JP6986846B2 - Cooling system and cooling method - Google Patents

Cooling system and cooling method Download PDF

Info

Publication number
JP6986846B2
JP6986846B2 JP2017037263A JP2017037263A JP6986846B2 JP 6986846 B2 JP6986846 B2 JP 6986846B2 JP 2017037263 A JP2017037263 A JP 2017037263A JP 2017037263 A JP2017037263 A JP 2017037263A JP 6986846 B2 JP6986846 B2 JP 6986846B2
Authority
JP
Japan
Prior art keywords
liquid
cooling
water
cleaning
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017037263A
Other languages
Japanese (ja)
Other versions
JP2018141610A (en
Inventor
峰彦 佐藤
秀一 石井
聰 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2017037263A priority Critical patent/JP6986846B2/en
Publication of JP2018141610A publication Critical patent/JP2018141610A/en
Application granted granted Critical
Publication of JP6986846B2 publication Critical patent/JP6986846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は、冷却システム及び冷却方法に関する。 The present invention relates to a cooling system and a cooling method.

空冷チラーや空冷パッケージエアコン等のシステムは冷媒の凝縮温度が低下するほど冷房運転時の運転効率が向上するため、凝縮器への散水や凝縮器が吸い込む吸込空気へミスト状の水の噴霧を行うことにより凝縮器の放熱効果を向上させることが行われている。散水や噴霧に用いられる水は上水、井水、工業用水等である。一方で、特許文献1、2では、散水や噴霧に用いられる水全てを一旦逆浸透膜へ透過させることによって水中に含まれるカルシウム、シリカ等の不純物を除去する発明が開示されている。 Systems such as air-cooled chillers and air-cooled package air conditioners improve the operating efficiency during cooling operation as the condensation temperature of the refrigerant decreases, so water is sprinkled on the condenser and mist-like water is sprayed on the suction air sucked by the condenser. As a result, the heat dissipation effect of the condenser is improved. The water used for sprinkling and spraying is clean water, well water, industrial water, etc. On the other hand, Patent Documents 1 and 2 disclose an invention for removing impurities such as calcium and silica contained in water by once permeating all the water used for watering or spraying through the reverse osmosis membrane.

特開2010−243144号公報Japanese Unexamined Patent Publication No. 2010-243144 特開2016−56959号公報Japanese Unexamined Patent Publication No. 2016-56959

凝縮器への散水や噴霧に用いられる水にカルシウム、シリカ等の不純物が多く含まれる場合、凝縮器やその周辺、噴霧流が滞留する場所(凝縮器フィンの押さえ板表面、室外機内部の配管や電装機器の表面、冷媒管ダクト表面など)や噴霧流路途中にある架台などの障害物にそれらの不純物が析出して付着し、凝縮器の放熱性能の低下や装置の外観の変色という問題を招く。 If the water used for watering or spraying the condenser contains a large amount of impurities such as calcium and silica, the condenser and its surroundings, the place where the spray flow stays (the surface of the holding plate of the condenser fins, the piping inside the outdoor unit) , The surface of electrical equipment, the surface of the refrigerant pipe duct, etc.) and obstacles such as the gantry in the middle of the spray flow path, these impurities precipitate and adhere, causing problems such as deterioration of the heat dissipation performance of the condenser and discoloration of the appearance of the device. Invite.

そこで、散水や噴霧に用いられる水全てを一旦逆浸透膜に透過させ、水中に含まれる不純物のうちシリカ等のスケール成分を除去した水を噴霧するという冷却システムが存在する。この冷却システムの場合、上述のような不純物付着問題は起こらない。しかしながら、逆浸透膜装置が大掛かりになり、装置費用の増大を招く。加えて逆浸透膜装置の運転費用も要する。つまり、不純物付着防止による放熱性能向上という効果は見込めるものの、費用対効果は高まらない。 Therefore, there is a cooling system in which all the water used for sprinkling or spraying is once permeated through the reverse osmosis membrane, and water from which scale components such as silica are removed from the impurities contained in the water is sprayed. In the case of this cooling system, the above-mentioned impurity adhesion problem does not occur. However, the reverse osmosis membrane device becomes large-scale, which leads to an increase in device cost. In addition, the operating cost of the reverse osmosis membrane device is also required. In other words, although the effect of improving heat dissipation performance by preventing the adhesion of impurities can be expected, the cost effectiveness is not increased.

そこで本願は不純物付着の防止による空冷式凝縮器の放熱性能の向上を実現させつつも設備費用を抑制する技術を提供することを課題とする。 Therefore, it is an object of the present application to provide a technique for suppressing the equipment cost while improving the heat dissipation performance of the air-cooled condenser by preventing the adhesion of impurities.

上記課題を解決するため、本発明では、空冷式凝縮器の吸込空気に対して不純物を除去していない液体のみ、あるいは不純物を除去した液体のみを単に噴霧するのではなく、不純物を除去していない液体と、洗浄用液体とを切り替えて噴霧することとした。 In order to solve the above problems, in the present invention, impurities are removed instead of simply spraying only the liquid from which impurities have not been removed or only the liquid from which impurities have been removed from the suction air of the air-cooled condenser. It was decided to switch between the non-impurity liquid and the cleaning liquid and spray.

詳細には、本発明は、空冷式凝縮器の吸込空気を液体の蒸発潜熱で冷却する冷却システムであって、吸込空気に対して液体を噴霧するノズルと、ノズルから噴霧する液体を、吸込空気を冷却する冷却用液体と冷却用液体の噴霧流路に存在する装置を洗浄する洗浄用液体のうちいずかれ一方に切り替える切り替え装置と、を備える。 Specifically, the present invention is a cooling system that cools the suction air of an air-cooled condenser with the latent heat of evaporation of the liquid, and the nozzle that sprays the liquid on the suction air and the liquid sprayed from the nozzle are sucked air. It is provided with a switching device for switching between the cooling liquid for cooling and the cleaning liquid for cleaning the device existing in the spray flow path of the cooling liquid.

ただし、ここでいう洗浄用液体とは、冷却用液体中に含まれる不純物の析出を遅らせる効果、又は不純物を除去する効果を有する液体である。析出を遅らせる効果は、装置に付いた冷却用液体を希釈することで、除去する効果は不純物を溶解させることである。 However, the cleaning liquid referred to here is a liquid having an effect of delaying the precipitation of impurities contained in the cooling liquid or an effect of removing impurities. The effect of delaying precipitation is to dilute the cooling liquid attached to the device, and the effect of removing it is to dissolve impurities.

このような冷却システムであれば、まず液体の噴霧によって凝縮器の放熱性能を向上させることができる。さらに、凝縮器やその周辺、噴霧流が滞留する場所や噴霧流路途中にある架台などの障害物に不純物を除去していない冷却用液体が付いた際には、噴霧する液体を冷却用液体から洗浄用液体に切り替えて洗浄すれば上記場所へ不純物が析出して付着することを防止することができ、凝縮器の放熱性能の低下や装置の外観の変色を防止することができる。 With such a cooling system, the heat dissipation performance of the condenser can be improved by first spraying the liquid. Furthermore, when an obstacle such as a condenser or its surroundings, a place where the spray flow stays, or a gantry in the middle of the spray flow path has a cooling liquid that does not remove impurities, the liquid to be sprayed is the cooling liquid. It is possible to prevent impurities from precipitating and adhering to the above-mentioned places by switching to the cleaning liquid from the above, and it is possible to prevent deterioration of the heat dissipation performance of the condenser and discoloration of the appearance of the apparatus.

またノズルは、噴霧する液体を微粒化するタイプであることが望ましい。微粒化することにより、ノズルから凝縮器へ到達するまでに液滴に含まれる水分は蒸発するため液滴に含まれる不純物が粉となって気流に乗って飛散し、凝縮器やその周辺への不純物の付着を抑制する効果がある。 Further, it is desirable that the nozzle is a type that atomizes the liquid to be sprayed. By atomizing, the water contained in the droplet evaporates from the nozzle to the condenser, and the impurities contained in the droplet become powder and scatter on the airflow to the condenser and its surroundings. It has the effect of suppressing the adhesion of impurities.

