JP2020134044A - Outdoor unit cooling auxiliary device and outdoor unit cooling auxiliary method - Google Patents

Outdoor unit cooling auxiliary device and outdoor unit cooling auxiliary method Download PDF

Info

Publication number
JP2020134044A
JP2020134044A JP2019029218A JP2019029218A JP2020134044A JP 2020134044 A JP2020134044 A JP 2020134044A JP 2019029218 A JP2019029218 A JP 2019029218A JP 2019029218 A JP2019029218 A JP 2019029218A JP 2020134044 A JP2020134044 A JP 2020134044A
Authority
JP
Japan
Prior art keywords
water
outdoor unit
reverse osmosis
osmosis membrane
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019029218A
Other languages
Japanese (ja)
Inventor
満 野末
Mitsuru Nozue
満 野末
林 一樹
Kazuki Hayashi
一樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2019029218A priority Critical patent/JP2020134044A/en
Publication of JP2020134044A publication Critical patent/JP2020134044A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an outdoor unit cooling auxiliary device capable of ensuring a sufficient amount of water while preventing scale from attaching to a heat exchanger and saving power consumption.SOLUTION: Antimicrobial-treated water piping 2A with a first feed pump 4A installed in the middle of the same is connected to: a secondary side of an antimicrobial pretreatment filter 3; and a primary side of a reverse osmosis membrane device 5. Mixed water piping 2B with a second feed pump 4B installed therein is connected to a secondary side (permeation side) of the reverse osmosis membrane device 5. The mixed water piping 2B also has flexible piping 2C at an end thereof connected to a spray nozzle 6 as water spraying means. The antimicrobial-treated water piping 2A also has bypass piping 2D which is merged into the mixed water piping 2B and has a control valve 11 controlling a flow rate therein.SELECTED DRAWING: Figure 1

Description

本発明は、屋外に設置された冷房装置用室外機の熱交換器の放熱特性を向上させ、冷房装置全体の省力化を可能にする室外機冷却補助装置及び室外機冷却補助方法に関する。 The present invention relates to an outdoor unit cooling assisting device and an outdoor unit cooling assisting method that improve the heat dissipation characteristics of a heat exchanger of an outdoor unit for a cooling device installed outdoors and enable labor saving in the entire cooling device.

地球温暖化により平均気温が上昇する中で、空調施設の設置が世界中に普及してきている。地球温暖化防止策の一環として、フロン系冷媒の使用を禁ずる措置が講じられている。しかし、代替の熱媒体は熱交換率が低く、空調を有効に機能させるための消費エネルギーが大きくなり、却って地球温暖化を進めてしまう懸念があった。 As the average temperature rises due to global warming, the installation of air conditioning facilities is becoming widespread all over the world. As part of measures to prevent global warming, measures have been taken to ban the use of fluorocarbon-based refrigerants. However, the alternative heat medium has a low heat exchange rate, consumes a large amount of energy for the effective functioning of air conditioning, and there is a concern that it will promote global warming.

一般に、冷房装置は屋外に室外機を設置し、熱媒体が室外機の熱交換器を通して放熱し、室内の空調設備で冷熱を放出する仕組みになっている。そのため熱交換器による放熱特性が冷房装置全体の運転効率に大きく影響する。 Generally, the cooling device has a mechanism in which an outdoor unit is installed outdoors, the heat medium dissipates heat through the heat exchanger of the outdoor unit, and the cold heat is released by the indoor air conditioner. Therefore, the heat dissipation characteristics of the heat exchanger greatly affect the operating efficiency of the entire cooling device.

都市部のオフィスビル等では、限られた屋上スペースに多数の室外機が密集した状態で設置され、それらが日差しに晒されることで、各室外機の熱交換器自体の温度及び室外機周辺の空気温度の上昇を招き、熱交換器の放熱特性の低下が懸念されていた。 In urban office buildings, etc., a large number of outdoor units are installed densely in a limited rooftop space, and when they are exposed to the sun, the temperature of the heat exchanger itself of each outdoor unit and the temperature around the outdoor unit There was a concern that the heat dissipation characteristics of the heat exchanger would deteriorate due to the rise in air temperature.

そこで、従来、室外機の熱交換器の放熱特性を向上させるために、室外機の熱交換器を冷却する冷却補助装置が使用されていた(例えば特許文献1)。この冷却補助装置は、熱交換器に向けて散水し、熱交換器自体を冷却することにより放熱性を高め、冷却装置全体の運転効率向上を図っている。 Therefore, conventionally, in order to improve the heat dissipation characteristics of the heat exchanger of the outdoor unit, a cooling auxiliary device for cooling the heat exchanger of the outdoor unit has been used (for example, Patent Document 1). This cooling auxiliary device sprinkles water toward the heat exchanger and cools the heat exchanger itself to improve heat dissipation and improve the operating efficiency of the entire cooling device.

この冷却補助装置は、熱交換器に向けて水道水を直接散水していた。散水と停止を繰り返すことで、水の蒸発乾燥により、水道水に含まれるカルシウム、マグネシウム、シリカ等の成分からなるスケール(水垢)が熱交換器に付着し、熱交換器の性能が損なわれることがあった。また、水道水に含まれる塩素成分等の酸化物質により、熱交換器の材料の腐食を招くこともあった。 This cooling aid sprinkled tap water directly toward the heat exchanger. By repeating watering and stopping, the evaporation and drying of water causes scale (scale) consisting of components such as calcium, magnesium, and silica contained in tap water to adhere to the heat exchanger, and the performance of the heat exchanger is impaired. was there. In addition, oxidizing substances such as chlorine components contained in tap water may cause corrosion of the material of the heat exchanger.

そこで、供給水から逆浸透膜(逆浸透膜)装置により逆浸透膜透過水(以下、RO水という)を生成する手段を冷却補助装置に設け、RO水を室外機の熱交換器に向けて噴霧するようにしたものが提案されている(特許文献2、特許文献3)。 Therefore, a means for generating reverse osmosis membrane permeable water (hereinafter referred to as RO water) from the supplied water by a reverse osmosis membrane (reverse osmosis membrane) device is provided in the cooling auxiliary device, and the RO water is directed to the heat exchanger of the outdoor unit. Those that are sprayed have been proposed (Patent Documents 2 and 3).

特開2000−65409号公報Japanese Unexamined Patent Publication No. 2000-65409 特許第5896331号公報Japanese Patent No. 5896331 特開2016−205703号公報JP-A-2016-205703

しかしながら、特許文献2、3に記載された技術では、熱交換器にスケールが付着するのは抑制されるが、原水水質によっては逆浸透膜にスケールが発生したり、逆浸透膜透過水が清浄であるゆえに微生物によるファウリングが発生したりするため、メンテナンスを頻繁に実施必要がある。 However, in the techniques described in Patent Documents 2 and 3, scale adhesion to the heat exchanger is suppressed, but scale is generated in the reverse osmosis membrane or the reverse osmosis membrane permeable water is purified depending on the quality of the raw water. Therefore, fouling due to microorganisms may occur, so maintenance must be performed frequently.

