JP2004132664A - Utility water treatment system for water vapor compression refrigerator - Google Patents

Utility water treatment system for water vapor compression refrigerator Download PDF

Info

Publication number
JP2004132664A
JP2004132664A JP2002299770A JP2002299770A JP2004132664A JP 2004132664 A JP2004132664 A JP 2004132664A JP 2002299770 A JP2002299770 A JP 2002299770A JP 2002299770 A JP2002299770 A JP 2002299770A JP 2004132664 A JP2004132664 A JP 2004132664A
Authority
JP
Japan
Prior art keywords
water
compression refrigerator
water treatment
steam compression
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002299770A
Other languages
Japanese (ja)
Inventor
Masaru Hongo
本郷 賢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP2002299770A priority Critical patent/JP2004132664A/en
Publication of JP2004132664A publication Critical patent/JP2004132664A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for eliminating the damage cause of a compressor provided inside a water vapor compression refrigerator and reducing the drain blow quantity for controlling water quality. <P>SOLUTION: The water vapor compression refrigerator 14 is provided with an evaporator 14a, a compressor 14b and a condenser 14c. The evaporator 14a guides feed water 16 and circulation water 17 from utility water treatment equipment 15 interposed on a feed water line L as cooled water 14d and evaporates a part of the cooled water 14d. The condenser 14c introduces water vapor compressed and heated at the compressor 14b and cools and condensates the vapor using cooling water 19 guided from a cooling tower 18 provided outside. The water treatment equipment 15 eliminates the damage cause of the compressor 14b and reduces the drain blow quantity for controlling water quality of the circulation water 17 by removing scale components such as calcium contained in the feed water 16 and by pure water treatment or distilled water treatment. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水蒸気圧縮冷凍機の蒸発器に補給する用水について、例えば、軟水化処理及び純水又は蒸留水処理を行う水蒸気圧縮冷凍機の用水処理システムに関するものである。
【0002】
【従来の技術】
従来、この種、水蒸気圧縮冷凍機のポンプ式循環冷房システムは、例えば、図2に示すような構成であった。これについて説明すれば、1は水蒸気圧縮冷凍機であって、蒸発器1a、圧縮機1b及び凝縮器1cを備えている。該蒸発器1aは往き管2及び帰り管3を備えており、該往き管2にはポンプ4を介在させ前記往き管2及び帰り管3の循環冷水を熱交換器11及び12を介して流送し、建物等の冷房機能を果している。そして、蒸発器1aは補給水5及び該循環冷水を導入すると共に前記圧縮機1bの運転によって低圧に保持しつつ当該循環冷水の一部を蒸発させる。
該凝縮器1cは該圧縮機1bで加圧され高温になった水蒸気を導入し、これを外部に設置した冷却塔6からポンプ9を介して導いた冷却水7で冷却し凝縮する。図中、8は該凝縮器1cに於ける水蒸気及び水に含まれていた空気の一部を排出するための真空ポンプ、10は前記凝縮器1cからの冷却水を前記冷却塔6に流送するためのポンプである。
また、この種の従来技術としては、当特許出願人が先に特許出願を行い出願公開された特開2002−181403号に係る技術がある。これについて説明すれば、当該技術は、水蒸気圧縮冷凍機の冷熱及び純水又は清浄水取出しシステムであって、該水蒸気圧縮冷凍機が、蒸発部、圧縮機及び凝縮部を備え、該蒸発部は氷濃縮器から循環水を導くと共に該圧縮機の運転によって、低圧に保持しつつ当該循環水の一部を蒸発させる。また、該水蒸気圧縮冷凍機は、前記蒸発部の出力側に氷濃縮器を介して、蓄熱槽や清浄水貯槽を配した構成であって、該蓄熱槽又は清浄水貯槽から純水又は冷水を取出すものである。そして、前記循環水に直接に補給水を導入した構成であり、この補給水が例えば塩類濃度約2000mg/lの下水処理水等である。
【0003】
【発明が解決しようとする課題】
従来の技術は叙上のような構成であるので、次の課題が存在した。
すなわち、従来の技術に於けるシステムでは、水蒸気圧縮冷凍機1の蒸発器1aで水が蒸発して、残りの循環水が徐々に濃縮し、該循環水の塩類濃度が高くなり、水蒸気圧縮冷凍機1や循環系の熱交換器11、12に悪影響を及ぼすような水質になると、ドレンバルブ13を開け、該循環水を排出し、補給水5を補給することで、水質管理がなされてきた。この場合、当該循環水のドレン水量が多く省資源化や省エネルギー化に反するばかりか、当該水蒸気圧縮冷凍機1の運転効率が下がることとなった。
尚、これまでの水蒸気圧縮冷凍機システムに於ける水質管理では、例えば、濃縮水の全蒸発残留物資(TDS)などを約5000mg/Lとしているため、補給水5を上水とするとその全蒸発残留物質(TDS)は約200mg/Lであるため、約25倍程度濃縮されて利用されている。
【0004】
また、前述した特開2002−181403号に係る技術によれば、水蒸気圧縮冷凍機による純水または冷水を取出するシステムに導入する補給水の用水処理がされていないので、該水蒸気圧縮冷凍機の圧縮機に流入する水蒸気にスケール成分が包含し、該圧縮機の機能に弊害を与える等の問題点があった。
【0005】
【課題を解決するための手段】
本発明は、水蒸気圧縮冷凍機に用水処理装置を備え、該用水処理装置により補給する用水を軟水化処理及び純水又は蒸留水処理並びに循環冷水の一部又は全量を軟水化等処理することを特徴とした水蒸気圧縮冷凍機の用水処理システムを提供することを目的としたものであって、次の構成、手段から成立する。
【0006】
請求項1記載の発明によれば、循環水に導く蒸発器、圧縮機及び凝縮器から構成された水蒸気圧縮冷凍機と、前記循環水に補給水を導く補給ラインとでなる構成において前記補給ラインに用水処理装置を配備したことを特徴とする水蒸気圧縮冷凍機の用水処理システムである。
【0007】
請求項2記載の発明によれば、前記用水処理装置は、イオン交換樹脂を用いて塩化ナトリウム濃度比を制御する軟水器及び/又は塩化ナトリウム添加装置でなることを特徴とする請求項1記載の水蒸気圧縮冷凍機の用水処理システムである。
【0008】
請求項3記載の発明によれば、前記用水処理装置は、逆浸透膜又は限外ろ過膜を用いた膜分離装置でなることを特徴とする請求項1記載の水蒸気圧縮冷凍機の用水処理システムである。
【0009】
請求項4記載の発明によれば、前記用水処理装置は、イオン交換樹脂、逆浸透膜、電気透析膜のいずれかの手段を用いた純水製造装置、蒸留水製造装置、又は透過気化法による水製造装置でなることを特徴とする請求項1記載の水蒸気圧縮冷凍機の用水処理システムである。
【0010】
【発明の実施の形態】
以下、本発明に係る水蒸気圧縮冷凍機の用水処理システムに於ける実施の形態を詳細に説明する。
【0011】
図1は本発明に係る水蒸気圧縮冷凍機の用水処理システムに於ける実施の形態の一例を示す構成図である。
【0012】
14は水蒸気圧縮冷凍機であって、蒸発器14a、圧縮機14b及び凝縮器14cを備えている。該蒸発器14aは補給水ラインLに介設した用水処理装置15からの補給水16及び循環水17、17を冷水14dとして導くと共に、前記圧縮機14bの運転によって低圧に保持しつつ当該冷水14dの一部を蒸発させる。該圧縮機14bは当該蒸発器14aから導入された水蒸気を所定の条件で加圧する。前記凝縮器14cは前記圧縮機14bで加圧されかつ高温になった水蒸気を導入し、これを外部に設置した冷却塔18から導いた冷却水19で冷却し凝縮する。20は真空ポンプであり、該凝縮器14cに蓄積された水蒸気及び水に含まれていた空気の一部を排出する。
【0013】
図中、21a、21bはそれぞれ冷却水ポンプであり、前記冷却塔18から凝縮器14cへ冷却水19を流送する。
【0014】
尚、前記補給水16は、海水、河川水、下水処理水、排水処理水、工業水または上水等各種の水が適用される。
【0015】
前記冷却塔18は、前記水蒸気圧縮冷凍機14の付帯設備であり、前記凝縮器14cから導かれた冷却水19を冷却水ポンプ21aで流送する。そして、該冷却塔18は冷却水19を冷却ポンプ21bで前記凝縮器14cへ導入する。また、前記冷却塔18は前記凝縮器14cに於いて、水蒸気を凝縮することで温度上昇した冷却水19の熱を大気に放出する機能を有する。
22は冷水管であって、その経路には冷水14dが前記蒸発器14aからポンプ22a、22aで流送され、建物の各階層に設置された熱交換手段としての熱交換器23、23を介在させている。そして、冷水管22の一端は前記蒸発器14aの出力端に連結され、その他端は熱交換器23、23を介して前記蒸発器14aの入力端に接続している。
【0016】
尚、図中24は、冷水管22の最下部に設置したドレン弁であって、冷水管22内の冷水14dを一部放出する機能を有する。
【0017】
次に、本発明に係る水蒸気圧縮冷凍機の用水処理システムに於ける実施の形態の動作等について説明する。
前記水蒸気圧縮冷凍機14の圧縮機14bが運転すると、該蒸発器14aからの冷水14dが冷水管22に流送される。ここで、建物の各階の被空調室を冷房すべく熱交換手段23として熱交換器に冷房用幅射パネルを用いれば、蒸発器14aからの冷水14dの水温を例えば18℃とし、該冷水14dと凝縮器14cの冷却水19の水温差を小さくすることで水蒸気圧縮冷凍機14を高効率で運転することができる。
