form a TiC phase 20 at the interface between the metal particles 10 and copper or a copper alloy, thereby performing a simple treatment. Thus, the metal composite body 3 having secured strength can be obtained.

実施の形態2.
実施の形態1において説明した金属複合体3の強度について説明する。金属複合体3の強度を確認するために、実施の形態1と同様にして幅20mm、長さ100mm、厚さ5mmの金属複合体片を作製した。また、比較のためにTiを含まない銅を用いて溶浸した試料片を作製した。
Embodiment 2.
The strength of the metal composite body 3 described in the first embodiment will be described. In order to confirm the strength of the metal composite 3, a metal composite piece having a width of 20 mm, a length of 100 mm and a thickness of 5 mm was prepared in the same manner as in the first embodiment. For comparison, a sample piece infiltrated with copper containing no Ti was prepared.

図6は、金属複合体片の引張強度比と溶浸材15中のTi含有量の関係図であり、Tiを含まない銅を用いて溶浸した試料片の引張強度を1とし、溶浸材15のTi含有量を変化させた時の金属複合体片の引張強度比を示している。
図6に示すように、Ti含有量が0.01重量%を超えると、Tiを含まない銅を用いた場合の引張強度よりも大きくなることがわかる。溶浸材15中に0.1重量%のTiを含むと、引張強度比は1.5倍となった。さらにTi含有量を増やすと、0.3重量%で約2.5倍となり、それ以上は引張強度上昇がみられなかった。さらに0.5重量%を超えると、徐々に低下がみられた。Ti含有量が2.0重量%以上となると、Tiを含まない銅を用いた場合との差がみられなくなった。
これは、Tiが、例えばチタン水素化物を形成し、金属粒子10の表面に残留してTiC相20の形成を阻害したためと推測される。また、Ti含有量が2.0重量%以上となると界面部21にTiC相が形成されにくくなると思われる。
FIG. 6 is a diagram showing the relationship between the tensile strength ratio of the metal composite piece and the Ti content in the infiltrant material 15. The tensile strength of the sample piece infiltrated with copper containing no Ti is 1 and the infiltration The tensile strength ratio of the metal composite piece when changing the Ti content of the material 15 is shown.
As shown in FIG. 6, it can be seen that when the Ti content exceeds 0.01% by weight, the tensile strength becomes larger than the tensile strength when copper containing no Ti is used. When 0.1% by weight of Ti was contained in the infiltrant 15, the tensile strength ratio became 1.5 times. When the Ti content was further increased, it became about 2.5 times at 0.3% by weight, and no further increase in tensile strength was observed. Further, when it exceeded 0.5% by weight, a gradual decrease was observed. When the Ti content was 2.0% by weight or more, the difference with the case of using copper containing no Ti was not observed.
It is speculated that this is because Ti formed, for example, titanium hydride and remained on the surface of the metal particles 10 to inhibit the formation of the TiC phase 20. Further, when the Ti content is 2.0% by weight or more, the TiC phase is unlikely to be formed in the interface portion 21.

つまり、溶浸材15中のTi含有量が0.01重量%未満の場合、得られる金属複合体片中のTiC相20の形成量が十分でなく、Ti含有量が2.0重量%以上の場合、形成されるTiC相20が形成されにくいため、Ti含有量としては0.01重量%以上2.0重量%未満が好ましい。さらには、0.01重量%以上0.5重量%以下、0.1重量%以上0.5重量%以下、0.3重量%以上0.5重量%以下が好ましい。   That is, when the Ti content in the infiltrant 15 is less than 0.01% by weight, the amount of the TiC phase 20 formed in the obtained metal composite piece is insufficient and the Ti content is 2.0% by weight or more. In this case, since the TiC phase 20 to be formed is hard to be formed, the Ti content is preferably 0.01% by weight or more and less than 2.0% by weight. Furthermore, 0.01% by weight or more and 0.5% by weight or less, 0.1% by weight or more and 0.5% by weight or less, and 0.3% by weight or more and 0.5% by weight or less are preferable.

このように、Tiを含む銅又は銅合金を多孔質体2に溶浸させることによって、多孔質体2を構成する金属粒子10の表面に残留した炭素22とTiとを反応させ、金属粒子10と銅又は銅合金との界面にTiC相20を形成することにより、炭素22の残留を抑制でき、作製した金属複合体3の強度を著しく向上できる。   In this way, by infiltrating the copper or copper alloy containing Ti into the porous body 2, the carbon 22 remaining on the surface of the metal particles 10 constituting the porous body 2 reacts with Ti, and the metal particles 10 By forming the TiC phase 20 at the interface between the copper and the copper or copper alloy, the carbon 22 can be suppressed from remaining, and the strength of the produced metal composite 3 can be significantly improved.