しかも、気温が上昇した場合には噴霧水が大量に必要になるが、特許文献2、3に記載された技術では、室外機の熱交換器に噴霧できる水量が逆浸透膜の透過水量で律速されるため、噴霧水が不足しないように逆浸透膜装置を高い稼働率で運転する必要がある。また、大型商業施設のように大型あるいは多数の室外機の熱交換器を冷却する場合には、噴霧装置を多数設置する必要があり、逆浸透膜装置を複数設ける必要が生じる。しかしながら、逆浸透膜装置は消費電力が大きく、電気料金はピーク電力量毎の基本料金と使用量に基づいた従量課金の組み合わせが一般的であることから、逆浸透膜装置の稼働率の上昇あるいは設置台数の増加を招くと、契約電力量を上回ってしまうと基本料金自体が高くなってしまうため、室外機の熱交換器の冷却により冷房装置の効率を向上して節電効果を得るという本来的な目的を損なう、という問題点がある。 Moreover, a large amount of sprayed water is required when the temperature rises, but in the techniques described in Patent Documents 2 and 3, the amount of water that can be sprayed on the heat exchanger of the outdoor unit is rate-determined by the amount of permeated water of the reverse osmosis membrane. Therefore, it is necessary to operate the reverse osmosis membrane device at a high operating rate so that the sprayed water is not insufficient. Further, when cooling the heat exchangers of a large or large number of outdoor units as in a large commercial facility, it is necessary to install a large number of spraying devices, and it is necessary to provide a plurality of reverse osmosis membrane devices. However, the reverse osmosis membrane device consumes a large amount of power, and the electricity charge is generally a combination of a basic charge for each peak electric energy and a pay-as-you-go charge based on the amount of electricity used. If the number of installed units increases, the basic charge itself will increase if the amount of electricity exceeds the contracted amount, so the original idea is to improve the efficiency of the cooling device by cooling the heat exchanger of the outdoor unit and obtain a power saving effect. There is a problem that it impairs the purpose.

このように従来は、熱交換器にスケールが付着したり、噴霧ノズルに微生物によるファウリングが発生したりすることを防止しつつ、消費電力を抑制して十分な水量を確保して室外機の熱交換器を冷却することが望まれていた。 In this way, conventionally, while preventing scale from adhering to the heat exchanger and fouling by microorganisms on the spray nozzle, power consumption is suppressed and a sufficient amount of water is secured to secure a sufficient amount of water for the outdoor unit. It has been desired to cool the heat exchanger.

本発明は、上記課題に鑑みてなされたものであり、熱交換器にスケールが付着することを防止しつつ、消費電力を抑制して十分な冷却のための水量を確保可能な室外機冷却補助装置、及びこれを用いた室外機冷却補助方法を提供することを目的とする。 The present invention has been made in view of the above problems, and is an outdoor unit cooling assist that can suppress power consumption and secure a sufficient amount of water for cooling while preventing scale from adhering to the heat exchanger. An object of the present invention is to provide an apparatus and an outdoor unit cooling assisting method using the apparatus.

上記目的に鑑み本発明は第一に、室内機と室外機を組み合わせた冷房装置の運転時において、前記室外機が有する熱交換器を冷却する室外機冷却補助装置であって、被処理水を処理する逆浸透膜装置と、前記被処理水を前記逆浸透膜装置の透過水に混合するバイパス機構と、前記逆浸透膜装置の透過水と前記被処理水との混合水を前記熱交換器に散水する散水手段とを備える室外機冷却補助装置を提供する(発明1)。 In view of the above object, first, the present invention is an outdoor unit cooling auxiliary device that cools the heat exchanger of the outdoor unit when the cooling device that combines the indoor unit and the outdoor unit is operated. The heat exchanger is a reverse permeable membrane device to be treated, a bypass mechanism that mixes the water to be treated with the permeated water of the reverse permeable membrane device, and a mixed water of the permeated water of the back permeable membrane device and the water to be treated. Provided is an outdoor unit cooling auxiliary device provided with a sprinkling means for sprinkling water (Invention 1).

かかる発明(発明1)によれば、まず、被処理水を逆浸透膜装置で処理することにより、スケール成分が除去された透過水を得ることができる。ここで、逆浸透膜透過水の水量は逆浸透膜装置の性能に依存することになり、必要量が増えたら負荷を増大させるか、供給不足とならざるを得ない。そこで、バイパス機構を介して被処理水を逆浸透膜装置の透過水に混合することにより、スケール成分を適度に低減した混合水とすることで十分な水量を確保することができる。そして、この混合水を熱交換器に対して散水することにより、逆浸透膜装置を効率的に運転して、電力消費量が低減した室外機冷却補助装置とすることができる。 According to the present invention (Invention 1), first, by treating the water to be treated with a reverse osmosis membrane device, permeated water from which the scale component has been removed can be obtained. Here, the amount of reverse osmosis membrane permeated water depends on the performance of the reverse osmosis membrane device, and if the required amount increases, the load must be increased or the supply must be insufficient. Therefore, by mixing the water to be treated with the permeated water of the reverse osmosis membrane device via the bypass mechanism, it is possible to secure a sufficient amount of water by making the mixed water having an appropriately reduced scale component. Then, by sprinkling the mixed water on the heat exchanger, the reverse osmosis membrane device can be efficiently operated to obtain an outdoor unit cooling auxiliary device with reduced power consumption.

上記発明(発明1)においては、前記バイパス機構が流量調整手段を備えるとともに前記逆浸透膜装置の透過水の電気伝導度計及び流量計を備え、前記電気伝導度計及び流量計により測定した前記逆浸透膜装置の透過水の電気伝導度及び流量の値に基づいて前記被処理水のバイパス流量が調整可能となっていることが好ましい(発明2)。特に上記発明(発明2)においては、前記混合水の電気伝導度が10〜40μS/cmであることが好ましい(発明3)。 In the above invention (Invention 1), the bypass mechanism includes a flow rate adjusting means and also includes an electric conductivity meter and a flow meter for the permeated water of the reverse osmosis membrane device, and the measurement is performed by the electric conductivity meter and the flow meter. It is preferable that the bypass flow rate of the water to be treated can be adjusted based on the values of the electric conductivity and the flow rate of the permeated water of the reverse osmosis membrane device (Invention 2). In particular, in the above invention (Invention 2), the electric conductivity of the mixed water is preferably 10 to 40 μS / cm (Invention 3).

かかる発明(発明2,3)によれば、逆浸透膜装置の透過水の電気伝導度及び流量に基づいて、混合水の電気伝導度がスケールが発生しにくい水質である10〜40μS/cmとなるように、被処理水のバイパス流量を調整することができる。 According to the inventions (Inventions 2 and 3), the electric conductivity of the mixed water is 10 to 40 μS / cm, which is a water quality at which scale is unlikely to occur, based on the electric conductivity and the flow rate of the permeated water of the reverse osmosis membrane device. The bypass flow rate of the water to be treated can be adjusted so as to be.

上記発明(発明1〜3)においては、前記逆浸透膜装置と前記散水手段との間に流路開閉機構が設けられており、前記流路開閉機構の上流に蓄圧式バッファタンクが接続されていて、前記流路開閉機構を閉鎖することにより、前記逆浸透膜装置の透過水と被処理水との混合水を蓄圧式バッファタンクに貯留可能となっていることが好ましい(発明4)。 In the above inventions (Inventions 1 to 3), a flow path opening / closing mechanism is provided between the reverse osmosis membrane device and the water sprinkling means, and a pressure accumulator type buffer tank is connected upstream of the flow path opening / closing mechanism. Therefore, it is preferable that the mixed water of the permeated water of the reverse osmosis membrane device and the water to be treated can be stored in the accumulator type buffer tank by closing the flow path opening / closing mechanism (Invention 4).

かかる発明(発明4)によれば、流路開閉機構を閉鎖して、混合水を一旦蓄圧式バッファタンクに貯留した後、流路開閉機構を開成することで、効率的かつ安定的に散水手段に混合水を供給することができる。さらに流路開閉機構を閉鎖して、蓄圧式バッファタンクを開放することで、逆浸透膜装置の洗浄用水とすることもできる。 According to the present invention (Invention 4), the flow path opening / closing mechanism is closed, the mixed water is temporarily stored in the accumulator type buffer tank, and then the flow path opening / closing mechanism is opened to efficiently and stably sprinkle the water. Can be supplied with mixed water. Further, by closing the flow path opening / closing mechanism and opening the accumulator type buffer tank, it is possible to use the water for cleaning the reverse osmosis membrane device.