試算によれば、該水蒸気圧縮冷凍機14の出口冷却水水温を34℃とすると、冷水14dの水温18℃から、その水蒸気圧縮冷凍機14の該単体の成績係数8〜10程度となる。本発明のシステムでは、熱交換手段23としての冷房用幅射パネルに送る冷水14dは水蒸気圧縮冷凍機14の蒸発器14a内で冷却したものであり、該冷水14dが冷房に利用される。
【0018】
ここに於いて、前記用水処理装置15等について説明する。
図1は水蒸気圧縮冷凍機システムにおける水蒸気圧縮冷凍機14の蒸発器14aへの補給水16の用水処理装置15と冷水14dの一部をドレン弁24で排出するドレンブローの関係を示しており、この用水処理装置15は二つの方法によって用水処理される。すなわち、その一つは水蒸気圧縮冷凍機14の圧縮機14bに悪影響を与えないように用水処理し、冷水14dを排水するドレンブローによる量を削減して水質管理を行うものである。すなわち、ドレンブローによる水質管理の場合に於いて、当該用水処理装置15は、イオン交換樹脂を用いて塩化ナトリウム濃度比をコントロールする軟水器及び/又は塩化ナトリウム添加装置や逆浸透膜又は限外ろ過膜を利用しスケール成分を分離除去する膜分離装置が適用される。また、他の一つは、当該ドレンブローによる水質管理を必要としない場合であって、該用水処理装置15はイオン交換樹脂、逆浸透膜、電気透析膜のいずれかの手段を用いた純水製造装置、若しくは蒸留水製造装置、又は透過気化法による水製造装置が適用される。
【0019】
本発明による用水処理システムは、水蒸気圧縮冷凍機14に悪影響を与えないように、最終的には水の蒸発により濃縮する循環水17又は冷水14d若しくは水蒸気に付随するスケール成分の割合をコントロールするものである。そして圧縮機14bを傷めるスケール成分としては、カルシウム化合物質が良く知られている。イオン交換樹脂を用いて塩化ナトリウム濃度比をコントロールする軟水器及び/又は塩化ナトリウム添加装置では、陽イオン交換樹脂に予め付加されたナトリウムイオンと用水又は補給水16に含まれるカルシウムイオンを置換することにより、水蒸気圧縮冷凍機14の蒸発器14aに供給する用水又は補給水16中のナトリウム化合物とカルシウム化合物の割合を例えば10:1に調節することで、濃縮水が飛散しても圧縮機14bを傷めない循環水17又は冷水14dとするものである。
この構成によれば、圧縮機14bを傷めない濃縮水の塩化ナトリウム(NaCl)の濃度を約5,000mg/lとし、補給水16をNaCl濃度が約50mg/lの上水とすると、100倍程度濃縮で利用できる。
【0020】
また、逆浸透膜を利用してスケール成分を分離除去する逆浸透膜処理手段としての膜分離装置は、通常に於いて分子量500以下の化合物質を分離対象とする装置であるが、スケール成分を膜により分離するか、又はナトリウム化合物とカルシウム化合物の透過性の異なりを利用した膜分離が適用できる。この逆浸透膜処理手段では上水を処理した場合、カルシウム化合物濃度を0〜2mg/l程度、ナトリウム化合物濃度を0〜20mg/l程度とすることができ、処理水は約250倍〜約500倍程度濃縮で利用できる。
【0021】
更に、限外ろ過膜を利用しスケール成分を分離除去する処理としての膜分離装置は逆浸透膜処理より大きな分子量例えば分子量500以上の化合物分離に適用される装置であるが、カルシウム化合物質などのスケール成分が他の汚れ成分などと一体化している場合、スケール成分の除去に適用できるものである。
そしてこの装置によればドレン弁24によるブロー水量をこれまでのシステムに比べ約1/4〜1/20程度に大幅に削減できることが判明した。
【0022】
また、水蒸気圧縮冷凍機14への補給水16を純水又は蒸留水処理し、ドレン弁24のブローによる水質管理をほとんど必要としない場合、この用水処理装置15には、前述したようにイオン交換樹脂手段を利用した純水製造装置、逆浸透膜処理手段を利用した純水製造装置、電気透析膜手段を利用した純水製造装置、蒸発法を利用した蒸留水製造装置又は透過気化法による水製造装置がある。
そして、イオン交換樹脂手段を利用した純水製造装置は、あらかじめHが付加された陽イオン交換樹脂とOHが付加された陰イオン交換樹脂により用水を処理することで、用水又は補給水16中のプラスイオンとマイナスイオンをHとOHに交換し、最終的にはH0(純水)とするものである。また、逆浸透膜処理手段による純水製造装置は、用水又は補給水16中に含まれる溶質を膜分離するもので、例えば海水の淡水化に用いられる逆浸透膜手段によれば、塩化ナトリウム排除率が約90〜99%のものすなわち高純水となる。その処理される純水の質は、用いられる逆浸透膜手段の性能に依存する。
【0023】
また、電気透析膜を利用した純水製造装置は、用水又は補給水16中においてイオン化した無機物がある場合、この用水又は補給水1bを陽電極と陰電極を有する容器に導入し、該電極に電流を流すと、陽イオンまたは陰イオンだけを選択的に通過、停止または交換できる膜すなわちイオン交換膜を用いて仕切りを設けることで、イオン種と水分を分離することができる。そして、蒸発法を利用した蒸留水製造装置では、水蒸発法として加熱蒸発、水蒸気圧縮などにより蒸留水を得ることができる。
更に、透過気化法による水製造装置は水蒸気を通すが液体の水は通さないいわゆる透過気化膜で容器を仕切り、その片側に用水を入れ、水蒸気のみを通過させ蒸留水に近い水を得るものである。
【0024】
この水蒸気圧縮冷凍機14の補給水16を純水又は蒸留水処理するシステムは、水蒸気圧縮冷凍機14の蒸発器14aに純水または蒸留水などを供給することで、循環水17や冷水14dの濃縮が非常に緩やかとなり、ドレン弁24によるブロー水管理をほとんど必要としないものである。
ただし用水や補給水16の水質によっては数年に一回程度の濃縮された冷水14dをブロー排水することもある。
尚、本発明によるシステムでは、前記補給水16の代わりに前記循環水17の一部又は全量を前記用水処理装置15に通水してもよく、この場合は水蒸気圧縮冷凍機14の蒸発器14a及び冷水管22などを循環している冷水14dの一部または全量を前述した手段で用水処理をすることもできる。
【0025】
【発明の効果】
本発明に係る水蒸気圧縮冷凍機の用水処理システムは叙上の構成、及び動作を有するので次の効果を奏する。
【0026】
請求項1記載の発明によれば、循環水に導く蒸発器、圧縮機及び凝縮器から構成された水蒸気圧縮冷凍機と、前記循環水に補給水を導く補給ラインとでなる構成において前記補給ラインに用水処理装置を配備したことを特徴とする水蒸気圧縮冷凍機の用水処理システムを提供する。
このような構成としたので、水蒸気圧縮冷凍機の蒸発器に供給する用水又は補給水を用水処理装置によって、軟水化処理及び純水処理又は蒸留水処理を行うと共に、本システムを流通する循環水又は冷水の一部又は全量も併せて軟水化処理等を行い、該水蒸気圧縮冷凍機の濃縮水の飛散による圧縮機への損傷を防止する効果がある。
【0027】
請求項2記載の発明によれば、前記用水処理装置は、イオン交換樹脂を用いて塩化ナトリウム濃度比を制御する軟水器及び/又は塩化ナトリウム添加装置でなることを特徴とする請求項1記載の水蒸気圧縮冷凍機の用水処理システムを提供する。
このような構成としたので、用水処理装置を簡易な手段、すなわち軟水器や塩化ナトリウム添加装置で構成したので、前記請求項1記載の発明の効果に加えて、ドレンブローによる水質管理を極めて適切なものとする効果がある。
【0028】
請求項3記載の発明によれば、前記用水処理装置は、逆浸透膜又は限外ろ過膜を用いた膜分離装置でなることを特徴とする請求項1記載の水蒸気圧縮冷凍機の用水処理システムを提供する。
このような構成としたので、用水処理装置を簡易な手段、すなわち膜分離装置で構成したので、特に塩化ナトリウムを添加せずに用水又は補給水中のカルシウム等の大きいスケール成分を除去することができ、前記請求項1記載の発明の効果に加えて、更に、冷水管の腐食を防止する効果がある。
【0029】
請求項4記載の発明によれば、前記用水処理装置は、イオン交換樹脂、逆浸透膜、電気透析膜のいずれかの手段を用いた純水製造装置、蒸留水製造装置、又は透過気化法による水製造装置でなることを特徴とする請求項1記載の水蒸気圧縮冷凍機の用水処理システムを提供する。
このような構成としたので、特に、前記請求項1記載の発明の効果に加えて、ドレンブローによる水質管理を必要としないシステムにも好適となる効果がある。
【図面の簡単な説明】
【図1】本発明に係る水蒸気圧縮冷凍機の用水処理システムに於ける実施の形態を示す構成図である。
【図2】従来の技術に於ける水蒸気圧縮冷凍機のポンプ式循環冷房システムの一例を示す構成図である。
【符号の説明】
14 水蒸気圧縮冷凍機
14a 蒸発器
14b 圧縮機
14c 凝縮器
14d 冷水
15 用水処理装置
16 補給水
17 循環水
18 冷却塔
19 冷却水
20 真空ポンプ
21a、21b 冷却水ポンプ
22 冷水管
22a ポンプ
23 熱交換手段(熱交換器)
24 ドレン弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water treatment system for a steam compression refrigerator that performs, for example, water softening treatment and pure water or distilled water treatment for supply water to an evaporator of the steam compression refrigerator.
[0002]
[Prior art]
Conventionally, this type of pump-type circulating cooling system of a steam compression refrigerator has, for example, a configuration as shown in FIG. To explain this, reference numeral 1 denotes a steam compression refrigerator, which includes an evaporator 1a, a compressor 1b, and a condenser 1c. The evaporator 1a is provided with a going pipe 2 and a return pipe 3, and a pump 4 is interposed in the going pipe 2 to flow circulating cold water of the going pipe 2 and the return pipe 3 through heat exchangers 11 and 12. It has a cooling function for buildings. Then, the evaporator 1a introduces the makeup water 5 and the circulating cold water and evaporates a part of the circulating cold water while maintaining the pressure at a low level by the operation of the compressor 1b.
