JP6985957B2 - Semiconductor processing equipment - Google Patents

Semiconductor processing equipment Download PDF

Info

Publication number
JP6985957B2
JP6985957B2 JP2018028997A JP2018028997A JP6985957B2 JP 6985957 B2 JP6985957 B2 JP 6985957B2 JP 2018028997 A JP2018028997 A JP 2018028997A JP 2018028997 A JP2018028997 A JP 2018028997A JP 6985957 B2 JP6985957 B2 JP 6985957B2
Authority
JP
Japan
Prior art keywords
chemical
chemical solution
discharge
semiconductor substrate
chemical liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018028997A
Other languages
Japanese (ja)
Other versions
JP2019145686A (en
Inventor
聡 中岡
智彦 杉田
信介 木村
浩明 蘆立
勝広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Kioxia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioxia Corp filed Critical Kioxia Corp
Priority to JP2018028997A priority Critical patent/JP6985957B2/en
Priority to US16/045,786 priority patent/US10978316B2/en
Publication of JP2019145686A publication Critical patent/JP2019145686A/en
Application granted granted Critical
Publication of JP6985957B2 publication Critical patent/JP6985957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/67086Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67313Horizontal boat type carrier whereby the substrates are vertically supported, e.g. comprising rod-shaped elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a batch of workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/102Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration with means for agitating the liquid

Description

本実施形態は、半導体処理装置に関する。 The present embodiment relates to a semiconductor processing apparatus.

バッチ式洗浄装置等の半導体処理装置において、処理槽内の薬液は、半導体基板の処理中においても、薬液の濃度等を均一に保つために循環されている。しかし、薬液の流速は、薬液を供給するノズルの近傍において速く、ノズルから離れるに従って遅くなる。このような薬液の流速のばらつきは、半導体基板の表面におけるエッチング速度等の処理速度のばらつきの原因となる。また、薬液の流速が遅い領域では、シリカのような副生成物が半導体基板の表面に析出するおそれもある。 In a semiconductor processing apparatus such as a batch type cleaning apparatus, the chemical solution in the processing tank is circulated in order to keep the concentration of the chemical solution uniform even during the processing of the semiconductor substrate. However, the flow velocity of the chemical solution is high in the vicinity of the nozzle for supplying the chemical solution and becomes slower as the distance from the nozzle is increased. Such variations in the flow velocity of the chemical solution cause variations in the processing speed such as the etching rate on the surface of the semiconductor substrate. Further, in a region where the flow rate of the chemical solution is slow, by-products such as silica may precipitate on the surface of the semiconductor substrate.

特開2006−108512号公報Japanese Unexamined Patent Publication No. 2006-108512 特開平10−335295号公報Japanese Unexamined Patent Publication No. 10-335295

半導体基板の表面における処理速度を略均一化し、かつ、半導体基板の表面に副生成物が析出することを抑制できる半導体処理装置を提供する。 Provided is a semiconductor processing apparatus capable of substantially making the processing speed on the surface of a semiconductor substrate substantially uniform and suppressing the precipitation of by-products on the surface of the semiconductor substrate.

本実施形態による半導体処理装置は、薬液を貯留し半導体基板を該薬液に浸漬可能な処理槽を備える。気体供給部は、処理槽内に収容された半導体基板の下方に設けられ、半導体基板の下方から薬液に気泡を供給する。薬液供給部は、気体供給部の上方かつ半導体基板の下方に設けられ、気体供給部から現れる気泡へ向かって、処理槽から循環された薬液を吐出する。 The semiconductor processing apparatus according to the present embodiment includes a processing tank capable of storing the chemical solution and immersing the semiconductor substrate in the chemical solution. The gas supply unit is provided below the semiconductor substrate housed in the processing tank, and supplies bubbles to the chemical solution from below the semiconductor substrate. The chemical solution supply unit is provided above the gas supply unit and below the semiconductor substrate, and discharges the chemical solution circulated from the treatment tank toward the bubbles appearing from the gas supply unit.

第1実施形態による半導体処理装置の構成例および動作例を示す概念図。The conceptual diagram which shows the structural example and the operation example of the semiconductor processing apparatus by 1st Embodiment. 気体供給管および1対の薬液供給管の配置関係をより詳細に示す図。The figure which shows the arrangement relation of a gas supply pipe and a pair of chemical liquid supply pipes in more detail. 気体供給管および1対の薬液供給管の構成例を示す斜視図。The perspective view which shows the structural example of a gas supply pipe and a pair of chemical liquid supply pipes. 第1実施形態による処理装置を用いた処理方法の一例を示すフロー図。The flow chart which shows an example of the processing method using the processing apparatus by 1st Embodiment. 第1実施形態の変形例による処理装置の構成例および動作例を示す概念図。The conceptual diagram which shows the configuration example and the operation example of the processing apparatus by the modification of 1st Embodiment. 第2実施形態による処理装置の構成例および動作例を示す概念図。The conceptual diagram which shows the configuration example and the operation example of the processing apparatus by 2nd Embodiment. 薬液供給管の構成をより詳細に示す斜視図。The perspective view which shows the structure of the chemical solution supply pipe in more detail. 第2実施形態による薬液Cの吐出停止期間の比率と副生成物の析出量との関係を示すグラフ。The graph which shows the relationship between the ratio of the discharge stop period of the chemical liquid C and the precipitation amount of a by-product by 2nd Embodiment. 第3実施形態による処理装置1の構成例を示す概念図。The conceptual diagram which shows the structural example of the processing apparatus 1 by 3rd Embodiment. リフタ60の揺動幅および揺動速度を示すグラフ。The graph which shows the swing width and swing speed of a lifter 60. リフタ60の速度および加速度を示すグラフ。The graph which shows the speed and acceleration of a lifter 60. 立体型メモリセルアレイの製造において、シリコン窒化膜を除去した後の断面を示す図。The figure which shows the cross section after removing the silicon nitride film in the manufacturing of a three-dimensional memory cell array.

以下、図面を参照して本発明に係る実施形態を説明する。本実施形態は、本発明を限定するものではない。図面は模式的または概念的なものであり、各部分の比率などは、必ずしも現実のものと同一とは限らない。明細書と図面において、既出の図面に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings. The present embodiment is not limited to the present invention. The drawings are schematic or conceptual, and the ratio of each part is not always the same as the actual one. In the specification and the drawings, the same elements as those described above with respect to the existing drawings are designated by the same reference numerals, and detailed description thereof will be omitted as appropriate.

(第1実施形態)
図1(A)および図1(B)は、第1実施形態による半導体処理装置1の構成例および動作例を示す概念図である。半導体処理装置(以下、単に、処理装置という)1は、例えば、バッチ式の洗浄装置、ウェットエッチング装置等のように複数の半導体基板Wを薬液Cに浸漬して処理する装置である。
(First Embodiment)
1A and 1B are conceptual diagrams showing a configuration example and an operation example of the semiconductor processing apparatus 1 according to the first embodiment. The semiconductor processing apparatus (hereinafter, simply referred to as a processing apparatus) 1 is an apparatus for processing a plurality of semiconductor substrates W by immersing them in a chemical solution C, such as a batch type cleaning apparatus and a wet etching apparatus.

処理装置1は、処理槽10と、気体供給管20a、20bと、薬液供給管30a〜30dと、循環槽40と、コントローラ50と、バルブV1、V2と、ポンプP1、P2と、配管PP1、PP2、PP10a、PP10b、PP20a〜PP20dと、フィルタFとを備えている。 The processing apparatus 1 includes a processing tank 10, gas supply pipes 20a and 20b, chemical liquid supply pipes 30a to 30d, a circulation tank 40, a controller 50, valves V1 and V2, pumps P1 and P2, and piping PP1. It includes PP2, PP10a, PP10b, PP20a to PP20d, and a filter F.

処理槽10は、薬液Cを貯留しており、1または複数の半導体基板Wを略鉛直方向に立てた状態で収容可能である。半導体基板Wは、リフタ(図9の60参照)に略鉛直方向に立て掛けるように載置され、処理槽10内にリフタとともに収容される。半導体基板Wは、処理槽10に収容されることによって、薬液Cに浸漬される。 The treatment tank 10 stores the chemical solution C, and can accommodate one or a plurality of semiconductor substrates W in a substantially vertical direction. The semiconductor substrate W is placed on a lifter (see 60 in FIG. 9) so as to lean against it in a substantially vertical direction, and is housed in the processing tank 10 together with the lifter. The semiconductor substrate W is immersed in the chemical solution C by being housed in the processing tank 10.

気体供給部としての気体供給管20a、20bは、処理槽10の底部近傍に設けられており、処理槽10内に収容された半導体基板Wの下方に位置する。気体供給管20a、20bは、半導体基板Wの下方から薬液Cに気泡Bを供給する。 The gas supply pipes 20a and 20b as the gas supply unit are provided near the bottom of the processing tank 10 and are located below the semiconductor substrate W housed in the processing tank 10. The gas supply pipes 20a and 20b supply bubbles B to the chemical solution C from below the semiconductor substrate W.

薬液供給部としての薬液供給管30a〜30dは、気体供給管20a、20bの上方かつ半導体基板Wの下方に設けられる。薬液供給管30a〜30dは、気体供給管20a、20bから現れる気泡Bへ向かって、薬液Cを吐出する。このとき、薬液Cは、矢印A1またはA2に示す方向に吐出され、気泡Bの移動方向を曲げる。 The chemical liquid supply pipes 30a to 30d as the chemical liquid supply unit are provided above the gas supply pipes 20a and 20b and below the semiconductor substrate W. The chemical liquid supply pipes 30a to 30d discharge the chemical liquid C toward the bubbles B appearing from the gas supply pipes 20a and 20b. At this time, the chemical solution C is discharged in the direction indicated by the arrow A1 or A2, and bends the moving direction of the bubble B.

気泡Bは、薬液C中を略鉛直上方向へ上昇しようとする。しかし、薬液供給管30a〜30dからの薬液Cの流圧によって、気泡Bは、矢印A1またはA2の方向に押されて移動しながら上昇する。 The bubble B tends to rise substantially vertically upward in the chemical solution C. However, due to the flow pressure of the chemical solution C from the chemical solution supply pipes 30a to 30d, the bubble B is pushed in the direction of the arrow A1 or A2 and rises while moving.