上記発明(発明1〜4)においては、前記逆浸透膜装置の前段に抗菌性前処理フィルタが設けられており、前記逆浸透膜装置の被処理水が前記抗菌性前処理フィルタの処理水であることが好ましい(発明5)。 In the above inventions (Inventions 1 to 4), an antibacterial pretreatment filter is provided in front of the reverse osmosis membrane device, and the water to be treated by the reverse osmosis membrane device is the treated water of the antibacterial pretreatment filter. It is preferable that there is (Invention 5).

かかる発明(発明5)によれば、抗菌性前処理フィルタは、原水中の夾雑物などを除去するとともに銀イオンの徐放することにより、原水の抗菌処理を安定的に発揮することができる。逆浸透膜透過水は、清浄であるのでファウリングが発生しやしやすい。そこで、バイパス機構を介して抗菌性前処理フィルタの処理水を逆浸透膜装置の透過水に混合して、抗菌性を付与した混合水を前記熱交換器に対して散水することにより、散水手段に微生物が発生して目詰まりするのを防止し、メンテナンスの頻度が少なく、室外機冷却を長期間好適に継続することができる。 According to the present invention (Invention 5), the antibacterial pretreatment filter can stably exert the antibacterial treatment of the raw water by removing impurities and the like in the raw water and gradually releasing silver ions. Since the reverse osmosis membrane permeated water is clean, fouling is likely to occur. Therefore, the treated water of the antibacterial pretreatment filter is mixed with the permeated water of the reverse osmosis membrane device via the bypass mechanism, and the mixed water imparted with antibacterial properties is sprinkled on the heat exchanger to sprinkle the watering means. It is possible to prevent microorganisms from being generated in the water and clogging the water, the frequency of maintenance is low, and the outdoor unit cooling can be conveniently continued for a long period of time.

また、本発明は第二に、室内機と室外機を組み合わせた冷房装置の該室外機が有する熱交換器を冷却する室外機冷却補助方法であって、被処理水の一部を逆浸透膜装置で処理するとともに該逆浸透膜装置の透過水と前記被処理水の残余の少なくとも一部とを混合し、前記混合により得られた混合水を散水手段により前記熱交換器に散水する室外機冷却補助方法を提供する(発明6)。 Secondly, the present invention is an outdoor unit cooling assisting method for cooling the heat exchanger of the outdoor unit of a cooling device that combines an indoor unit and an outdoor unit, wherein a part of the water to be treated is a reverse osmosis film. An outdoor unit that is treated by the device and mixes the permeated water of the reverse osmosis membrane device with at least a part of the residual water to be treated, and the mixed water obtained by the mixing is sprinkled on the heat exchanger by sprinkling means. A cooling assisting method is provided (Invention 6).

かかる発明(発明6)によれば、まず、被処理水を逆浸透膜装置で処理することにより、スケール成分が除去された透過水を得ることができる。ここで、逆浸透膜透過水の水量は逆浸透膜装置の性能に依存することになり、必要量が増えたら負荷を増大させるか、供給不足とならざるを得ない。そこで、バイパス機構を介して被処理水を逆浸透膜装置の透過水に混合することにより、スケール成分を適度に低減した混合水とすることで十分な水量を確保することができる。そして、この混合水を熱交換器に対して散水することにより、逆浸透膜装置を効率的に運転して、電力消費量が低減した室外機冷却補助装置とすることができる。 According to the present invention (Invention 6), first, by treating the water to be treated with a reverse osmosis membrane device, permeated water from which the scale component has been removed can be obtained. Here, the amount of reverse osmosis membrane permeated water depends on the performance of the reverse osmosis membrane device, and if the required amount increases, the load must be increased or the supply must be insufficient. Therefore, by mixing the water to be treated with the permeated water of the reverse osmosis membrane device via the bypass mechanism, it is possible to secure a sufficient amount of water by making the mixed water having an appropriately reduced scale component. Then, by sprinkling the mixed water on the heat exchanger, the reverse osmosis membrane device can be efficiently operated to obtain an outdoor unit cooling auxiliary device with reduced power consumption.

上記発明(発明6)においては、前記冷房装置の室外機が複数であり、該複数の室外機が有する熱交換器にそれぞれ散水することが好ましい(発明7)。 In the above invention (Invention 6), it is preferable that there are a plurality of outdoor units of the cooling device, and water is sprinkled on the heat exchangers of the plurality of outdoor units (Invention 7).

かかる発明(発明7)によれば、スケール成分を適度に低減した混合水を十分な水量確保して、逆浸透膜装置の台数や稼働率を抑制できるので、多量の散水が必要となる複数の室外機を複数の散水手段で冷却する場合に好適である。 According to the present invention (Invention 7), a sufficient amount of mixed water having an appropriately reduced scale component can be secured, and the number and operating rate of the reverse osmosis membrane devices can be suppressed, so that a large amount of water can be sprinkled. It is suitable for cooling the outdoor unit by a plurality of sprinkling means.

本発明によれば、逆浸透膜装置で処理した透過水に被処理水を混合した混合水を熱交換器に対して散水することができるので、スケール成分を適度に低減した混合水を十分な水量確保することができるため、この混合水を熱交換器に対して散水することにより、逆浸透膜装置を効率的に運転して、電力消費量が低減した室外機冷却補助装置を得ることができる。 According to the present invention, the mixed water obtained by mixing the permeated water treated with the reverse osmosis membrane apparatus with the water to be treated can be sprinkled on the heat exchanger, so that the mixed water having an appropriately reduced scale component can be sufficiently used. Since the amount of water can be secured, by sprinkling this mixed water on the heat exchanger, it is possible to efficiently operate the reverse osmosis membrane device and obtain an outdoor unit cooling auxiliary device with reduced power consumption. it can.

本発明の一実施形態による室外機冷却補助装置を示す概略図である。It is the schematic which shows the outdoor unit cooling auxiliary apparatus by one Embodiment of this invention. 前記実施形態の室外機冷却補助装置による室外機冷却補助方法の室外機冷却補助時の初期工程を示す概略図である。It is the schematic which shows the initial process at the time of the outdoor unit cooling assistance of the outdoor unit cooling assistance method by the outdoor unit cooling assistance device of the said embodiment. 前記実施形態の室外機冷却補助装置による室外機冷却補助方法の室外機冷却補助時の実施工程を示す概略図である。It is a schematic diagram which shows the execution process at the time of the outdoor unit cooling assistance of the outdoor unit cooling assistance method by the outdoor unit cooling assistance device of the said embodiment. 前記実施形態の室外機冷却補助装置による室外機冷却補助方法の室外機冷却補助時の停止時の初期工程を示す概略図である。It is the schematic which shows the initial process at the time of stopping at the time of the outdoor unit cooling assistance of the outdoor unit cooling assistance method by the outdoor unit cooling assistance device of the said embodiment. 前記実施形態の室外機冷却補助装置による室外機冷却補助方法の室外機冷却補助時の停止時の完了工程を示す概略図である。It is a schematic diagram which shows the completion process at the time of stopping at the time of the outdoor unit cooling assistance of the outdoor unit cooling assistance method by the outdoor unit cooling assistance device of the said embodiment. 前記実施形態の室外機冷却補助装置による抗菌性前処理フィルタの逆洗工程の初期工程を示す概略図である。It is the schematic which shows the initial process of the backwashing process of the antibacterial pretreatment filter by the outdoor unit cooling auxiliary device of the said embodiment. 前記実施形態の室外機冷却補助装置による抗菌性前処理フィルタの逆洗工程の実施工程を示す概略図である。It is a schematic diagram which shows the execution process of the backwashing process of the antibacterial pretreatment filter by the outdoor unit cooling auxiliary device of the said embodiment. 実施例1及び比較例1の室外機冷却補助装置における外気温と電力量の関係を示すグラフである。It is a graph which shows the relationship between the outside air temperature and the electric energy in the outdoor unit cooling auxiliary apparatus of Example 1 and Comparative Example 1. 実施例2及び比較例2の室外機冷却補助装置における外気温と電力量の関係を示すグラフである。It is a graph which shows the relationship between the outside air temperature and the electric energy in the outdoor unit cooling auxiliary apparatus of Example 2 and Comparative Example 2.

