JP6988681B2 - Heat pipes and electronic devices - Google Patents

Heat pipes and electronic devices Download PDF

Info

Publication number
JP6988681B2
JP6988681B2 JP2018092221A JP2018092221A JP6988681B2 JP 6988681 B2 JP6988681 B2 JP 6988681B2 JP 2018092221 A JP2018092221 A JP 2018092221A JP 2018092221 A JP2018092221 A JP 2018092221A JP 6988681 B2 JP6988681 B2 JP 6988681B2
Authority
JP
Japan
Prior art keywords
plate
shaped member
cavity
flow path
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018092221A
Other languages
Japanese (ja)
Other versions
JP2019196886A (en
Inventor
健司 塩賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2018092221A priority Critical patent/JP6988681B2/en
Publication of JP2019196886A publication Critical patent/JP2019196886A/en
Application granted granted Critical
Publication of JP6988681B2 publication Critical patent/JP6988681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、ヒートパイプ及び電子機器に関する。 The present invention relates to heat pipes and electronic devices.

発熱部品を冷却するために,ヒートパイプによる熱輸送を用いた技術が知られている。例えば、気相の作動流体が流れる気相流路と液相の作動流体が流れる液相流路が設けられた第1基板、気相流路と液相流路の間に相当する位置に空洞部を有する第2基板、及び蓋となる第3基板が積層されて、発熱部品の熱を移動させるループ型のヒートパイプが知られている(例えば、特許文献1)。 A technique using heat transport by a heat pipe is known to cool heat-generating parts. For example, a first substrate provided with a gas phase flow path through which a gas phase working fluid flows and a liquid phase flow path through which a liquid phase working fluid flows, and a cavity at a position corresponding to the gas phase flow path and the liquid phase flow path. A loop-type heat pipe is known in which a second substrate having a portion and a third substrate serving as a lid are laminated to transfer the heat of a heat-generating component (for example, Patent Document 1).

特開2004−108760号公報Japanese Unexamined Patent Publication No. 2004-108760

しかしながら、特許文献1では、気相流路と液相流路が設けられた第1基板とは異なる第2基板に断熱部として機能する空洞部が設けられているため、第1基板に設けられた気相流路と液相流路の間で熱交換が行われる。このとき、気相の作動流体が凝縮部に到達する前に凝縮すること及び液相の作動流体が蒸発部に到達する前に気化することが起こり易くなる。これにより、気相流路を流れる気相の作動流体及び液相流路を流れる液相の作動流体の移動が阻害され、熱輸送効率が低下してしまう。 However, in Patent Document 1, since a cavity portion that functions as a heat insulating portion is provided on the second substrate different from the first substrate provided with the gas phase flow path and the liquid phase flow path, it is provided on the first substrate. Heat exchange is performed between the gas phase flow path and the liquid phase flow path. At this time, it is easy for the working fluid of the gas phase to condense before reaching the condensing part and to vaporize before the working fluid of the liquid phase reaches the evaporating part. As a result, the movement of the working fluid of the gas phase flowing through the gas phase flow path and the working fluid of the liquid phase flowing through the liquid phase flow path is hindered, and the heat transport efficiency is lowered.

1つの側面では、熱輸送効率の低下を抑制することを目的とする。 In one aspect, the purpose is to suppress a decrease in heat transport efficiency.

1つの態様では、作動流体を気化する蒸発部と、前記作動流体を液化する凝縮部と、前記蒸発部で気化した気相の前記作動流体が前記凝縮部に向かって流れる気相流路及び前記凝縮部で液化した液相の前記作動流体が前記蒸発部に向かって流れる液相流路を含む流路部と、を備え、前記蒸発部、前記凝縮部、及び前記流路部は、第1板状部材、第2板状部材、第3板状部材、及び第4板状部材がこの順に積層された積層体で形成され、前記積層体は、前記第1板状部材と前記第2板状部材の間に前記気相流路を含む第1空洞部、前記第3板状部材と前記第4板状部材の間に前記液相流路を含む第2空洞部、及び前記第2板状部材と前記第3板状部材の間に前記第1空洞部及び前記第2空洞部に挟まれた第3空洞部を有し、前記第2板状部材及び前記第3板状部材は、前記蒸発部において前記第1空洞部と前記第2空洞部を連通する第1貫通孔を有し、前記凝縮部において前記第1空洞部と前記第2空洞部を連通する第2貫通孔を有する、ヒートパイプである。 In one embodiment, an evaporative section that vaporizes the working fluid, a condensing section that liquefies the working fluid, a gas phase flow path through which the working fluid of the gas phase vaporized in the evaporating section flows toward the condensing section, and the said. A flow path portion including a liquid phase flow path through which the working fluid of the liquid phase liquefied in the condensing section flows toward the evaporation section is provided, and the evaporation section, the condensation section, and the flow path section are the first. The plate-shaped member, the second plate-shaped member, the third plate-shaped member, and the fourth plate-shaped member are formed of a laminated body in which the plate-shaped member is laminated in this order, and the laminated body is the first plate-shaped member and the second plate. A first cavity including the gas phase flow path between the shaped members, a second cavity including the liquid phase flow path between the third plate-shaped member and the fourth plate-shaped member, and the second plate. The second plate-shaped member and the third plate-shaped member have a third cavity portion sandwiched between the first cavity portion and the second cavity portion between the shaped member and the third plate-shaped member. The evaporating portion has a first through hole that communicates the first cavity portion with the second cavity portion, and the condensing portion has a second through hole that communicates the first cavity portion and the second cavity portion. , A heat pipe.

1つの態様では、発熱部品と、前記発熱部品の熱を移動するヒートパイプと、を備え、前記ヒートパイプは、作動流体を気化する蒸発部と、前記作動流体を液化する凝縮部と、前記蒸発部で気化した気相の前記作動流体が前記凝縮部に向かって流れる気相流路及び前記凝縮部で液化した液相の前記作動流体が前記蒸発部に向かって流れる液相流路を含む流路部と、を備え、前記蒸発部、前記凝縮部、及び前記流路部は、第1板状部材、第2板状部材、第3板状部材、及び第4板状部材がこの順に積層された積層体で形成され、前記積層体は、前記第1板状部材と前記第2板状部材の間に前記気相流路を含む第1空洞部、前記第3板状部材と前記第4板状部材の間に前記液相流路を含む第2空洞部、及び前記第2板状部材と前記第3板状部材の間に前記第1空洞部及び前記第2空洞部に挟まれた第3空洞部を有し、前記第2板状部材及び前記第3板状部材は、前記蒸発部において前記第1空洞部と前記第2空洞部を連通する第1貫通孔を有し、前記凝縮部において前記第1空洞部と前記第2空洞部を連通する第2貫通孔を有する、電子機器である。 In one embodiment, a heat generating component and a heat pipe for transferring the heat of the heat generating component are provided, and the heat pipe includes an evaporating section for vaporizing the working fluid, a condensing section for liquefying the working fluid, and the evaporating section. A flow including a gas phase flow path in which the working fluid of the vaporized phase flows toward the condensed portion and a liquid phase flow path in which the working fluid of the liquid phase liquefied in the condensed portion flows toward the evaporating portion. A road portion is provided, and in the evaporating portion, the condensing portion, and the flow path portion, a first plate-shaped member, a second plate-shaped member, a third plate-shaped member, and a fourth plate-shaped member are laminated in this order. The laminated body is formed of the laminated body, and the laminated body includes a first cavity portion including the vapor phase flow path between the first plate-shaped member and the second plate-shaped member, the third plate-shaped member and the first plate-shaped member. The second cavity including the liquid phase flow path is sandwiched between the four plate-shaped members, and the first cavity and the second cavity are sandwiched between the second plate-shaped member and the third plate-shaped member. The second plate-shaped member and the third plate-shaped member have a first through hole for communicating the first cavity portion and the second cavity portion in the evaporation portion. It is an electronic device having a second through hole communicating the first cavity portion and the second cavity portion in the condensing portion.

1つの側面として、熱輸送効率の低下を抑制することができる。 As one aspect, it is possible to suppress a decrease in heat transport efficiency.

図1は、実施例1に係るヒートパイプの斜視図である。FIG. 1 is a perspective view of the heat pipe according to the first embodiment. 図2(a)から図2(d)は、実施例1に係るヒートパイプを形成する板状部材の平面図である。2 (a) to 2 (d) are plan views of the plate-shaped member forming the heat pipe according to the first embodiment. 図3(a)から図3(d)は、図2(a)から図2(d)における蒸発部の拡大図である。3 (a) to 3 (d) are enlarged views of the evaporation portion in FIGS. 2 (a) to 2 (d). 図4(a)から図4(c)は、実施例1に係るヒートパイプの断面図である。4 (a) to 4 (c) are cross-sectional views of the heat pipe according to the first embodiment. 図5(a)から図5(d)は、実施例1の変形例1に係るヒートパイプを形成する板状部材の蒸発部の平面図である。5 (a) to 5 (d) are plan views of the evaporation portion of the plate-shaped member forming the heat pipe according to the first modification of the first embodiment. 図6(a)から図6(d)は、実施例1の変形例2に係るヒートパイプを形成する板状部材の蒸発部の平面図である。6 (a) to 6 (d) are plan views of the evaporation portion of the plate-shaped member forming the heat pipe according to the second modification of the first embodiment. 図7(a)から図7(d)は、実施例2に係るヒートパイプを形成する板状部材の平面図である。7 (a) to 7 (d) are plan views of the plate-shaped member forming the heat pipe according to the second embodiment. 図8(a)から図8(c)は、実施例2に係るヒートパイプの断面図である。8 (a) to 8 (c) are cross-sectional views of the heat pipe according to the second embodiment. 図9(a)から図9(d)は、実施例3に係るヒートパイプを形成する板状部材の平面図である。9 (a) to 9 (d) are plan views of the plate-shaped member forming the heat pipe according to the third embodiment. 図10は、実施例3に係るヒートパイプの断面図である。FIG. 10 is a cross-sectional view of the heat pipe according to the third embodiment. 図11(a)は、実施例4に係るヒートパイプの斜視図、図11(b)は、実施例4の変形例1に係るヒートパイプの斜視図である。11 (a) is a perspective view of the heat pipe according to the fourth embodiment, and FIG. 11 (b) is a perspective view of the heat pipe according to the first modification of the fourth embodiment. 図12は、実施例5に係る電子機器の分解斜視図である。FIG. 12 is an exploded perspective view of the electronic device according to the fifth embodiment.

以下、図面を参照して、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.