The condenser 1c introduces high-temperature steam pressurized by the compressor 1b, and cools and condenses the same with cooling water 7 guided from a cooling tower 6 provided outside via a pump 9. In the figure, reference numeral 8 denotes a vacuum pump for discharging a part of the air contained in the steam and water in the condenser 1c, and 10 a cooling water from the condenser 1c to the cooling tower 6. To pump.
Further, as a conventional technique of this kind, there is a technique according to Japanese Patent Application Laid-Open No. 2002-181403 filed by the applicant of the present invention and filed. Describing this, the technology is a system for removing the cold and pure water or clean water of a steam compression refrigerator, wherein the steam compression refrigerator includes an evaporator, a compressor, and a condenser, and the evaporator includes: The circulating water is guided from the ice concentrator and a part of the circulating water is evaporated while the pressure is kept low by the operation of the compressor. Further, the steam compression refrigerator has a configuration in which a heat storage tank or a clean water storage tank is arranged on the output side of the evaporating section via an ice concentrator, and pure water or cold water is supplied from the heat storage tank or the clean water storage tank. To take out. Then, makeup water is directly introduced into the circulating water, and the makeup water is, for example, sewage treatment water having a salt concentration of about 2000 mg / l.
[0003]
[Problems to be solved by the invention]
Since the conventional technology has the configuration described above, the following problem exists.
That is, in the system according to the conventional technology, water evaporates in the evaporator 1a of the steam compression refrigerator 1, and the remaining circulating water gradually concentrates, the salt concentration of the circulating water increases, and the steam compression refrigeration is performed. When the water quality has an adverse effect on the machine 1 and the heat exchangers 11 and 12 of the circulation system, the water quality has been managed by opening the drain valve 13, discharging the circulating water, and supplying the makeup water 5. . In this case, not only the amount of drain water of the circulating water is large, which is against resource saving and energy saving, but also the operating efficiency of the steam compression refrigerator 1 is reduced.
In the water quality management in the conventional steam compression refrigeration system, for example, the total evaporation residue (TDS) of the concentrated water is about 5000 mg / L. Since the residual substance (TDS) is about 200 mg / L, it is used after being concentrated about 25 times.
[0004]
In addition, according to the technology disclosed in Japanese Patent Application Laid-Open No. 2002-181403, since the water treatment of make-up water introduced into the system for extracting pure water or cold water by the steam compression refrigerator is not performed, the steam compression refrigerator is not used. There is a problem that the scale component is included in the steam flowing into the compressor, which adversely affects the function of the compressor.
[0005]
[Means for Solving the Problems]
The present invention provides a steam compression refrigerator with a water treatment device, wherein the water supplied by the water treatment device is subjected to water softening treatment and pure water or distilled water treatment, and part or all of the circulating cold water is subjected to water softening treatment or the like. An object of the present invention is to provide a water treatment system for a steam compression refrigerator characterized by the following constitutions and means.
[0006]
According to the first aspect of the present invention, the replenishing line includes a steam compression refrigerating machine including an evaporator, a compressor, and a condenser for guiding the circulating water, and a replenishing line for guiding the replenishing water to the circulating water. A water treatment system for a steam compression refrigerating machine, wherein a water treatment device is disposed in the system.
[0007]
According to the second aspect of the present invention, the water treatment apparatus comprises a water softener for controlling a sodium chloride concentration ratio using an ion exchange resin and / or a sodium chloride adding apparatus. It is a water treatment system for a steam compression refrigerator.
[0008]
According to the invention of claim 3, the water treatment apparatus is a membrane separation apparatus using a reverse osmosis membrane or an ultrafiltration membrane, and the water treatment system for a steam compression refrigerator according to claim 1, wherein It is.
[0009]
According to the invention as set forth in claim 4, the water treatment apparatus is based on a pure water production apparatus, a distilled water production apparatus, or a pervaporation method using any one of an ion exchange resin, a reverse osmosis membrane, and an electrodialysis membrane. The water treatment system for a steam compression refrigerator according to claim 1, which is a water production device.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a water treatment system for a steam compression refrigerator according to the present invention will be described in detail.