以下、本発明の室外機冷却補助装置の一実施形態について、添付図面を参照にして詳細に説明する。 Hereinafter, an embodiment of the outdoor unit cooling assist device of the present invention will be described in detail with reference to the accompanying drawings.

[室外機冷却補助装置]
図1において、室外機冷却補助装置1は、図示しない給水源から原水Wを供給する供給配管2が抗菌性前処理フィルタ3の一次側に連通しており、この抗菌性前処理フィルタ3の二次側には途中に第一の送水ポンプ4Aを備えた抗菌処理水配管2Aが接続されていて、この抗菌処理水配管2Aが逆浸透膜装置5の一次側に接続している。さらに、逆浸透膜装置5の二次側(透過側)には第二の送水ポンプ4B備えた混合水配管2Bが接続されていて、この混合水配管2Bの末端側には噴霧バルブ6Aが設けられていて、ここに外部配管2Cが接続している。この外部配管2Cには散水手段としての噴霧ノズル6が接続している。この外部配管2Cは本実施形態においては、ポリオレフィン系樹脂製チューブなどの可撓性樹脂製となっている。そして、抗菌処理水配管2Aには、混合水配管2Bに合流するバイパス配管2Dが付設されていて、このバイパス配管2Dには、バイパス配管2Dを通過する液の流量を制御する制御バルブ11が設けられている。また、混合水配管2Bのバイパス配管2Dの合流箇所より上流側には、逆浸透膜装置5の透過水W2の電気伝導度計及び流量計(図示せず)が設けられていて、この逆浸透膜装置5の透過水W2の電気伝導度及び流量の値に基づいて、図示しないパーソナルコンピュータなどの制御装置により制御バルブ11を調整することで、前記抗菌性前前処理フィルタの処理水W1のバイパス流量が調整可能となっている。
[Outdoor unit cooling auxiliary device]
In FIG. 1, in the outdoor unit cooling auxiliary device 1, a supply pipe 2 for supplying raw water W from a water supply source (not shown) communicates with the primary side of the antibacterial pretreatment filter 3, and the antibacterial pretreatment filter 3-2 An antibacterial treated water pipe 2A provided with a first water pump 4A is connected to the next side on the way, and this antibacterial treated water pipe 2A is connected to the primary side of the reverse osmosis membrane device 5. Further, a mixed water pipe 2B provided with a second water pump 4B is connected to the secondary side (permeation side) of the reverse osmosis membrane device 5, and a spray valve 6A is provided on the terminal side of the mixed water pipe 2B. The external pipe 2C is connected here. A spray nozzle 6 as a watering means is connected to the external pipe 2C. In this embodiment, the external pipe 2C is made of a flexible resin such as a polyolefin resin tube. The antibacterial treated water pipe 2A is provided with a bypass pipe 2D that joins the mixed water pipe 2B, and the bypass pipe 2D is provided with a control valve 11 that controls the flow rate of the liquid passing through the bypass pipe 2D. Has been done. Further, an electric conductivity meter and a flow meter (not shown) of the permeated water W2 of the reverse osmosis membrane device 5 are provided on the upstream side of the confluence of the bypass pipe 2D of the mixed water pipe 2B, and the reverse osmosis By adjusting the control valve 11 with a control device such as a personal computer (not shown) based on the values of the electric conductivity and the flow rate of the permeated water W2 of the membrane device 5, the bypass of the treated water W1 of the antibacterial pretreatment filter is performed. The flow rate can be adjusted.

上述したような室外機冷却補助装置1において、混合水配管2Bには蓄圧式バッファタンク7に連通した貯水配管21が接続されていて、この蓄圧式バッファタンク7は、開閉バルブ12を備えた逆洗配管22を介して抗菌処理水配管2Aに連通している。なお、13は原水Wの水抜配管23に設けられた水抜きバルブであり、14は逆浸透膜装置5の濃縮水排出配管24に設けられた開閉バルブであり、15は逆浸透膜装置5の濃縮水を抗菌処理水配管2Aに戻す返送配管25に設けられた開閉バルブである。 In the outdoor unit cooling auxiliary device 1 as described above, the water storage pipe 21 communicating with the accumulator type buffer tank 7 is connected to the mixed water pipe 2B, and the accumulator type buffer tank 7 is a reverse with an opening / closing valve 12. It communicates with the antibacterial treated water pipe 2A via the washing pipe 22. Reference numeral 13 denotes a drain valve provided in the drain pipe 23 of the raw water W, 14 is an opening / closing valve provided in the concentrated water discharge pipe 24 of the reverse osmosis membrane device 5, and 15 is a reverse osmosis membrane device 5. An on-off valve provided in the return pipe 25 for returning the concentrated water to the antibacterial treated water pipe 2A.

(抗菌性前処理フィルタ3)
抗菌性前処理フィルタ3としては、原水Wを抗菌できれば限定されないが、抗菌性成分として、銀イオンが添着された繊維状活性炭からなる濾過材が好ましい。
(Antibacterial pretreatment filter 3)
The antibacterial pretreatment filter 3 is not limited as long as the raw water W can be antibacterial, but a filter material made of fibrous activated carbon impregnated with silver ions is preferable as the antibacterial component.

(噴霧ノズル6)
噴霧ノズル6は、例えば1個あたり100mL/分以下程度、特に30〜60mL/分程度の噴霧能力を有する。この噴霧ノズル6は、1台の室外機の熱交換器に対してたとえば、5〜10台程度設置するのが好ましい。したがって、必要数の噴霧ノズル6を外部配管2Cに取り付けて用いればいい。
(Spray nozzle 6)
The spray nozzle 6 has a spray capacity of, for example, about 100 mL / min or less, particularly about 30 to 60 mL / min. It is preferable that about 5 to 10 spray nozzles 6 are installed in the heat exchanger of one outdoor unit, for example. Therefore, the required number of spray nozzles 6 may be attached to the external pipe 2C for use.

[室外機冷却補助装置の運転方法]
(室外機冷却補助時)
上述したような構成を有する本実施形態の室外機冷却補助装置1による室外機冷却補助方法について説明する。
[How to operate the outdoor unit cooling auxiliary device]
(When assisting cooling of the outdoor unit)
The outdoor unit cooling assist method by the outdoor unit cooling assist device 1 of the present embodiment having the above-described configuration will be described.