例えば、図1(A)では、薬液供給管30b、30dが矢印A1の方向へ薬液Cを吐出し、気泡Bは、矢印A1の方向へ曲がりながら上昇する。図1(B)では、薬液供給管30a、30cが矢印A2の方向へ薬液Cを吐出し、気泡Bは、矢印A2の方向へ曲がりながら上昇する。このように、薬液供給管30a〜30dは、薬液Cを吐出することによって、気泡Bの移動方向を或る程度制御することができる。 For example, in FIG. 1A, the chemical liquid supply pipes 30b and 30d discharge the chemical liquid C in the direction of the arrow A1, and the bubble B rises while bending in the direction of the arrow A1. In FIG. 1B, the chemical liquid supply pipes 30a and 30c discharge the chemical liquid C in the direction of the arrow A2, and the bubble B rises while bending in the direction of the arrow A2. In this way, the chemical liquid supply pipes 30a to 30d can control the moving direction of the bubble B to some extent by discharging the chemical liquid C.

循環槽40は、処理槽10から溢れた薬液Cを貯留する。循環槽40内の薬液Cは、配管PP1、PP2、ポンプP1、P2およびバルブV1、V2を介して処理槽10へ戻される。これにより、薬液Cは、処理槽10と循環槽40との間で循環される。薬液Cは、循環中にフィルタFでろ過されてもよい。 The circulation tank 40 stores the chemical solution C overflowing from the treatment tank 10. The chemical solution C in the circulation tank 40 is returned to the treatment tank 10 via the pipes PP1, PP2, pumps P1, P2 and valves V1 and V2. As a result, the chemical solution C is circulated between the treatment tank 10 and the circulation tank 40. The chemical solution C may be filtered by the filter F during circulation.

循環槽40は、配管PP1を介してバルブV1に接続され、配管PP2を介してバルブV2に接続されている。配管PP1には、ポンプP1が設けられている。ポンプP1は、循環槽40からバルブV1へ薬液Cを送る。配管PP2には、ポンプP2が設けられている。ポンプP2は、循環槽40からバルブV2へ薬液Cを送る。フィルタFは、薬液C中に混在する不純物を取り除く。フィルタFは、配管PP1、PP2にそれぞれ設けられていてもよく、あるいは、配管PP1、PP2に共有されていてもよい。 The circulation tank 40 is connected to the valve V1 via the pipe PP1 and is connected to the valve V2 via the pipe PP2. A pump P1 is provided in the pipe PP1. The pump P1 sends the chemical solution C from the circulation tank 40 to the valve V1. The pipe PP2 is provided with a pump P2. The pump P2 sends the chemical solution C from the circulation tank 40 to the valve V2. The filter F removes impurities mixed in the chemical solution C. The filter F may be provided in the pipes PP1 and PP2, respectively, or may be shared by the pipes PP1 and PP2.

バルブV1は、配管PP10aを介して気体供給管20aに接続され、配管PP10bを介して気体供給管20bに接続されている。バルブV1は、薬液Cに気体を混合し、気体供給管20a、20bに略均等に薬液Cおよび気体を供給する。これにより、気体供給管20a、20bは、ほぼ等しい量の気泡Bを吐出することができる。気体には、例えば、窒素等の不活性ガスを用いている。薬液Cには、例えば、シリコン窒化膜を除去する場合には、熱リン酸溶液を用い、シリコン酸化膜を除去する場合には、フッ酸溶液を用いる。薬液Cは、被除去膜の種類によって任意に選択可能であり、これらに限定されない。 The valve V1 is connected to the gas supply pipe 20a via the pipe PP10a and is connected to the gas supply pipe 20b via the pipe PP10b. The valve V1 mixes a gas with the chemical solution C and supplies the chemical solution C and the gas to the gas supply pipes 20a and 20b substantially evenly. As a result, the gas supply pipes 20a and 20b can discharge almost the same amount of bubbles B. As the gas, for example, an inert gas such as nitrogen is used. For the chemical solution C, for example, a hot phosphoric acid solution is used when removing the silicon nitride film, and a hydrofluoric acid solution is used when removing the silicon oxide film. The chemical solution C can be arbitrarily selected depending on the type of the membrane to be removed, and is not limited thereto.

また、バルブV1を調節することによって、薬液Cに混合する気体の量を調節することができる。気体供給管20a、20bから吐出される気泡Bの量が偏っている場合、バルブV1は、気体供給管20a、20bからほぼ等しい量の気泡Bを吐出するように調節される。これにより、気体供給管20a、20bから吐出される気泡Bの量およびバランスが調節され得る。 Further, by adjusting the valve V1, the amount of gas mixed with the chemical solution C can be adjusted. When the amount of bubbles B discharged from the gas supply pipes 20a and 20b is biased, the valve V1 is adjusted to discharge substantially the same amount of bubbles B from the gas supply pipes 20a and 20b. Thereby, the amount and balance of the bubbles B discharged from the gas supply pipes 20a and 20b can be adjusted.

バルブV2は、それぞれ配管PP20a〜PP20dを介して薬液供給管30a〜30dに接続されている。バルブV2は、薬液供給管30a〜30dのそれぞれに供給する薬液Cの量を調節する。例えば、図1(A)に示すように、薬液Cを矢印A1の方向に吐出する場合、バルブV2は、薬液供給管30b、30dへ薬液Cを供給し、薬液供給管30a、30cへの供給を停止する。これにより、薬液供給管30b、30dが、薬液Cを気泡Bへ向かって吐出する。一方、図1(B)に示すように、薬液Cを矢印A2の方向に吐出する場合、バルブV2は、薬液供給管30a、30cへ薬液Cを供給し、薬液供給管30b、30dへの供給を停止する。これにより、薬液供給管30a、30cが、薬液Cを気泡Bへ向かって吐出する。このように、バルブV2を調節することによって、薬液供給管30a〜30dから吐出される薬液Cの吐出方向を切り替えることができる。さらに、バルブV2を調節することによって、薬液供給管30a〜30dから吐出される薬液Cの流速または流圧を変更することもできる。尚、薬液Cの流速または流圧は、ポンプP2の出力を変更することによって調節してもよい。 The valves V2 are connected to the chemical liquid supply pipes 30a to 30d via the pipes PP20a to PP20d, respectively. The valve V2 adjusts the amount of the chemical solution C supplied to each of the chemical solution supply pipes 30a to 30d. For example, as shown in FIG. 1A, when the chemical solution C is discharged in the direction of the arrow A1, the valve V2 supplies the chemical solution C to the chemical solution supply pipes 30b and 30d and supplies the chemical solution C to the chemical solution supply pipes 30a and 30c. To stop. As a result, the chemical solution supply pipes 30b and 30d discharge the chemical solution C toward the bubble B. On the other hand, as shown in FIG. 1B, when the chemical solution C is discharged in the direction of the arrow A2, the valve V2 supplies the chemical solution C to the chemical solution supply pipes 30a and 30c and supplies the chemical solution C to the chemical solution supply pipes 30b and 30d. To stop. As a result, the chemical solution supply pipes 30a and 30c discharge the chemical solution C toward the bubble B. By adjusting the valve V2 in this way, the discharge direction of the chemical liquid C discharged from the chemical liquid supply pipes 30a to 30d can be switched. Further, by adjusting the valve V2, the flow velocity or the flow pressure of the chemical liquid C discharged from the chemical liquid supply pipes 30a to 30d can be changed. The flow rate or flow pressure of the chemical solution C may be adjusted by changing the output of the pump P2.

また、図1(A)の状態と図1(B)の状態との間の切り替えは、短時間に瞬時に行ってもよい。しかし、半導体基板Wの表面処理の均一性を向上させるために、図1(A)の状態と図1(B)の状態との切り替えは、或る程度長い時間を掛けて行ってもよい。この場合、コントローラ50は、バルブV2またはポンプP2の調節によって、薬液供給管30a〜30dから吐出される薬液Cの量や流圧を徐々に変化させればよい。 Further, the switching between the state of FIG. 1A and the state of FIG. 1B may be performed instantaneously in a short time. However, in order to improve the uniformity of the surface treatment of the semiconductor substrate W, the state of FIG. 1A and the state of FIG. 1B may be switched over a certain long time. In this case, the controller 50 may gradually change the amount and flow pressure of the chemical liquid C discharged from the chemical liquid supply pipes 30a to 30d by adjusting the valve V2 or the pump P2.

コントローラ50は、バルブV1、V2、ポンプP1、P2の動作を制御する。 The controller 50 controls the operations of the valves V1 and V2 and the pumps P1 and P2.

このように、薬液Cは、半導体基板Wの処理に用いられるだけでなく、気体供給管20a、20bからの気泡Bに向かって吐出され、気泡Bの移動方向の制御にも用いられる。 As described above, the chemical solution C is not only used for processing the semiconductor substrate W, but is also discharged toward the bubbles B from the gas supply pipes 20a and 20b, and is also used for controlling the moving direction of the bubbles B.

1対の薬液供給管30a、30bは、1つの気体供給管20aに対応して設けられている。薬液供給管30a、30bは、気体供給管20aの上方の両側に略対称の位置に配置されている。即ち、薬液供給管30aは、気体供給管20aの直上から略水平方向の一方側へずれた位置に配置されており、薬液供給管30bは、気体供給管20aの直上から略水平方向の他方側へずれた位置に配置されている。図1(A)および図1(B)に示すような垂直断面において、薬液供給管30a、30bおよび気体供給管20aは、薬液供給管30aと薬液供給管30bとを結ぶ直線を底辺とする略二等辺三角形の頂点に配置される。 The pair of chemical liquid supply pipes 30a and 30b are provided corresponding to one gas supply pipe 20a. The chemical liquid supply pipes 30a and 30b are arranged at positions substantially symmetrical on both sides above the gas supply pipe 20a. That is, the chemical liquid supply pipe 30a is arranged at a position displaced from directly above the gas supply pipe 20a to one side in the substantially horizontal direction, and the chemical liquid supply pipe 30b is located on the other side in the substantially horizontal direction from directly above the gas supply pipe 20a. It is placed in a position that is offset. In the vertical cross section as shown in FIGS. 1 (A) and 1 (B), the chemical liquid supply pipes 30a and 30b and the gas supply pipe 20a are abbreviated with the straight line connecting the chemical liquid supply pipe 30a and the chemical liquid supply pipe 30b as the base. It is placed at the apex of an isosceles triangle.