また、本発明にかかる冷却システムに用いる冷却用液体は、上水、井水、工業用水のうち少なくともいずれか一つでもよく(以下、冷却用水という)、洗浄用液体は、上水、井水、工業用水よりも不純物の濃度が薄い水(以下、洗浄用水という)、又は不純物を溶解することのできる洗浄剤であってもよい。このような構成により、安価で大量に入手できる液体を用いて冷却システムを運転することができ、運転費用を抑制することができる。 Further, the cooling liquid used in the cooling system according to the present invention may be at least one of clean water, well water and industrial water (hereinafter referred to as cooling water), and the cleaning liquid is clean water and well water. , Water having a lower concentration of impurities than industrial water (hereinafter referred to as cleaning water), or a cleaning agent capable of dissolving impurities may be used. With such a configuration, the cooling system can be operated using a liquid that can be obtained in a large amount at a low cost, and the operating cost can be suppressed.

また、本発明にかかる冷却システムに備わる切り替え装置は、冷却用水の不純物濃度、凝縮器周囲の気温、湿度又は風速のうち少なくともいずれか一つに基づいてノズルから噴霧する液体を切り替えてもよい。このような切り替え装置によって冷却用水、洗浄用水あるいは洗浄剤の噴霧量を不純物の析出のし易さに応じて調節することができ、洗浄用液体の使用量の無駄を削減することができる。 Further, the switching device provided in the cooling system according to the present invention may switch the liquid to be sprayed from the nozzle based on at least one of the impurity concentration of the cooling water, the air temperature around the condenser, the humidity and the wind speed. With such a switching device, the amount of spray of cooling water, cleaning water or cleaning agent can be adjusted according to the ease of precipitation of impurities, and waste of the amount of cleaning liquid used can be reduced.

また、本発明にかかる冷却システムは、逆浸透膜を有する逆浸透膜装置を備え、冷却用水を逆浸透膜装置へ送り逆浸透膜を透過させることによって冷却用水に含まれるスケール成分を除去し洗浄用水を生成してもよい。このような構成であれば、冷却用水を凝縮器への噴霧に加えて洗浄用水を生成するために利用することができる。よって、例えば、冷却用水と洗浄用水の水源を共通にすることができる。 Further, the cooling system according to the present invention includes a reverse osmosis membrane device having a reverse osmosis membrane, and sends cooling water to the reverse osmosis membrane device to permeate the reverse osmosis membrane to remove scale components contained in the cooling water for cleaning. Water may be generated. With such a configuration, the cooling water can be used to generate cleaning water in addition to spraying on the condenser. Therefore, for example, the water source for cooling water and cleaning water can be shared.

また、本発明にかかる冷却システムは、逆浸透膜装置へ送る冷却用水を30度から40度までの温度範囲へ加熱させる加熱手段を備えてもよい。逆浸透膜は高圧をかけた水を、スケール成分を濃縮した水と清浄な透過水とに分離する機能を有するが、その透過の際、水温が高いほど水の粘度が低下し、逆浸透膜への単位操作圧に対する透過水量の増量が可能となるため、逆浸透膜ポンプ動力の削減や逆浸透膜装置の小型化が図れ、装置のメンテナンス頻度を長くし、冷却システムにかかる費用を抑制することができる。一方で、逆浸透膜や汎用タンクに使用される材料(ポリプロピレン)の耐熱温度に制約があることから、透過前の水は30度から40度までの温度範囲へ加熱することが望ましい。 Further, the cooling system according to the present invention may include a heating means for heating the cooling water sent to the reverse osmosis membrane device to a temperature range of 30 to 40 degrees. The reverse osmosis membrane has the function of separating water under high pressure into water with concentrated scale components and clean permeable water, but during the permeation, the higher the water temperature, the lower the viscosity of the water, and the reverse osmosis membrane. Since it is possible to increase the amount of permeated water with respect to the unit operating pressure, the reverse osmosis membrane pump power can be reduced and the reverse osmosis membrane device can be downsized, the maintenance frequency of the device can be lengthened, and the cost of the cooling system can be suppressed. be able to. On the other hand, since the heat resistant temperature of the material (polypropylene) used for the reverse osmosis membrane and the general-purpose tank is limited, it is desirable to heat the water before permeation to a temperature range of 30 to 40 degrees.

また、本発明にかかる冷却システムに用いる加熱手段は、太陽熱又は冷却システムを運転する際に発生する熱のうち少なくともいずれか一つを利用した手段であってもよい。このような加熱手段によって、冷却システムの省エネルギー化を実現することができる。 Further, the heating means used in the cooling system according to the present invention may be a means using at least one of solar heat and heat generated when operating the cooling system. By such a heating means, energy saving of the cooling system can be realized.

また、本発明にかかる冷却システムは、冷却用水に他のシステムの冷却塔のブロー水を用いてもよい。他のシステムの冷却塔のブロー水を冷却用水に利用すれば、夏季などの時期にはブロー水の水温自体が高いため新たに加熱する必要はなく、逆浸透膜透過に要するエネルギーが少なく済み、逆浸透膜ポンプ動力の削減や逆浸透膜装置の小型化が図れ、装置のメンテナンス頻度を長くし、冷却システムにかかる費用を抑制することができる。冷却塔の水にスケール分散剤、防食剤、スライム防止剤の混合薬品を添加している場合は逆
浸透膜におけるスライム発生の抑制にも役立つ。
Further, in the cooling system according to the present invention, blow water from a cooling tower of another system may be used as the cooling water. If the blow water from the cooling tower of another system is used as the cooling water, the blow water itself is high in temperature during the summer, so there is no need for new heating, and less energy is required for reverse osmosis membrane permeation. The reverse osmosis membrane pump power can be reduced and the reverse osmosis membrane device can be downsized, the maintenance frequency of the device can be lengthened, and the cost of the cooling system can be suppressed. When a mixed chemical of a scale dispersant, an anticorrosive agent, and an anti-slime agent is added to the water of the cooling tower, it also helps to suppress the generation of slime in the reverse osmosis membrane.

ところで、冷却用水中に多くの有機物が含まれている場合、冷却用水を30度から40度まで加熱すると、この水温範囲は藻類、カビ類、細菌類などの増殖至適温度と重なるため、それらがバクテリアスライムとなり逆浸透膜を透過する際に逆浸透膜閉塞を誘発する虞がある。そこで、本発明にかかる冷却システムは、活性炭処理装置、UV処理装置、オゾン処理装置、過酸化水素を添加する装置、又は銅イオンあるいは銀イオンを含む薬剤を添加する装置のうち少なくともいずれか一つの装置を備え、これらの装置を用いて冷却用水に含まれる不純物を除去してもよい。冷却システムが上記のような装置を備えていれば、逆浸透膜中のバクテリアスライムや藻類等の発生を抑制し、逆浸透膜閉塞による逆浸透膜透過水量の低下を防止することができる。 By the way, when the cooling water contains a lot of organic substances, when the cooling water is heated from 30 degrees to 40 degrees, this water temperature range overlaps with the optimum temperature for the growth of algae, molds, bacteria, etc. May become bacterial lime and induce reverse osmosis membrane obstruction when permeating the reverse osmosis membrane. Therefore, the cooling system according to the present invention is at least one of an activated carbon treatment device, a UV treatment device, an ozone treatment device, a device for adding hydrogen peroxide, and a device for adding a drug containing copper ion or silver ion. Devices may be provided and these devices may be used to remove impurities contained in the cooling water. If the cooling system is provided with the above-mentioned device, it is possible to suppress the generation of bacterial slime, algae and the like in the reverse osmosis membrane, and prevent a decrease in the amount of water permeated through the reverse osmosis membrane due to blockage of the reverse osmosis membrane.