まず、図2に示すように、制御バルブ11及び開閉バルブ15は開成し、水抜きバルブ13、開閉バルブ12、14及び噴霧バルブ6Aを閉鎖した状態で、第一のポンプ4A及び第二のポンプ4Bを駆動する。これにより供給配管2に原水Wを流通し、抗菌性前処理フィルタ3に供給された原水Wは、抗菌性前処理フィルタ3の通過に伴い抗菌性物質(銀イオン)が添加され、抗菌処理されて微生物が減少した逆浸透膜装置5の被処理水W1となる。この被処理水W1中の銀イオン濃度は、5〜300ppbとなることが好ましく、10〜30ppbとなることがより好ましい。 First, as shown in FIG. 2, the control valve 11 and the on-off valve 15 are opened, and the first pump 4A and the second pump are in a state where the drain valve 13, the on-off valve 12, 14 and the spray valve 6A are closed. Drive 4B. As a result, the raw water W is circulated in the supply pipe 2, and the raw water W supplied to the antibacterial pretreatment filter 3 is subjected to antibacterial treatment by adding an antibacterial substance (silver ion) as it passes through the antibacterial pretreatment filter 3. It becomes the water to be treated W1 of the reverse osmosis membrane apparatus 5 in which microorganisms are reduced. The silver ion concentration in the water to be treated W1 is preferably 5 to 300 ppb, more preferably 10 to 30 ppb.

この被処理水W1は、逆浸透膜装置5により処理され、微粒子、カルシウム、シリカ、炭酸イオンなどのスケール要因となるイオン、金属イオン及び抗菌性物質(銀イオン)などが除去された透過水(純水)W2となる。この逆浸透膜装置5の透過水W2の電気伝導率は一般に5〜10μS/cm程度である。このとき逆浸透膜装置5の濃縮水W4は、抗菌性物質(銀イオン)を含んでいるので返送配管25から抗菌処理水配管2Aに戻す。 The water to be treated W1 is treated by the reverse osmosis membrane device 5 to remove scale-causing ions such as fine particles, calcium, silica, and carbonate ions, metal ions, and antibacterial substances (silver ions). Pure water) W2. The electric conductivity of the permeated water W2 of the reverse osmosis membrane device 5 is generally about 5 to 10 μS / cm. At this time, since the concentrated water W4 of the reverse osmosis membrane device 5 contains an antibacterial substance (silver ion), it is returned from the return pipe 25 to the antibacterial treated water pipe 2A.

この室外機冷却補助装置1に用いられる逆浸透膜装置5は、複数の室外機の熱交換器を冷却する場合、例えば噴霧能力50mL/分の噴霧ノズル6を60台稼働するとして、180L/hrの処理能力が必要となり、逆浸透膜装置5の能力が不足し、十分な噴霧水量を確保することが困難となるおそれがある。一方で、抗菌性前処理フィルタ3は原水Wを通過させるだけであるので、被処理水W1自体は豊富に提供することが可能である。そこで、バイパス配管2Dから抗菌性物質(銀イオン)を含む被処理水W1を透過水W2に合流させて混合水W3を製造する。 The reverse osmosis membrane device 5 used in the outdoor unit cooling auxiliary device 1 is 180 L / hr when cooling the heat exchangers of a plurality of outdoor units, assuming that 60 spray nozzles 6 having a spray capacity of 50 mL / min are operated. The capacity of the reverse osmosis membrane apparatus 5 is insufficient, and it may be difficult to secure a sufficient amount of sprayed water. On the other hand, since the antibacterial pretreatment filter 3 only passes the raw water W, the water to be treated W1 itself can be provided abundantly. Therefore, the mixed water W3 is produced by merging the water to be treated W1 containing an antibacterial substance (silver ion) with the permeated water W2 from the bypass pipe 2D.

このとき合流させる被処理水W1が少なすぎると、十分な水量を確保することができないばかりか、抗菌性物質(銀イオン)が少ないので、スライム傾向の改善の効果が十分でない。一方、合流させる被処理水W1が多すぎると、被処理水W1に含まれるスケール要因となる物質が多くなりすぎて、噴霧ノズル6にスケールが生じやすくなる。そこで、本実施形態においては、混合水配管2Bのバイパス配管2Dの合流箇所より上流側に設けられた図示しない電気伝導度計及び流量計(図示せず)により、透過水W2の電気伝導率及び流量を測定する。この電気伝導率及び流量のデータは、図示しない制御装置に入力される。そして、スライムの発生とスケール傾向との両方が好適となるように制御装置により制御バルブ11の開度を調整する。具体的には混合水W3の電気伝導率が10〜40μS/cmとすることが好ましく、特に10〜25μS/cmとすることが好ましい。電気伝導率が5〜10μS/cmの逆浸透膜装置5の透過水W2を電気伝導率が10〜40μS/cmとなるように被処理水W1を混合することにより、透過水W2に対して混合水W3を10〜50%、特に10〜30%増加させることができる。この結果、同じ水量を逆浸透膜装置5のみで供給した場合と比較して5〜30%、特に10〜20%の電力削減効果を得ることができる。 If the amount of water to be treated W1 to be merged at this time is too small, not only a sufficient amount of water cannot be secured, but also an antibacterial substance (silver ion) is small, so that the effect of improving the slime tendency is not sufficient. On the other hand, if the amount of water to be treated W1 to be merged is too large, the amount of substances that cause scales contained in the water to be treated W1 becomes too large, and scale is likely to occur in the spray nozzle 6. Therefore, in the present embodiment, the electric conductivity of the permeated water W2 and the electric conductivity of the permeated water W2 are measured by an electric conductivity meter and a flow meter (not shown) provided upstream from the confluence of the bypass pipe 2D of the mixed water pipe 2B. Measure the flow rate. The electrical conductivity and flow rate data are input to a control device (not shown). Then, the opening degree of the control valve 11 is adjusted by the control device so that both the generation of slime and the tendency of scale are suitable. Specifically, the electric conductivity of the mixed water W3 is preferably 10 to 40 μS / cm, and particularly preferably 10 to 25 μS / cm. The permeated water W2 of the reverse osmosis membrane device 5 having an electric conductivity of 5 to 10 μS / cm is mixed with the permeated water W2 by mixing the water to be treated W1 so that the electric conductivity becomes 10 to 40 μS / cm. Water W3 can be increased by 10-50%, especially 10-30%. As a result, it is possible to obtain a power reduction effect of 5 to 30%, particularly 10 to 20%, as compared with the case where the same amount of water is supplied only by the reverse osmosis membrane device 5.

このようにして製造された混合水W3は、噴霧バルブ6Aが閉鎖されているので貯水配管21から蓄圧式バッファタンク7に貯留される。そして、ある程度蓄圧式バッファタンク7に混合水W3を貯留したら、図3に示すように噴霧バルブ6Aを開成することにより、蓄圧式バッファタンク7から混合水W3が排出され、冷房装置用室外機の熱交換器に向けて噴霧ノズル6から混合水W3を噴霧することができる。そして、この噴霧された混合水W3が蒸発することで周辺の空気が冷却され、冷房装置用室外機の空気による熱交換を効率化することができる。 Since the spray valve 6A is closed, the mixed water W3 produced in this way is stored in the accumulator buffer tank 7 from the water storage pipe 21. Then, after the mixed water W3 is stored in the accumulator type buffer tank 7 to some extent, the mixed water W3 is discharged from the accumulator type buffer tank 7 by opening the spray valve 6A as shown in FIG. 3, and the outdoor unit for the cooling device is discharged. The mixed water W3 can be sprayed from the spray nozzle 6 toward the heat exchanger. Then, by evaporating the sprayed mixed water W3, the surrounding air is cooled, and heat exchange by the air of the outdoor unit for the cooling device can be made more efficient.