同様に、1対の薬液供給管30c、30dは、1つの気体供給管20bに対応して設けられている。薬液供給管30c、30dは、気体供給管20bの上方の両側に略対称の位置に配置されている。即ち、薬液供給管30cは、気体供給管20bの直上から略水平方向の一方側へずれた位置に配置されており、薬液供給管30dは、気体供給管20bの直上から略水平方向の他方側へずれた位置に配置されている。図1(A)および図1(B)に示すような垂直断面において、薬液供給管30c、30dおよび気体供給管20bは、薬液供給管30cと薬液供給管30dとを結ぶ直線を底辺とする略二等辺三角形の頂点に配置される。 Similarly, a pair of chemical solution supply pipes 30c and 30d are provided corresponding to one gas supply pipe 20b. The chemical liquid supply pipes 30c and 30d are arranged at positions substantially symmetrical on both sides above the gas supply pipe 20b. That is, the chemical liquid supply pipe 30c is arranged at a position shifted from directly above the gas supply pipe 20b to one side in the substantially horizontal direction, and the chemical liquid supply pipe 30d is located on the other side in the substantially horizontal direction from directly above the gas supply pipe 20b. It is placed in a position that is offset. In the vertical cross section as shown in FIGS. 1 (A) and 1 (B), the chemical liquid supply pipes 30c and 30d and the gas supply pipe 20b are abbreviated with the straight line connecting the chemical liquid supply pipe 30c and the chemical liquid supply pipe 30d as the base. It is placed at the apex of an isosceles triangle.

尚、本実施形態において、気体供給管および1対の薬液供給管のセットは、2セット設けられている。しかし、この組み合わせは、1つだけ設けられてもよいし、3つ以上設けられてもよい。 In this embodiment, two sets of the gas supply pipe and the pair of chemical liquid supply pipes are provided. However, this combination may be provided only once or may be provided in three or more.

図2(A)および図2(B)は、気体供給管20aおよび1対の薬液供給管30a、30bの配置関係をより詳細に示す図である。ここでは、薬液供給管30c、30dおよび気体供給管20bの配置関係は、薬液供給管30a、30bおよび気体供給管20aの配置関係と同様でよい。 2 (A) and 2 (B) are views showing in more detail the arrangement relationship between the gas supply pipe 20a and the pair of chemical solution supply pipes 30a and 30b. Here, the arrangement relation of the chemical liquid supply pipes 30c and 30d and the gas supply pipe 20b may be the same as the arrangement relation of the chemical liquid supply pipes 30a and 30b and the gas supply pipe 20a.

薬液供給管30a、30bは、気体供給管20aの直上から略水平方向へずれて配置されており、気泡Bへ向かって略水平方向(矢印A30_1)または傾斜方向(矢印A30_2)に薬液Cを吐出する。これにより、気泡Bは、矢印A20に示すように、気体供給管20aの直上から薬液Cの吐出方向(矢印A30_1、A30_2)へ曲げられながら上昇する。 The chemical liquid supply pipes 30a and 30b are arranged so as to be substantially horizontal from directly above the gas supply pipe 20a, and the chemical liquid C is discharged in the substantially horizontal direction (arrow A30_1) or the inclined direction (arrow A30_1) toward the bubble B. do. As a result, as shown by the arrow A20, the bubble B rises while being bent in the discharge direction of the chemical liquid C (arrows A30_1, A30_2) from directly above the gas supply pipe 20a.

図3は、気体供給管20aおよび1対の薬液供給管30a、30bの構成例を示す斜視図である。尚、気体供給管20bおよび薬液供給管30c、30dの構成は、気体供給管20aおよび薬液供給管30a、30bの構成と同様でよいので、その図示を省略する。 FIG. 3 is a perspective view showing a configuration example of the gas supply pipe 20a and the pair of chemical solution supply pipes 30a and 30b. Since the configurations of the gas supply pipe 20b and the chemical liquid supply pipes 30c and 30d may be the same as the configurations of the gas supply pipe 20a and the chemical liquid supply pipes 30a and 30b, the illustration thereof will be omitted.

気体供給管20aは、複数の半導体基板Wの配列方向D1に延在する管である。また、気体供給管20aは、上方D2に向かって設けられた孔H20aを有する。気泡Bは、孔H20aから上方D2にある半導体基板Wへ向かって供給される。 The gas supply pipe 20a is a pipe extending in the arrangement direction D1 of the plurality of semiconductor substrates W. Further, the gas supply pipe 20a has a hole H20a provided toward the upper side D2. The bubble B is supplied from the hole H20a toward the semiconductor substrate W located above D2.

薬液供給管30a、30bは、複数の半導体基板Wの配列方向D1に延在する管である。また、薬液供給管30a、30bは、略水平方向D3または水平方向D3から斜め上方向へ向かって開口する孔H30a、H30bを有する。これにより、薬液供給管30a、30bは、薬液Cを気体供給管20aからの気泡Bへ向かって吐出する。 The chemical solution supply pipes 30a and 30b are pipes extending in the arrangement direction D1 of the plurality of semiconductor substrates W. Further, the chemical liquid supply pipes 30a and 30b have holes H30a and H30b that open diagonally upward from the substantially horizontal direction D3 or the horizontal direction D3. As a result, the chemical liquid supply pipes 30a and 30b discharge the chemical liquid C toward the bubbles B from the gas supply pipe 20a.

ここで、薬液供給管30a、30bは、交互に薬液Cを吐出する。即ち、図2(A)の状態と図2(B)に示す状態とを交互に繰り返す。これにより、気泡Bを略水平方向D3に揺動させ、半導体基板Wの表面の全体に当てることができる。 Here, the chemical liquid supply pipes 30a and 30b alternately discharge the chemical liquid C. That is, the state of FIG. 2 (A) and the state shown in FIG. 2 (B) are alternately repeated. As a result, the bubble B can be swung in the substantially horizontal direction D3 and applied to the entire surface of the semiconductor substrate W.

もし、気泡Bが半導体基板Wの表面の局所にのみ当たると、薬液Cの流速が半導体基板Wの表面においてばらつき、それにより処理速度(例えば、エッチング速等)も半導体基板Wの表面においてばらつく。この場合、半導体基板Wの表面が局所的に過剰に処理されたり、あるいは、逆に処理不足になり得る。また、薬液Cの流速が半導体基板Wの表面においてばらつくと、薬液Cの流速が遅い箇所において、副生成物(例えば、シリカ)が半導体基板Wの表面に析出してしまう。 If the bubbles B hit only locally on the surface of the semiconductor substrate W, the flow velocity of the chemical solution C varies on the surface of the semiconductor substrate W, and the processing speed (for example, etching rate) also varies on the surface of the semiconductor substrate W. In this case, the surface of the semiconductor substrate W may be locally excessively processed, or conversely, the processing may be insufficient. Further, if the flow velocity of the chemical solution C varies on the surface of the semiconductor substrate W, by-products (for example, silica) are deposited on the surface of the semiconductor substrate W at the place where the flow velocity of the chemical solution C is slow.

これに対し、本実施形態による処理装置1は、半導体基板Wの表面の全体に気泡Bを当てることができるので、半導体基板Wの表面全体の処理速度を略均一にすることができる。これにより、半導体基板Wの表面における処理速度を略均一化し、かつ、副生成物が半導体基板Wの表面に析出することを抑制することができる。 On the other hand, in the processing apparatus 1 according to the present embodiment, since the bubbles B can be applied to the entire surface of the semiconductor substrate W, the processing speed of the entire surface of the semiconductor substrate W can be made substantially uniform. As a result, the processing speed on the surface of the semiconductor substrate W can be substantially made uniform, and the precipitation of by-products on the surface of the semiconductor substrate W can be suppressed.

薬液供給管30a、30bにおいて、薬液Cを吐出する周期は、特に限定しない。しかし、半導体基板Wの表面に気泡Bを略均一に当てるために、薬液供給管30aの吐出期間と薬液供給管30bの吐出期間は、ほぼ等しいことが好ましい。 In the chemical solution supply pipes 30a and 30b, the cycle for discharging the chemical solution C is not particularly limited. However, in order to apply the bubbles B to the surface of the semiconductor substrate W substantially uniformly, it is preferable that the discharge period of the chemical liquid supply pipe 30a and the discharge period of the chemical liquid supply pipe 30b are substantially the same.

尚、図3では、気体供給管20a、20bおよび薬液供給管30a〜30dは、円形の断面を有する管である。しかし、気体供給管20a、20bおよび薬液供給管30a〜30dの断面形状は、これに限定されず、楕円、多角形等であってもよい。また、孔H20a、H30a、H30bの形状も円形の他、楕円、多角形であってもよい。 In FIG. 3, the gas supply pipes 20a and 20b and the chemical liquid supply pipes 30a to 30d are pipes having a circular cross section. However, the cross-sectional shapes of the gas supply pipes 20a and 20b and the chemical liquid supply pipes 30a to 30d are not limited to this, and may be elliptical, polygonal, or the like. Further, the shapes of the holes H20a, H30a, and H30b may be circular, elliptical, or polygonal.

次に、処理装置1の動作について説明する。 Next, the operation of the processing device 1 will be described.

図4は、第1実施形態による処理装置1を用いた処理方法の一例を示すフロー図である。処理槽10は薬液Cを貯留しているものとする。 FIG. 4 is a flow chart showing an example of a processing method using the processing apparatus 1 according to the first embodiment. It is assumed that the treatment tank 10 stores the chemical solution C.

まず、半導体基板Wをリフタに搭載して、半導体基板Wを処理槽10内へ入れて、薬液Cに浸漬させる(S10)。 First, the semiconductor substrate W is mounted on the lifter, the semiconductor substrate W is put into the processing tank 10, and the semiconductor substrate W is immersed in the chemical solution C (S10).