図1は、実施例1に係るヒートパイプの斜視図である。図1のように、実施例1のヒートパイプ100は、蒸発部50、凝縮部52、及び流路部54を有する。蒸発部50は、発熱部品の熱によって液相の作動流体を気化する。凝縮部52は、気相の作動流体を液化する。流路部54は、蒸発部50と凝縮部52の間に接続され、蒸発部50で気化した作動流体が流れる気相流路及び凝縮部52で液化した作動流体が流れる液相流路を有する。蒸発部50は、例えば平面視で一辺が15mm〜25mm程度の矩形形状をしている。凝縮部52は、例えば平面視で一辺が25mm〜35mm程度の矩形形状をしている。流路部54は、蒸発部50及び凝縮部52よりも狭い幅で、蒸発部50と凝縮部52の間を延在している。 FIG. 1 is a perspective view of the heat pipe according to the first embodiment. As shown in FIG. 1, the heat pipe 100 of the first embodiment has an evaporation unit 50, a condensation unit 52, and a flow path unit 54. The evaporation unit 50 vaporizes the working fluid of the liquid phase by the heat of the heat generating component. The condensing unit 52 liquefies the working fluid of the gas phase. The flow path portion 54 is connected between the evaporation section 50 and the condensation section 52, and has a gas phase flow path through which the working fluid vaporized in the evaporation section 50 flows and a liquid phase flow path through which the working fluid liquefied in the condensation section 52 flows. .. The evaporation unit 50 has, for example, a rectangular shape having a side of about 15 mm to 25 mm in a plan view. The condensed portion 52 has, for example, a rectangular shape having a side of about 25 mm to 35 mm in a plan view. The flow path portion 54 has a width narrower than that of the evaporation portion 50 and the condensation portion 52, and extends between the evaporation portion 50 and the condensation portion 52.

蒸発部50、凝縮部52、及び流路部54は、板状部材10、板状部材20、板状部材30、及び板状部材40がこの順に積層された積層体56によって形成されている。板状部材10、板状部材20、板状部材30、及び板状部材40は、例えば銅又はステンレス鋼などの金属材料で形成されている。板状部材10、板状部材20、板状部材30、及び板状部材40は、例えば拡散接合(熱圧着)に代表される固相接合よって接合されているが、接着剤などによって接合されていてもよい。 The evaporation portion 50, the condensation portion 52, and the flow path portion 54 are formed by a laminated body 56 in which a plate-shaped member 10, a plate-shaped member 20, a plate-shaped member 30, and a plate-shaped member 40 are laminated in this order. The plate-shaped member 10, the plate-shaped member 20, the plate-shaped member 30, and the plate-shaped member 40 are made of a metal material such as copper or stainless steel. The plate-shaped member 10, the plate-shaped member 20, the plate-shaped member 30, and the plate-shaped member 40 are joined by solid-phase bonding represented by, for example, diffusion bonding (thermocompression bonding), but are bonded by an adhesive or the like. You may.

図2(a)から図2(d)は、実施例1に係るヒートパイプを形成する板状部材の平面図である。図2(a)は、板状部材40の下面図、図2(b)は、板状部材30の上面図、図2(c)は、板状部材20の上面図、図2(d)は、板状部材10の上面図である。図3(a)から図3(d)は、図2(a)から図2(d)における蒸発部50の拡大図である。なお、以下の平面図において、板状部材のうちの凹部が形成されていない部分を大きなクロスハッチで図示し、凹部が形成されている部分を小さなクロスハッチで図示することとする。 2 (a) to 2 (d) are plan views of the plate-shaped member forming the heat pipe according to the first embodiment. 2A is a bottom view of the plate-shaped member 40, FIG. 2B is a top view of the plate-shaped member 30, FIG. 2C is a top view of the plate-shaped member 20, and FIG. 2D is. Is a top view of the plate-shaped member 10. 3 (a) to 3 (d) are enlarged views of the evaporation unit 50 in FIGS. 2 (a) to 2 (d). In the following plan view, the portion of the plate-shaped member in which the recess is not formed is illustrated by a large crosshatch, and the portion in which the recess is formed is illustrated by a small crosshatch.

図2(a)及び図3(a)のように、板状部材40は、例えば厚さ0.2mm程度の銅板であり、蒸発部50から流路部54を経由して凝縮部52まで延びた凹部41が形成されている。凹部41は、例えばフォトリソグラフィ技術及びエッチング技術を用いて形成される。凹部41の深さは、例えば0.15mm程度である。凹部41は、例えば蒸発部50においては蒸発部50の平面形状と同じ平面形状で周辺に所定の幅の側壁を有して形成され、流路部54においては周辺に所定の幅の側壁を有して延在して形成されている。なお、同じとは、製造誤差程度に異なる場合も含むものである(以下においても同じ)。また、凹部41は、凝縮部52においては流路部54での幅のまま流路部54から延在して形成されている。流路部54での凹部41の幅W1は、例えば3mmから5mm程度である。また、板状部材40は、凝縮部52において、凹部41の周りが凹部41よりも大きな面積の放熱板42となっている。 As shown in FIGS. 2A and 3A, the plate-shaped member 40 is, for example, a copper plate having a thickness of about 0.2 mm, and extends from the evaporation portion 50 to the condensation portion 52 via the flow path portion 54. A concave portion 41 is formed. The recess 41 is formed using, for example, a photolithography technique and an etching technique. The depth of the recess 41 is, for example, about 0.15 mm. The recess 41 is formed, for example, in the evaporation portion 50 having the same planar shape as the plane shape of the evaporation portion 50 and having a side wall having a predetermined width in the periphery, and in the flow path portion 54, having a side wall having a predetermined width in the periphery. It is extended and formed. In addition, the same includes cases where the manufacturing error is different (the same applies to the following). Further, the recess 41 is formed in the condensing portion 52 so as to extend from the flow path portion 54 while maintaining the width of the flow path portion 54. The width W1 of the recess 41 in the flow path portion 54 is, for example, about 3 mm to 5 mm. Further, the plate-shaped member 40 is a heat radiating plate 42 having a larger area around the recess 41 than the recess 41 in the condensing portion 52.

図2(b)及び図3(b)のように、板状部材30は、例えば厚さ0.1mm程度の銅板であり、蒸発部50に板状部材30を貫通する貫通孔31が設けられ、凝縮部52に板状部材30を貫通する貫通孔32が設けられている。貫通孔31及び32は、例えばフォトリソグラフィ技術及びエッチング技術を用いて形成される。貫通孔31は、例えば平面視で長方形形状をしていて、縦横に並んで複数設けられている。貫通孔32は、例えば平面視で長方形形状をしていて、1つだけ設けられている。なお、貫通孔31及び32は、平面視で長方形形状をしている場合に限られず、正方形形状、円形形状、又は楕円形形状など、その他の形状をしていてもよい。板状部材30は、凝縮部52において、貫通孔32の周りが貫通孔32よりも大きな面積の放熱板33となっている。 As shown in FIGS. 2B and 3B, the plate-shaped member 30 is, for example, a copper plate having a thickness of about 0.1 mm, and the evaporation portion 50 is provided with a through hole 31 penetrating the plate-shaped member 30. The condensed portion 52 is provided with a through hole 32 that penetrates the plate-shaped member 30. The through holes 31 and 32 are formed using, for example, photolithography and etching techniques. The through holes 31 have, for example, a rectangular shape in a plan view, and a plurality of through holes 31 are provided side by side vertically and horizontally. The through hole 32 has, for example, a rectangular shape in a plan view, and is provided with only one through hole 32. The through holes 31 and 32 are not limited to having a rectangular shape in a plan view, and may have other shapes such as a square shape, a circular shape, or an elliptical shape. In the condensing portion 52, the plate-shaped member 30 is a heat radiating plate 33 having a larger area around the through hole 32 than the through hole 32.

図2(c)及び図3(c)のように、板状部材20は、例えば厚さ0.2mm程度の銅板であり、蒸発部50に板状部材20を貫通する貫通孔21が設けられ、凝縮部52に板状部材20を貫通する貫通孔22が設けられている。貫通孔21及び22は、例えばフォトリソグラフィ技術及びエッチング技術を用いて形成される。貫通孔21は、例えば平面視で長方形形状をしていて、縦横に並んで複数設けられている。貫通孔21は、例えば貫通孔31と同じ大きさで且つ同じ形状をしている。貫通孔22は、例えば平面視で長方形形状をしていて、1つだけ設けられている。貫通孔22は、例えば貫通孔32と同じ大きさで且つ同じ形状をしている。なお、貫通孔21及び22は、平面視で長方形形状をしている場合に限られず、正方形形状、円形形状、又は楕円形形状など、その他の形状をしていてもよい。板状部材20は、凝縮部52において、貫通孔22の周りが貫通孔22よりも大きな面積の放熱板23となっている。 As shown in FIGS. 2 (c) and 3 (c), the plate-shaped member 20 is, for example, a copper plate having a thickness of about 0.2 mm, and the evaporation portion 50 is provided with a through hole 21 penetrating the plate-shaped member 20. The condensed portion 52 is provided with a through hole 22 that penetrates the plate-shaped member 20. The through holes 21 and 22 are formed using, for example, photolithography and etching techniques. The through holes 21 have, for example, a rectangular shape in a plan view, and are provided in a plurality of through holes 21 side by side in the vertical and horizontal directions. The through hole 21 has, for example, the same size and shape as the through hole 31. The through hole 22 has, for example, a rectangular shape in a plan view, and is provided with only one through hole 22. The through hole 22 has, for example, the same size and shape as the through hole 32. The through holes 21 and 22 are not limited to having a rectangular shape in a plan view, and may have other shapes such as a square shape, a circular shape, or an elliptical shape. In the condensing portion 52, the plate-shaped member 20 is a heat radiating plate 23 having a larger area around the through hole 22 than the through hole 22.

板状部材20は、蒸発部50及び流路部54に凹部24が形成されている。凹部24は、例えばフォトリソグラフィ技術及びエッチング技術を用いて形成される。凹部24の深さは、例えば0.15mm程度である。凹部24は、蒸発部50の端から流路部54を凝縮部52に向かって延在して形成されているが、凝縮部52に設けられた貫通孔22には連通していない。凹部24は、蒸発部50の端で外部に開口していて、開口部25が形成されている。流路部54での凹部24の幅W2は、例えば板状部材40に形成された流路部54での凹部41の幅W1と同じ幅であり、3mmから5mm程度である。蒸発部50での凹部24の幅は、流路部54での凹部24の幅よりも狭くなっていて、例えば2mm程度である。 The plate-shaped member 20 has a recess 24 formed in the evaporation portion 50 and the flow path portion 54. The recess 24 is formed using, for example, a photolithography technique and an etching technique. The depth of the recess 24 is, for example, about 0.15 mm. The recess 24 is formed by extending the flow path portion 54 from the end of the evaporation portion 50 toward the condensing portion 52, but does not communicate with the through hole 22 provided in the condensing portion 52. The recess 24 is open to the outside at the end of the evaporation portion 50, and the opening 25 is formed. The width W2 of the recess 24 in the flow path portion 54 is, for example, the same width as the width W1 of the recess 41 in the flow path portion 54 formed in the plate-shaped member 40, and is about 3 mm to 5 mm. The width of the recess 24 in the evaporation portion 50 is narrower than the width of the recess 24 in the flow path portion 54, and is, for example, about 2 mm.