また、本発明は、方法の側面から捉えることもできる。すなわち、本発明は、例えば、空冷式凝縮器の吸込空気を液体の蒸発潜熱で冷却する冷却方法であって、吸込空気に対して液体を噴霧する噴霧工程と、噴霧する液体を、吸込空気を冷却する冷却用液体と冷却用液体の噴霧流路に存在する装置を洗浄する洗浄用液体のうちいずかれ一方に切り替える切り替え工程と、を備える、冷却方法であってもよい。 The present invention can also be grasped from the aspect of the method. That is, the present invention is, for example, a cooling method in which the suction air of an air-cooled condenser is cooled by the latent heat of evaporation of the liquid, in which a spraying step of spraying the liquid on the suction air and a spraying liquid of the suction air are used. The cooling method may include a switching step of switching between the cooling liquid to be cooled and the cleaning liquid for cleaning the device existing in the spray flow path of the cooling liquid.

上記冷却システム及び冷却方法は、不純物付着の防止による空冷式凝縮器の放熱性能の向上を実現させつつも設備費用を抑制する技術を提供することができる。 The above-mentioned cooling system and cooling method can provide a technique for suppressing equipment cost while improving heat dissipation performance of an air-cooled condenser by preventing impurities from adhering.

図1は、本発明の実施形態にかかる冷却システムの構成図である。FIG. 1 is a block diagram of a cooling system according to an embodiment of the present invention. 図2は、図1内の洗浄用水生成装置の構成図である。FIG. 2 is a block diagram of the washing water generator in FIG. 図3は、冷却時と洗浄時の冷却システムの状態を示した図である。(a)は冷却時、(b)は洗浄時である。FIG. 3 is a diagram showing the state of the cooling system during cooling and cleaning. (A) is for cooling and (b) is for cleaning. 図4は、冷却用水を加熱する手段として、凝縮器の排気熱を利用する冷却システムの部分拡大図である。FIG. 4 is a partially enlarged view of a cooling system that utilizes the exhaust heat of a condenser as a means for heating the cooling water. 図5は、冷却用水を加熱する手段として、太陽熱集熱器を利用する冷却システムの部分拡大図である。FIG. 5 is a partially enlarged view of a cooling system using a solar heat collector as a means for heating the cooling water. 図6は、冷却用水を加熱する手段として、空冷パッケージエアコンの高圧液との熱交換を利用する冷却システムの構成図である。FIG. 6 is a block diagram of a cooling system that utilizes heat exchange with a high-pressure liquid of an air-cooled package air conditioner as a means for heating the cooling water. 図7は、冷却用水を加熱する手段として、空冷パッケージエアコンの高圧液との間接熱交換を利用する冷却システムの構成図である。FIG. 7 is a configuration diagram of a cooling system that utilizes indirect heat exchange with a high-pressure liquid of an air-cooled package air conditioner as a means for heating the cooling water. 図8は、冷却用水を加熱する手段として、噴霧ポンプのジャケット排熱との熱交換を利用する冷却システムの構成図である。FIG. 8 is a configuration diagram of a cooling system that utilizes heat exchange with the jacket exhaust heat of the spray pump as a means for heating the cooling water. 図9は、冷却用水を加熱する手段として、噴霧ポンプのジャケット排熱との間接熱交換を利用する冷却システムの構成図である。FIG. 9 is a configuration diagram of a cooling system that utilizes indirect heat exchange with the jacket exhaust heat of the spray pump as a means for heating the cooling water. 図10は、冷却用水に他のシステムの冷却塔のブロー水を使用する冷却システムの構成図である。FIG. 10 is a block diagram of a cooling system using blow water from a cooling tower of another system as cooling water.

以下、本発明の実施形態について説明する。以下に示す実施形態は、本発明の実施形態の一例であり、本発明の技術的範囲を以下の態様に限定するものではない。 Hereinafter, embodiments of the present invention will be described. The embodiments shown below are examples of embodiments of the present invention, and the technical scope of the present invention is not limited to the following embodiments.

<システム構成>
図1は、本発明の実施形態にかかる冷却システムの構成図である。図1に示す冷却システム100はチラー、設備用パッケージエアコン、店舗オフィス用パッケージエアコン、ルームエアコンなどが有する空冷式凝縮器の放熱性能向上のためにその凝縮器の吸込空気
を液体の蒸発潜熱で冷却する冷却システムである。ここでは吸込空気を冷却する冷却用液体の一例として上水、井水、工業用水等の冷却用水(以降、水道水という)を用いる。図1に示すように、冷却システム100は上述のチラー等の空冷式凝縮器1の吸込空気へミスト状の水を噴霧するノズル2、ノズル2へ水を送る噴霧ポンプ3、水道水中に含まれる不純物を除去して洗浄用水(本願でいう「洗浄用液体」の一例である)を生成する洗浄用水生成装置4、洗浄用水生成装置4へ水道水を送る第一ポンプ5、生成された洗浄用水を貯えられる洗浄用水水槽6を備える。また、冷却システム100は、水道水供給源から第一ポンプ5へ至る配管と、水道水供給源から噴霧ポンプ3へ至る配管と、第一ポンプ5から洗浄用水生成装置4へ至る配管と、洗浄用水生成装置4から洗浄用水水槽6へ至る配管と、洗浄用水水槽6から噴霧ポンプ3へ至る配管と、水道水供給源から噴霧ポンプ3への水道水の供給水量を調節するための第一バルブ7と、洗浄用水水槽6から噴霧ポンプ3への洗浄用水の供給水量を調節するための第二バルブ8とを有する。ノズル2から噴霧する水を水道水と洗浄用水のうちいずれか一方に切り替える際には、第一バルブ7及び第二バルブ8が開閉される。
<System configuration>
FIG. 1 is a block diagram of a cooling system according to an embodiment of the present invention. The cooling system 100 shown in FIG. 1 cools the suction air of the air-cooled condenser of a chiller, a packaged air conditioner for equipment, a packaged air conditioner for a store office, a room air conditioner, etc. by latent heat of liquid evaporation in order to improve the heat dissipation performance of the condenser. It is a cooling system. Here, as an example of the cooling liquid for cooling the suction air, cooling water such as tap water, well water, and industrial water (hereinafter referred to as tap water) is used. As shown in FIG. 1, the cooling system 100 is included in a nozzle 2 that sprays mist-like water onto the suction air of the air-cooled condenser 1 such as the above-mentioned chiller, a spray pump 3 that sends water to the nozzle 2, and tap water. A cleaning water generator 4 that removes impurities to generate cleaning water (an example of a "cleaning liquid" in the present application), a first pump 5 that sends tap water to the cleaning water generator 4, and the generated cleaning water. It is provided with a washing water tank 6 that can store water. Further, the cooling system 100 includes a pipe from the tap water supply source to the first pump 5, a pipe from the tap water supply source to the spray pump 3, a pipe from the first pump 5 to the cleaning water generator 4, and cleaning. The pipe from the water generator 4 to the cleaning water tank 6, the pipe from the cleaning water tank 6 to the spray pump 3, and the first valve for adjusting the amount of tap water supplied from the tap water supply source to the spray pump 3. 7 and a second valve 8 for adjusting the amount of water supplied for washing from the washing water tank 6 to the spray pump 3. When the water sprayed from the nozzle 2 is switched to either tap water or cleaning water, the first valve 7 and the second valve 8 are opened and closed.

なお、ノズル2は、噴霧する水を微粒化して噴霧する。また、噴霧ポンプ3を4〜6MPaの高圧が得られるプランジャーポンプ、水道水が通る配管を4〜6MPaに耐えられる管種とすることで圧縮空気を使わない1流体ノズルをノズル2に用いることができる。 The nozzle 2 atomizes the water to be sprayed and sprays it. Further, the spray pump 3 is a plunger pump that can obtain a high pressure of 4 to 6 MPa, and the pipe through which tap water passes is a pipe type that can withstand 4 to 6 MPa, so that one fluid nozzle that does not use compressed air is used for the nozzle 2. Can be done.