次に、コントローラ50がバルブV1、V2、ポンプP1、P2を制御して気泡Bおよび薬液Cの吐出を開始する。このとき、気体供給管20a、20bはそれぞれ気泡Bを上方の半導体基板Wへ供給する。薬液供給管30a、30bは、薬液Cを交互に周期的に吐出する。薬液供給管30c、30dも、薬液Cを交互に周期的に吐出する(S20)。これにより、気泡Bは、略水平方向へ揺動しながら上方へ移動する。 Next, the controller 50 controls the valves V1 and V2 and the pumps P1 and P2 to start discharging the bubbles B and the chemical solution C. At this time, the gas supply pipes 20a and 20b each supply the bubbles B to the upper semiconductor substrate W. The chemical liquid supply pipes 30a and 30b alternately and periodically discharge the chemical liquid C. The chemical liquid supply pipes 30c and 30d also periodically discharge the chemical liquid C alternately (S20). As a result, the bubble B moves upward while swinging in a substantially horizontal direction.

所定の時間が経過するまで(S30のNO)、ステップS20を継続する。 Step S20 is continued until a predetermined time elapses (NO in S30).

所定の時間が経過すると(S30のYES)、リフタが半導体基板Wを処理槽10から引き上げる(S40)。これにより、一連の処理が終了する。 When the predetermined time elapses (YES in S30), the lifter pulls up the semiconductor substrate W from the processing tank 10 (S40). This ends a series of processes.

以上のように、本実施形態による処理装置1は、気泡Bに薬液Cを吐出することによって気泡Bを揺動させ、半導体基板Wの表面全体に気泡Bを略均一に当てることができる。これにより、半導体基板Wの表面における処理速度を略均一化し、かつ、副生成物が半導体基板Wの表面に析出することを抑制することができる。 As described above, the processing apparatus 1 according to the present embodiment can swing the bubble B by discharging the chemical solution C into the bubble B, and can apply the bubble B to the entire surface of the semiconductor substrate W substantially uniformly. As a result, the processing speed on the surface of the semiconductor substrate W can be substantially made uniform, and the precipitation of by-products on the surface of the semiconductor substrate W can be suppressed.

(変形例)
図5(A)および図5(B)は、第1実施形態の変形例による処理装置1の構成例および動作例を示す概念図である。本変形例による処理装置1は、薬液供給管が各気体供給管20a、20bに対して1つずつ設けられている点で第1実施形態と異なる。例えば、図5(A)および図5(B)に示す例では、気体供給管20aに対して薬液供給管30bが設けられており、気体供給管20bに対して薬液供給管30cが設けられている。よって、薬液供給管30a、30d、配管PP20a、PP20dは設けられていない。
(Modification example)
5 (A) and 5 (B) are conceptual diagrams showing a configuration example and an operation example of the processing device 1 according to the modified example of the first embodiment. The processing apparatus 1 according to this modification is different from the first embodiment in that one chemical solution supply pipe is provided for each of the gas supply pipes 20a and 20b. For example, in the examples shown in FIGS. 5 (A) and 5 (B), the chemical liquid supply pipe 30b is provided for the gas supply pipe 20a, and the chemical liquid supply pipe 30c is provided for the gas supply pipe 20b. There is. Therefore, the chemical liquid supply pipes 30a and 30d and the pipes PP20a and PP20d are not provided.

薬液供給管30bは、気体供給管20aの上方の片側にずれて配置されており、薬液供給管30cは、気体供給管20bの上方の片側にずれて配置されている。薬液供給管30bと気体供給管20aとの配置関係および薬液供給管30cと気体供給管20bの配置関係は、第1実施形態のそれらと同様でよい。 The chemical solution supply pipe 30b is offset to one side above the gas supply pipe 20a, and the chemical solution supply pipe 30c is offset to one side above the gas supply pipe 20b. The arrangement relationship between the chemical solution supply pipe 30b and the gas supply pipe 20a and the arrangement relationship between the chemical solution supply pipe 30c and the gas supply pipe 20b may be the same as those in the first embodiment.

さらに、薬液供給管30b、30cは、交互に周期的に薬液Cを気泡Bへ吐出する。例えば、図5(A)に示すように、薬液供給管30bが薬液Cを矢印A1方向へ吐出しているときには、薬液供給管30cは、薬液Cの吐出を停止している。従って、気体供給管20aからの気泡Bは、矢印A1方向へ曲げられているが、気体供給管20bからの気泡Bは、あまり曲げられていない。一方、図5(B)に示すように、薬液供給管30cが薬液Cを矢印A2方向へ吐出しているときには、薬液供給管30bは、薬液Cの吐出を停止している。従って、気体供給管20bからの気泡Bは、矢印A2方向へ曲げられているが、気体供給管20aからの気泡Bは、あまり曲げられていない。 Further, the chemical solution supply pipes 30b and 30c alternately and periodically periodically discharge the chemical solution C into the bubble B. For example, as shown in FIG. 5A, when the chemical liquid supply pipe 30b discharges the chemical liquid C in the direction of the arrow A1, the chemical liquid supply pipe 30c stops the discharge of the chemical liquid C. Therefore, the bubble B from the gas supply pipe 20a is bent in the direction of the arrow A1, but the bubble B from the gas supply pipe 20b is not bent so much. On the other hand, as shown in FIG. 5B, when the chemical liquid supply pipe 30c discharges the chemical liquid C in the direction of the arrow A2, the chemical liquid supply pipe 30b stops the discharge of the chemical liquid C. Therefore, the bubble B from the gas supply pipe 20b is bent in the direction of the arrow A2, but the bubble B from the gas supply pipe 20a is not bent so much.

このように薬液供給管30b、30cは、交互に薬液Cを吐出する。即ち、図5(A)の状態と図5(B)に示す状態とを交互に繰り返す。このようにしても、気泡Bを略水平方向に揺動させることができ、半導体基板Wの表面の処理速度のばらつきを或る程度緩和することができる。 In this way, the chemical solution supply pipes 30b and 30c alternately discharge the chemical solution C. That is, the state of FIG. 5A and the state shown in FIG. 5B are alternately repeated. Even in this way, the bubbles B can be swung in a substantially horizontal direction, and the variation in the processing speed on the surface of the semiconductor substrate W can be alleviated to some extent.

代替的に、薬液供給管30b、30cは、同時に周期的に薬液Cを気泡Bへ吐出してもよい。例えば、薬液供給管30bが薬液Cを矢印A1方向へ吐出するのと同時に、薬液供給管30cも薬液Cを矢印A2方向へ吐出する。この場合、気体供給管20aからの気泡Bは、矢印A1方向へ曲げられ、気体供給管20bからの気泡Bは、矢印A2方向へ曲げられる。一方、薬液供給管30bが薬液Cの吐出を停止するときには、薬液供給管30cも薬液Cの吐出を停止する。従って、気体供給管20aおよび気体供給管20bからの気泡Bは略鉛直上方へ上昇していく。 Alternatively, the chemical solution supply pipes 30b and 30c may periodically discharge the chemical solution C to the bubble B at the same time. For example, at the same time that the chemical solution supply pipe 30b discharges the chemical solution C in the direction of the arrow A1, the chemical solution supply pipe 30c also discharges the chemical solution C in the direction of the arrow A2. In this case, the bubble B from the gas supply pipe 20a is bent in the direction of arrow A1, and the bubble B from the gas supply pipe 20b is bent in the direction of arrow A2. On the other hand, when the chemical liquid supply pipe 30b stops the discharge of the chemical liquid C, the chemical liquid supply pipe 30c also stops the discharge of the chemical liquid C. Therefore, the bubbles B from the gas supply pipe 20a and the gas supply pipe 20b rise substantially vertically upward.

このように薬液供給管30b、30cは、同時に薬液Cを吐出してもよい。このようにしても、気泡Bを略水平方向に揺動させることができ、半導体基板Wの表面の処理速度のばらつきを或る程度緩和することができる。 In this way, the chemical liquid supply pipes 30b and 30c may simultaneously discharge the chemical liquid C. Even in this way, the bubbles B can be swung in a substantially horizontal direction, and the variation in the processing speed on the surface of the semiconductor substrate W can be alleviated to some extent.

(第2実施形態)
図6(A)および図6(B)は、第2実施形態による処理装置1の構成例および動作例を示す概念図である。第1実施形態では、気泡Bの移動方向を薬液供給管30a〜30dからの薬液Cで揺動させ、気泡Bで半導体基板Wの表面における薬液Cの流速を略均一化している。これに対し、第2実施形態による処理装置1は、気泡Bを用いず、薬液供給管30a、30bからの薬液Cで半導体基板Wの表面における薬液Cの流速を略均一化する。従って、第2実施形態による処理装置1は、薬液供給管30a、30bを備えるが、気体供給管20a、20bを有しない。
(Second Embodiment)
6 (A) and 6 (B) are conceptual diagrams showing a configuration example and an operation example of the processing apparatus 1 according to the second embodiment. In the first embodiment, the moving direction of the bubble B is swung by the chemical solution C from the chemical solution supply pipes 30a to 30d, and the flow velocity of the chemical solution C on the surface of the semiconductor substrate W is substantially made uniform by the bubble B. On the other hand, in the processing apparatus 1 according to the second embodiment, the flow velocity of the chemical solution C on the surface of the semiconductor substrate W is substantially made uniform by the chemical solution C from the chemical solution supply pipes 30a and 30b without using the bubble B. Therefore, the processing apparatus 1 according to the second embodiment includes the chemical liquid supply pipes 30a and 30b, but does not have the gas supply pipes 20a and 20b.

循環槽40、配管PP1、ポンプP1、フィルタFは、第1実施形態のそれらと同様の構成でよい。 The circulation tank 40, the pipe PP1, the pump P1, and the filter F may have the same configurations as those of the first embodiment.

バルブV1は、配管PP10aを介して薬液供給管30aに接続され、配管PP10bを介して薬液供給管30bに接続されている。バルブV1は、薬液供給管30a、30bに略均等に薬液Cを供給する。第2実施形態によるバルブV1は、薬液Cに気体を混合しない。これにより、薬液供給管30a、30bは、ほぼ等しい量の薬液Cを吐出する。薬液供給管30a、30bから吐出される薬液Cの量が偏っている場合、バルブV1は、薬液供給管30a、30bからほぼ等しい量の薬液Cを吐出するように調節され得る。 The valve V1 is connected to the chemical liquid supply pipe 30a via the pipe PP10a, and is connected to the chemical liquid supply pipe 30b via the pipe PP10b. The valve V1 supplies the chemical solution C to the chemical solution supply pipes 30a and 30b substantially evenly. The valve V1 according to the second embodiment does not mix the gas with the chemical solution C. As a result, the chemical solution supply pipes 30a and 30b discharge almost the same amount of the chemical solution C. When the amount of the chemical liquid C discharged from the chemical liquid supply pipes 30a and 30b is biased, the valve V1 can be adjusted to discharge substantially the same amount of the chemical liquid C from the chemical liquid supply pipes 30a and 30b.