[0011]
FIG. 1 is a configuration diagram showing an example of an embodiment of a water treatment system for a steam compression refrigerator according to the present invention.
[0012]
Reference numeral 14 denotes a steam compression refrigerator, which includes an evaporator 14a, a compressor 14b, and a condenser 14c. The evaporator 14a guides the make-up water 16 and the circulating water 17, 17 from the water treatment device 15 interposed in the make-up water line L as cold water 14d, and keeps the cold water 14d while maintaining the low pressure by the operation of the compressor 14b. Evaporate a part of it. The compressor 14b pressurizes steam introduced from the evaporator 14a under predetermined conditions. The condenser 14c introduces steam which has been pressurized and has a high temperature by the compressor 14b, and cools and condenses the same with cooling water 19 introduced from a cooling tower 18 provided outside. Reference numeral 20 denotes a vacuum pump, which discharges a part of air contained in water vapor and water accumulated in the condenser 14c.
[0013]
In the drawing, reference numerals 21a and 21b denote cooling water pumps, respectively, for flowing cooling water 19 from the cooling tower 18 to the condenser 14c.
[0014]
As the replenishing water 16, various types of water such as seawater, river water, sewage treatment water, wastewater treatment water, industrial water, and clean water are used.
[0015]
The cooling tower 18 is an auxiliary facility of the steam compression refrigerator 14, and sends cooling water 19 guided from the condenser 14c by a cooling water pump 21a. Then, the cooling tower 18 introduces cooling water 19 into the condenser 14c by a cooling pump 21b. Further, the cooling tower 18 has a function of discharging the heat of the cooling water 19 whose temperature has been raised by condensing the water vapor to the atmosphere in the condenser 14c.
Reference numeral 22 denotes a cold water pipe through which cold water 14d is pumped from the evaporator 14a by the pumps 22a, 22a and interposed with heat exchangers 23, 23 as heat exchange means installed at each level of the building. Let me. One end of the cold water pipe 22 is connected to the output end of the evaporator 14a, and the other end is connected to the input end of the evaporator 14a via heat exchangers 23,23.
[0016]
In the figure, reference numeral 24 denotes a drain valve installed at the lowermost part of the cold water pipe 22, which has a function of partially discharging the cold water 14d in the cold water pipe 22.
[0017]
Next, the operation and the like of the embodiment in the water treatment system for the steam compression refrigerator according to the present invention will be described.
When the compressor 14b of the steam compression refrigerator 14 operates, the cold water 14d from the evaporator 14a is sent to the cold water pipe 22. Here, if a cooling radiant panel is used for the heat exchanger as the heat exchange means 23 to cool the air-conditioned room on each floor of the building, the water temperature of the cold water 14d from the evaporator 14a is set to, for example, 18 ° C., and the cold water 14d The difference between the water temperature of the cooling water 19 of the condenser 14c and that of the condenser 14c allows the steam compression refrigerator 14 to operate with high efficiency.
According to a trial calculation, when the outlet cooling water temperature of the steam compression refrigerator 14 is set to 34 ° C., the coefficient of performance of the steam compression refrigerator 14 alone becomes about 8 to 10 from the water temperature of the cold water 14 d of 18 ° C. In the system of the present invention, the cold water 14d sent to the cooling radiation panel as the heat exchange means 23 is cooled in the evaporator 14a of the steam compression refrigerator 14, and the cold water 14d is used for cooling.
[0018]
Here, the water treatment device 15 and the like will be described.
FIG. 1 shows a relationship between a water treatment device 15 for supplying make-up water 16 to an evaporator 14a of a steam compression refrigerator 14 in a steam compression refrigerator system and a drain blow for discharging a part of the cold water 14d by a drain valve 24. This water treatment apparatus 15 is subjected to water treatment by two methods. That is, one of them is to perform water treatment so as not to adversely affect the compressor 14b of the steam compression refrigerator 14, and to perform water quality management by reducing the amount of drain blow for discharging the cold water 14d. That is, in the case of water quality control by drain blow, the water treatment device 15 is provided with a water softener and / or a sodium chloride addition device for controlling a sodium chloride concentration ratio using an ion exchange resin, a reverse osmosis membrane, or ultrafiltration. A membrane separation device that separates and removes scale components using a membrane is applied. The other is a case where the water quality control by the drain blow is not required, and the water treatment device 15 is a pure water using any one of an ion exchange resin, a reverse osmosis membrane, and an electrodialysis membrane. A manufacturing apparatus, a distilled water manufacturing apparatus, or a water manufacturing apparatus using a pervaporation method is applied.