図2は洗浄用水生成装置4の構成図である。洗浄用水生成装置4は、活性炭10と活性炭10を支持する支持砂利11とを有し水道水中に含まれる残留塩素や全有機炭素を除去する活性炭濾過機9、活性炭濾過機9により濾過後、水道水中に含まれるスケール成分を除去する逆浸透膜装置12、逆浸透膜を保護する保安用プレフィルタ13を備える。また、洗浄用水生成装置4は活性炭濾過機9からプレフィルタ13へ至る配管と、プレフィルタ13から逆浸透膜装置12へ至る配管とを有する。また逆浸透膜装置12は水道水を透過させる際に発生する逆浸透膜濃縮水を系外へ排出する配管と、逆浸透膜濃縮水を再び逆浸透膜装置へ循環させる配管とを有する。逆浸透膜は例えば日東電工社製のESPA2‐4040等である。また、逆浸透膜の代わりにUF(限外ろ過)膜を用いてもよい。この構成により水道水を用いて洗浄用水を生成することができ、また逆浸透膜濃縮水を再利用することにより洗浄用水を生成するための水道水量を削減することができる。 FIG. 2 is a block diagram of the washing water generator 4. The washing water generator 4 has an activated carbon 10 and a supporting gravel 11 that supports the activated carbon 10, and is filtered by an activated carbon filter 9 and an activated carbon filter 9 that remove residual chlorine and all organic carbon contained in tap water, and then tap water. A reverse osmosis membrane device 12 for removing scale components contained in water and a safety pre-filter 13 for protecting the reverse osmosis membrane are provided. Further, the washing water generation device 4 has a pipe from the activated carbon filter 9 to the pre-filter 13 and a pipe from the pre-filter 13 to the reverse osmosis membrane device 12. Further, the reverse osmosis membrane device 12 has a pipe for discharging the reverse osmosis membrane concentrated water generated when tap water is permeated to the outside of the system, and a pipe for circulating the reverse osmosis membrane concentrated water to the reverse osmosis membrane device again. The reverse osmosis membrane is, for example, ESPA2-4040 manufactured by Nitto Denko Corporation. Further, a UF (ultrafiltration) membrane may be used instead of the reverse osmosis membrane. With this configuration, tap water can be used to generate wash water, and by reusing the reverse osmosis membrane concentrated water, the amount of tap water for producing wash water can be reduced.

図3は、水道水の噴霧時と洗浄用水の噴霧時の冷却システム100の状態を示した図である。(a)は前者の状態、(b)は後者の状態である。(a)に示すように前者の場合は第一バルブ7を開け、第二バルブ8を閉めることによって水道水のみが噴霧ポンプ3へ送られる。一方、(b)に示すように後者の場合は第二バルブ8を開け、第一バルブ7を閉めることによって洗浄用水のみが噴霧ポンプ3へ送られる。第一バルブ7及び第二バルブ8は手動操作でも自動操作でもよい。自動操作の場合、バルブの開閉はタイマーによって実行されてもよいし、冷却システム100内に不純物の析出し易さを推定する計測装置を設けて、その推定結果に応じて実行されてもよい。 FIG. 3 is a diagram showing a state of the cooling system 100 at the time of spraying tap water and at the time of spraying cleaning water. (A) is the former state, and (b) is the latter state. As shown in (a), in the former case, only tap water is sent to the spray pump 3 by opening the first valve 7 and closing the second valve 8. On the other hand, as shown in (b), in the latter case, only the cleaning water is sent to the spray pump 3 by opening the second valve 8 and closing the first valve 7. The first valve 7 and the second valve 8 may be manually operated or automatically operated. In the case of automatic operation, opening and closing of the valve may be executed by a timer, or may be executed according to the estimation result by providing a measuring device for estimating the susceptibility of impurities to precipitate in the cooling system 100.

次に、洗浄時の冷却システムの運転(以下、リンス運転という)について説明する。洗浄用水は水道水から不純物を取り除いた水であるため比較的高価なことが多く、そのために費用対効果の面から洗浄用水の噴霧量を抑えつつ所定の目的を達成するようにリンス運転を行うことが望まれる。それを実現するためには、噴霧水の水膜中に不純物が析出する寸前あるいは析出した場合においても洗浄用水を用いて不純物を付着表面から滴下させることのできる程度の間にリンス運転を開始し、水膜が洗浄用水によって十分に希釈された後に速やかにリンス運転を終了することが望ましい。これを満たすリンス運転間隔とリンス継続時間について次に算出する。 Next, the operation of the cooling system during cleaning (hereinafter referred to as rinsing operation) will be described. Cleaning water is often relatively expensive because it is tap water from which impurities have been removed. Therefore, from the viewpoint of cost effectiveness, rinse operation is performed so as to achieve the specified purpose while suppressing the amount of cleaning water sprayed. Is desired. In order to achieve this, the rinsing operation is started on the verge of precipitation of impurities in the water film of the spray water, or even when impurities are deposited, while the impurities can be dropped from the adhered surface using cleaning water. It is desirable to end the rinse operation immediately after the water film is sufficiently diluted with washing water. Next, the rinse operation interval and the rinse duration that satisfy this are calculated.

まずリンス運転間隔については、水膜中の不純物が析出するまでの時間を、水道水の不
純物濃度と外気温湿度条件及び風速から算出する。ここでは不純物成分が炭酸カルシウム主体である場合について説明する。外気条件を温度25度、湿度60%、風速2m/sと仮定し、噴霧流が滞留する場所や噴霧流路途中にある架台などの障害物表面に形成されている水膜の蒸発速度E[mm/day]をZaykovの式により算出すると(1)式の通りとなる。
E=(0.15+0.108v)・(e0−e1)
=(0.15+0.108×2)・(31.7−19.0)
=4.6[mm/day]・・・(1)
ただし、vは風速[m/s]、e0は水膜近傍の水蒸気圧[hPa]、e1は気中の水蒸気圧[hPa]である。蒸発に伴い、蒸発する水分と結合していた炭酸カルシウムは蒸発せずに水膜中に留まると考えられるが、その水膜中に留まる炭酸カルシウムの増加速度は(2)式のように算出される。ただし、ノズルから噴霧される上水の硬度を60mg/Lとし、前記上水は水膜に到達する際に2倍に濃縮されているもの(硬度120mg/L)と仮定する。
(4.6/1000/24)[m/h]×(120×1000)[mg/m
=23.2[mg/(m・h)]・・・(2)
一方で、炭酸カルシウムの水への溶解度は、水温25度において820mg/L(化学便覧基礎編II 改訂3版)であるから、水膜の厚みが0.1mmの場合、水膜から炭酸カル
シウムが析出するまでの時間は(3)式の通り算出される。ただし、水膜中に溶解している炭酸カルシウムの初期値は、リンス運転によって0mg/mになっているものと仮定する。
(820−0)×0.1[mg/m]/23.2[mg/m・h]
=3.5[h]・・・(3)
すなわち、3.5時間おきにリンスすれば炭酸カルシウムの析出を防止できる。安全率を例えば1.1倍とすれば実際のリンス間隔は約3時間と試算される。このように、水道水の不純物濃度と外気温湿度条件及び風速からリンス運転間隔を算出して水道水と洗浄用水とを切り替えることができる。
First, regarding the rinse operation interval, the time until impurities in the water film are deposited is calculated from the impurity concentration of tap water, the outside air temperature and humidity conditions, and the wind speed. Here, a case where the impurity component is mainly calcium carbonate will be described. Assuming that the outside air conditions are temperature 25 degrees, humidity 60%, and wind speed 2 m / s, the evaporation rate E [ When [mm / day] is calculated by the formula of Zaykov, it becomes as in the formula (1).
E = (0.15 + 0.108v) · (e0-e1)
= (0.15 + 0.108 × 2) · (31.7-19.0)
= 4.6 [mm / day] ... (1)
However, v is the wind speed [m / s], e0 is the water vapor pressure [hPa] in the vicinity of the water film, and e1 is the water vapor pressure [hPa] in the air. It is thought that calcium carbonate that was bound to the water that evaporates with evaporation does not evaporate and stays in the water film, but the rate of increase of calcium carbonate that stays in the water film is calculated as in Eq. (2). To. However, it is assumed that the hardness of the clean water sprayed from the nozzle is 60 mg / L, and the clean water is twice concentrated when it reaches the water film (hardness 120 mg / L).
(4.6 / 1000/24) [m / h] × (120 × 1000) [mg / m 3 ]
= 23.2 [mg / (m 2 · h)] ··· (2)
On the other hand, the solubility of calcium carbonate in water is 820 mg / L at a water temperature of 25 degrees (Chemical Handbook Basics II Revised 3rd Edition), so if the thickness of the water film is 0.1 mm, calcium carbonate will be released from the water film. The time until precipitation is calculated as shown in Eq. (3). However, it is assumed that the initial value of calcium carbonate dissolved in the water film is 0 mg / m 3 by the rinsing operation.
(820-0) x 0.1 [mg / m 2 ] /23.2 [mg / m 2 · h]
= 3.5 [h] ... (3)
That is, the precipitation of calcium carbonate can be prevented by rinsing every 3.5 hours. If the safety factor is, for example, 1.1 times, the actual rinsing interval is estimated to be about 3 hours. In this way, the rinse operation interval can be calculated from the impurity concentration of tap water, the outside air temperature / humidity conditions, and the wind speed, and the tap water and the washing water can be switched.