板状部材20は、凝縮部52において、貫通孔22を外部に連通させる溝26が形成されている。すなわち、溝26の一端は貫通孔22に接続し、他端は凝縮部52の端から外部に開口して開口部27となっている。溝26は、例えば板状部材20を貫通しているが、板状部材20を貫通していない場合でもよい。 The plate-shaped member 20 has a groove 26 in the condensing portion 52 that allows the through hole 22 to communicate with the outside. That is, one end of the groove 26 is connected to the through hole 22, and the other end is opened to the outside from the end of the condensing portion 52 to form the opening 27. The groove 26 penetrates, for example, the plate-shaped member 20, but may not penetrate the plate-shaped member 20.

図2(d)及び図3(d)のように、板状部材10は、例えば厚さ0.2mm程度の銅板であり、蒸発部50から流路部54を経由して凝縮部52まで延びた凹部11が形成されている。凹部11は、例えばフォトリソグラフィ技術及びエッチング技術を用いて形成される。凹部11の深さは、例えば0.15mm程度である。凹部11は、蒸発部50においては蒸発部50の平面形状と同じ平面形状で周辺に所定の幅の側壁を有して形成され、流路部54においては周辺に所定の幅の側壁を有して延在して形成されている。また、凹部11は、凝縮部52においては流路部54での幅のまま流路部54から延在して形成されている。流路部54での凹部11の幅W3は、例えば板状部材40に形成された流路部54での凹部41の幅W1及び板状部材20に形成された流路部54での凹部24の幅W2と同じ幅であり、3mmから5mm程度である。板状部材10は、凝縮部52において、凹部11の周りが凹部11よりも大きな面積の放熱板12となっている。板状部材10は、蒸発部50における凹部11内に凹凸部13を有する。凹凸部13の側壁は、流路部54が蒸発部50から延びる第1方向に延在している。 As shown in FIGS. 2 (d) and 3 (d), the plate-shaped member 10 is, for example, a copper plate having a thickness of about 0.2 mm, and extends from the evaporation portion 50 to the condensing portion 52 via the flow path portion 54. A concave portion 11 is formed. The recess 11 is formed using, for example, a photolithography technique and an etching technique. The depth of the recess 11 is, for example, about 0.15 mm. The recess 11 has the same planar shape as the planar shape of the evaporation portion 50 in the evaporation portion 50 and is formed with a side wall having a predetermined width in the periphery, and the flow path portion 54 has a side wall having a predetermined width in the periphery. It is extended and formed. Further, the recess 11 is formed in the condensing portion 52 so as to extend from the flow path portion 54 while maintaining the width of the flow path portion 54. The width W3 of the recess 11 in the flow path portion 54 is, for example, the width W1 of the recess 41 in the flow path portion 54 formed in the plate-shaped member 40 and the recess 24 in the flow path portion 54 formed in the plate-shaped member 20. The width is the same as the width W2, and is about 3 mm to 5 mm. In the condensing portion 52, the plate-shaped member 10 is a heat radiating plate 12 having a larger area around the recess 11 than the recess 11. The plate-shaped member 10 has an uneven portion 13 in the concave portion 11 in the evaporation portion 50. The side wall of the uneven portion 13 extends in the first direction in which the flow path portion 54 extends from the evaporation portion 50.

図4(a)から図4(c)は、実施例1に係るヒートパイプの断面図である。図4(a)は、図1のA−A間の断面図、図4(b)は、図1のB−B間の断面図、図4(c)は、図1のC−C間の断面図である。図4(a)から図4(c)のように、板状部材10、板状部材20、板状部材30、及び板状部材40が積層された積層体56には、板状部材10と板状部材20の間に板状部材10に形成された凹部11によって空洞部60が形成されている。板状部材20と板状部材30の間には、板状部材20に形成された凹部24によって空洞部62が形成され、板状部材30と板状部材40の間には、板状部材40に形成された凹部41によって空洞部64が形成されている。 4 (a) to 4 (c) are cross-sectional views of the heat pipe according to the first embodiment. 4 (a) is a cross-sectional view between A and A in FIG. 1, FIG. 4 (b) is a cross-sectional view between B and B in FIG. 1, and FIG. 4 (c) is a cross-sectional view between C and C in FIG. It is a cross-sectional view of. As shown in FIGS. 4 (a) to 4 (c), the plate-shaped member 10, the plate-shaped member 20, the plate-shaped member 30, and the laminated body 56 in which the plate-shaped member 40 is laminated have the plate-shaped member 10 and the plate-shaped member 10. The hollow portion 60 is formed by the recess 11 formed in the plate-shaped member 10 between the plate-shaped members 20. A hollow portion 62 is formed between the plate-shaped member 20 and the plate-shaped member 30 by a recess 24 formed in the plate-shaped member 20, and a plate-shaped member 40 is formed between the plate-shaped member 30 and the plate-shaped member 40. The cavity 64 is formed by the recess 41 formed in.

蒸発部50に形成された空洞部60と空洞部64は、板状部材20に形成された貫通孔21及び板状部材30に形成された貫通孔31を介して連通している。このように、蒸発部50において空洞部60と空洞部64を連通させるために、貫通孔21と貫通孔31は、積層体56の積層方向で重なる位置に形成されていることが好ましい。貫通孔21と貫通孔31は、完全に重なる場合が好ましいが、それぞれの面積の2/3以上が重なっている場合でもよいし、3/4以上が重なっている場合でもよいし、4/5以上が重なっている場合でもよい。 The cavity 60 and the cavity 64 formed in the evaporation portion 50 communicate with each other through the through hole 21 formed in the plate-shaped member 20 and the through hole 31 formed in the plate-shaped member 30. As described above, in order to allow the cavity 60 and the cavity 64 to communicate with each other in the evaporation portion 50, it is preferable that the through hole 21 and the through hole 31 are formed at positions where the laminated body 56 overlaps in the stacking direction. The through hole 21 and the through hole 31 are preferably completely overlapped, but may be overlapped by two-thirds or more of their respective areas, or may be overlapped by 3/4 or more, or four-fifth. It may be the case that the above overlaps.

凝縮部52に形成された空洞部60と空洞部64は、板状部材20に形成された貫通孔22及び板状部材30に形成された貫通孔32を介して連通している。このように、凝縮部52において空洞部60と空洞部64を連通させるために、貫通孔22と貫通孔32は、積層体56の積層方向で重なる位置に形成されていることが好ましい。貫通孔22と貫通孔32は、完全に重なる場合が好ましいが、それぞれの面積の2/3以上が重なっている場合でもよいし、3/4以上が重なっている場合でもよいし、4/5以上が重なっている場合でもよい。 The hollow portion 60 and the hollow portion 64 formed in the condensing portion 52 communicate with each other through the through hole 22 formed in the plate-shaped member 20 and the through hole 32 formed in the plate-shaped member 30. As described above, in order to allow the hollow portion 60 and the hollow portion 64 to communicate with each other in the condensed portion 52, it is preferable that the through hole 22 and the through hole 32 are formed at positions where the laminated body 56 overlaps in the stacking direction. The through hole 22 and the through hole 32 are preferably completely overlapped, but two-thirds or more of their respective areas may be overlapped, or 3/4 or more may be overlapped, or four-fifth. It may be the case that the above overlaps.

流路部54では、空洞部60と空洞部64の間に空洞部62が形成されている。例えば、流路部54における空洞部60、空洞部62、及び空洞部64は、積層体56の積層方向で重なり合って同じ方向に延在している。すなわち、流路部54における空洞部60、空洞部62、及び空洞部64は、重なり合ったまま、重なり合った状態を維持して延在している。流路部54の幅方向における空洞部62の長さは空洞部60及び空洞部64の長さ以上である場合が好ましい。流路部54の幅方向において、空洞部62は空洞部60及び空洞部64と完全に重なっている場合が好ましいが、空洞部62は空洞部60及び空洞部64の2/3以上と重なっている場合でもよい。3/4以上と重なっている場合でもよい。4/5以上と重なっている場合でもよい。 In the flow path portion 54, the cavity portion 62 is formed between the cavity portion 60 and the cavity portion 64. For example, the cavity 60, the cavity 62, and the cavity 64 in the flow path portion 54 overlap each other in the stacking direction of the laminated body 56 and extend in the same direction. That is, the cavity portion 60, the cavity portion 62, and the cavity portion 64 in the flow path portion 54 are extended while maintaining the overlapped state while being overlapped. It is preferable that the length of the cavity portion 62 in the width direction of the flow path portion 54 is equal to or longer than the length of the cavity portion 60 and the cavity portion 64. In the width direction of the flow path portion 54, it is preferable that the cavity portion 62 completely overlaps the cavity portion 60 and the cavity portion 64, but the cavity portion 62 overlaps with two-thirds or more of the cavity portion 60 and the cavity portion 64. It may be present. It may overlap with 3/4 or more. It may overlap with 4/5 or more.

実施例1のヒートパイプ100は、例えば以下の方法によって形成される。まず、図2(a)から図2(d)で説明した板状部材10から40を準備する。次いで、板状部材10から40を、例えば拡散接合によって接合して積層体56を形成する。次いで、板状部材20に形成した凹部24の開口部25から空洞部62内を真空排気して大気圧よりも低い圧力に減圧した後、開口部25を半田などによって封止する。また、板状部材20に形成した溝26の開口部27から空洞部60及び64内を真空排気して大気圧よりも低い圧力に減圧した後、開口部27から空洞部60及び64内に作動流体(水又はエタノールなど)を注入する。その後、開口部27をロウ材又は半田などによって封止する。このような方法によって、実施例1のヒートパイプ100が形成される。 The heat pipe 100 of Example 1 is formed by, for example, the following method. First, the plate-shaped members 10 to 40 described with reference to FIGS. 2 (a) and 2 (d) are prepared. Next, the plate-shaped members 10 to 40 are joined by, for example, diffusion joining to form a laminated body 56. Next, the inside of the cavity 62 is evacuated from the opening 25 of the recess 24 formed in the plate-shaped member 20 to reduce the pressure to a pressure lower than the atmospheric pressure, and then the opening 25 is sealed with solder or the like. Further, after vacuum exhausting the inside of the cavities 60 and 64 from the opening 27 of the groove 26 formed in the plate-shaped member 20 to reduce the pressure to a pressure lower than the atmospheric pressure, the operation is performed from the opening 27 into the cavities 60 and 64. Inject fluid (such as water or ethanol). After that, the opening 27 is sealed with a brazing material, solder, or the like. By such a method, the heat pipe 100 of Example 1 is formed.