1対の薬液供給管30a、30bは、半導体基板Wの下方の両側に略対称の位置に配置されている。薬液供給管30a、30bは、薬液Cに浸漬された半導体基板Wの斜め下方から半導体基板Wへ向かって薬液Cを吐出する。 The pair of chemical solution supply pipes 30a and 30b are arranged at positions substantially symmetrical on both sides below the semiconductor substrate W. The chemical liquid supply pipes 30a and 30b discharge the chemical liquid C from diagonally below the semiconductor substrate W immersed in the chemical liquid C toward the semiconductor substrate W.

図7は、薬液供給管30a、30bの構成をより詳細に示す斜視図である。薬液供給管30a、30bは、半導体基板Wまたは処理槽10の中心へ向かって開口する孔H30a、H30bをそれぞれ有する。換言すると、孔H30a、H30bは、鉛直方向D2から互いに向き合う側(対向方向)へ傾斜させたDa方向およびDb方向へそれぞれ開口している。これにより、薬液供給管30a、30bは、薬液Cを半導体基板Wの中心へ向かって吐出することができる。 FIG. 7 is a perspective view showing the configuration of the chemical liquid supply pipes 30a and 30b in more detail. The chemical solution supply pipes 30a and 30b have holes H30a and H30b that open toward the center of the semiconductor substrate W or the processing tank 10, respectively. In other words, the holes H30a and H30b are opened in the Da direction and the Db direction inclined from the vertical direction D2 to the side facing each other (opposing direction), respectively. As a result, the chemical liquid supply pipes 30a and 30b can discharge the chemical liquid C toward the center of the semiconductor substrate W.

第2実施形態において、コントローラ50は、1対の薬液供給管30a、30bから交互に薬液Cを半導体基板Wへ吐出するようにバルブV1を制御する。即ち、図6(A)に示す状態と図6(B)に示す状態とを交互に繰り返す。この場合、短期的には薬液供給管30a、30bの一方が薬液Cを吐出しているので、半導体基板Wの表面における薬液Cの流速は局所的に異なる。しかし、処理全体として長期的に平均化すると、薬液Cの流速は、半導体基板Wの表面において均一に近づけることができる。 In the second embodiment, the controller 50 controls the valve V1 so that the chemical liquid C is alternately discharged from the pair of chemical liquid supply pipes 30a and 30b to the semiconductor substrate W. That is, the state shown in FIG. 6 (A) and the state shown in FIG. 6 (B) are alternately repeated. In this case, since one of the chemical solution supply pipes 30a and 30b discharges the chemical solution C in the short term, the flow velocity of the chemical solution C on the surface of the semiconductor substrate W is locally different. However, when the treatment as a whole is averaged over a long period of time, the flow velocity of the chemical solution C can be made uniform on the surface of the semiconductor substrate W.

例えば、もし、薬液供給管30a、30bの両方が同時に薬液Cを吐出した場合、薬液供給管30aからの薬液Cの流れと薬液供給管30bからの薬液Cの流れとが半導体基板Wの中心近傍で衝突し、その流れを互いに打ち消し合う。従って、薬液Cの流速は、半導体基板Wの中心部までは比較的速いが、半導体基板Wの上部において遅くなる。これにより、処理の面内均一性が悪化する。 For example, if both the chemical liquid supply pipes 30a and 30b simultaneously discharge the chemical liquid C, the flow of the chemical liquid C from the chemical liquid supply pipe 30a and the flow of the chemical liquid C from the chemical liquid supply pipe 30b are near the center of the semiconductor substrate W. Collide with each other and cancel each other out. Therefore, the flow velocity of the chemical solution C is relatively fast up to the center of the semiconductor substrate W, but slows down at the upper part of the semiconductor substrate W. This deteriorates the in-plane uniformity of the treatment.

また、薬液供給管30a、30bは継続的に薬液Cを吐出するので、薬液Cの流速は薬液供給管30a、30bの近傍において速くなっている。従って、半導体基板Wの表面うち薬液供給管30a、30b近傍の領域において、処理が進み易くなる。よって、処理の面内均一性がさらに悪化する。 Further, since the chemical liquid supply pipes 30a and 30b continuously discharge the chemical liquid C, the flow velocity of the chemical liquid C is high in the vicinity of the chemical liquid supply pipes 30a and 30b. Therefore, in the region of the surface of the semiconductor substrate W near the chemical solution supply pipes 30a and 30b, the processing can easily proceed. Therefore, the in-plane uniformity of the treatment is further deteriorated.

これに対し、第2実施形態では、薬液供給管30a、30bは、交互に薬液Cを半導体基板Wへ吐出する。この場合、薬液供給管30aからの薬液Cの流れおよび薬液供給管30bからの薬液Cの流れの一方は、他方に影響を与えず、その流れを阻害しない。従って、薬液Cの流速は、半導体基板Wの中心部からその先まで届き、半導体基板Wの下部の流速と上部の流速との差が小さくなる。これにより、処理の面内均一性を改善することができる。 On the other hand, in the second embodiment, the chemical liquid supply pipes 30a and 30b alternately discharge the chemical liquid C to the semiconductor substrate W. In this case, one of the flow of the drug solution C from the drug solution supply pipe 30a and the flow of the drug solution C from the drug solution supply pipe 30b does not affect the other and does not obstruct the flow. Therefore, the flow velocity of the chemical solution C reaches from the center of the semiconductor substrate W to the tip thereof, and the difference between the flow velocity at the lower part and the flow velocity at the upper part of the semiconductor substrate W becomes small. This makes it possible to improve the in-plane uniformity of the treatment.

また、薬液供給管30a、30bは、交互かつ周期的に薬液Cを吐出する。従って、薬液Cの流速は薬液供給管30a、30bの近傍において断続的に速くなるものの、処理全体としては、薬液Cの平均流速は、半導体基板Wの表面において均一に近づく。よって、処理の面内均一性をさらに改善することができる。従って、第2実施形態は、第1実施形態と同様の効果を得ることができる。 Further, the chemical solution supply pipes 30a and 30b alternately and periodically discharge the chemical solution C. Therefore, although the flow velocity of the chemical solution C becomes intermittently high in the vicinity of the chemical solution supply pipes 30a and 30b, the average flow velocity of the chemical solution C approaches uniformly on the surface of the semiconductor substrate W as a whole. Therefore, the in-plane uniformity of the treatment can be further improved. Therefore, the second embodiment can obtain the same effect as the first embodiment.

尚、図6(A)の状態と図6(B)の状態との間の切り替えは、短時間に瞬時に行ってもよい。しかし、半導体基板Wの表面処理の均一性を向上させるために、図6(A)の状態と図6(B)の状態との切り替えは、或る程度長い時間を掛けて行ってもよい。この場合、コントローラ50は、バルブV1またはポンプP1の調節によって、薬液供給管30a、30bから吐出される薬液Cの量や流速を徐々に変化させればよい。 The switching between the state of FIG. 6A and the state of FIG. 6B may be performed instantaneously in a short time. However, in order to improve the uniformity of the surface treatment of the semiconductor substrate W, the state of FIG. 6A and the state of FIG. 6B may be switched over a certain long time. In this case, the controller 50 may gradually change the amount and the flow velocity of the chemical liquid C discharged from the chemical liquid supply pipes 30a and 30b by adjusting the valve V1 or the pump P1.

(薬液Cの吐出期間および吐出停止期間)
図8は、第2実施形態による薬液Cの吐出停止期間の比率と副生成物の析出量との関係を示すグラフである。このグラフの縦軸は、副生成物として、例えば、シリカ(SiO)の析出量を示す。横軸は、処理中に薬液供給管30a、30bが薬液Cの吐出を停止している期間の比率を示す。例えば、薬液供給管30a、30bがそれぞれ或る吐出周期で薬液Cを吐出しているものとする。また、薬液供給管30a、30bが薬液Cを吐出している吐出期間をTonとし、薬液Cの吐出を停止している吐出停止期間をToffとする。この場合、吐出周期は、吐出期間Tonおよび吐出停止期間Toffの和(Ton+Toff)となる。横軸は、1吐出周期(Ton+Toff)に対する吐出停止期間Toffの比率(Toff/(Ton+Toff))を示す。
(Discharge period and discharge stop period of chemical solution C)
FIG. 8 is a graph showing the relationship between the ratio of the discharge stop period of the chemical solution C and the precipitation amount of the by-product according to the second embodiment. The vertical axis of this graph shows, for example, the amount of silica (SiO 2) deposited as a by-product. The horizontal axis shows the ratio of the period during which the chemical liquid supply pipes 30a and 30b stop discharging the chemical liquid C during the treatment. For example, it is assumed that the chemical liquid supply pipes 30a and 30b each discharge the chemical liquid C at a certain discharge cycle. Further, the discharge period in which the chemical liquid supply pipes 30a and 30b are discharging the chemical liquid C is defined as Ton, and the discharge stop period in which the discharge of the chemical liquid C is stopped is defined as Toff. In this case, the discharge cycle is the sum of the discharge period Ton and the discharge stop period Tof (Ton + Toff). The horizontal axis shows the ratio (Toff / (Ton + Toff)) of the discharge stop period Toff to one discharge cycle (Ton + Toff).