また、外気条件が東京における夏季TAC2.5,14:00の条件で、最も気温が高い(温度33.4度、湿度57.3%、風速2m/sと仮定)場合、同様に(1)式、(2)式、(3)式を用いて炭酸カルシウムが析出するまでの時間を算出すると2.0時間となる。そして安全率を例えば1.1倍とすれば実際のリンス間隔は約1.8時間と試算される。このように不純物の析出のし易さに応じてリンス運転間隔を精密に調整してもよい。 Similarly, when the outside air condition is the summer TAC 2.5, 14:00 in Tokyo and the temperature is the highest (assuming temperature 33.4 degrees, humidity 57.3%, wind speed 2 m / s), (1) The time required for calcium carbonate to precipitate using the equations (2) and (3) is calculated to be 2.0 hours. If the safety factor is, for example, 1.1 times, the actual rinsing interval is estimated to be about 1.8 hours. As described above, the rinsing operation interval may be precisely adjusted according to the ease of precipitation of impurities.

リンス継続時間は水膜を洗浄用水に置き換えるために要する時間である。水膜表面に到達する噴霧水量はノズルの噴霧量・噴霧角・ノズルからの距離・水膜へ到達する間の蒸発量に依存するが、これを3L/mhと仮定すると、水膜の厚みが0.1mmの場合、リンス継続時間は(4)式のように算出される。
(0.1/1000)[m]/(3/1000)[m/mh]
=0.033[h]
=2[min]・・・(4)
すなわちリンスを2分間継続すれば水膜が洗浄用水に置き換わる試算となる。安全率を例えば2倍とすれば、実際のリンス継続時間は4分と試算される。上記試算のようにリンス継続時間を調整してもよい。
Rinse duration is the time required to replace the water film with wash water. Spraying amount of water reaching the water film surface depends on the amount of evaporation between reaching the distance and the water film between the spray volume and spray angle nozzles of the nozzle, but if this is assumed to 3L / m 2 h, the water film When the thickness is 0.1 mm, the rinse duration is calculated as in Eq. (4).
(0.1 / 1000) [m] / (3/1000) [m 3 / m 2 h]
= 0.033 [h]
= 2 [min] ... (4)
That is, it is a trial calculation that the water film is replaced with the washing water if the rinsing is continued for 2 minutes. If the safety factor is doubled, for example, the actual rinse duration is estimated to be 4 minutes. The rinse duration may be adjusted as in the above calculation.

洗浄用水生成装置4ならびにその水槽6の容量は、噴霧水量と最短のリンス運転間隔(上記の試算より概ね1時間以上)から決定する。また噴霧を外気温湿度条件や冷却対象機器の運転状態に応じて発停する場合は、その発停間隔を最小リンス運転間隔より長くし、噴霧停止前に必ずリンス運転を一定時間行い、水膜中に水道水が残らないようにする。 The capacity of the washing water generator 4 and its water tank 6 is determined from the amount of sprayed water and the shortest rinsing operation interval (about 1 hour or more from the above estimation). If the spray is started and stopped according to the outside air temperature and humidity conditions and the operating condition of the equipment to be cooled, the start and stop interval should be longer than the minimum rinse operation interval, and the rinse operation should be performed for a certain period of time before the spray is stopped. Make sure that no tap water remains inside.

なお、本試算は一例であって、実際の運転状況に応じて最適なリンス運転間隔とリンス継続時間は変化する。 This trial calculation is an example, and the optimum rinse operation interval and rinse duration will change depending on the actual operating conditions.

上述のような冷却システム100は凝縮器の吸込空気を冷却しつつ、比較的高価な洗浄用水の使用を最少量にとどめて水道水が付いた装置を洗浄するため、凝縮器の放熱性能の向上を実現させつつも不純物付着の防止に必要な費用を抑制することができる。 The cooling system 100 as described above cools the suction air of the condenser and uses a minimum amount of relatively expensive cleaning water to clean the device with tap water, so that the heat dissipation performance of the condenser is improved. It is possible to reduce the cost required to prevent the adhesion of impurities while realizing the above.

<変形例>
リンス運転による高価な洗浄用水量の削減のほかに、逆浸透膜を透過する水道水を透過前に加熱することによって粘度を低下させ、逆浸透膜への単位操作圧に対する透過水量を増量させることによって、費用対効果を高めることもできる。逆浸透膜と透過水量との関係は数1の(5)式、数2の(6)式の通りである。

Figure 0006986846
Figure 0006986846
ここで、tは水温[度]、TCFは25度(標準温度)における逆浸透膜の透過水量を1とした係数、Qは試験温度における透過水量 [m/d]、Qは標準温度における透
過水量[m/d]であり、数1の(5)式はHydranautics社資料、数2の(6)式はJIS K 3805:0990 逆浸透エレメント及びモジュールの性能試験方法より引用した。数1の(5)式、数2の(6)式より、ある温度における透過水量が算出される。例えば、水道水(26度:東京都水道局 平成26年年度の水道水の水温(都庁付近))を逆浸透膜の運転上限温度(例えば40度)まで昇温させると、透過水量が約1.5倍に増量される試算となるため、逆浸透膜ポンプ動力を減らして逆浸透膜装置を小型化できる。これによって、装置のメンテナンス頻度が長くなり、冷却システムにかかる費用を抑制することができる。また、不純物成分がシリカ(SiO)主体の場合、洗浄用水温度が高いほど溶解度が向上しリンス効果が高まる。よって本実施形態にかかる冷却システム100は逆浸透膜を透過させる水道水を30度から40度まで加熱する加熱手段を備えてもよい。 <Modification example>
In addition to reducing the amount of expensive cleaning water by rinsing operation, the viscosity is reduced by heating tap water that permeates the reverse osmosis membrane before permeation, and the amount of permeated water with respect to the unit operating pressure to the reverse osmosis membrane is increased. Can also be cost-effective. The relationship between the reverse osmosis membrane and the amount of permeated water is as in Eq. 1 (5) and Eq. 2 (6).
Figure 0006986846
Figure 0006986846
Here, t is the water temperature [degrees], TCF is a coefficient with the amount of water permeated by the reverse osmosis membrane at 25 degrees (standard temperature) as 1, Q a is the amount of water permeated at the test temperature [m 3 / d], and Q 0 is the standard. The amount of permeated water at temperature [m 3 / d], the formula (5) of equation 1 is quoted from the materials of Hydronautics, and the equation (6) of equation 2 is quoted from the performance test method of JIS K 3805: 0990 reverse osmosis element and module. .. The amount of permeated water at a certain temperature is calculated from the equation (5) of the equation 1 and the equation (6) of the equation 2. For example, when tap water (26 degrees: Tokyo Waterworks Bureau, 2014 tap water temperature (near the Tokyo Metropolitan Government)) is raised to the upper limit of operation of the reverse osmosis membrane (for example, 40 degrees), the amount of permeated water is about 1. Since the amount is estimated to be increased by 5.5 times, the reverse osmosis membrane pump power can be reduced and the reverse osmosis membrane device can be miniaturized. As a result, the maintenance frequency of the device becomes long, and the cost of the cooling system can be suppressed. Further, when the impurity component is mainly silica (SiO 2 ), the higher the temperature of the washing water, the higher the solubility and the higher the rinsing effect. Therefore, the cooling system 100 according to the present embodiment may include a heating means for heating tap water that permeates the reverse osmosis membrane from 30 degrees to 40 degrees.