[0019]
The water treatment system according to the present invention controls the proportion of the circulating water 17 or the cold water 14d or the scale component accompanying the steam which is finally concentrated by evaporation of the water so as not to adversely affect the steam compression refrigerator 14. It is. As a scale component that damages the compressor 14b, a calcium compound is well known. In a water softener and / or a sodium chloride addition device that controls the concentration ratio of sodium chloride using an ion exchange resin, the sodium ions added to the cation exchange resin are replaced with calcium ions contained in the service water or makeup water 16. Thus, by adjusting the ratio of the sodium compound and the calcium compound in the water or makeup water 16 supplied to the evaporator 14a of the steam compression refrigerator 14 to, for example, 10: 1, the compressor 14b can be operated even if the concentrated water is scattered. The circulating water 17 or the cold water 14d is not damaged.
According to this configuration, when the concentration of sodium chloride (NaCl) in concentrated water that does not damage the compressor 14b is set to about 5,000 mg / l and the make-up water 16 is made up of tap water having a NaCl concentration of about 50 mg / l, 100 times. Available with some degree of concentration.
[0020]
In addition, a membrane separation device as a reverse osmosis membrane treatment means for separating and removing scale components using a reverse osmosis membrane is a device which normally separates a compound having a molecular weight of 500 or less as a separation target. Separation by a membrane or membrane separation utilizing a difference in permeability between a sodium compound and a calcium compound can be applied. When water is treated by the reverse osmosis membrane treatment means, the calcium compound concentration can be about 0 to 2 mg / l and the sodium compound concentration can be about 0 to 20 mg / l, and the treated water is about 250 times to about 500 times. It can be used in about double concentration.
[0021]
Further, a membrane separation device as a process for separating and removing scale components using an ultrafiltration membrane is a device applied to separation of a compound having a higher molecular weight than a reverse osmosis membrane treatment, for example, a compound having a molecular weight of 500 or more. When the scale component is integrated with other dirt components, it can be applied to the removal of the scale component.
It has been found that this apparatus can significantly reduce the amount of blow water by the drain valve 24 to about 1/4 to 1/20 of that of the conventional system.
[0022]
In addition, when the makeup water 16 to the steam compression refrigerator 14 is treated with pure water or distilled water and the water quality control by blowing the drain valve 24 is hardly necessary, the water treatment device 15 is provided with the ion exchange as described above. Pure water production equipment using resin means, pure water production equipment using reverse osmosis membrane treatment means, pure water production equipment using electrodialysis membrane means, distilled water production equipment using evaporation method or water by pervaporation method There are manufacturing equipment.
The pure water producing apparatus using the ion exchange resin means treats the water with a cation exchange resin to which H + has been added in advance and an anion exchange resin to which OH has been added, so that the water or makeup water 16 can be treated. The positive ions and negative ions in the medium are exchanged for H + and OH , and finally H 20 (pure water). The apparatus for producing pure water using reverse osmosis membrane treatment means separates solutes contained in service water or makeup water 16 by membrane. For example, according to reverse osmosis membrane means used for desalination of seawater, sodium chloride is excluded. The ratio is about 90 to 99%, that is, high pure water. The quality of the treated pure water depends on the performance of the reverse osmosis membrane means used.
[0023]
Further, the pure water producing apparatus using the electrodialysis membrane, when there is an ionized inorganic substance in the service water or make-up water 16, introduces the service water or make-up water 1b into a container having a positive electrode and a negative electrode. When a current is applied, a partition is provided using a membrane that can selectively pass, stop, or exchange only cations or anions, that is, an ion exchange membrane, so that ionic species and moisture can be separated. In a distilled water producing apparatus using an evaporation method, distilled water can be obtained by heating evaporation, steam compression, or the like as a water evaporation method.