ここで、実施例1のヒートパイプ100による発熱部品の冷却について説明する。蒸発部50での板状部材10の下面に配置された発熱部品によって、蒸発部50における空洞部60内に貯留する液相の作動流体が気化する。このときに、発熱部品から気化潜熱が奪われる。気化した気相の作動流体は、図1の矢印のように、蒸発部50から流路部54を経由して凝縮部52へと流れる。このとき、流路部54では、気相の作動流体は板状部材10と板状部材20の間に形成された空洞部60を流れるようになる。すなわち、流路部54における空洞部60は、蒸発部50で気化した気相の作動流体が蒸発部50から凝縮部52に向かって流れる気相流路66となる。蒸発部50で気化した気相の作動流体が空洞部60を主に流れるのは以下のためである。すなわち、流路部54での空洞部60の幅方向の断面積は積層体56の積層方向に交差する方向の貫通孔21及び31の断面積よりも大きいことから、空洞部60側は貫通孔21及び31側に比べて圧力損失が小さくなるためである。 Here, cooling of the heat-generating component by the heat pipe 100 of the first embodiment will be described. The heat-generating component arranged on the lower surface of the plate-shaped member 10 in the evaporation unit 50 vaporizes the working fluid of the liquid phase stored in the cavity 60 in the evaporation unit 50. At this time, the latent heat of vaporization is deprived of the heat-generating parts. The working fluid of the vaporized gas phase flows from the evaporation section 50 to the condensation section 52 via the flow path section 54 as shown by the arrow in FIG. At this time, in the flow path portion 54, the working fluid of the gas phase flows through the cavity portion 60 formed between the plate-shaped member 10 and the plate-shaped member 20. That is, the cavity 60 in the flow path portion 54 becomes a gas phase flow path 66 in which the working fluid of the gas phase vaporized in the evaporation section 50 flows from the evaporation section 50 toward the condensation section 52. The reason why the working fluid of the gas phase vaporized in the evaporation section 50 mainly flows in the cavity section 60 is as follows. That is, since the cross-sectional area of the cavity 60 in the flow path portion 54 in the width direction is larger than the cross-sectional area of the through holes 21 and 31 in the direction intersecting the stacking direction of the laminated body 56, the cavity 60 side is a through hole. This is because the pressure loss is smaller than that on the 21 and 31 sides.

凝縮部52に流れ込んだ気相の作動流体は、板状部材20に形成された貫通孔22及び板状部材30に形成された貫通孔32を介して、板状部材30と板状部材40の間に形成された空洞部64へと流れる。このときに、図2(a)から図2(d)で説明したように、凝縮部52において、板状部材10は凹部11の周りに放熱板12を有し、板状部材20は貫通孔22の周りに放熱板23を有する。板状部材30は貫通孔32の周りに放熱板33を有し、板状部材40は凹部41の周りに放熱板42を有する。このため、気相の作動流体は、空洞部60から貫通孔22及び32を介して空洞部64へと流れるときに、熱が放熱板12、23、33、及び42へと放熱される。その結果、気相の作動流体は液化されて液相の作動流体が生成される。凝縮部52で生成された液相の作動流体は、空洞部64を経由して、図1の矢印のように、凝縮部52から蒸発部50へと流れるようになる。すなわち、流路部54における空洞部64は、凝縮部52で液化した液相の作動流体が凝縮部52から蒸発部50に向かって流れる液相流路68となる。 The working fluid of the gas phase that has flowed into the condensing portion 52 of the plate-shaped member 30 and the plate-shaped member 40 passes through the through hole 22 formed in the plate-shaped member 20 and the through hole 32 formed in the plate-shaped member 30. It flows into the cavity 64 formed between them. At this time, as described with reference to FIGS. 2 (a) and 2 (d), in the condensing portion 52, the plate-shaped member 10 has a heat sink 12 around the recess 11, and the plate-shaped member 20 has a through hole. A heat sink 23 is provided around 22. The plate-shaped member 30 has a heat sink 33 around the through hole 32, and the plate-shaped member 40 has a heat sink 42 around the recess 41. Therefore, when the working fluid of the gas phase flows from the cavity 60 to the cavity 64 through the through holes 22 and 32, heat is dissipated to the heat sinks 12, 23, 33, and 42. As a result, the working fluid of the gas phase is liquefied to generate the working fluid of the liquid phase. The working fluid of the liquid phase generated in the condensing portion 52 flows from the condensing portion 52 to the evaporating portion 50 as shown by the arrow in FIG. 1 via the cavity portion 64. That is, the hollow portion 64 in the flow path portion 54 becomes a liquid phase flow path 68 in which the working fluid of the liquid phase liquefied in the condensing section 52 flows from the condensing section 52 toward the evaporation section 50.

蒸発部50に流れ込んだ液相の作動流体は、空洞部64から板状部材30に形成された貫通孔31及び板状部材20に形成された貫通孔21を介して空洞部60へと流れ落ちる。このとき、液相の作動流体が流れ込んだ蒸発部50において,液相の作動流体が発熱部品の熱により蒸発することで気化潜熱が奪われ、蒸発部50は冷却される。 The working fluid of the liquid phase that has flowed into the evaporation portion 50 flows down from the cavity portion 64 to the cavity portion 60 through the through hole 31 formed in the plate-shaped member 30 and the through hole 21 formed in the plate-shaped member 20. At this time, in the evaporation unit 50 into which the working fluid of the liquid phase has flowed, the latent heat of vaporization is taken away by the evaporation of the working fluid of the liquid phase by the heat of the heat generating component, and the evaporation unit 50 is cooled.

ここで、図4(c)のように、流路部54において、気相流路66となる空洞部60と液相流路68となる空洞部64との間に空洞部62が設けられている。空洞部62は断熱部としての機能を発揮するため、気相流路66となる空洞部60と液相流路68となる空洞部64との間での熱交換を抑制することができる。したがって、気相流路66を流れる気相の作動流体が凝縮部52に到達する前に液化すること及び液相流路68を流れる液相の作動流体が蒸発部50に到達する前に気化することが抑制される。 Here, as shown in FIG. 4C, in the flow path portion 54, the cavity portion 62 is provided between the cavity portion 60 which is the gas phase flow path 66 and the cavity portion 64 which is the liquid phase flow path 68. There is. Since the cavity 62 functions as a heat insulating portion, heat exchange between the cavity 60 serving as the gas phase flow path 66 and the cavity 64 serving as the liquid phase flow path 68 can be suppressed. Therefore, the working fluid of the gas phase flowing through the gas phase flow path 66 is liquefied before reaching the condensing portion 52, and the working fluid of the liquid phase flowing through the liquid phase flow path 68 is vaporized before reaching the evaporation section 50. Is suppressed.

このように、実施例1のヒートパイプ100は、図1のように、板状部材10、板状部材20、板状部材30、及び板状部材40がこの順に積層された積層体56で形成されている。積層体56は、図4(a)から図4(c)のように、板状部材10と板状部材20の間に気相流路66を含む空洞部60を有する。板状部材30と板状部材40の間に液相流路68を含む空洞部64を有する。板状部材20と板状部材30の間に空洞部60と空洞部64で挟まれた空洞部62を有する。これにより、空洞部60と空洞部64の間での熱交換を抑制でき、気相流路66を流れる気相の作動流体が凝縮部52に到達する前に液化すること及び液相流路68を流れる液相の作動流体が蒸発部50に到達する前に気化することが抑制される。よって、気相流路66を流れる気相の作動流体及び液相流路68を流れる液相の作動流体の移動が阻害されることが抑制され、熱輸送効率の低下を抑制することができる。また、ヒートパイプ100は、板状部材10、板状部材20、板状部材30、及び板状部材40が積層されることで形成されているため、薄型化を実現することができる。また、板状部材10、板状部材20、板状部材30、及び板状部材40の形状を自由に決定することができるため、蒸発部50、凝縮部52、及び流路部54の形状を自在に設計できる。 As described above, the heat pipe 100 of the first embodiment is formed of the laminated body 56 in which the plate-shaped member 10, the plate-shaped member 20, the plate-shaped member 30, and the plate-shaped member 40 are laminated in this order, as shown in FIG. Has been done. As shown in FIGS. 4A to 4C, the laminated body 56 has a hollow portion 60 including a gas phase flow path 66 between the plate-shaped member 10 and the plate-shaped member 20. A hollow portion 64 including a liquid phase flow path 68 is provided between the plate-shaped member 30 and the plate-shaped member 40. It has a cavity portion 62 sandwiched between the plate-shaped member 20 and the plate-shaped member 30 by a cavity portion 60 and a cavity portion 64. As a result, heat exchange between the cavity 60 and the cavity 64 can be suppressed, and the working fluid of the gas phase flowing through the gas phase flow path 66 is liquefied before reaching the condensing portion 52, and the liquid phase flow path 68. It is suppressed that the working fluid of the liquid phase flowing through the water vaporizes before reaching the evaporation unit 50. Therefore, the movement of the working fluid of the gas phase flowing through the gas phase flow path 66 and the working fluid of the liquid phase flowing through the liquid phase flow path 68 is suppressed from being hindered, and the decrease in heat transport efficiency can be suppressed. Further, since the heat pipe 100 is formed by laminating a plate-shaped member 10, a plate-shaped member 20, a plate-shaped member 30, and a plate-shaped member 40, it is possible to realize a thinning. Further, since the shapes of the plate-shaped member 10, the plate-shaped member 20, the plate-shaped member 30, and the plate-shaped member 40 can be freely determined, the shapes of the evaporation portion 50, the condensation portion 52, and the flow path portion 54 can be freely determined. Can be designed freely.

流路部54における空洞部60、62、及び64は、積層体56の積層方向で重なり合って同じ方向に延在している場合が好ましい。これにより、空洞部60と空洞部64の間での熱交換を効果的に抑制することができる。よって、気相流路66を流れる気相の作動流体が凝縮部52に到達する前に液化すること及び液相流路68を流れる液相の作動流体が蒸発部50に到達する前に気化することを効果的に抑制できる。 It is preferable that the cavities 60, 62, and 64 in the flow path portion 54 overlap each other in the stacking direction of the laminated body 56 and extend in the same direction. As a result, heat exchange between the cavity 60 and the cavity 64 can be effectively suppressed. Therefore, the working fluid of the gas phase flowing through the gas phase flow path 66 is liquefied before reaching the condensing portion 52, and the working fluid of the liquid phase flowing through the liquid phase flow path 68 is vaporized before reaching the evaporation section 50. Can be effectively suppressed.

また、空洞部60と空洞部64の間での熱交換を効果的に抑制する点から、空洞部62内の圧力は、大気圧よりも低い圧力に減圧されている場合が好ましい。 Further, from the viewpoint of effectively suppressing heat exchange between the cavity 60 and the cavity 64, it is preferable that the pressure in the cavity 62 is reduced to a pressure lower than the atmospheric pressure.

蒸発部50で気化した気相の作動流体の大部分が空洞部60を介して凝縮部52に流れるよう、空洞部60の断面積は、貫通孔21及び31の断面積より大きい場合が好ましい。すなわち、貫通孔21及び31の断面積は、蒸発部50で気化した気相の作動流体の大部分が空洞部60に流れ込み、空洞部64には流れ込み難い程度の大きさであることが好ましい。 The cross-sectional area of the cavity 60 is preferably larger than the cross-sectional areas of the through holes 21 and 31 so that most of the working fluid of the gas phase vaporized in the evaporation section 50 flows to the condensing section 52 through the cavity 60. That is, it is preferable that the cross-sectional area of the through holes 21 and 31 is such that most of the working fluid of the gas phase vaporized in the evaporation portion 50 flows into the cavity portion 60 and hardly flows into the cavity portion 64.