また、水道水中に多くの有機物が含まれている場合、これを30度から40度まで加熱すると、この水温範囲は藻類、カビ類、細菌類などの増殖至適温度と重なるため、それらがバクテリアスライムとなり逆浸透膜を透過する際に逆浸透膜閉塞を誘発する虞がある。このような場合、水道水を加熱せずに逆浸透膜を透過させ、生成された洗浄用水を加熱してもよい。 In addition, when tap water contains a large amount of organic substances, when this is heated from 30 degrees to 40 degrees, this water temperature range overlaps with the optimum temperature for growth of algae, molds, bacteria, etc., so that they are bacteria. When it becomes slime and permeates the reverse osmosis membrane, it may induce reverse osmosis membrane obstruction. In such a case, the generated washing water may be heated by allowing the reverse osmosis membrane to permeate without heating the tap water.

図4は上述の加熱手段として水道水を凝縮器1の排気熱を利用する冷却システムの部分拡大図である。この変形例は、水道水が通過し、凝縮器1の排気熱によって加熱される被加熱配管14を備える。被加熱配管14は加熱されるため、断熱しないことが望ましい。このような加熱手段によって、冷却システムの省エネルギー化を実現することができ、費用対効果を高めることができる。 FIG. 4 is a partially enlarged view of a cooling system that utilizes the exhaust heat of the condenser 1 for tap water as the above-mentioned heating means. This modification includes a heated pipe 14 through which tap water passes and is heated by the exhaust heat of the condenser 1. Since the heated pipe 14 is heated, it is desirable not to insulate it. By such a heating means, energy saving of the cooling system can be realized, and cost effectiveness can be enhanced.

また、水道水を加熱する手段として太陽熱を利用してもよく、図5にその変形例の部分
拡大図を示す。この変形例は、太陽熱集熱器15、第一水槽16、第一水槽16から太陽熱集熱器15へ水道水を送る第二ポンプ17を備える。また、第一水槽16から第二ポンプ17へ至る配管、第二ポンプ17から太陽熱集熱器15へ至る配管を有する。また、太陽熱集熱器15から第一水槽16へ水道水が循環する循環配管を有してもよい。このような加熱手段によって、冷却システムの省エネルギー化を実現することができ、費用対効果を高めることができる。
Further, solar heat may be used as a means for heating tap water, and FIG. 5 shows a partially enlarged view of a modified example thereof. This modification includes a solar heat collector 15, a first water tank 16, and a second pump 17 that sends tap water from the first water tank 16 to the solar heat collector 15. Further, it has a pipe from the first water tank 16 to the second pump 17, and a pipe from the second pump 17 to the solar heat collector 15. Further, a circulation pipe for circulating tap water from the solar heat collector 15 to the first water tank 16 may be provided. By such a heating means, energy saving of the cooling system can be realized, and cost effectiveness can be enhanced.

また、水道水を加熱する手段として、空冷パッケージエアコンの高圧液との熱交換を利用してもよく、図6にその構成図を示す。この変形例は、第一ポンプ5からサブクールユニット18内にある冷媒/水熱交換器19へ至る冷却水還管、冷媒/水熱交換器19から洗浄用水生成装置4へ至る冷却水往管を有する。 Further, as a means for heating tap water, heat exchange with a high-pressure liquid of an air-cooled package air conditioner may be used, and FIG. 6 shows a configuration diagram thereof. This modification includes a cooling water return pipe from the first pump 5 to the refrigerant / water heat exchanger 19 in the subcool unit 18, and a cooling water outbound pipe from the refrigerant / water heat exchanger 19 to the cleaning water generator 4. Have.

また、図7に示すように、第二水槽27、第二水槽27から冷媒/水熱交換器19へ水道水を送る第三ポンプ28を備え、空冷パッケージエアコンの高圧液と間接熱交換してもよい。これらのような空冷パッケージエアコンの高圧液との熱交換を利用する加熱手段によって、冷却システムの省エネルギー化を実現することができ、費用対効果を高めることができる。 Further, as shown in FIG. 7, a third pump 28 for sending tap water from the second water tank 27 and the second water tank 27 to the refrigerant / water heat exchanger 19 is provided, and indirect heat exchange is performed with the high-pressure liquid of the air-cooled package air conditioner. May be good. Energy saving of the cooling system can be realized and cost effectiveness can be improved by the heating means utilizing heat exchange with the high pressure liquid of the air-cooled package air conditioner as described above.

また、水道水を加熱する手段として、噴霧ポンプのジャケット排熱を利用してもよく、図8にその構成図を示す。この変形例は、ジャケット付き噴霧ポンプ29、前記ポンプのジャケット30、ジャケット30へ第二水槽27から水道水を送る第四ポンプ31を備える。 Further, as a means for heating tap water, the exhaust heat from the jacket of the spray pump may be used, and FIG. 8 shows a configuration diagram thereof. This modification includes a spray pump 29 with a jacket, a jacket 30 of the pump, and a fourth pump 31 that sends tap water from the second water tank 27 to the jacket 30.

また、図9のように第二水槽27とジャケット30とを水道水が循環する循環配管を備えてもよい。これらのような噴霧ポンプのジャケット排熱を利用する加熱手段によって、冷却システムの省エネルギー化を実現することができ、費用対効果を高めることができる。 Further, as shown in FIG. 9, a circulation pipe for circulating tap water may be provided between the second water tank 27 and the jacket 30. The heating means utilizing the jacket waste heat of the spray pump such as these can realize energy saving of the cooling system and can improve cost effectiveness.

また、冷却用水に水道水ではなく他のシステムの冷却塔32のブロー水を用いてもよく、図10にその構成図を示す。他のシステムの冷却塔のブロー水を冷却用水に用いることによって、夏季などの凝縮器を冷却する必要性が増す季節においてはブロー水の水温自体が高いため、逆浸透膜を透過させる前に加熱しなくとも透過に要するエネルギーが少なく済む。冷却塔の水にスケール分散剤、防食剤、スライム防止剤の混合薬品を添加している場合は逆浸透膜におけるスライム発生の抑制にも役立つ。 Further, instead of tap water, blow water of the cooling tower 32 of another system may be used as the cooling water, and FIG. 10 shows a configuration diagram thereof. By using the blow water from the cooling tower of another system as the cooling water, the temperature of the blow water itself is high in the season when the need to cool the condenser increases, such as in summer, so it is heated before the reverse osmosis membrane is permeated. Even if it is not done, less energy is required for transmission. When a mixed chemical of a scale dispersant, an anticorrosive agent, and an anti-slime agent is added to the water of the cooling tower, it also helps to suppress the generation of slime in the reverse osmosis membrane.

また、図4から図10に示される冷却システムは、活性炭処理装置、UV処理装置、オゾン処理装置、過酸化水素を添加する装置、又は銅イオンあるいは銀イオンを含む薬剤を添加する装置のうち少なくともいずれか一つの装置を備えていてもよい。加熱した水道水を洗浄用水生成装置4へ送る過程において、水道水を上記のような装置に通すことによって逆浸透膜中のスライムあるいはかつ藻類の発生を抑制することができ、装置のメンテナンス頻度を長くし、冷却システムにかかる費用を抑制することができる。 Further, the cooling system shown in FIGS. 4 to 10 is at least one of an activated carbon treatment device, a UV treatment device, an ozone treatment device, a device for adding hydrogen peroxide, and a device for adding a chemical containing copper ion or silver ion. Any one device may be provided. In the process of sending the heated tap water to the washing water generator 4, by passing the tap water through the above-mentioned device, the generation of slime or algae in the reverse osmosis membrane can be suppressed, and the maintenance frequency of the device can be reduced. It can be lengthened and the cost of the cooling system can be reduced.