Further, a water production apparatus using a pervaporation method separates a container with a so-called pervaporation membrane that allows water vapor to pass but does not allow liquid water to pass therethrough, fills it with water on one side, passes water vapor only, and obtains water close to distilled water. is there.
[0024]
The system for treating the make-up water 16 of the steam compression refrigerator 14 with pure water or distilled water supplies pure water or distilled water to the evaporator 14a of the steam compression refrigerator 14 so that the circulating water 17 and the cold water 14d are removed. The concentration becomes very slow, and almost no blow water management by the drain valve 24 is required.
However, depending on the quality of the service water and makeup water 16, the concentrated cold water 14d may be blown and drained about once every several years.
In the system according to the present invention, a part or all of the circulating water 17 may be passed through the water treatment device 15 instead of the makeup water 16, and in this case, the evaporator 14a of the steam compression refrigerator 14 A part or all of the cold water 14d circulating in the cold water pipe 22 or the like can be subjected to water treatment by the above-described means.
[0025]
【The invention's effect】
The water treatment system for a steam compression refrigerator according to the present invention has the above-described configuration and operation, and thus has the following effects.
[0026]
According to the first aspect of the present invention, the replenishing line includes a steam compression refrigerating machine including an evaporator, a compressor, and a condenser for guiding the circulating water, and a replenishing line for guiding the replenishing water to the circulating water. And a water treatment system for a steam compression refrigerator.
With such a configuration, the water or makeup water supplied to the evaporator of the steam compression refrigerator is subjected to the water softening treatment and the pure water treatment or the distilled water treatment by the water treatment device, and the circulating water flowing through the system. Alternatively, a part or all of the cold water is also subjected to a water softening treatment or the like, which has an effect of preventing damage to the compressor due to scattering of concentrated water of the steam compression refrigerator.
[0027]
According to the second aspect of the present invention, the water treatment apparatus comprises a water softener for controlling a sodium chloride concentration ratio using an ion exchange resin and / or a sodium chloride adding apparatus. Provided is a water treatment system for a steam compression refrigerator.
With such a configuration, the water treatment apparatus is composed of simple means, that is, a water softener and a sodium chloride addition apparatus. In addition to the effects of the invention of claim 1, water quality management by drain blow is extremely appropriate. There is an effect to make it.
[0028]
According to the invention of claim 3, the water treatment apparatus is a membrane separation apparatus using a reverse osmosis membrane or an ultrafiltration membrane, and the water treatment system for a steam compression refrigerator according to claim 1, wherein I will provide a.
With such a configuration, the water treatment apparatus is constituted by simple means, that is, a membrane separation apparatus, so that large scale components such as calcium in the water or makeup water can be removed without adding sodium chloride. In addition to the effects of the first aspect of the present invention, there is an effect of preventing corrosion of the cold water pipe.
[0029]
According to the invention as set forth in claim 4, the water treatment apparatus is based on a pure water production apparatus, a distilled water production apparatus, or a pervaporation method using any one of an ion exchange resin, a reverse osmosis membrane, and an electrodialysis membrane. A water treatment system for a steam compression refrigerator according to claim 1, wherein the water treatment system comprises a water production device.
With such a configuration, in particular, in addition to the effect of the first aspect of the present invention, there is an effect that it is suitable for a system that does not require water quality management by drain blow.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a water treatment system for a steam compression refrigerator according to the present invention.
FIG. 2 is a configuration diagram showing an example of a pump-type circulating cooling system of a steam compression refrigerator in the related art.
[Explanation of symbols]
14 Steam compression refrigerator 14a Evaporator 14b Compressor 14c Condenser 14d Cold water 15 Water treatment device 16 Make-up water 17 Circulating water 18 Cooling tower 19 Cooling water 20 Vacuum pumps 21a, 21b Cooling water pump 22 Cold water pipe 22a Pump 23 Heat exchange means (Heat exchanger)
24 Drain valve