図4(a)のように、積層体56は、蒸発部50での空洞部60内に凹凸部13を有することが好ましい。これにより、蒸発部50内に貯留する液相の作動流体が積層体56に接する表面積を増大させることができ、気化潜熱による発熱部品の冷却を効率的に行うことができる。 As shown in FIG. 4A, it is preferable that the laminated body 56 has the uneven portion 13 in the hollow portion 60 in the evaporation portion 50. As a result, the surface area of the working fluid of the liquid phase stored in the evaporation unit 50 in contact with the laminated body 56 can be increased, and the heat-generating components can be efficiently cooled by the latent heat of vaporization.

板状部材20は、図2(c)のように、貫通孔22の周りが貫通孔22よりも大きな面積を有する放熱板23となっていることが好ましい。板状部材30は、図2(b)のように、貫通孔32の周りが貫通孔32よりも大きな面積を有する放熱板33となっていることが好ましい。これにより、板状部材10、板状部材20、板状部材30、及び板状部材40が積層された薄型のヒートパイプ100の場合でも、気相の作動流体を液化させることを効果的に行うことができる。なお、板状部材20及び30の両方に放熱板が形成されている場合に限られず、板状部材20及び30の少なくとも一方に放熱板が形成されている場合でもよい。 As shown in FIG. 2C, the plate-shaped member 20 is preferably a heat sink 23 having a larger area around the through hole 22 than the through hole 22. As shown in FIG. 2B, the plate-shaped member 30 is preferably a heat sink 33 having a larger area around the through hole 32 than the through hole 32. As a result, even in the case of the thin heat pipe 100 in which the plate-shaped member 10, the plate-shaped member 20, the plate-shaped member 30, and the plate-shaped member 40 are laminated, the working fluid of the gas phase can be effectively liquefied. be able to. The heat sink is not limited to the case where the heat sink is formed on both the plate-shaped members 20 and 30, and the heat sink may be formed on at least one of the plate-shaped members 20 and 30.

板状部材10、板状部材20、板状部材30、及び板状部材40は全て同じ金属材料で形成されていてもよいが、異なる材料で形成されていてもよい。例えば、板状部材20及び板状部材30は、板状部材10及び板状部材40よりも熱伝導率の低い金属材料で形成されていてもよい。例えば、板状部材10及び板状部材40は銅で形成され、板状部材20及び板状部材30はステンレス鋼で形成されていてもよい。板状部材20及び板状部材30の熱伝導率が板状部材10及び板状部材40よりも低いことで、空洞部60と空洞部64の間での熱交換を更に抑制することができる。 The plate-shaped member 10, the plate-shaped member 20, the plate-shaped member 30, and the plate-shaped member 40 may all be made of the same metal material, but may be made of different materials. For example, the plate-shaped member 20 and the plate-shaped member 30 may be made of a metal material having a lower thermal conductivity than the plate-shaped member 10 and the plate-shaped member 40. For example, the plate-shaped member 10 and the plate-shaped member 40 may be made of copper, and the plate-shaped member 20 and the plate-shaped member 30 may be made of stainless steel. Since the thermal conductivity of the plate-shaped member 20 and the plate-shaped member 30 is lower than that of the plate-shaped member 10 and the plate-shaped member 40, heat exchange between the cavity portion 60 and the cavity portion 64 can be further suppressed.

図5(a)から図5(d)は、実施例1の変形例1に係るヒートパイプを形成する板状部材の蒸発部の平面図である。図5(a)から図5(d)のように、実施例1の変形例1では、板状部材20及び30に形成された貫通孔21a及び31aは、流路部54が蒸発部50から延びる第1方向に延在した長方形形状をしている。板状部材10の凹部11内に形成された凹凸部13aの側壁は、第1方向に交差(例えば直交)する第2方向に延在している。その他の構成は、実施例1と同じであるため説明を省略する。 5 (a) to 5 (d) are plan views of the evaporation portion of the plate-shaped member forming the heat pipe according to the first modification of the first embodiment. As shown in FIGS. 5 (a) to 5 (d), in the modified example 1 of the first embodiment, the through holes 21a and 31a formed in the plate-shaped members 20 and 30 have the flow path portion 54 from the evaporation portion 50. It has a rectangular shape extending in the first extending direction. The side wall of the uneven portion 13a formed in the recess 11 of the plate-shaped member 10 extends in the second direction intersecting (for example, orthogonal to) the first direction. Since other configurations are the same as those in the first embodiment, the description thereof will be omitted.

図6(a)から図6(d)は、実施例1の変形例2に係るヒートパイプを形成する板状部材の蒸発部の平面図である。図6(a)から図6(d)のように、実施例1の変形例2では、板状部材10の凹部11内に形成された凹凸部13bの側壁は、流路部54が蒸発部50から延びる第1方向に斜めに傾斜して延在している。その他の構成は、実施例1と同じであるため説明を省略する。 6 (a) to 6 (d) are plan views of the evaporation portion of the plate-shaped member forming the heat pipe according to the second modification of the first embodiment. As shown in FIGS. 6 (a) to 6 (d), in the modified example 2 of the first embodiment, the side wall of the uneven portion 13b formed in the concave portion 11 of the plate-shaped member 10 has a flow path portion 54 as an evaporation portion. It extends diagonally in the first direction extending from 50. Since other configurations are the same as those in the first embodiment, the description thereof will be omitted.

図7(a)から図7(d)は、実施例2に係るヒートパイプを形成する板状部材の平面図である。図7(a)は、板状部材40の下面図、図7(b)は、板状部材30の上面図、図7(c)は、板状部材20の上面図、図7(d)は、板状部材10の上面図である。図8(a)から図8(c)は、実施例2に係るヒートパイプの断面図である。図8(a)は、図1のA−A間に相当する箇所の断面図、図8(b)は、図1のB−B間に相当する箇所の断面図、図8(c)は、図1のC−C間に相当する箇所の断面図である。 7 (a) to 7 (d) are plan views of the plate-shaped member forming the heat pipe according to the second embodiment. 7 (a) is a bottom view of the plate-shaped member 40, FIG. 7 (b) is a top view of the plate-shaped member 30, FIG. 7 (c) is a top view of the plate-shaped member 20, and FIG. 7 (d) is. Is a top view of the plate-shaped member 10. 8 (a) to 8 (c) are cross-sectional views of the heat pipe according to the second embodiment. 8 (a) is a cross-sectional view of a portion corresponding to the space between A and A in FIG. 1, FIG. 8 (b) is a cross-sectional view of a portion corresponding to the space between BB of FIG. 1, and FIG. 8 (c) is a cross-sectional view. , FIG. 1 is a cross-sectional view of a portion corresponding to the area between CC in FIG.

図7(a)から図8(c)のように、実施例2のヒートパイプでは、板状部材30と板状部材40の間に形成された空洞部64内に多孔質体70が設けられている。多孔質体70は、例えば空洞部64内全体に設けられているが、空洞部64内の一部に設けられている場合でもよい。例えば、多孔質体70は、蒸発部50、凝縮部52、及び流路部54のうちの流路部54にのみ設けられている場合でもよいし、蒸発部50と流路部54とに設けられている場合でもよい。多孔質体70の空孔の直径は、多孔質体70に生じる毛細管力の点から、例えば1.0mm以下の場合が好ましく、0.7mm以下の場合がより好ましく、0.5mm以下の場合が更に好ましい。多孔質体70は、例えば金網状の金属製メッシュが積層されていてもよいし、パンチングによりメッシュ状にした金属製シートが積層されていてもよいし、焼結金属又はセラミックスで形成されていてもよい。また、多孔質体70は、3Dプリンタを使用して製造される金属製の多孔体であってもよいし、金属製の繊維質から製造される不織布であってもよい。一例として、繊維径が0.03mmのステンレス製の不織布で形成された多孔質体70又は線径が0.05mmの銅線を金網状にしたメッシュ材料が3層積層され、平均開口径が0.1mm程度の多孔質体70が挙げられる。 As shown in FIGS. 7 (a) to 8 (c), in the heat pipe of the second embodiment, the porous body 70 is provided in the cavity portion 64 formed between the plate-shaped member 30 and the plate-shaped member 40. ing. The porous body 70 is provided in the entire cavity 64, for example, but may be provided in a part of the cavity 64. For example, the porous body 70 may be provided only in the flow path portion 54 of the evaporation section 50, the condensation section 52, and the flow path section 54, or may be provided in the evaporation section 50 and the flow path section 54. It may be the case. The diameter of the pores of the porous body 70 is preferably 1.0 mm or less, more preferably 0.7 mm or less, and more preferably 0.5 mm or less, for example, from the viewpoint of the capillary force generated in the porous body 70. More preferred. The porous body 70 may be laminated with, for example, a wire mesh-like metal mesh, may be laminated with a metal sheet meshed by punching, or may be formed of sintered metal or ceramics. May be good. Further, the porous body 70 may be a metal porous body manufactured by using a 3D printer, or may be a non-woven fabric manufactured from metal fibrous material. As an example, a porous body 70 made of a non-woven fabric made of stainless steel having a fiber diameter of 0.03 mm or a mesh material made of a copper wire having a wire diameter of 0.05 mm in a wire mesh shape is laminated in three layers, and the average opening diameter is 0. A porous body 70 having a diameter of about 1 mm can be mentioned.

板状部材20と板状部材30の間に形成された空洞部62内に断熱部材72が設けられている。断熱部材72は、例えば流路部54における空洞部62内全体に設けられているが、流路部54における空洞部62内の一部に設けられている場合でもよい。また、断熱部材72は、蒸発部50における空洞部62内に設けられていてもよい。断熱部材72は、例えばグラスウール、ウレタンフォーム、又はポリスチレンフォームなどで形成されている。その他の構成は、実施例1と同じであるため説明を省略する。 A heat insulating member 72 is provided in the cavity 62 formed between the plate-shaped member 20 and the plate-shaped member 30. The heat insulating member 72 is provided, for example, in the entire cavity 62 in the flow path portion 54, but may be provided in a part of the cavity portion 62 in the flow path portion 54. Further, the heat insulating member 72 may be provided in the hollow portion 62 in the evaporation portion 50. The heat insulating member 72 is made of, for example, glass wool, urethane foam, polystyrene foam, or the like. Since other configurations are the same as those in the first embodiment, the description thereof will be omitted.

実施例2によれば、液相の作動流体が流れる空洞部64内に多孔質体70が設けられている。これにより、凝縮部52で液化された液相の作動流体が多孔質体70の毛細管力によって蒸発部50側に流れ易くなる。また、多孔質体70には液相の作動流体が存在していることから、蒸発部50で気化された作動流体は空洞部64側に流れ込み難くなり、その結果、空洞部60側に流れ込み易くなる。 According to the second embodiment, the porous body 70 is provided in the cavity 64 through which the working fluid of the liquid phase flows. As a result, the working fluid of the liquid phase liquefied in the condensing portion 52 easily flows to the evaporation portion 50 side due to the capillary force of the porous body 70. Further, since the working fluid of the liquid phase is present in the porous body 70, it becomes difficult for the working fluid vaporized in the evaporation portion 50 to flow into the cavity portion 64 side, and as a result, it easily flows into the cavity portion 60 side. Become.