なお、本発明は、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that, in the present invention, the respective embodiments can be freely combined, or the respective embodiments can be appropriately modified or omitted within the scope of the invention.

1 結着体、2 多孔質体、3 金属複合体、4 三次元造形装置、5 造形室壁、
6 テーブル、7 造形室、8 タンク、9 金属粒子供給部、10 金属粒子、
11 スキージ、12 金属粒子層、13 ノズル、14 結着剤、15 溶浸材、
16 ヒータ、17 空孔部、18 コア部、19 基盤部、20 TiC相、
21 界面部、22 炭素。
1 binder, 2 porous body, 3 metal composite, 4 three-dimensional modeling device, 5 modeling chamber wall,
6 table, 7 modeling room, 8 tank, 9 metal particle supply section, 10 metal particle,
11 squeegee, 12 metal particle layer, 13 nozzle, 14 binder, 15 infiltrant,
16 heaters, 17 holes, 18 cores, 19 substrate, 20 TiC phase,
21 interface, 22 carbon.

Claims (6)

金属粒子の層を形成し、前記金属粒子の層に有機性の結着剤を供給して前記金属粒子同士を結着させ、結着された前記金属粒子の層を順次積層して結着体を形成する結着体形成工程と、
前記結着体を乾燥し空孔部を有する多孔質体を作製する多孔質体作製工程と、
前記多孔質体をTiを含む銅又は銅合金を還元雰囲気下で加熱して溶浸させ、前記結着剤の炭素と前記銅又は前記銅合金中のTiとを反応させ、前記金属粒子と前記銅又は前記銅合金との界面にTiC相を形成する工程と、
を備えた金属複合体の製造方法。
A layer of metal particles is formed, an organic binder is supplied to the layer of metal particles to bind the metal particles together, and the layers of the bound metal particles are sequentially laminated to form a binder. A binder forming step for forming
A porous body producing step of producing a porous body having pores by drying the binder,
The porous body is heated to infiltrate copper or copper alloy containing Ti under a reducing atmosphere, carbon of the binder is reacted with Ti in the copper or the copper alloy, and the metal particles and the Forming a TiC phase at the interface with copper or the copper alloy;
A method for producing a metal composite, comprising:
Tiを含む銅又は銅合金のTi含有量は、0.01重量%以上2.0重量%未満とすることを特徴とする、請求項1に記載の金属複合体の製造方法。   The method for producing a metal composite according to claim 1, wherein the Ti content of the copper or copper alloy containing Ti is 0.01% by weight or more and less than 2.0% by weight. 還元雰囲気は、水素雰囲気とすることを特徴とする、請求項1又は2に記載の金属複合体の製造方法。   The method for producing a metal composite according to claim 1 or 2, wherein the reducing atmosphere is a hydrogen atmosphere. 金属粒子の平均粒径は、1μm以上50μm以下であることを特徴とする、請求項1〜3のいずれか1項に記載の金属複合体の製造方法。   The method for producing a metal composite according to any one of claims 1 to 3, wherein the average particle diameter of the metal particles is 1 µm or more and 50 µm or less. 金属粒子は、ステンレス鋼粒子とすることを特徴とする、請求項1〜4のいずれか1項に記載の金属複合体の製造方法。   The method for producing a metal composite according to any one of claims 1 to 4, wherein the metal particles are stainless steel particles. 複数の金属粒子が互いに接触し形成されたコア部と、
前記コア部の外周を覆うとともに前記複数の金属粒子間に充填されたTiを含む銅又は銅合金から構成された基盤部と、
前記コア部と前記基盤部との界面の少なくとも一部にTiC相が形成された界面部と、
を有する金属複合体。
A core portion formed by a plurality of metal particles in contact with each other,
A base portion made of copper or a copper alloy containing Ti filled between the plurality of metal particles while covering the outer periphery of the core portion,
An interface part in which a TiC phase is formed on at least a part of the interface between the core part and the base part,
A metal composite having.
JP2018210145A 2018-11-08 2018-11-08 Metal complex manufacturing method and metal complex Active JP6988768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018210145A JP6988768B2 (en) 2018-11-08 2018-11-08 Metal complex manufacturing method and metal complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018210145A JP6988768B2 (en) 2018-11-08 2018-11-08 Metal complex manufacturing method and metal complex