図8によれば、比率(Toff/(Ton+Toff))が低下すると、シリカの析出量が増大していることが分かる。例えば、NAND型EEPROM(Electrically Erasable Programmable Read-Only Memory)は、三次元的にメモリセルを配列した立体型メモセルアレイを有する場合がある。この場合、シリコン酸化膜とシリコン酸化膜との積層体の積層方向に溝TRを形成し、積層体のシリコン窒化膜を金属に置換する。溝TRを介してシリコン窒化膜を横方向(積層方向に対して垂直方向)に一旦除去する必要がある。例えば、図12は、立体型メモリセルアレイの製造において、シリコン窒化膜を除去した後の断面を示す図である。シリコン窒化膜の除去後に、シリコン酸化膜101の層間に横方向に延びる空隙Gが形成されるが、副生成物SPがシリコン酸化膜101の端部に堆積するため、溝TR近傍において空隙Gが狭くなる。図8に示す副生成物の析出量は、このシリコン酸化膜101に堆積した副生成物SPの積層方向の膜厚THである。即ち、副生成物SPの析出量は、溝TR近傍における積層方向の空隙Gの幅と溝TRから離れた箇所における積層方向の空隙Gの幅との差の約半分である。この副生成物SPの析出量は、約3nm以下にすることが好ましい。多くの副生成物SPが析出すると、配線(例えば、ワード線等)のオープン不良またはショート不良に繋がる。従って、上記の例では、副生成物SPの析出量は、約3nm以下にすることが好ましい。この場合、比率(Toff/(Ton+Toff))は、0.765以上とする。即ち、1吐出周期(Ton+Toff)において、薬液供給管30a、30bの吐出停止期間Toffの比率は0.765以上であり、薬液供給管30a、30bの吐出期間Tonの比率は0.235以下とすることが好ましい。ただし、吐出停止期間Toffの長さに比例して副生成物の析出量が増加してしまう。従って、吐出停止期間Toffの比率の下限は、処理時間に基づいて設定される。
このように、薬液供給管30a、30bの吐出周期に対する吐出停止期間の比率(Toff/(Ton+Toff))は、0.765以上とすることによって、半導体基板Wの処理の面内均一性を改善し、かつ、副生成物の析出を抑制することができる。
According to FIG. 8, it can be seen that when the ratio (Toff / (Ton + Toff)) decreases, the amount of silica precipitated increases. For example, a NAND EEPROM (Electrically Erasable Programmable Read-Only Memory) may have a three-dimensional memo cell array in which memory cells are three-dimensionally arranged. In this case, a groove TR is formed in the stacking direction of the laminated body of the silicon oxide film and the silicon oxide film, and the silicon nitride film of the laminated body is replaced with a metal. It is necessary to temporarily remove the silicon nitride film in the lateral direction (perpendicular to the stacking direction) via the groove TR. For example, FIG. 12 is a diagram showing a cross section after removing the silicon nitride film in the manufacture of a three-dimensional memory cell array. After the removal of the silicon nitride film, a gap G extending laterally is formed between the layers of the silicon oxide film 101, but since the by-product SP is deposited at the end of the silicon oxide film 101, the gap G is formed in the vicinity of the groove TR. It gets narrower. The precipitation amount of the by-product shown in FIG. 8 is the film thickness TH in the stacking direction of the by-product SP deposited on the silicon oxide film 101. That is, the amount of the by-product SP deposited is about half the difference between the width of the void G in the stacking direction in the vicinity of the groove TR and the width of the void G in the stacking direction at a location away from the groove TR. The amount of the by-product SP deposited is preferably about 3 nm or less. Precipitation of many by-products SP leads to open or short defects in wiring (eg, word wires, etc.). Therefore, in the above example, the precipitation amount of the by-product SP is preferably about 3 nm or less. In this case, the ratio (Toff / (Ton + Toff)) is 0.765 or more. That is, in one discharge cycle (Ton + Toff), the ratio of the discharge stop period Toff of the chemical liquid supply pipes 30a and 30b is 0.765 or more, and the ratio of the discharge period Ton of the chemical liquid supply pipes 30a and 30b is 0.235 or less. Is preferable. However, the amount of by-products deposited increases in proportion to the length of the discharge stop period Toff. Therefore, the lower limit of the ratio of the discharge stop period Tof is set based on the processing time.
As described above, by setting the ratio of the discharge stop period (Toff / (Ton + Toff)) to the discharge cycle of the chemical liquid supply pipes 30a and 30b to 0.765 or more, the in-plane uniformity of the processing of the semiconductor substrate W is improved. Moreover, the precipitation of by-products can be suppressed.

尚、図8のグラフは、第1実施形態の変形例についても適用することができる。即ち、薬液供給管30b、30cが交互または同時に薬液Cを吐出する際に、薬液供給管30b、30cが薬液Cを吐出する期間を吐出期間Tonとし、薬液供給管30b、30cが薬液Cの吐出を停止する期間を吐出停止期間Toffとした場合に、比率(Toff/(Ton+Toff))は、0.765以上であることが好ましい。このように、吐出期間Tonおよび吐出停止期間Toffを設定することによって、上記変形例においても、半導体基板Wの処理の面内均一性を改善し、かつ、副生成物の析出を抑制することができる。 The graph of FIG. 8 can also be applied to a modified example of the first embodiment. That is, when the chemical liquid supply pipes 30b and 30c alternately or simultaneously discharge the chemical liquid C, the period during which the chemical liquid supply pipes 30b and 30c discharge the chemical liquid C is set as the discharge period Ton, and the chemical liquid supply pipes 30b and 30c discharge the chemical liquid C. The ratio (Toff / (Ton + Toff)) is preferably 0.765 or more when the period for stopping is set to the discharge stop period Tof. By setting the discharge period Ton and the discharge stop period Toff in this way, it is possible to improve the in-plane uniformity of the treatment of the semiconductor substrate W and suppress the precipitation of by-products even in the above-mentioned modification. can.

(第3実施形態)
図9は、第3実施形態による処理装置1の構成例を示す概念図である。第3実施形態では、リフタ60が半導体基板Wを処理槽10内において略鉛直方向に揺動させる。これにより、半導体基板Wの表面における薬液Cの流速のばらつきを低減させる。
(Third Embodiment)
FIG. 9 is a conceptual diagram showing a configuration example of the processing device 1 according to the third embodiment. In the third embodiment, the lifter 60 swings the semiconductor substrate W in the processing tank 10 in a substantially vertical direction. This reduces the variation in the flow velocity of the chemical solution C on the surface of the semiconductor substrate W.

第3実施形態による処理装置1は、半導体基板Wを略鉛直方向に立て掛けるように載置可能なリフタ60を備えている。半導体基板Wは、リフタ60に載置された状態で処理槽10内に収容可能であり、半導体基板Wを薬液Cに浸漬させることができる。搭載部としてのリフタ60は、リフタ支持部70に接続されており、リフタ支持部70とともに略鉛直方向D2へ移動可能である。 The processing apparatus 1 according to the third embodiment includes a lifter 60 on which the semiconductor substrate W can be placed so as to lean against it in a substantially vertical direction. The semiconductor substrate W can be housed in the processing tank 10 in a state of being placed on the lifter 60, and the semiconductor substrate W can be immersed in the chemical solution C. The lifter 60 as a mounting portion is connected to the lifter support portion 70 and can move in the substantially vertical direction D2 together with the lifter support portion 70.

駆動部80は、リフタ支持部70とともにリフタ60を略鉛直方向D2に移動させることができる。駆動部80は、コントローラ50によって制御される。 The drive unit 80 can move the lifter 60 together with the lifter support unit 70 in the substantially vertical direction D2. The drive unit 80 is controlled by the controller 50.

コントローラ50は、半導体基板Wの表面に対する薬液Cの流速が所定の閾値(第1閾値)以上となり、かつ、半導体基板Wがリフタ60から浮かないような速度および加速度でリフタ60を往復動作(揺動)させる。 The controller 50 reciprocates (sways) the lifter 60 at a speed and acceleration such that the flow velocity of the chemical solution C with respect to the surface of the semiconductor substrate W is equal to or higher than a predetermined threshold value (first threshold value) and the semiconductor substrate W does not float from the lifter 60. Move).

薬液C中において半導体基板Wを揺動させることによって、半導体基板Wの表面を薬液Cに対して相対的に移動させる。これにより、薬液Cが半導体基板Wの表面を流れている状態と同じ状態となる。半導体基板Wに対する薬液Cの流れは、半導体基板Wの表面全体において生じるので、半導体基板Wの表面における薬液Cの流速のばらつきは低減する。 By swinging the semiconductor substrate W in the chemical solution C, the surface of the semiconductor substrate W is moved relative to the chemical solution C. As a result, the chemical solution C is in the same state as flowing on the surface of the semiconductor substrate W. Since the flow of the chemical solution C with respect to the semiconductor substrate W occurs on the entire surface of the semiconductor substrate W, the variation in the flow velocity of the chemical solution C on the surface of the semiconductor substrate W is reduced.

演算部90は、半導体基板Wの表面に対する薬液Cの流速が所定の閾値(第1閾値)以上となり、かつ、半導体基板Wがリフタ60から浮かないような速度および加速度を算出する。 The calculation unit 90 calculates the speed and acceleration so that the flow velocity of the chemical solution C with respect to the surface of the semiconductor substrate W becomes a predetermined threshold value (first threshold value) or more and the semiconductor substrate W does not float from the lifter 60.

第3実施形態のその他の構成は、第1実施形態の対応する構成と同様でよい。尚、第3実施形態は、気体供給管および薬液供給管を備えていなくてもよい。また、第3実施形態は、第1実施形態の変形例または第2実施形態と組み合わせてもよい。これにより、第3実施形態は、第1実施形態、変形例または第2実施形態と同様の効果を得ることができる。 Other configurations of the third embodiment may be the same as the corresponding configurations of the first embodiment. The third embodiment may not include the gas supply pipe and the chemical solution supply pipe. Further, the third embodiment may be combined with a modified example of the first embodiment or the second embodiment. Thereby, the third embodiment can obtain the same effect as the first embodiment, the modified example, or the second embodiment.

(リフタの速度および加速度)
図10は、リフタ60の揺動幅および揺動速度を示すグラフである。このグラフの縦軸は、リフタ60の往復運動の速度を示す。横軸は、リフタ60の往復幅を示す。速度は、リフタ60を略鉛直方向に往復運動させたときのリフタ60の最大速度である。往復幅は、リフタ60の往復運動の移動幅(揺動幅)である。
(Rifter speed and acceleration)
FIG. 10 is a graph showing the swing width and swing speed of the lifter 60. The vertical axis of this graph shows the speed of the reciprocating motion of the lifter 60. The horizontal axis indicates the reciprocating width of the lifter 60. The speed is the maximum speed of the lifter 60 when the lifter 60 is reciprocated in a substantially vertical direction. The reciprocating width is the movement width (swing width) of the reciprocating motion of the lifter 60.