また、実施例2によれば、空洞部62内に断熱部材72が設けられている。これにより、空洞部60と空洞部64の間での熱交換を効果的に抑制することができる。よって、気相流路66を流れる気相の作動流体が凝縮部52に到達する前に液化すること及び液相流路68を流れる液相の作動流体が蒸発部50に到達する前に気化することを効果的に抑制できる。 Further, according to the second embodiment, the heat insulating member 72 is provided in the cavity 62. As a result, heat exchange between the cavity 60 and the cavity 64 can be effectively suppressed. Therefore, the working fluid of the gas phase flowing through the gas phase flow path 66 is liquefied before reaching the condensing portion 52, and the working fluid of the liquid phase flowing through the liquid phase flow path 68 is vaporized before reaching the evaporation section 50. Can be effectively suppressed.

図9(a)から図9(d)は、実施例3に係るヒートパイプを形成する板状部材の平面図である。図9(a)は、板状部材40の下面図、図9(b)は、板状部材30の上面図、図9(c)は、板状部材20の上面図、図9(d)は、板状部材10の上面図である。図10は、実施例3に係るヒートパイプの断面図である。図10は、図1のC−C間に相当する箇所の断面図である。 9 (a) to 9 (d) are plan views of the plate-shaped member forming the heat pipe according to the third embodiment. 9 (a) is a bottom view of the plate-shaped member 40, FIG. 9 (b) is a top view of the plate-shaped member 30, FIG. 9 (c) is a top view of the plate-shaped member 20, FIG. 9 (d). Is a top view of the plate-shaped member 10. FIG. 10 is a cross-sectional view of the heat pipe according to the third embodiment. FIG. 10 is a cross-sectional view of a portion corresponding to the area between CC in FIG.

図9(a)から図10のように、実施例3のヒートパイプでは、板状部材30と板状部材40の間に形成された空洞部64内に、直径が0.5mm程度の円柱形状の複数の支柱74が設けられている。支柱74の下面は板状部材30に接し、上面は板状部材40に接している。支柱74は、例えばフォトリソグラフィ技術及びエッチング技術を用いて凹部41を形成する際に同時に形成される。複数の支柱74は、流路部54において、例えば流路部54の延在方向に等間隔に並んで点在しているが、等間隔に並ばずに点在している場合でもよい。また、複数の支柱74は、蒸発部50において、例えば格子状に等間隔に並んで設けられているが、千鳥状に並んで設けられていてもよいし、ランダムに設けられていてもよい。支柱74は、円柱形状の場合に限られず、角柱形状などその他の形状をしていてもよいが、作動流体の流れが滞ることを抑制する点から、円柱形状である場合が好ましい。 As shown in FIGS. 9A to 10B, in the heat pipe of the third embodiment, a cylindrical shape having a diameter of about 0.5 mm is contained in the cavity 64 formed between the plate-shaped member 30 and the plate-shaped member 40. A plurality of columns 74 are provided. The lower surface of the support column 74 is in contact with the plate-shaped member 30, and the upper surface is in contact with the plate-shaped member 40. The columns 74 are formed at the same time when the recess 41 is formed by using, for example, a photolithography technique and an etching technique. The plurality of columns 74 are scattered in the flow path portion 54, for example, in the extending direction of the flow path portion 54 at equal intervals, but may be scattered instead of being arranged at equal intervals. Further, the plurality of columns 74 are provided in the evaporation unit 50, for example, in a grid pattern at equal intervals, but may be provided in a staggered pattern or at random. The support column 74 is not limited to the case of a cylindrical shape, and may have another shape such as a prism shape, but a columnar shape is preferable from the viewpoint of suppressing the flow of the working fluid from being stagnant.

板状部材10と板状部材20の間に形成された空洞部60内に、幅が0.5mm程度で流路部54の延在方向に沿って延在した支柱76が設けられている。支柱76の下面は板状部材10に接し、上面は板状部材20に接している。支柱76は、例えばフォトリソグラフィ技術及びエッチング技術を用いて凹部11を形成する際に同時に形成される。支柱76は、例えば流路部54において空洞部60の幅方向における中央部に位置して設けられている。支柱76は、例えば流路部54の一方の端部から他方の端部にかけて延在しているが、途中で分断して2つ又は3つなどの複数に分割されていてもよい。その他の構成は、実施例1と同じであるため説明を省略する。 In the hollow portion 60 formed between the plate-shaped member 10 and the plate-shaped member 20, a support column 76 having a width of about 0.5 mm and extending along the extending direction of the flow path portion 54 is provided. The lower surface of the column 76 is in contact with the plate-shaped member 10, and the upper surface is in contact with the plate-shaped member 20. The columns 76 are formed at the same time when the recess 11 is formed by using, for example, a photolithography technique and an etching technique. The support column 76 is provided, for example, in the flow path portion 54 at a central portion in the width direction of the cavity portion 60. The support column 76 extends from one end of the flow path portion 54 to the other end, for example, but may be divided in the middle and divided into a plurality of two or three. Since other configurations are the same as those in the first embodiment, the description thereof will be omitted.

実施例3によれば、空洞部60内に積層体56の高さ方向に延在した支柱76が設けられている。これにより、空洞部60が凹むことを抑制できる。例えば、板状部材10から板状部材40を接合して積層体56を形成する際に空洞部60が凹むことを抑制できる。また、空洞部64内に積層体56の高さ方向に延在した支柱74が設けられている。これにより、空洞部64が凹むことを抑制できる。例えば、板状部材10から板状部材40を接合して積層体56を形成する際に空洞部64が凹むことを抑制できる。空洞部60及び空洞部64が凹むと気相流路66及び液相流路68の流路断面積が小さくなり圧力損失が増大してしまうが、支柱74及び76を設けることで圧力損失の増大を抑制することができる。 According to the third embodiment, the support column 76 extending in the height direction of the laminated body 56 is provided in the cavity 60. As a result, it is possible to prevent the cavity 60 from being dented. For example, it is possible to prevent the hollow portion 60 from being dented when the plate-shaped member 40 is joined to the plate-shaped member 40 to form the laminated body 56. Further, a support column 74 extending in the height direction of the laminated body 56 is provided in the cavity portion 64. As a result, it is possible to prevent the cavity 64 from being dented. For example, it is possible to prevent the hollow portion 64 from being dented when the plate-shaped member 40 is joined to the plate-shaped member 40 to form the laminated body 56. When the cavity 60 and the cavity 64 are recessed, the cross-sectional area of the gas phase flow path 66 and the liquid phase flow path 68 becomes small and the pressure loss increases, but the pressure loss increases by providing the columns 74 and 76. Can be suppressed.

なお、実施例3では、空洞部60及び空洞部64の両方に支柱が設けられている場合を例に示したが、どちらか一方に設けられている場合でもよい。また、空洞部60に円柱形状又は角柱形状などをした複数の支柱が設けられ、空洞部64に流路部54の延在方向に沿って延在した支柱が設けられている場合でもよい。 In Example 3, the case where the support is provided in both the cavity 60 and the cavity 64 is shown as an example, but it may be provided in either one. Further, the cavity 60 may be provided with a plurality of columns having a cylindrical shape or a prismatic shape, and the cavity 64 may be provided with columns extending along the extending direction of the flow path portion 54.

図11(a)は、実施例4に係るヒートパイプの斜視図、図11(b)は、実施例4の変形例1に係るヒートパイプの斜視図である。図11(a)の実施例4のヒートパイプ400のように、流路部54は、直線状に延在している場合に限られず、屈曲していてもよい。図11(b)の実施例4の変形例1のヒートパイプ410のように、複数の蒸発部50を有し、複数の蒸発部50それぞれと凝縮部52との間に流路部54が設けられていてもよい。凝縮部52は、複数の蒸発部50それぞれとの流路部54を介した距離が同じになるような位置に設けられていることが好ましい。 11 (a) is a perspective view of the heat pipe according to the fourth embodiment, and FIG. 11 (b) is a perspective view of the heat pipe according to the first modification of the fourth embodiment. Like the heat pipe 400 of the fourth embodiment of FIG. 11A, the flow path portion 54 is not limited to the case where it extends linearly, and may be bent. Like the heat pipe 410 of the modified example 1 of the fourth embodiment of FIG. 11B, it has a plurality of evaporation portions 50, and a flow path portion 54 is provided between each of the plurality of evaporation portions 50 and the condensation portion 52. It may have been. It is preferable that the condensing portion 52 is provided at a position where the distances from the plurality of evaporation portions 50 via the flow path portion 54 are the same.

図12は、実施例5に係る電子機器の分解斜視図である。実施例5では、電子機器がスマートフォンの場合を例に説明する。図12のように、実施例5の電子機器500は、フロントケース80と、リアケース82と、リアケース82内に設置された電池84、発熱部品88を搭載した基板86、及び実施例1のヒートパイプ100と、を備える。電池84、基板86、及びヒートパイプ100は、フロントケース80とリアケース82が組み合わされて形成される筐体内に収容される。発熱部品88は、例えばLSI(Large Scale Integration)パッケージなどの半導体部品であるが、その他の電子部品であってもよい。 FIG. 12 is an exploded perspective view of the electronic device according to the fifth embodiment. In the fifth embodiment, the case where the electronic device is a smartphone will be described as an example. As shown in FIG. 12, the electronic device 500 of the fifth embodiment is the front case 80, the rear case 82, the battery 84 installed in the rear case 82, the substrate 86 on which the heat generating component 88 is mounted, and the first embodiment. A heat pipe 100 is provided. The battery 84, the substrate 86, and the heat pipe 100 are housed in a housing formed by combining the front case 80 and the rear case 82. The heat generating component 88 is a semiconductor component such as an LSI (Large Scale Integration) package, but may be another electronic component.

ヒートパイプ100の蒸発部50は発熱部品88の上面に配置され、凝縮部52は電池84の上面に配置される。これにより、蒸発部50に貯留する液相の作動流体が発熱部品88との熱交換によって気化することで、発熱部品88から気化潜熱が奪われて、発熱部品88が冷却されるようになる。 The evaporation portion 50 of the heat pipe 100 is arranged on the upper surface of the heat generating component 88, and the condensing portion 52 is arranged on the upper surface of the battery 84. As a result, the working fluid of the liquid phase stored in the evaporation unit 50 is vaporized by heat exchange with the heat generating component 88, so that the latent heat of vaporization is taken from the heat generating component 88 and the heat generating component 88 is cooled.