Publications (2)

Publication Number Publication Date
JP2020076124A true JP2020076124A (en) 2020-05-21
JP6988768B2 JP6988768B2 (en) 2022-01-05

Family

ID=70723684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018210145A Active JP6988768B2 (en) 2018-11-08 2018-11-08 Metal complex manufacturing method and metal complex

Country Status (1)

Country Link
JP (1) JP6988768B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111719062A (en) * 2020-07-06 2020-09-29 北京交通大学 TiC/stainless steel composite porous material and preparation method thereof
WO2022168202A1 (en) * 2021-02-03 2022-08-11 三菱電機株式会社 Metal composite and method for manufacturing metal composite material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954211A (en) * 1972-09-30 1974-05-27
JP2003129862A (en) * 2001-10-23 2003-05-08 Toshiba Corp Turbine blade production method
JP2003342700A (en) * 2002-05-27 2003-12-03 Komatsu Ltd Sintered sliding material, sintered sliding member, and production method thereof
WO2005024076A1 (en) * 2003-09-03 2005-03-17 Komatsu Ltd. Sintered sliding material, sliding member, connection device and device provided with sliding member
JP2007528810A (en) * 2003-09-11 2007-10-18 エクス ワン コーポレーション Laminated shaped article having small diameter fluid flow hole and method for producing the same
JP2010536694A (en) * 2007-08-14 2010-12-02 ザ・ペン・ステート・リサーチ・ファンデーション 3D printing of near net shape products
US20180133803A1 (en) * 2016-11-17 2018-05-17 Schlumberger Technology Corporation Multi-material functional parts using additive manufacturing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954211A (en) * 1972-09-30 1974-05-27
JP2003129862A (en) * 2001-10-23 2003-05-08 Toshiba Corp Turbine blade production method
JP2003342700A (en) * 2002-05-27 2003-12-03 Komatsu Ltd Sintered sliding material, sintered sliding member, and production method thereof
WO2005024076A1 (en) * 2003-09-03 2005-03-17 Komatsu Ltd. Sintered sliding material, sliding member, connection device and device provided with sliding member
JP2007528810A (en) * 2003-09-11 2007-10-18 エクス ワン コーポレーション Laminated shaped article having small diameter fluid flow hole and method for producing the same
JP2010536694A (en) * 2007-08-14 2010-12-02 ザ・ペン・ステート・リサーチ・ファンデーション 3D printing of near net shape products
US20180133803A1 (en) * 2016-11-17 2018-05-17 Schlumberger Technology Corporation Multi-material functional parts using additive manufacturing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111719062A (en) * 2020-07-06 2020-09-29 北京交通大学 TiC/stainless steel composite porous material and preparation method thereof
WO2022168202A1 (en) * 2021-02-03 2022-08-11 三菱電機株式会社 Metal composite and method for manufacturing metal composite material

Also Published As

Publication number Publication date
JP6988768B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP7345450B2 (en) Additive manufacturing of articles containing beryllium
JP6722676B2 (en) Additive manufacturing method, object data processing method, data carrier, object data processor, and object manufactured by the same
CN108348998B (en) Additive manufacturing method and apparatus
CN111633209B (en) Steel/aluminum bimetal additive/equal material composite manufacturing method
TW201936296A (en) Geometry for debinding 3D printed parts
US7063815B2 (en) Production of composite materials by powder injection molding and infiltration
US10343217B2 (en) Nanoparticle enhancement for additive manufacturing
JP6988768B2 (en) Metal complex manufacturing method and metal complex
EP3661673A1 (en) Additive manufacturing components and methods
KR20170102999A (en) A laminate processing method, a object data processing method, a data carrier, a object data processor, and a manufactured object
US9028584B2 (en) System and method for fabrication of 3-D parts
JP2010202928A (en) Method for producing metal shaped-article and metal resin composite powder for rapid prototyping
JP2016159324A (en) Manufacturing method of mold
JP2003305777A (en) Three-dimensionally shaping method and device
WO2022168202A1 (en) Metal composite and method for manufacturing metal composite material
JP7138826B1 (en) Sealed metal composite and mold, and method for producing sealed metal composite
US20190237774A1 (en) Method for producing a current collector for a fuel cell, and fuel cell
JP2023110342A (en) Powder for laminate molding and production method of metal sintered body
JPH057982A (en) Metallic mold for lost foam pattern and production of thin metallic mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R151 Written notification of patent or utility model registration

Ref document number: 6988768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151