また、ラインL1は、半導体基板Wの表面に対する薬液Cの流速(相対流速)を0.07m/sにするために必要な往復幅および速度を示す。ラインL2は、半導体基板Wの表面に対する薬液Cの相対流速を0.1m/sにするために必要な往復幅および速度を示す。ラインL1、L2を参照すると、往復幅を小さくすると、薬液Cの相対流速を維持するためにリフタ60の速度を上昇させる必要があることが分かる。 Further, the line L1 shows the reciprocating width and the speed required to make the flow velocity (relative flow velocity) of the chemical solution C with respect to the surface of the semiconductor substrate W 0.07 m / s. Line L2 shows the reciprocating width and velocity required to bring the relative flow velocity of the chemical solution C to the surface of the semiconductor substrate W to 0.1 m / s. With reference to the lines L1 and L2, it can be seen that when the reciprocating width is reduced, the speed of the lifter 60 needs to be increased in order to maintain the relative flow velocity of the chemical solution C.

ここで、副生成物の析出を抑制するためには、半導体基板Wの表面における薬液Cの相対流速は、0.1m/s以上であることが好ましいことが分かっている。従って、薬液Cの相対流速の閾値(第1閾値)は、0.1m/sとし、ラインL2を参照する。半導体基板Wの往復運動における往復幅をxとし、半導体基板Wの往復運動における速度をyとし、半導体基板Wの往復運動における加速度をzとしたときに、ラインL2は、近似的に、y=2.8×x−0.13と表される。従って、半導体基板Wの表面における薬液Cの相対流速が0.1m/s以上となるためには、式1を満たす必要がある。
y>2.8×x−0.13 (式1)
Here, in order to suppress the precipitation of by-products, it is known that the relative flow velocity of the chemical solution C on the surface of the semiconductor substrate W is preferably 0.1 m / s or more. Therefore, the threshold value (first threshold value) of the relative flow velocity of the chemical solution C is set to 0.1 m / s, and the line L2 is referred to. When the reciprocating width of the semiconductor substrate W in the reciprocating motion is x, the speed in the reciprocating motion of the semiconductor substrate W is y, and the acceleration in the reciprocating motion of the semiconductor substrate W is z, the line L2 is approximately y =. It is expressed as 2.8 × x −0.13. Therefore, in order for the relative flow velocity of the chemical solution C on the surface of the semiconductor substrate W to be 0.1 m / s or more, it is necessary to satisfy Equation 1.
y> 2.8 × x −0.13 (Equation 1)

図11は、リフタ60の速度および加速度を示すグラフである。このグラフの縦軸は、リフタ60の往復運動における加速度を示す。横軸は、リフタ60の往復運動における速度を示す。ラインL3は、半導体基板Wがリフタ60から浮かない領域R1を示す境界を示す。従って、グラフの領域R1においては、リフタ60は、半導体基板Wを浮かせることなく往復運動させることができる。一方、領域R2においては、半導体基板Wは往復運動によって浮いてしまうので、リフタ60は、半導体基板Wを往復運動に追従させることができない。また、半導体基板Wがリフタ60から浮くと、半導体基板Wがリフタ60から脱落してしまうおそれがある。 FIG. 11 is a graph showing the speed and acceleration of the lifter 60. The vertical axis of this graph shows the acceleration in the reciprocating motion of the lifter 60. The horizontal axis indicates the speed in the reciprocating motion of the lifter 60. The line L3 indicates a boundary indicating a region R1 in which the semiconductor substrate W does not float from the lifter 60. Therefore, in the region R1 of the graph, the lifter 60 can reciprocate the semiconductor substrate W without floating it. On the other hand, in the region R2, since the semiconductor substrate W floats due to the reciprocating motion, the lifter 60 cannot make the semiconductor substrate W follow the reciprocating motion. Further, if the semiconductor substrate W floats from the lifter 60, the semiconductor substrate W may fall off from the lifter 60.

ここで、ラインL3は、近似的に、z=−38.8×y+3.9×y+8.8と表される。従って、グラフの領域R1は、式2を満たす必要がある。
z<−38.8×y+3.9×y+8.8 (式2)
Here, the line L3 is approximately represented as z = −38.8 × y 2 + 3.9 × y + 8.8. Therefore, the area R1 of the graph needs to satisfy Equation 2.
z <-38.8 × y 2 +3.9 × y +8.8 (Equation 2)

往復幅xを設定すれば、式1に基づいて、薬液Cの相対流速を0.1m/s以上とするための速度yが算出される。さらに、式2を用いて、半導体基板Wを浮かせることなく往復運動可能な加速度zが算出される。 If the reciprocating width x is set, the velocity y for setting the relative flow velocity of the chemical solution C to 0.1 m / s or more is calculated based on Equation 1. Further, using Equation 2, the acceleration z capable of reciprocating motion without floating the semiconductor substrate W is calculated.

演算部90は、往復幅xから式1および式2を用いて、速度yおよび加速度zを算出する。往復幅xは、外部からユーザが入力してもよく、あるいは、予めメモリ91に格納しておいてもよい。例えば、往復幅xが30mmである場合、式1から速度yは、約0.18m/s以上と算出される。また、式2から加速度zは、約8m/s以下と算出される。 The calculation unit 90 calculates the velocity y and the acceleration z from the reciprocating width x using the equations 1 and 2. The reciprocating width x may be input by the user from the outside, or may be stored in the memory 91 in advance. For example, when the reciprocating width x is 30 mm, the velocity y is calculated from Equation 1 to be about 0.18 m / s or more. Further, the acceleration z is calculated from Equation 2 to be about 8 m / s 2 or less.

コントローラ50は、算出された速度yおよび加速度zに従って半導体基板Wを往復幅xで往復運動させるように駆動部80を制御する。これにより、リフタ60は、半導体基板Wの表面における薬液Cの流速を0.1m/s以上にしながら、薬液Cの流速の面内均一性を向上させることができる。その結果、半導体基板Wの処理の面内均一性を改善し、かつ、副生成物の析出を抑制することができる。 The controller 50 controls the drive unit 80 so as to reciprocate the semiconductor substrate W with the reciprocating width x according to the calculated speed y and the acceleration z. As a result, the lifter 60 can improve the in-plane uniformity of the flow velocity of the chemical solution C while keeping the flow velocity of the chemical solution C on the surface of the semiconductor substrate W at 0.1 m / s or more. As a result, the in-plane uniformity of the treatment of the semiconductor substrate W can be improved and the precipitation of by-products can be suppressed.

コントローラ50は、半導体基板Wの往復運動の実行と該往復運動の停止とを交互に繰り返してもよい。このようにしても、処理装置1は、或る程度、半導体基板Wの処理の面内均一性を改善し、かつ、副生成物の析出を抑制することができる。 The controller 50 may alternately repeat the execution of the reciprocating motion of the semiconductor substrate W and the stop of the reciprocating motion. Even in this way, the processing apparatus 1 can improve the in-plane uniformity of the processing of the semiconductor substrate W to some extent and suppress the precipitation of by-products.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope of the invention described in the claims and the equivalent scope thereof, as are included in the scope and gist of the invention.

1 処理装置、10 処理槽、20a,20b 気体供給管、30a〜30d 薬液供給管、40 循環槽、50 コントローラ、60 リフタ、70 リフタ支持部、80 駆動部、90 演算部、V1,V2 バルブ、P1,P2 ポンプ、PP1,PP2,PP10a,PP10b,PP20a〜20d 配管、F フィルタ、H20a,H30a,H30b 孔、B 気泡、C 薬液、W 半導体基板 1 processing device, 10 processing tanks, 20a, 20b gas supply pipes, 30a to 30d chemical supply pipes, 40 circulation tanks, 50 controllers, 60 lifters, 70 lifter supports, 80 drive units, 90 calculation units, V1, V2 valves, P1, P2 pump, PP1, PP2, PP10a, PP10b, PP20a to 20d piping, F filter, H20a, H30a, H30b hole, B bubble, C chemical solution, W semiconductor substrate

Claims (6)