Claims (4)

循環水に導く蒸発器、圧縮機及び凝縮器から構成された水蒸気圧縮冷凍機と、前記循環水に補給水を導く補給ラインとでなる構成において前記補給ラインに用水処理装置を配備したことを特徴とする水蒸気圧縮冷凍機の用水処理システム。A water treatment device is provided in the supply line in a configuration including a vapor compression refrigerator configured to include an evaporator that guides the circulating water, a compressor, and a condenser, and a supply line that guides the supply water to the circulating water. Water treatment system for a steam compression refrigerator. 前記用水処理装置は、イオン交換樹脂を用いて塩化ナトリウム濃度比を制御する軟水器及び/又は塩化ナトリウム添加装置でなることを特徴とする請求項1記載の水蒸気圧縮冷凍機の用水処理システム。The water treatment system for a steam compression refrigerator according to claim 1, wherein the water treatment device comprises a water softener and / or a sodium chloride addition device for controlling a sodium chloride concentration ratio using an ion exchange resin. 前記用水処理装置は、逆浸透膜又は限外ろ過膜を用いた膜分離装置でなることを特徴とする請求項1記載の水蒸気圧縮冷凍機の用水処理システム。The water treatment system for a steam compression refrigerator according to claim 1, wherein the water treatment device is a membrane separation device using a reverse osmosis membrane or an ultrafiltration membrane. 前記用水処理装置は、イオン交換樹脂、逆浸透膜、電気透析膜のいずれかの手段を用いた純水製造装置、蒸留水製造装置、又は透過気化法による水製造装置でなることを特徴とする請求項1記載の水蒸気圧縮冷凍機の用水処理システム。The water treatment apparatus is characterized in that the apparatus is a pure water production apparatus using any of an ion exchange resin, a reverse osmosis membrane, and an electrodialysis membrane, a distilled water production apparatus, or a water production apparatus based on a pervaporation method. The water treatment system for a steam compression refrigerator according to claim 1.
JP2002299770A 2002-10-15 2002-10-15 Utility water treatment system for water vapor compression refrigerator Pending JP2004132664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299770A JP2004132664A (en) 2002-10-15 2002-10-15 Utility water treatment system for water vapor compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299770A JP2004132664A (en) 2002-10-15 2002-10-15 Utility water treatment system for water vapor compression refrigerator