(室外機冷却補助装置1の停止時)
室外機冷却補助装置1を停止する際には、図4に示すように噴霧バルブ6Aを閉鎖するとともに制御バルブ11を閉鎖して、逆浸透膜装置5の運転を継続する。これにより透過水(純水)W2がそのまま蓄圧式バッファタンク7に貯留されるので、所定量の透過水(純水)W2が溜まったら、逆浸透膜装置5の運転を停止する。
(When the outdoor unit cooling assist device 1 is stopped)
When the outdoor unit cooling assist device 1 is stopped, the spray valve 6A is closed and the control valve 11 is closed as shown in FIG. 4, and the operation of the reverse osmosis membrane device 5 is continued. As a result, the permeated water (pure water) W2 is stored in the accumulator buffer tank 7 as it is. Therefore, when a predetermined amount of the permeated water (pure water) W2 is accumulated, the operation of the reverse osmosis membrane device 5 is stopped.

次に、図5に示すように開閉バルブ15を閉鎖するとともに、開閉バルブ12及び開閉バルブ14を開成し、第一のポンプ4Aを駆動することで、透過水W2を逆浸透膜装置5の一次側に供給する。これにより逆浸透膜装置5の一次側の膜面を清浄化し、停止時のスケールの発生を防止するのが好ましい。なお、この際の洗浄排水W5は、濃縮水排出配管24から排出する。その後、水抜きバルブ13を開成して、供給配管2の溜まり水W6を排出すればよい。 Next, as shown in FIG. 5, the on-off valve 15 is closed, the on-off valve 12 and the on-off valve 14 are opened, and the first pump 4A is driven to drive the permeated water W2 to the primary of the reverse osmosis membrane device 5. Supply to the side. It is preferable that the membrane surface on the primary side of the reverse osmosis membrane device 5 is cleaned thereby to prevent the generation of scale at the time of stopping. The cleaning drainage W5 at this time is discharged from the concentrated water discharge pipe 24. After that, the drain valve 13 may be opened to discharge the accumulated water W6 of the supply pipe 2.

(抗菌性前処理フィルタ3の逆洗方法)
続いて本実施形態のように抗菌性前処理フィルタ3を用いる場合における抗菌性前処理フィルタ3の洗浄方法(逆洗方法)について説明する。まず、図6に示すように制御バルブ11を開成し、開閉バルブ12、水抜きバルブ13、開閉バルブ14、開閉バルブ15及び噴霧バルブ6Aを閉鎖した状態で、第一のポンプ4A及び第二のポンプ4Bを駆動して供給配管2に原水Wを供給する。このとき開閉バルブ14、開閉バルブ15が閉鎖しているので、抗菌性前処理フィルタ3を通過した被処理水W1は、バイパス配管2Dを通過する。このとき噴霧バルブ6Aが閉鎖されているので、バイパス配管2Dを通過して貯水配管21から蓄圧式バッファタンク7に貯留される。そして、ある程度蓄圧式バッファタンク7に被処理水W1を貯留したら、図7に示すように開閉バルブ12及び水抜きバルブ13を開成することにより、蓄圧式バッファタンク7が開放されて、逆洗配管22から被処理水W1を抗菌性前処理フィルタ3の透過側に供給する。これにより、逆抗菌性前処理フィルタ3の逆洗を行うことができる。このように逆浸透膜装置5の透過水(純水)W2でなく、抗菌性物質(銀イオン)を含む被処理水W1で抗菌性前処理フィルタ3の逆洗を行うことにより、抗菌性前処理フィルタ3の抗菌性物質(銀イオン)の流出を抑制し、抗菌性前処理フィルタ3の寿命の短縮を防止することができる。
(Backwash method of antibacterial pretreatment filter 3)
Subsequently, a cleaning method (backwashing method) of the antibacterial pretreatment filter 3 when the antibacterial pretreatment filter 3 is used as in the present embodiment will be described. First, as shown in FIG. 6, the control valve 11 is opened, and the on-off valve 12, the drain valve 13, the on-off valve 14, the on-off valve 15, and the spray valve 6A are closed, and the first pump 4A and the second pump 4A and the second The pump 4B is driven to supply the raw water W to the supply pipe 2. At this time, since the on-off valve 14 and the on-off valve 15 are closed, the water to be treated W1 that has passed through the antibacterial pretreatment filter 3 passes through the bypass pipe 2D. At this time, since the spray valve 6A is closed, it passes through the bypass pipe 2D and is stored in the pressure-accumulation type buffer tank 7 from the water storage pipe 21. Then, when the water to be treated W1 is stored in the accumulator buffer tank 7 to some extent, the accumulator valve 7 is opened by opening the on-off valve 12 and the drain valve 13 as shown in FIG. 7, and the backwash pipe is opened. Water W1 to be treated is supplied from 22 to the permeation side of the antibacterial pretreatment filter 3. Thereby, the backwash of the back antibacterial pretreatment filter 3 can be performed. In this way, the antibacterial pretreatment filter 3 is backwashed with the water to be treated W1 containing the antibacterial substance (silver ion) instead of the permeated water (pure water) W2 of the reverse osmosis membrane device 5. It is possible to suppress the outflow of the antibacterial substance (silver ion) of the treatment filter 3 and prevent the life of the antibacterial pretreatment filter 3 from being shortened.

以上、本発明の実施形態について、添付図面を参照して説明してきたが、本発明は前記
実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々の変形実施が可能である。例えば、抗菌性前処理フィルタ3は必ずしも設ける必要はなく、水道水などの原水Wをそのまま被処理水W1としてもよい。さらに蓄圧式バッファタンク7から噴霧ノズル6に水を供給する必要はなく、混合水W3を第二のポンプ4Bから直接噴霧ノズル6に水に供給してもよい。また、特に複数の室外機を一台で冷却するような場合には、外部配管2Cをポリオレフィン系樹脂製チューブなどの可撓性のチューブとして、このチューブに噴霧ノズル6を複数設けることにより、複数の室外機に外部配管2Cを巻装するなど、設置時の作業性や自由度を確保することができる。
Although the embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to the above-described embodiments, and various modifications can be carried out at the implementation stage without departing from the gist thereof. Is. For example, the antibacterial pretreatment filter 3 does not necessarily have to be provided, and the raw water W such as tap water may be used as it is as the water to be treated W1. Further, it is not necessary to supply water from the accumulator type buffer tank 7 to the spray nozzle 6, and the mixed water W3 may be directly supplied to the spray nozzle 6 from the second pump 4B. Further, particularly when a plurality of outdoor units are cooled by one unit, the external pipe 2C is used as a flexible tube such as a polyolefin resin tube, and a plurality of spray nozzles 6 are provided in this tube. By wrapping the external pipe 2C around the outdoor unit of the above, workability and degree of freedom at the time of installation can be ensured.

以下の実施例により本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.

〔実施例1及び比較例1〕
図1に示す室外機冷却補助装置1を用い、エアコンの室外機(定格消費電力11.5kW)の吸気面に対して、60cmの間隔で10個のノズルを取り付け、水量56mL/分で混合水W3を噴霧ノズル6から噴霧した。
[Example 1 and Comparative Example 1]
Using the outdoor unit cooling auxiliary device 1 shown in FIG. 1, 10 nozzles are attached to the intake surface of the outdoor unit (rated power consumption 11.5 kW) of the air conditioner at intervals of 60 cm, and mixed water is mixed at a water volume of 56 mL / min. W3 was sprayed from the spray nozzle 6.

電力削減効果を確認するために、気温の高い8月の4週間にわたり月・水・金曜日を室外機冷却補助装置の稼働日(実施例1)とし、火・木・土・日を室外機冷却補助装置の非稼働日(比較例1)とした。この際、外気温が25℃以上の時にエアコンを稼働して、この間1分ごとに外気温度と電力使用量をそれぞれ記録し、外気温に対する電力量を直線回帰した。結果を図8に示す。 In order to confirm the power reduction effect, Monday, Wednesday, and Friday are set as the operating days of the outdoor unit cooling auxiliary device (Example 1) for four weeks in August when the temperature is high, and Tuesday, Thursday, Saturday, and Sunday are set as the outdoor unit cooling. The non-working day of the auxiliary device (Comparative Example 1) was set. At this time, the air conditioner was operated when the outside air temperature was 25 ° C. or higher, and the outside air temperature and the amount of electric power used were recorded every minute during this period, and the amount of electric power with respect to the outside air temperature was linearly regressed. The results are shown in FIG.