薬液を貯留し半導体基板を該薬液に浸漬可能な処理槽と、
前記処理槽内に収容された前記半導体基板の下方に設けられ、前記半導体基板の下方から前記薬液に気泡を供給する気体供給部と、
前記気体供給部の上方かつ前記半導体基板の下方に設けられ、前記気体供給部から現れる気泡へ向かって、該気泡の移動方向を制御するために、前記処理槽から循環された前記薬液を吐出する薬液供給部とを備えた半導体処理装置。
A treatment tank that can store the chemical solution and immerse the semiconductor substrate in the chemical solution,
A gas supply unit provided below the semiconductor substrate housed in the processing tank and supplying bubbles to the chemical solution from below the semiconductor substrate.
The chemical solution circulated from the treatment tank is discharged from the processing tank toward the bubbles appearing from the gas supply section and above the gas supply section and below the semiconductor substrate in order to control the moving direction of the bubbles. A semiconductor processing device equipped with a chemical supply unit.
前記薬液供給部は、前記気体供給部の直上から略水平方向へずれて配置されており、前記気泡へ略水平方向または傾斜方向から前記薬液を吐出する、請求項1に記載の半導体処理装置。 The semiconductor processing apparatus according to claim 1, wherein the chemical solution supply unit is arranged so as to be displaced from directly above the gas supply unit in a substantially horizontal direction, and discharges the chemical solution to the bubbles from a substantially horizontal direction or an inclined direction. 1対の前記薬液供給部が、1つの前記気体供給部の上方の両側に略対称の位置に配置されており、
前記1対の薬液供給部は、交互に前記薬液を吐出する、請求項2に記載の半導体処理装置。
A pair of the chemical supply units are arranged on both sides above the gas supply unit at substantially symmetrical positions.
The semiconductor processing apparatus according to claim 2, wherein the pair of chemical liquid supply units alternately discharge the chemical liquid.
1つの前記薬液供給部が、1つの前記気体供給部の上方の片側にずれて配置されており、
前記薬液供給部は、周期的に前記薬液を前記気泡へ吐出する、請求項2に記載の半導体処理装置。
One of the chemical supply units is offset to one side above the one of the gas supply units.
The semiconductor processing apparatus according to claim 2, wherein the chemical solution supply unit periodically discharges the chemical solution into the bubbles.
前記薬液供給部が前記薬液の吐出を停止する吐出停止期間をToffとし、前記薬液供給部が前記薬液を吐出する吐出期間をTonとしたときに、或る前記薬液供給部において前記吐出期間および前記吐出停止期間に対する前記吐出停止期間の比率Toff/(Ton+Toff)は、0.765以上である、請求項4に記載の半導体処理装置。 The discharge stop period in which the chemical supply unit to stop the discharge of the chemical and Toff, a discharge period in which the chemical supply unit to discharge the liquid medicine when the Ton, the discharge period and the at some the chemical supply unit The semiconductor processing apparatus according to claim 4, wherein the ratio of the discharge stop period to the discharge stop period, Toff / (Ton + Toff), is 0.765 or more. 薬液を貯留し半導体基板を該薬液に浸漬可能な処理槽と、
前記半導体基板の下方の両側に略対称の位置に配置された1対の薬液供給部であって、前記薬液に浸漬された前記半導体基板の斜め下方から該半導体基板へ向かって前記薬液を吐出する1対の薬液供給部と、を備え、
前記1対の薬液供給部は、交互に前記薬液を前記半導体基板へ吐出し、
前記薬液供給部が前記薬液の吐出を停止する吐出停止期間をToffとし、前記薬液供給部が前記薬液を吐出する吐出期間をTonとしたときに、或る前記薬液供給部において前記吐出期間および前記吐出停止期間に対する前記吐出停止期間の比率Toff/(Ton+Toff)は、0.765以上である、半導体処理装置。
A treatment tank that can store the chemical solution and immerse the semiconductor substrate in the chemical solution,
A pair of chemical liquid supply units arranged at substantially symmetrical positions on both lower sides of the semiconductor substrate, and discharge the chemical liquid toward the semiconductor substrate from diagonally below the semiconductor substrate immersed in the chemical liquid. With a pair of chemical supply units,
The pair of chemical solution supply units alternately discharge the chemical solution to the semiconductor substrate.
The discharge stop period in which the chemical supply unit to stop the discharge of the chemical and Toff, a discharge period in which the chemical supply unit to discharge the liquid medicine when the Ton, the discharge period and the at some the chemical supply unit A semiconductor processing apparatus having a Toff / (Ton + Toff) ratio of the discharge stop period to the discharge stop period of 0.765 or more.
JP2018028997A 2018-02-21 2018-02-21 Semiconductor processing equipment Active JP6985957B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018028997A JP6985957B2 (en) 2018-02-21 2018-02-21 Semiconductor processing equipment
US16/045,786 US10978316B2 (en) 2018-02-21 2018-07-26 Semiconductor processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018028997A JP6985957B2 (en) 2018-02-21 2018-02-21 Semiconductor processing equipment

Publications (2)

Publication Number Publication Date
JP2019145686A JP2019145686A (en) 2019-08-29
JP6985957B2 true JP6985957B2 (en) 2021-12-22

Family

ID=67616995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018028997A Active JP6985957B2 (en) 2018-02-21 2018-02-21 Semiconductor processing equipment

Country Status (2)

Country Link
US (1) US10978316B2 (en)
JP (1) JP6985957B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6971137B2 (en) 2017-12-04 2021-11-24 東京エレクトロン株式会社 Board processing equipment and board processing method
JP7190912B2 (en) * 2019-01-10 2022-12-16 東京エレクトロン株式会社 Substrate processing equipment
JP7116694B2 (en) 2019-02-21 2022-08-10 キオクシア株式会社 Substrate processing equipment
JP2020141006A (en) 2019-02-27 2020-09-03 キオクシア株式会社 Substrate processing device and method for manufacturing semiconductor device
KR20220100622A (en) * 2019-12-26 2022-07-15 가부시키가이샤 스크린 홀딩스 Substrate processing apparatus and substrate processing method
JP7381351B2 (en) * 2020-01-20 2023-11-15 株式会社ジェイ・イー・ティ Substrate processing equipment
JP7381370B2 (en) 2020-03-05 2023-11-15 キオクシア株式会社 Semiconductor manufacturing equipment and semiconductor device manufacturing method
JP7381421B2 (en) 2020-08-26 2023-11-15 キオクシア株式会社 Substrate processing equipment and semiconductor device manufacturing method

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT958706B (en) 1972-03-16 1973-10-30 Skf Ind Trading & Dev ROLLING BEARING WITH REDUCED AXIAL OVERALL DIMENSIONS SUITABLE TO SUPPORT RADIAL FORCES AND MOMENTS
DE19655219C2 (en) 1996-04-24 2003-11-06 Steag Micro Tech Gmbh Device for treating substrates in a fluid container
JPH10150013A (en) 1996-11-20 1998-06-02 Dainippon Screen Mfg Co Ltd Wafer treating device
US6391067B2 (en) 1997-02-04 2002-05-21 Canon Kabushiki Kaisha Wafer processing apparatus and method, wafer convey robot, semiconductor substrate fabrication method, and semiconductor fabrication apparatus
JPH10229066A (en) 1997-02-14 1998-08-25 Canon Inc Wafer processor and method thereof, wafer-carrying robot, manufacture of semiconductor substrate, and semiconductor manufacture device
JPH10229065A (en) * 1997-02-14 1998-08-25 Sony Corp Cleaning bath and cleaning method
JP3839553B2 (en) 1997-06-05 2006-11-01 大日本スクリーン製造株式会社 Substrate processing tank and substrate processing apparatus
JP3039494B2 (en) 1997-11-17 2000-05-08 日本電気株式会社 Wet processing tank and liquid supply method
JPH11162903A (en) * 1997-12-01 1999-06-18 Nippon Foundry Inc Apparatus and method of substrate treatment, and semiconductor device using the method
JP2000058493A (en) 1998-08-03 2000-02-25 Memc Kk Cleaning equipment for silicon wafer
JP3145080B2 (en) 1998-11-02 2001-03-12 システム テクノロジー インコーポレイティッド Automatic etching equipment for glass for thin film transistor liquid crystal display
JP4565718B2 (en) 2000-09-11 2010-10-20 アプリシアテクノロジー株式会社 Wafer cleaning equipment
JP3739651B2 (en) * 2000-12-26 2006-01-25 大日本スクリーン製造株式会社 Substrate processing equipment
JP2004327826A (en) 2003-04-25 2004-11-18 Toshiba Corp Substrate processor
US20060060232A1 (en) 2004-04-15 2006-03-23 Tokyo Electron Limited Liquid treatment device and liquid treatment method
JP2006108512A (en) 2004-10-07 2006-04-20 Ses Co Ltd Substrate treatment apparatus
JP4302131B2 (en) 2006-09-26 2009-07-22 Okiセミコンダクタ株式会社 Semiconductor device manufacturing method and wet etching processing apparatus
JP2008147637A (en) 2006-11-16 2008-06-26 Kurita Water Ind Ltd Etching method and etching device
JP2008210910A (en) 2007-02-26 2008-09-11 Dainippon Screen Mfg Co Ltd Substrate-treating device
JP5015717B2 (en) * 2007-10-15 2012-08-29 東京エレクトロン株式会社 Substrate cleaning device
JP5213638B2 (en) 2008-10-24 2013-06-19 新電元工業株式会社 Wet etching method
JP2015115456A (en) 2013-12-11 2015-06-22 株式会社Screenホールディングス Substrate processing apparatus
TWI578396B (en) 2013-12-11 2017-04-11 斯克林集團公司 Substrate treatment method and substrate treatment apparatus
JP6189257B2 (en) 2014-06-23 2017-08-30 東京エレクトロン株式会社 Substrate liquid processing apparatus and substrate liquid processing method
JP6509104B2 (en) 2015-09-30 2019-05-08 東京エレクトロン株式会社 Substrate liquid processing system
JP6617036B2 (en) 2016-01-18 2019-12-04 株式会社Screenホールディングス Substrate processing equipment
JP6645900B2 (en) 2016-04-22 2020-02-14 キオクシア株式会社 Substrate processing apparatus and substrate processing method
JP6707412B2 (en) * 2016-07-22 2020-06-10 東京エレクトロン株式会社 Substrate liquid processing apparatus, substrate liquid processing method and storage medium
JP6609231B2 (en) 2016-09-16 2019-11-20 キオクシア株式会社 Substrate processing apparatus and semiconductor device manufacturing method
US20180233383A1 (en) 2017-02-15 2018-08-16 Toshiba Memory Corporation Substrate treatment apparatus and manufacturing method of semiconductor device
JP6860447B2 (en) 2017-02-15 2021-04-14 キオクシア株式会社 Board processing equipment
US11594430B2 (en) * 2017-09-11 2023-02-28 Tokyo Electron Limited Substrate liquid processing apparatus, substrate liquid processing method and recording medium
JP6971137B2 (en) * 2017-12-04 2021-11-24 東京エレクトロン株式会社 Board processing equipment and board processing method

Also Published As

Publication number Publication date
JP2019145686A (en) 2019-08-29
US10978316B2 (en) 2021-04-13
US20190259639A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP6985957B2 (en) Semiconductor processing equipment
JP4403177B2 (en) Liquid processing apparatus and liquid processing method
CN108666235B (en) Substrate processing apparatus and substrate processing method
JP7176904B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
KR102292278B1 (en) Substrate treating apparatus and substrate treating method
JP6347708B2 (en) Coating apparatus and cleaning method
JP6445893B2 (en) Degassing device, coating device, and degassing method
TW201332038A (en) A substrate surface treating system and method
JP5231920B2 (en) Substrate processing apparatus and processing liquid replacement method thereof
JP7178261B2 (en) Substrate liquid processor
JP7212767B2 (en) Substrate processing equipment
JP5876702B2 (en) Substrate processing equipment
JP7368264B2 (en) Substrate processing equipment and substrate processing method
TWI750592B (en) Substrate processing apparatus and substrate processing method
US20230271229A1 (en) Method of cleaning work and cleaning system for work
KR102625932B1 (en) Substrate processing apparatus and substrate processing method
KR102516920B1 (en) Substrate processing method and substrate processing device
US20210358773A1 (en) Substrate processing apparatus and substrate processing method
US20230311026A1 (en) Liquid trap tank and method for trapping liquid
KR20090012471A (en) Method for processing a substrate
JP2017014041A (en) Etching device and method for producing glass substrate for light guide plate
KR20150068019A (en) Apparatus for Wafer Cleaning

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211126

R150 Certificate of patent or registration of utility model

Ref document number: 6985957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150