Publications (1)

Publication Number Publication Date
JP2004132664A true JP2004132664A (en) 2004-04-30

Family

ID=32288812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299770A Pending JP2004132664A (en) 2002-10-15 2002-10-15 Utility water treatment system for water vapor compression refrigerator

Country Status (1)

Country Link
JP (1) JP2004132664A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243011A (en) * 2009-04-02 2010-10-28 Miura Co Ltd Cold water manufacturing device
JP2010249331A (en) * 2009-04-10 2010-11-04 Miura Co Ltd Refrigerating machine using steam engine
CN102226603A (en) * 2011-06-01 2011-10-26 杨贻方 Frost-proof heat pump unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243011A (en) * 2009-04-02 2010-10-28 Miura Co Ltd Cold water manufacturing device
JP2010249331A (en) * 2009-04-10 2010-11-04 Miura Co Ltd Refrigerating machine using steam engine
CN102226603A (en) * 2011-06-01 2011-10-26 杨贻方 Frost-proof heat pump unit

Similar Documents

Publication Publication Date Title
US20220333869A1 (en) Evaporative cooling system with liquid-to-air membrane energy exchanger
US9259667B2 (en) Modular humidification-dehumidification apparatus for concentrating solutions
JP5345536B2 (en) System and method for treating water components in a fluid
CA2818055C (en) Modular humidification-dehumidification apparatus for concentrating solutions
CN101139119B (en) Machine for desalination of sea water by using pressure gas flash evaporation method
US9266747B1 (en) Multiple effect concentration swap de-scaling system
Tan et al. Membrane distillation hybridized with a thermoelectric heat pump for energy-efficient water treatment and space cooling
WO1994002419A1 (en) A water distillation system
JP5959135B2 (en) Water intake device and water intake method
US11331628B2 (en) Vapor condenser enhanced by membrane evaporation
CN110753819A (en) Water recovery in desiccant enhanced evaporative cooling systems
CN101318716A (en) Film evaporating concentration liquid processing system and processing method
TWI533924B (en) Water treatment system and water treatment method
JP5743490B2 (en) Water treatment system and water treatment method
JP2004132664A (en) Utility water treatment system for water vapor compression refrigerator
WO2001072638A1 (en) Desalination device
KR101716836B1 (en) Apparatus for desalting seawater into fresh water
KR101927434B1 (en) Absorption refrigeration system
JP4112772B2 (en) Desalination equipment
JP6930729B2 (en) Evaporative heat exchanger
JP2004132588A (en) Cold water circulation device
JP4112771B2 (en) Desalination equipment
JP2012046422A (en) Salt maker and salt making method
JPS60172393A (en) Multistage evaporation-reverse osmosis composite seawater desalination apparatus
JP2009052794A (en) Cold water manufacturing system using steam ejector

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050901

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080604