また、冷却システム100及び図4から図10に示される冷却システムに用いられる洗浄用水は水道水を逆浸透膜へ透過させることによって生成されていたが、洗浄用水のかわりに例えばナルコ社製のPermaClean33やアムテック社製のサンフリーUK/MJ等のスケール洗浄剤を用いてもよい。これらを用いることにより、水道水から洗浄用水を生成する装置を削減することができる。 Further, the cleaning water used in the cooling system 100 and the cooling systems shown in FIGS. 4 to 10 was generated by permeating tap water through the reverse osmosis membrane, but instead of the cleaning water, for example, PermaClean 33 manufactured by Narco Co., Ltd. Or a scale cleaning agent such as Sunfree UK / MJ manufactured by Amtech Co., Ltd. may be used. By using these, it is possible to reduce the number of devices that generate cleaning water from tap water.

1・・空冷式凝縮器;2・・ノズル;3・・噴霧ポンプ;4・・洗浄用水生成装置;5・
・第一ポンプ;6・・洗浄用水水槽;7・・第一バルブ;8・・第二バルブ;9・・活性炭濾過機;10・・活性炭;11・・支持砂利;12・・逆浸透膜装置;13・・プレフィルタ;14・・被加熱配管;15・・太陽熱集熱器;16・・第一水槽;17・・第二ポンプ;18・・サブクールユニット;19・・冷媒/水熱交換器;20・・室内機;21・・蒸発器;22・・膨張バルブ;23・・室外機;24・・圧縮機;25・・アキュムレータ;26・・受液器;27・・第二水槽;28・・第三ポンプ;29・・ジャケット付き噴霧ポンプ;30・・ジャケット;31・・第四ポンプ;32・・他のシステムの冷却塔;100・・冷却システム
1 ... Air-cooled condenser; 2 ... Nozzle; 3 ... Spray pump; 4 ... Cleaning water generator; 5 ...
・ First pump; 6 ・ ・ Cleaning water tank; 7 ・ ・ First valve; 8 ・ ・ Second valve; 9 ・ ・ Activated charcoal filter; 10 ・ ・ Activated charcoal; 11 ・ ・ Supporting gravel; Equipment; 13 ... Pre-filter; 14 ... Heated piping; 15 ... Solar heat collector; 16 ... First water tank; 17 ... Second pump; 18 ... Subcool unit; 19 ... Refrigerator / water heat Exchanger; 20 ... Indoor unit; 21 ... Evaporator; 22 ... Expansion valve; 23 ... Outdoor unit; 24 ... Compressor; 25 ... Accumulator; 26 ... Liquid receiver; 27 ... Second Water tank; 28 ... Third pump; 29 ... Jacketed spray pump; 30 ... Jacket; 31 ... Fourth pump; 32 ... Cooling towers of other systems; 100 ... Cooling system

Claims (11)