図8から明らか通り、本発明の室外機冷却補助装置1の稼働日と非稼働日とを比較すると、稼働日の方が電力が削減されていることがわかる。特に気温が30℃以上の時には、非稼働日の電力が3.5〜4.2kWであるのに対し、稼働日では3.0〜3.2kWに抑制されており、30℃の時で10.3%、35℃のときで24.7%の電力削減ができたことになる。なお、この試験期間中に室外機にスケールの付着は確認されなかった。 As is clear from FIG. 8, when comparing the working days and the non-working days of the outdoor unit cooling auxiliary device 1 of the present invention, it can be seen that the electric power is reduced on the working days. Especially when the temperature is 30 ° C or higher, the electric power on non-working days is 3.5 to 4.2 kW, while it is suppressed to 3.0 to 3.2 kW on working days, and 10 at 30 ° C. This means that power could be reduced by 24.7% at 3.3% and 35 ° C. No scale adhesion was confirmed on the outdoor unit during this test period.

〔実施例2〕
実施例1において、気温の高い8月の4週間にわたり外気温が25℃以上の時にエアコンを運転し、室外機冷却補助装置1を稼働した。この際、逆浸透膜装置5の透過水W2の電気伝導度は5μS/mで水量は2.8L/分であったが、抗菌性前処理フィルタ3で処理した被処理水W1を混合することで、電気伝導度は25μS/mで水量は3.2L/分とすることができた。この間1分ごとに外気温度と電力使用量をそれぞれ記録し、外気温に対する電力量を直線回帰した。結果を図9に示す。
[Example 2]
In Example 1, the air conditioner was operated and the outdoor unit cooling auxiliary device 1 was operated when the outside air temperature was 25 ° C. or higher for four weeks in August when the temperature was high. At this time, the electric conductivity of the permeated water W2 of the reverse osmosis membrane device 5 was 5 μS / m and the amount of water was 2.8 L / min, but the water to be treated W1 treated by the antibacterial pretreatment filter 3 was mixed. The electric conductivity was 25 μS / m and the amount of water was 3.2 L / min. During this period, the outside air temperature and the amount of electricity used were recorded every minute, and the amount of electricity with respect to the outside air temperature was linearly regressed. The results are shown in FIG.

〔比較例2〕
実施例2において、抗菌性前処理フィルタ3で処理した被処理水W1を混合せずに、逆浸透膜装置5の稼働率を上げて水量を3.2L/分とした以外は同様にして、室外機冷却補助装置1を稼働した。この間1分ごとに外気温度と電力使用量をそれぞれ記録し、外気温に対する電力量を直線回帰した。結果を図9にあわせて示す。
[Comparative Example 2]
In the second embodiment, the operation rate of the reverse osmosis membrane device 5 was increased to make the amount of water 3.2 L / min without mixing the water W1 to be treated with the antibacterial pretreatment filter 3. The outdoor unit cooling auxiliary device 1 was operated. During this period, the outside air temperature and the amount of electricity used were recorded every minute, and the amount of electricity with respect to the outside air temperature was linearly regressed. The results are shown in FIG.

図9から明らか通り、実施例2と比較例2の外気温に対する電力量を直線回帰したラインを比較すると、抗菌性前処理フィルタ3で処理した被処理水W1を混合することにより、電力量を約10%低減することができることが確認できた。 As is clear from FIG. 9, when comparing the lines obtained by linearly regressing the electric energy with respect to the outside air temperature of Example 2 and Comparative Example 2, the electric energy is determined by mixing the water to be treated W1 treated with the antibacterial pretreatment filter 3. It was confirmed that it can be reduced by about 10%.

〔実施例3〕
図1に示す室外機冷却補助装置1において、抗菌性前処理フィルタ3を用いずに、被処理水W1として水道水を用いて、逆浸透膜装置5の透過水W2に水道水による被処理水W1を混合して、電気伝導度は20μS/mの混合水W3を製造した。この混合水W3の電気伝導度は20μS/mであった。このアルミニウム板に対して、混合水W3を30秒間噴霧した後30分間のインターバルを置き、このインターバルの間にアルミニウム板に風を当てて乾燥させる操作を1ケ月間にわたり繰り返した。この結果、アルミ板への付着物は目視で確認されなかった。このことから電気伝導度は20μS/mの混合水W3をエアコンの室外機に噴霧してもスケールの問題が生じないことが確認できた。
[Example 3]
In the outdoor unit cooling assist device 1 shown in FIG. 1, tap water is used as the water to be treated W1 without using the antibacterial pretreatment filter 3, and the water to be treated by tap water is used as the permeated water W2 of the reverse osmosis membrane device 5. W1 was mixed to produce mixed water W3 having an electric conductivity of 20 μS / m. The electric conductivity of this mixed water W3 was 20 μS / m. After spraying the mixed water W3 for 30 seconds on the aluminum plate, an interval of 30 minutes was set, and during this interval, the operation of blowing the aluminum plate with air to dry it was repeated for one month. As a result, no deposits on the aluminum plate were visually confirmed. From this, it was confirmed that the problem of scale does not occur even if the mixed water W3 having an electric conductivity of 20 μS / m is sprayed on the outdoor unit of the air conditioner.

1 室外機冷却補助装置
2 供給配管
2A 抗菌処理水配管
2B 混合水配管
2C 可撓性配管
2D バイパス配管
3 抗菌性前処理フィルタ
4A 第一の送水ポンプ 送水ポンプ
4B 第二の送水ポンプ
5 逆浸透膜装置
6 噴霧ノズル
6A 噴霧バルブ
7 蓄圧式バッファタンク
11 制御バルブ
12 開閉バルブ
13 水抜きバルブ
14 開閉バルブ
15 開閉バルブ
21 貯水配管
22 逆洗配管
23 水抜配管
24 濃縮水排出配管
25 返送配管
W 原水
W1 被処理水
W2 透過水
W3 混合水
W4 濃縮水
W5 洗浄排水
W6 溜まり水
1 Outdoor unit cooling auxiliary device 2 Supply pipe 2A Antibacterial treated water pipe 2B Mixed water pipe 2C Flexible pipe 2D Bypass pipe 3 Antibacterial pretreatment filter 4A First water supply pump Water supply pump 4B Second water supply pump 5 Back-penetration film Device 6 Spray nozzle 6A Spray valve 7 Accumulation type buffer tank 11 Control valve 12 Open / close valve 13 Drain valve 14 Open / close valve 15 Open / close valve 21 Water storage pipe 22 Backwash pipe 23 Water drain pipe 24 Concentrated water discharge pipe 25 Return pipe W Raw water W1 Covered Treated water W2 Permeated water W3 Mixed water W4 Concentrated water W5 Washing drainage W6 Accumulated water

Claims (7)