実施例5の電子機器500によれば、発熱部品88と、発熱部品88を冷却する実施例1のヒートパイプ100と、を備える。実施例1のヒートパイプ100は上述したように熱輸送効率に優れていることから、実施例5の電子機器500によれば、発熱部品88の冷却性能を向上させることができる。なお、実施例5では、電子機器がスマートフォンの場合を例に示したが、その他の電子機器の場合でもよい。例えば、タブレット型パソコン又はノート型パソコンなどの携帯可能な電子機器であってもよいし、デスクトップ型パソコンなどの据置型の電子機器であってもよい。 According to the electronic device 500 of the fifth embodiment, the heat generating component 88 and the heat pipe 100 of the first embodiment for cooling the heat generating component 88 are provided. Since the heat pipe 100 of the first embodiment is excellent in heat transport efficiency as described above, according to the electronic device 500 of the fifth embodiment, the cooling performance of the heat generating component 88 can be improved. In Example 5, the case where the electronic device is a smartphone is shown as an example, but other electronic devices may also be used. For example, it may be a portable electronic device such as a tablet personal computer or a notebook personal computer, or it may be a stationary electronic device such as a desktop personal computer.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the examples of the present invention have been described in detail above, the present invention is not limited to such specific examples, and various modifications and variations are made within the scope of the gist of the present invention described in the claims. It can be changed.

なお、以上の説明に関して更に以下の付記を開示する。
(付記1)作動流体を気化する蒸発部と、前記作動流体を液化する凝縮部と、前記蒸発部で気化した気相の前記作動流体が前記凝縮部に向かって流れる気相流路及び前記凝縮部で液化した液相の前記作動流体が前記蒸発部に向かって流れる液相流路を含む流路部と、を備え、前記蒸発部、前記凝縮部、及び前記流路部は、第1板状部材、第2板状部材、第3板状部材、及び第4板状部材がこの順に積層された積層体で形成され、前記積層体は、前記第1板状部材と前記第2板状部材の間に前記気相流路を含む第1空洞部、前記第3板状部材と前記第4板状部材の間に前記液相流路を含む第2空洞部、及び前記第2板状部材と前記第3板状部材の間に前記第1空洞部及び前記第2空洞部に挟まれた第3空洞部を有し、前記第2板状部材及び前記第3板状部材は、前記蒸発部において前記第1空洞部と前記第2空洞部を連通する第1貫通孔を有し、前記凝縮部において前記第1空洞部と前記第2空洞部を連通する第2貫通孔を有する、ヒートパイプ。
(付記2)前記流路部における前記第1空洞部、前記第2空洞部、及び前記第3空洞部は、前記積層体の積層方向で重なり合って同じ方向に延在している、付記1記載のヒートパイプ。
(付記3)前記流路部における前記第1空洞部の断面積は、前記第1貫通孔の断面積よりも大きい、付記1または2記載のヒートパイプ。
(付記4)前記第2空洞部内に設けられた多孔質体を備える、付記1から3のいずれか一項記載のヒートパイプ。
(付記5)前記第3空洞部内の圧力は大気圧よりも低くなっている、付記1から4のいずれか一項記載のヒートパイプ。
(付記6)前記第3空洞部内に設けられた断熱部材を備える、付記1から5のいずれか一項記載のヒートパイプ。
(付記7)前記第1空洞部内及び前記第2空洞部内の少なくとも一方に、前記積層体の積層方向に延在した支柱を備える、付記1から6のいずれか一項記載のヒートパイプ。
(付記8)前記支柱は円柱形状をしている、付記7記載のヒートパイプ。
(付記9)前記積層体は、前記蒸発部での前記第1空洞部内に凹凸部を有する、付記1から8のいずれか一項記載のヒートパイプ。
(付記10)前記凹凸部の側壁は、前記流路部が前記蒸発部から延びる方向に延在している、付記9記載のヒートパイプ。
(付記11)前記凹凸部の側壁は、前記流路部が前記蒸発部から延びる方向と交差する方向に延在している、付記9記載のヒートパイプ。
(付記12)前記第2板状部材及び前記第3板状部材の熱伝導率は、前記第1板状部材及び前記第4板状部材の熱伝導率よりも小さい、付記1から11のいずれか一項記載のヒートパイプ。
(付記13)前記第2板状部材及び前記第3板状部材の少なくとも一方は、前記第2貫通孔の周りが前記第2貫通孔よりも大きな面積を有する放熱板となっている、付記1から12のいずれか一項記載のヒートパイプ。
(付記14)前記流路部は屈曲して延在している、付記1から13のいずれか一項記載のヒートパイプ。
(付記15)発熱部品と、前記発熱部品の熱を移動するヒートパイプと、を備え、前記ヒートパイプは、作動流体を気化する蒸発部と、前記作動流体を液化する凝縮部と、前記蒸発部で気化した気相の前記作動流体が前記凝縮部に向かって流れる気相流路及び前記凝縮部で液化した液相の前記作動流体が前記蒸発部に向かって流れる液相流路を含む流路部と、を備え、前記蒸発部、前記凝縮部、及び前記流路部は、第1板状部材、第2板状部材、第3板状部材、及び第4板状部材がこの順に積層された積層体で形成され、前記積層体は、前記第1板状部材と前記第2板状部材の間に前記気相流路を含む第1空洞部、前記第3板状部材と前記第4板状部材の間に前記液相流路を含む第2空洞部、及び前記第2板状部材と前記第3板状部材の間に前記第1空洞部及び前記第2空洞部に挟まれた第3空洞部を有し、前記第2板状部材及び前記第3板状部材は、前記蒸発部において前記第1空洞部と前記第2空洞部を連通する第1貫通孔を有し、前記凝縮部において前記第1空洞部と前記第2空洞部を連通する第2貫通孔を有する、電子機器。
The following additional notes will be further disclosed with respect to the above explanation.
(Appendix 1) An evaporative section that vaporizes the working fluid, a condensing section that liquefies the working fluid, a gas phase flow path through which the working fluid of the gas phase vaporized in the evaporating section flows toward the condensing section, and the condensation. A flow path portion including a liquid phase flow path through which the working fluid of the liquid phase liquefied in the section flows toward the evaporation section is provided, and the evaporation section, the condensation section, and the flow path section are the first plate. The shaped member, the second plate-shaped member, the third plate-shaped member, and the fourth plate-shaped member are formed of a laminated body in which the shaped members, the third plate-shaped member, and the fourth plate-shaped member are laminated in this order, and the laminated body is formed by the first plate-shaped member and the second plate-shaped member. A first cavity including the gas phase flow path between the members, a second cavity including the liquid phase flow path between the third plate-shaped member and the fourth plate-shaped member, and the second plate-shaped member. The first cavity portion and the third cavity portion sandwiched between the first cavity portion and the third plate-shaped member are provided between the member and the third plate-shaped member, and the second plate-shaped member and the third plate-shaped member are described. The evaporating portion has a first through hole that communicates the first cavity portion with the second cavity portion, and the condensing portion has a second through hole that communicates the first cavity portion and the second cavity portion. heat pipe.
(Supplementary note 2) The first cavity portion, the second cavity portion, and the third cavity portion in the flow path portion overlap in the stacking direction of the laminated body and extend in the same direction. Heat pipe.
(Appendix 3) The heat pipe according to Appendix 1 or 2, wherein the cross-sectional area of the first cavity portion in the flow path portion is larger than the cross-sectional area of the first through hole.
(Supplementary note 4) The heat pipe according to any one of Supplementary note 1 to 3, further comprising a porous body provided in the second cavity portion.
(Supplementary note 5) The heat pipe according to any one of Supplementary note 1 to 4, wherein the pressure in the third cavity is lower than the atmospheric pressure.
(Supplementary note 6) The heat pipe according to any one of Supplementary note 1 to 5, further comprising a heat insulating member provided in the third cavity portion.
(Supplementary note 7) The heat pipe according to any one of Supplementary note 1 to 6, further comprising a column extending in the stacking direction of the laminated body in at least one of the first cavity portion and the second cavity portion.
(Appendix 8) The heat pipe according to Appendix 7, wherein the support column has a cylindrical shape.
(Supplementary note 9) The heat pipe according to any one of Supplementary note 1 to 8, wherein the laminated body has an uneven portion in the first cavity portion in the evaporation portion.
(Supplementary note 10) The heat pipe according to Supplementary note 9, wherein the side wall of the uneven portion extends in a direction in which the flow path portion extends from the evaporation portion.
(Appendix 11) The heat pipe according to Appendix 9, wherein the side wall of the uneven portion extends in a direction in which the flow path portion intersects the direction extending from the evaporation portion.
(Appendix 12) The thermal conductivity of the second plate-shaped member and the third plate-shaped member is smaller than the thermal conductivity of the first plate-shaped member and the fourth plate-shaped member, any of the appendices 1 to 11. The heat pipe described in item 1.
(Appendix 13) At least one of the second plate-shaped member and the third plate-shaped member is a heat sink having a larger area around the second through hole than the second through hole. The heat pipe according to any one of 1 to 12.
(Supplementary note 14) The heat pipe according to any one of Supplementary note 1 to 13, wherein the flow path portion is bent and extends.
(Appendix 15) A heat-generating component and a heat pipe for transferring the heat of the heat-generating component are provided, and the heat pipe includes an evaporating section that vaporizes the working fluid, a condensing section that liquefies the working fluid, and the evaporating section. A flow path including a gas phase flow path in which the working fluid of the vaporized phase flows toward the condensing portion and a liquid phase flow path in which the working fluid of the liquid phase liquefied in the condensing portion flows toward the evaporating portion. A first plate-shaped member, a second plate-shaped member, a third plate-shaped member, and a fourth plate-shaped member are laminated in this order in the evaporating portion, the condensing portion, and the flow path portion. The laminated body is formed of a first hollow portion including the vapor phase flow path between the first plate-shaped member and the second plate-shaped member, and the third plate-shaped member and the fourth plate-shaped member. The second cavity including the liquid phase flow path is sandwiched between the plate-shaped members, and the first cavity and the second cavity are sandwiched between the second plate-shaped member and the third plate-shaped member. The second plate-shaped member and the third plate-shaped member have a third cavity portion, and the second plate-shaped member and the third plate-shaped member have a first through hole for communicating the first cavity portion and the second cavity portion in the evaporation portion. An electronic device having a second through hole communicating the first cavity portion and the second cavity portion in the condensing portion.