空冷式凝縮器の吸込空気を液体の蒸発潜熱で冷却する冷却システムであって、
前記吸込空気に対して吸い込み方向の上流側から液体を微粒化して噴霧するノズルと、
前記ノズルから噴霧する前記液体を、前記吸込空気を冷却する冷却用液体と前記冷却用液体の噴霧流路に存在する装置を洗浄する洗浄用液体のうちいずれか一方に切り替える切り替え装置と、を備え、
前記ノズルは、前記冷却用液体および前記洗浄用液体のうち、前記切り替え装置により切り替えられて供給された液体を微粒化して、前記空冷式凝縮器の前記吸込空気の吸い込み方向の上流側から噴霧し、
前記冷却用液体は、上水、井水、および工業用水のうち少なくともいずれか一つであり、
前記洗浄用液体は、純水又は前記冷却用液体よりも不純物の濃度が薄い水を含む、
冷却システム。
A cooling system that cools the suction air of an air-cooled condenser with the latent heat of vaporization of a liquid.
A nozzle that atomizes and sprays liquid from the upstream side in the suction direction with respect to the suction air.
A switching device for switching between the cooling liquid for cooling the suction air and the cleaning liquid for cleaning the device existing in the spray flow path of the cooling liquid is provided. ,
Of the cooling liquid and the cleaning liquid, the nozzle atomizes the liquid switched and supplied by the switching device and sprays it from the upstream side of the air-cooled condenser in the suction direction of the suction air. ,
The cooling liquid is at least one of clean water, well water, and industrial water.
The cleaning liquid contains pure water or water having a lower concentration of impurities than the cooling liquid.
Cooling system.
空冷式凝縮器の吸込空気を液体の蒸発潜熱で冷却する冷却システムであって、
前記吸込空気に対して液体を噴霧するノズルと、
前記ノズルから噴霧する前記液体を、前記吸込空気を冷却する冷却用液体と前記冷却用液体の噴霧流路に存在する装置を洗浄する洗浄用液体のうちいずれか一方に切り替える切り替え装置と、を備え、
前記冷却用液体は、上水、井水、および工業用水のうち少なくともいずれか一つであり、
前記洗浄用液体は、前記冷却用液体よりも不純物の濃度が薄い水であり、
前記切り替え装置は、前記空冷式凝縮器に付着した前記冷却用液体に含まれる不純物の析出が生じる時間に比して短い時間間隔で、前記液体を前記冷却用液体から前記洗浄用液体に切り替える、
冷却システム。
A cooling system that cools the suction air of an air-cooled condenser with the latent heat of vaporization of a liquid.
A nozzle that sprays a liquid against the suction air,
A switching device for switching between the cooling liquid for cooling the suction air and the cleaning liquid for cleaning the device existing in the spray flow path of the cooling liquid is provided. ,
The cooling liquid is at least one of clean water, well water, and industrial water.
The cleaning liquid is water having a lower concentration of impurities than the cooling liquid.
The switching device switches the liquid from the cooling liquid to the cleaning liquid at shorter time intervals than the time at which impurities contained in the cooling liquid adhering to the air-cooled condenser are deposited.
Cooling system.
前記洗浄用液体は、前記上水、井水、工業用水よりも不純物の濃度が薄い水、又は前記不純物を除去することのできる洗浄剤である、
請求項に記載の冷却システム。
The cleaning liquid is water having a concentration of impurities lower than that of clean water, well water, and industrial water, or a cleaning agent capable of removing the impurities.
The cooling system according to claim 1.
前記切り替え装置は、前記冷却用液体の不純物濃度、前記凝縮器周囲の気温、湿度又は風速のうち少なくともいずれか一つに基づいて前記ノズルから噴霧する液体を切り替える、
請求項2又は3に記載の冷却システム。
The switching device switches the liquid to be sprayed from the nozzle based on at least one of the impurity concentration of the cooling liquid and the temperature, humidity or wind speed around the condenser.
The cooling system according to claim 2 or 3.
前記冷却システムは、逆浸透膜を有する逆浸透膜装置を備え、前記冷却用液体を前記逆浸透膜装置へ送り前記逆浸透膜を透過させることによって前記冷却用液体に含まれる不純物を除去し前記洗浄用液体を生成する、
請求項3又は4に記載の冷却システム。
The cooling system includes a reverse osmosis membrane device having a reverse osmosis membrane, and removes impurities contained in the cooling liquid by sending the cooling liquid to the reverse osmosis membrane device and allowing the reverse osmosis membrane to permeate. Produces cleaning liquid,
The cooling system according to claim 3 or 4.
前記冷却システムは、前記逆浸透膜装置へ送る前記冷却用液体を30度から40度までの温度範囲へ加熱させる加熱手段を備える、
請求項5に記載の冷却システム。
The cooling system includes heating means for heating the cooling liquid to be sent to the reverse osmosis membrane device to a temperature range of 30 to 40 degrees.
The cooling system according to claim 5.
前記加熱手段は、太陽熱又は前記冷却システムを運転する際に発生する熱のうち少なくともいずれか一つを利用した手段である、
請求項6に記載の冷却システム。
The heating means is a means that utilizes at least one of solar heat and heat generated when operating the cooling system.
The cooling system according to claim 6.
前記冷却システムは、前記冷却用液体に他のシステムの冷却塔のブロー水を用いる、
請求項1から7のうちいずれか1項に記載の冷却システム。
The cooling system uses blow water from a cooling tower of another system as the cooling liquid.
The cooling system according to any one of claims 1 to 7.
前記冷却システムは、活性炭処理装置、UV処理装置、オゾン処理装置、過酸化水素を添加する装置、又は銅イオンあるいは銀イオンを含む薬剤を添加する装置のうち少なくともいずれか一つの装置を備え、前記装置を用いて前記冷却用液体に含まれる不純物を除去する、
請求項6から8のうちいずれか1項に記載の冷却システム。
The cooling system includes at least one of an activated carbon treatment device, a UV treatment device, an ozone treatment device, a device for adding hydrogen peroxide, and a device for adding a drug containing copper ion or silver ion. A device is used to remove impurities contained in the cooling liquid.
The cooling system according to any one of claims 6 to 8.
空冷式凝縮器の吸込空気を液体の蒸発潜熱で冷却する冷却方法であって、
前記吸込空気に対して吸い込み方向の上流側から液体を微粒化して噴霧する噴霧工程と、
噴霧する前記液体を、前記吸込空気を冷却する冷却用液体と前記冷却用液体の噴霧流路に存在する装置を洗浄する洗浄用液体のうちいずれか一方に切り替える切り替え工程と、を含み、
前記噴霧工程においては、前記冷却用液体および前記洗浄用液体のうち、前記切り替え工程において切り替えられた液体が微粒化されて、前記空冷式凝縮器の前記吸込空気の吸い込み方向の上流側から噴霧され、
前記冷却用液体は、上水、井水、および工業用水のうち少なくともいずれか一つであり、
前記洗浄用液体は、純水又は前記冷却用液体よりも不純物の濃度が薄い水を含む、
冷却方法。
It is a cooling method that cools the suction air of an air-cooled condenser with the latent heat of vaporization of a liquid.
A spraying step of atomizing and spraying a liquid from the upstream side in the suction direction with respect to the suction air.
A switching step of switching the liquid to be sprayed between the cooling liquid for cooling the suction air and the cleaning liquid for cleaning the device existing in the spray flow path of the cooling liquid is included.
In the spraying step, of the cooling liquid and the cleaning liquid, the liquid switched in the switching step is atomized and sprayed from the upstream side of the air-cooled condenser in the suction direction of the suction air. ,
The cooling liquid is at least one of clean water, well water, and industrial water.
The cleaning liquid contains pure water or water having a lower concentration of impurities than the cooling liquid.
Cooling method.
空冷式凝縮器の吸込空気を液体の蒸発潜熱で冷却する冷却方法であって、
前記吸込空気に対して液体を噴霧する噴霧工程と、
噴霧する前記液体を、前記吸込空気を冷却する冷却用液体と前記冷却用液体の噴霧流路に存在する装置を洗浄する洗浄用液体のうちいずれか一方に切り替える切り替え工程と、を含み、
前記冷却用液体は、上水、井水、および工業用水のうち少なくともいずれか一つであり、
前記洗浄用液体は、前記冷却用液体よりも不純物の濃度が薄い水であり、
前記切り替え工程においては、前記空冷式凝縮器に付着した前記冷却用液体に含まれる不純物の析出が生じる時間に比して短い時間間隔で、前記液体が前記冷却用液体から前記洗浄用液体に切り替えられる、
冷却方法。
It is a cooling method that cools the suction air of an air-cooled condenser with the latent heat of vaporization of a liquid.
The spraying step of spraying a liquid on the sucked air and
A switching step of switching the liquid to be sprayed between the cooling liquid for cooling the suction air and the cleaning liquid for cleaning the device existing in the spray flow path of the cooling liquid is included.
The cooling liquid is at least one of clean water, well water, and industrial water.
The cleaning liquid is water having a lower concentration of impurities than the cooling liquid.
In the switching step, the liquid is switched from the cooling liquid to the cleaning liquid at shorter time intervals than the time when impurities contained in the cooling liquid adhering to the air-cooled condenser are deposited. Be,
Cooling method.
JP2017037263A 2017-02-28 2017-02-28 Cooling system and cooling method Active JP6986846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017037263A JP6986846B2 (en) 2017-02-28 2017-02-28 Cooling system and cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017037263A JP6986846B2 (en) 2017-02-28 2017-02-28 Cooling system and cooling method

Publications (2)

Publication Number Publication Date
JP2018141610A JP2018141610A (en) 2018-09-13
JP6986846B2 true JP6986846B2 (en) 2021-12-22

Family

ID=63527851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017037263A Active JP6986846B2 (en) 2017-02-28 2017-02-28 Cooling system and cooling method

Country Status (1)

Country Link
JP (1) JP6986846B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112113271A (en) * 2020-08-26 2020-12-22 珠海格力电器股份有限公司 Air conditioner with washing function and washing control method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018771A (en) * 1998-07-03 2000-01-18 Daikin Ind Ltd Auxiliary cooler for condenser in air conditioner
JP2005052793A (en) * 2003-08-07 2005-03-03 Japan Cost Planning:Kk Purified water feed device having thermoelectric cogeneration apparatus
JP2007205677A (en) * 2006-02-03 2007-08-16 Daikin Ind Ltd Auxiliary cooling device of outdoor unit
US20140331703A1 (en) * 2013-05-09 2014-11-13 Dennis Barry LaConte Air-conditioning system
JP2015218931A (en) * 2014-05-15 2015-12-07 パナソニックIpマネジメント株式会社 Auxiliary cooling device of heat exchanger
JP5896331B1 (en) * 2014-09-05 2016-03-30 クリタ・ケミカル関東株式会社 Cooling assistance device and cooling assistance method

Also Published As

Publication number Publication date
JP2018141610A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
US20220333868A1 (en) Evaporative cooling system with liquid-to-air membrane energy exchanger
CA2579929C (en) A method and a washing system for washing turbines
JP2008086989A (en) Water supply apparatus
JP5918110B2 (en) Water intake device and water intake method
JP5959135B2 (en) Water intake device and water intake method
US11679997B2 (en) Water-savings adiabatic spray system
JP6986846B2 (en) Cooling system and cooling method
JP5628644B2 (en) Cooling method of heat exchanger using treated water
JP5869213B2 (en) Air purification system
JP2004317064A (en) Air conditioning system
JP2016142436A (en) Water sprinkling system and water sprinkling method for air-cooled heat source machine
JP2014206347A (en) Auxiliary cooling device for outdoor unit and auxiliary cooling system
CN206398877U (en) A kind of salt mist damping VMC
JP2013029289A (en) Apparatus and method for cooling of heat exchanger
CN107305037A (en) A kind of controlled spray cooling system
MX2021011781A (en) Circulating water preparation system, cooling system and method for operating a cooling system.
CN109311655B (en) Water-saving heat-insulation spraying system
JP2017058035A (en) Heat exchanger sprinkling system and heat exchanger sprinkling method
CN205561060U (en) Controlled spray cooling system
JP2020134044A (en) Outdoor unit cooling auxiliary device and outdoor unit cooling auxiliary method
JP2004132664A (en) Utility water treatment system for water vapor compression refrigerator
JP2019032109A (en) Circulation water cooling system and concentration apparatus
JP2006132882A (en) Air conditioner
JP2008128503A (en) Cooling tower purifying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210916

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210916

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210928

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211130

R150 Certificate of patent or registration of utility model

Ref document number: 6986846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150