室内機と室外機を組み合わせた冷房装置の運転時において、前記室外機が有する熱交換器を冷却する室外機冷却補助装置であって、
被処理水を処理する逆浸透膜装置と、
前記被処理水を前記逆浸透膜装置の透過水に混合するバイパス機構と、
前記逆浸透膜装置の透過水と前記被処理水との混合水を前記熱交換器に散水する散水手段と
を備える、室外機冷却補助装置。
An outdoor unit cooling auxiliary device that cools the heat exchanger of the outdoor unit during operation of the cooling device that combines the indoor unit and the outdoor unit.
A reverse osmosis membrane device that treats water to be treated,
A bypass mechanism that mixes the water to be treated with the permeated water of the reverse osmosis membrane device,
An outdoor unit cooling auxiliary device including a sprinkling means for sprinkling mixed water of the permeated water of the reverse osmosis membrane device and the water to be treated into the heat exchanger.
前記バイパス機構が流量調整手段を備えるとともに前記逆浸透膜装置の透過水の電気伝導度計及び流量計を備え、前記電気伝導度計及び流量計により測定した前記逆浸透膜装置の透過水の電気伝導度及び流量の値に基づいて前記被処理水のバイパス流量が調整可能となっている、請求項1に記載の室外機冷却補助装置。 The bypass mechanism includes a flow rate adjusting means, an electric conductivity meter and a flow meter for the permeated water of the reverse osmosis membrane device, and electricity of the permeated water of the reverse osmosis membrane device measured by the electric conductivity meter and the flow meter. The outdoor unit cooling assist device according to claim 1, wherein the bypass flow rate of the water to be treated can be adjusted based on the values of conductivity and flow rate. 前記混合水の電気伝導度が10〜40μS/cmである、請求項2に記載の室外機冷却補助装置。 The outdoor unit cooling auxiliary device according to claim 2, wherein the electric conductivity of the mixed water is 10 to 40 μS / cm. 前記逆浸透膜装置と前記散水手段との間に流路開閉機構が設けられており、前記流路開閉機構の上流に蓄圧式バッファタンクが接続されていて、前記流路開閉機構を閉鎖することにより、前記逆浸透膜装置の透過水と前記被処理水との混合水を蓄圧式バッファタンクに貯留可能となっている、請求項1〜3のいずれか1項に記載の室外機冷却補助装置。 A flow path opening / closing mechanism is provided between the reverse osmosis membrane device and the water sprinkling means, and a pressure accumulator type buffer tank is connected upstream of the flow path opening / closing mechanism to close the flow path opening / closing mechanism. The outdoor unit cooling auxiliary device according to any one of claims 1 to 3, wherein the mixed water of the permeated water of the reverse osmosis membrane device and the water to be treated can be stored in the accumulator type buffer tank. .. 前記逆浸透膜装置の前段に抗菌性前処理フィルタが設けられており、前記逆浸透膜装置の被処理水が前記抗菌性前処理フィルタの処理水である、請求項1〜4のいずれか1項に記載の室外機冷却補助装置。 Any one of claims 1 to 4, wherein an antibacterial pretreatment filter is provided in front of the reverse osmosis membrane device, and the water to be treated of the reverse osmosis membrane device is the treated water of the antibacterial pretreatment filter. The outdoor unit cooling auxiliary device described in the section. 室内機と室外機を組み合わせた冷房装置の該室外機が有する熱交換器を冷却する室外機冷却補助方法であって、
被処理水の一部を逆浸透膜装置で処理するとともに該逆浸透膜装置の透過水と前記被処理水の残余の少なくとも一部とを混合し、
前記混合により得られた混合水を散水手段により前記熱交換器に散水する、室外機冷却補助方法。
It is an outdoor unit cooling assist method for cooling the heat exchanger of the outdoor unit of the cooling device that combines the indoor unit and the outdoor unit.
A part of the water to be treated is treated with the reverse osmosis membrane device, and the permeated water of the reverse osmosis membrane device and at least a part of the residue of the water to be treated are mixed.
An outdoor unit cooling assisting method in which the mixed water obtained by the mixing is sprinkled on the heat exchanger by a sprinkling means.
前記冷房装置の室外機が複数であり、該複数の室外機が有する熱交換器にそれぞれ散水する、請求項6に記載の室外機冷却補助方法。 The outdoor unit cooling assist method according to claim 6, wherein the cooling device has a plurality of outdoor units, and water is sprinkled on the heat exchangers of the plurality of outdoor units.
JP2019029218A 2019-02-21 2019-02-21 Outdoor unit cooling auxiliary device and outdoor unit cooling auxiliary method Pending JP2020134044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019029218A JP2020134044A (en) 2019-02-21 2019-02-21 Outdoor unit cooling auxiliary device and outdoor unit cooling auxiliary method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019029218A JP2020134044A (en) 2019-02-21 2019-02-21 Outdoor unit cooling auxiliary device and outdoor unit cooling auxiliary method

Publications (1)

Publication Number Publication Date
JP2020134044A true JP2020134044A (en) 2020-08-31

Family

ID=72263212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019029218A Pending JP2020134044A (en) 2019-02-21 2019-02-21 Outdoor unit cooling auxiliary device and outdoor unit cooling auxiliary method

Country Status (1)

Country Link
JP (1) JP2020134044A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151169U (en) * 1988-04-09 1989-10-18
JP2010243144A (en) * 2008-12-11 2010-10-28 Water Techno Kasai:Kk Method of cooling heat exchanger
WO2013002244A1 (en) * 2011-06-29 2013-01-03 東レ株式会社 Membrane filtration method and membrane filtration device
JP5896331B1 (en) * 2014-09-05 2016-03-30 クリタ・ケミカル関東株式会社 Cooling assistance device and cooling assistance method
JP2018171577A (en) * 2017-03-31 2018-11-08 栗田工業株式会社 Pure water production method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151169U (en) * 1988-04-09 1989-10-18
JP2010243144A (en) * 2008-12-11 2010-10-28 Water Techno Kasai:Kk Method of cooling heat exchanger
WO2013002244A1 (en) * 2011-06-29 2013-01-03 東レ株式会社 Membrane filtration method and membrane filtration device
JP5896331B1 (en) * 2014-09-05 2016-03-30 クリタ・ケミカル関東株式会社 Cooling assistance device and cooling assistance method
JP2018171577A (en) * 2017-03-31 2018-11-08 栗田工業株式会社 Pure water production method and device

Similar Documents

Publication Publication Date Title
JP4472050B2 (en) Fresh water generator and fresh water generation method
JP4228732B2 (en) Ultrapure water production system
KR20040050854A (en) Water heater
CN108473342A (en) System for purifying liquid
JP5628644B2 (en) Cooling method of heat exchanger using treated water
EP2706042A1 (en) Point-of-use water dispenser and method for using said water dispenser
CN105102918A (en) Cooling process
CN100406393C (en) Ultrapure water making system and its running method
JP2020134044A (en) Outdoor unit cooling auxiliary device and outdoor unit cooling auxiliary method
CN201942576U (en) Long-term reverse osmosis (RO) water purifier system
CA3025429C (en) Water-savings adiabatic spray system
KR101777055B1 (en) The system is equipped with automatic cleaning boilers
US20120248016A1 (en) Fluid handling and cleaning circulation system
CN210367292U (en) Cold shower water moisturizing processing system of current conversion station valve
CN111003768A (en) EDR water purification system and waste water pipeline flushing method thereof
CN207716581U (en) A kind of water ring air-conditioning system
KR100889118B1 (en) Piping deposit removal from stator water cooling systems
KR102417631B1 (en) Ionized water purifier
JP2001317883A (en) Method for treating open circulating cooling water system
JP2020134045A (en) Auxiliary outdoor unit cooling device
JPWO2008018317A1 (en) Water purification method and apparatus
TWI648225B (en) Liquid fertilizer manufacturing method and equipment
CN218665450U (en) Water purification unit and water treatment system
CN220887257U (en) Closed heat source tower system and device with reverse osmosis water purification system
JP2009112883A (en) Air diffuser and membrane separator using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231010