10 板状部材
11 凹部
12 放熱板
13〜13b 凹凸部
20 板状部材
21、21a 貫通孔
22 貫通孔
23 放熱板
24 凹部
30 板状部材
31、31a 貫通孔
32 貫通孔
33 放熱板
40 板状部材
41 凹部
42 放熱板
50 蒸発部
52 凝縮部
54 流路部
56 積層体
60 空洞部
62 空洞部
64 空洞部
66 気相流路
68 液相流路
70 多孔質体
72 断熱部材
74 支柱
76 支柱
88 発熱部品
100、400、410 ヒートパイプ
500 電子機器
10 Plate-shaped member 11 Recessed plate 12 Heat sink 13 to 13b Concavo-convex part 20 Plate-shaped member 21, 21a Through hole 22 Through hole 23 Heat sink 24 Recessed hole 30 Plate-shaped member 31, 31a Through hole 32 Through hole 33 Radiation plate 40 Plate-shaped member 41 Recess 42 Heat sink 50 Evaporation part 52 Condensation part 54 Flow part 56 Laminated body 60 Cavity part 62 Cavity part 64 Cavity part 66 Gas phase flow path 68 Liquid phase flow path 70 Porous body 72 Insulation member 74 Pillar 76 Strut 88 Heat generation Parts 100, 400, 410 Heat pipe 500 Electronic equipment

Claims (10)

作動流体を気化する蒸発部と、
前記作動流体を液化する凝縮部と、
前記蒸発部で気化した気相の前記作動流体が前記凝縮部に向かって流れる気相流路及び前記凝縮部で液化した液相の前記作動流体が前記蒸発部に向かって流れる液相流路を含む流路部と、を備え、
前記蒸発部、前記凝縮部、及び前記流路部は、第1板状部材、第2板状部材、第3板状部材、及び第4板状部材がこの順に積層された積層体で形成され、
前記積層体は、前記第1板状部材と前記第2板状部材の間に前記気相流路を含む第1空洞部、前記第3板状部材と前記第4板状部材の間に前記液相流路を含む第2空洞部、及び前記第2板状部材と前記第3板状部材の間に前記第1空洞部及び前記第2空洞部に挟まれた第3空洞部を有し、
前記第2板状部材及び前記第3板状部材は、前記蒸発部において前記第1空洞部と前記第2空洞部を連通する第1貫通孔を有し、前記凝縮部において前記第1空洞部と前記第2空洞部を連通する第2貫通孔を有する、ヒートパイプ。
The evaporating part that vaporizes the working fluid and
The condensing part that liquefies the working fluid and
A gas phase flow path in which the working fluid of the vaporized gas phase flows toward the condensing portion and a liquid phase flow path in which the working fluid of the liquid phase liquefied in the condensing portion flows toward the evaporating portion. With a flow path including
The evaporation portion, the condensation portion, and the flow path portion are formed of a laminated body in which a first plate-shaped member, a second plate-shaped member, a third plate-shaped member, and a fourth plate-shaped member are laminated in this order. ,
The laminated body has a first cavity portion including the gas phase flow path between the first plate-shaped member and the second plate-shaped member, and the laminated body between the third plate-shaped member and the fourth plate-shaped member. It has a second cavity including a liquid phase flow path, and a third cavity sandwiched between the first cavity and the second cavity between the second plate-shaped member and the third plate-shaped member. ,
The second plate-shaped member and the third plate-shaped member have a first through hole communicating the first cavity portion and the second cavity portion in the evaporation portion, and the first cavity portion in the condensation portion. A heat pipe having a second through hole communicating with the second cavity portion.
前記流路部における前記第1空洞部、前記第2空洞部、及び前記第3空洞部は、前記積層体の積層方向で重なり合って同じ方向に延在している、請求項1記載のヒートパイプ。 The heat pipe according to claim 1, wherein the first cavity portion, the second cavity portion, and the third cavity portion in the flow path portion overlap each other in the stacking direction of the laminated body and extend in the same direction. .. 前記流路部における前記第1空洞部の断面積は、前記第1貫通孔の断面積よりも大きい、請求項1または2記載のヒートパイプ。 The heat pipe according to claim 1 or 2, wherein the cross-sectional area of the first cavity portion in the flow path portion is larger than the cross-sectional area of the first through hole. 前記第2空洞部内に設けられた多孔質体を備える、請求項1から3のいずれか一項記載のヒートパイプ。 The heat pipe according to any one of claims 1 to 3, further comprising a porous body provided in the second cavity. 前記第3空洞部内の圧力は大気圧よりも低くなっている、請求項1から4のいずれか一項記載のヒートパイプ。 The heat pipe according to any one of claims 1 to 4, wherein the pressure in the third cavity is lower than the atmospheric pressure. 前記第3空洞部内に設けられた断熱部材を備える、請求項1から5のいずれか一項記載のヒートパイプ。 The heat pipe according to any one of claims 1 to 5, further comprising a heat insulating member provided in the third cavity. 前記第1空洞部内及び前記第2空洞部内の少なくとも一方に、前記積層体の積層方向に延在した支柱を備える、請求項1から6のいずれか一項記載のヒートパイプ。 The heat pipe according to any one of claims 1 to 6, further comprising a column extending in the stacking direction of the laminated body in at least one of the first cavity portion and the second cavity portion. 前記積層体は、前記蒸発部での前記第1空洞部内に凹凸部を有する、請求項1から7のいずれか一項記載のヒートパイプ。 The heat pipe according to any one of claims 1 to 7, wherein the laminated body has an uneven portion in the first cavity portion in the evaporation portion. 前記第2板状部材及び前記第3板状部材の熱伝導率は、前記第1板状部材及び前記第4板状部材の熱伝導率よりも小さい、請求項1から8のいずれか一項記載のヒートパイプ。 One of claims 1 to 8, wherein the thermal conductivity of the second plate-shaped member and the third plate-shaped member is smaller than the thermal conductivity of the first plate-shaped member and the fourth plate-shaped member. The heat pipe described. 発熱部品と、
前記発熱部品の熱を移動するヒートパイプと、を備え、
前記ヒートパイプは、作動流体を気化する蒸発部と、前記作動流体を液化する凝縮部と、前記蒸発部で気化した気相の前記作動流体が前記凝縮部に向かって流れる気相流路及び前記凝縮部で液化した液相の前記作動流体が前記蒸発部に向かって流れる液相流路を含む流路部と、を備え、
前記蒸発部、前記凝縮部、及び前記流路部は、第1板状部材、第2板状部材、第3板状部材、及び第4板状部材がこの順に積層された積層体で形成され、
前記積層体は、前記第1板状部材と前記第2板状部材の間に前記気相流路を含む第1空洞部、前記第3板状部材と前記第4板状部材の間に前記液相流路を含む第2空洞部、及び前記第2板状部材と前記第3板状部材の間に前記第1空洞部及び前記第2空洞部に挟まれた第3空洞部を有し、
前記第2板状部材及び前記第3板状部材は、前記蒸発部において前記第1空洞部と前記第2空洞部を連通する第1貫通孔を有し、前記凝縮部において前記第1空洞部と前記第2空洞部を連通する第2貫通孔を有する、電子機器。
With heat-generating parts
A heat pipe for transferring the heat of the heat-generating component is provided.
The heat pipe includes an evaporating section that vaporizes the working fluid, a condensing section that liquefies the working fluid, a gas phase flow path through which the working fluid of the vaporized phase vaporized in the evaporating section flows toward the condensing section, and the above. A flow path portion including a liquid phase flow path through which the working fluid of the liquid phase liquefied in the condensing section flows toward the evaporation section is provided.
The evaporation portion, the condensation portion, and the flow path portion are formed of a laminated body in which a first plate-shaped member, a second plate-shaped member, a third plate-shaped member, and a fourth plate-shaped member are laminated in this order. ,
The laminated body has a first cavity portion including the gas phase flow path between the first plate-shaped member and the second plate-shaped member, and the laminated body between the third plate-shaped member and the fourth plate-shaped member. It has a second cavity including a liquid phase flow path, and a third cavity sandwiched between the first cavity and the second cavity between the second plate-shaped member and the third plate-shaped member. ,
The second plate-shaped member and the third plate-shaped member have a first through hole for communicating the first cavity portion and the second cavity portion in the evaporation portion, and the first cavity portion in the condensation portion. An electronic device having a second through hole that communicates with the second cavity portion.
JP2018092221A 2018-05-11 2018-05-11 Heat pipes and electronic devices Active JP6988681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018092221A JP6988681B2 (en) 2018-05-11 2018-05-11 Heat pipes and electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018092221A JP6988681B2 (en) 2018-05-11 2018-05-11 Heat pipes and electronic devices

Publications (2)

Publication Number Publication Date
JP2019196886A JP2019196886A (en) 2019-11-14
JP6988681B2 true JP6988681B2 (en) 2022-01-05

Family

ID=68537373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018092221A Active JP6988681B2 (en) 2018-05-11 2018-05-11 Heat pipes and electronic devices

Country Status (1)

Country Link
JP (1) JP6988681B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7386100B2 (en) * 2020-02-28 2023-11-24 三菱重工業株式会社 Reactor
JPWO2021256126A1 (en) * 2020-06-19 2021-12-23
WO2023022211A1 (en) * 2021-08-20 2023-02-23 古河電気工業株式会社 Heat sink
CN113873858B (en) * 2021-11-30 2022-04-22 荣耀终端有限公司 Housing and electronic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063195A1 (en) * 2000-02-25 2001-08-30 Fujitsu Limited Thin heat pipe and method of manufacturing the heat pipe
JP2002098487A (en) * 2000-09-25 2002-04-05 Fujitsu Ltd Manufacturing method of heat pipe
JP4380250B2 (en) * 2002-08-28 2009-12-09 ソニー株式会社 Heat transport device, electronic device and heat transport device manufacturing method
JP4496999B2 (en) * 2005-03-18 2010-07-07 ソニー株式会社 Heat transport device and electronic equipment
JP2007113864A (en) * 2005-10-21 2007-05-10 Sony Corp Heat transport apparatus and electronic instrument

Also Published As

Publication number Publication date
JP2019196886A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP6988681B2 (en) Heat pipes and electronic devices
US11384993B2 (en) Heat pipe
JP6886904B2 (en) Loop type heat pipe, manufacturing method of loop type heat pipe, electronic equipment
JP6799503B2 (en) Heat pipe and its manufacturing method
JP6233125B2 (en) Loop-type heat pipe, manufacturing method thereof, and electronic device
JP4557055B2 (en) Heat transport device and electronic equipment
JP6597892B2 (en) Loop heat pipe, manufacturing method thereof, and electronic device
US10495386B2 (en) Loop heat pipe and electronic device
JP6413306B2 (en) Heat pipe built-in frame plate and electronic equipment
KR20100057038A (en) Phase change type heat spreader, channel structure, electronic apparatus and method for manufacturing phase change type heat spreader
US20090020274A1 (en) Heat diffusing device and method of producing the same
US10712098B2 (en) Loop heat pipe and method of manufacturing loop heat pipe
JP4496999B2 (en) Heat transport device and electronic equipment
CN110195988B (en) Flat-plate loop heat pipe
JP2020193715A (en) Vapor chamber
JP2013007501A (en) Cooling device
JP2019015420A (en) Heat pipe and method for manufacturing heat pipe
JP2015102269A (en) Heat pipe, heat pipe production method and electronic apparatus
JP6863058B2 (en) Heat pipes and electronic devices
JP2021156517A (en) Heat dissipating structure and electronic device
JP3161474U (en) Vapor chamber structure
JP2023006705A (en) Heat conductive member
JP2023006702A (en) Heat conductive member
JP2023006704A (en) Heat conductive member
JP2021175940A (en) Metal sheet for vapor chamber, vapor chamber and method for manufacturing vapor chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6988681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150