JP6982992B2 - Conductive contact needle - Google Patents

Conductive contact needle Download PDF

Info

Publication number
JP6982992B2
JP6982992B2 JP2017127431A JP2017127431A JP6982992B2 JP 6982992 B2 JP6982992 B2 JP 6982992B2 JP 2017127431 A JP2017127431 A JP 2017127431A JP 2017127431 A JP2017127431 A JP 2017127431A JP 6982992 B2 JP6982992 B2 JP 6982992B2
Authority
JP
Japan
Prior art keywords
film
convex portions
substrate
insulating film
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017127431A
Other languages
Japanese (ja)
Other versions
JP2018041954A (en
Inventor
通広 川口
公信 明野
憲一 片岡
智樹 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to TW106128198A priority Critical patent/TWI684070B/en
Priority to US15/687,886 priority patent/US10373793B2/en
Priority to KR1020170109372A priority patent/KR102019549B1/en
Publication of JP2018041954A publication Critical patent/JP2018041954A/en
Application granted granted Critical
Publication of JP6982992B2 publication Critical patent/JP6982992B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • G03F1/78Patterning of masks by imaging by charged particle beam [CPB], e.g. electron beam patterning of masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70991Connection with other apparatus, e.g. multiple exposure stations, particular arrangement of exposure apparatus and pre-exposure and/or post-exposure apparatus; Shared apparatus, e.g. having shared radiation source, shared mask or workpiece stage, shared base-plate; Utilities, e.g. cable, pipe or wireless arrangements for data, power, fluids or vacuum

Description

本発明は、導通接点針に係り、例えば、電子ビームを基板に照射する場合における基板の帯電を防止するアースピン用の接点針に関する。 The present invention relates to a conduction contact needle, and relates to, for example, a contact needle for an earth pin that prevents the substrate from being charged when an electron beam is applied to the substrate.

半導体デバイスの微細化の進展を担うリソグラフィ技術は半導体製造プロセスのなかでも唯一パターンを生成する極めて重要なプロセスである。近年、LSIの高集積化に伴い、半導体デバイスに要求される回路線幅は年々微細化されてきている。これらの半導体デバイスへ所望の回路パターンを形成するためには、高精度の原画パターン(レチクル或いはマスクともいう。)が必要となる。ここで、電子線(EB:Electron beam)描画技術は本質的に優れた解像性を有しており、高精度の原画パターンの生産に用いられる。 Lithography technology, which is responsible for the progress of miniaturization of semiconductor devices, is the only extremely important process for generating patterns in the semiconductor manufacturing process. In recent years, with the increasing integration of LSIs, the circuit line width required for semiconductor devices has been miniaturized year by year. In order to form a desired circuit pattern on these semiconductor devices, a high-precision original image pattern (also referred to as a reticle or a mask) is required. Here, the electron beam (EB: Electron beam) drawing technique has essentially excellent resolution and is used for producing a high-precision original image pattern.

例えば、石英ガラス基板上に順次Cr膜(遮光膜)、及びレジスト膜が形成されたマスクブランクスに、電子ビームにより回路パターンを描画し、現像、及び遮光膜のエッチングを経て、遮光膜パターン(マスクパターン)を形成することによって露光用のマスク基板が製造される。ここで、電子ビーム描画装置により、パターンを描画する際、電子ビームの照射によってレジスト膜の帯電が生じる。かかるレジスト膜の帯電により、その後の電子ビームの軌道が曲げられ、高精度な寸法のパターンを描画することが困難になってしまう。そのため、レジスト膜を破断させて、その下層のCr膜といった導電膜にアースピンを差し込み、接地させることでレジスト膜の帯電を抑制することが行われる(例えば、特許文献1参照)。 For example, a circuit pattern is drawn by an electron beam on a mask blank in which a Cr film (light-shielding film) and a resist film are sequentially formed on a quartz glass substrate, and after development and etching of the light-shielding film, a light-shielding film pattern (mask) is drawn. By forming the pattern), a mask substrate for exposure is manufactured. Here, when the pattern is drawn by the electron beam drawing apparatus, the resist film is charged by the irradiation of the electron beam. Due to the charging of the resist film, the trajectory of the subsequent electron beam is bent, and it becomes difficult to draw a pattern having high-precision dimensions. Therefore, the resist film is broken, an earth pin is inserted into a conductive film such as a Cr film under the resist film, and the resist film is grounded to suppress the charge of the resist film (see, for example, Patent Document 1).

昨今のパターンの微細化に伴い、マスクパターンの形成にあたって、遮光膜の耐エッチング性を向上させるべく、従来とは異なり、遮光膜上に緻密な絶縁膜の層を形成しておくことが検討されている。緻密な絶縁膜は、引張強度が大きいため、従来のアースピンでは、荷重を大きくしても緻密な絶縁膜を変形させるだけで破断させることができず、その下層の導電膜まで侵入することが困難になってきたといった問題があった。その結果、導電膜にアースピンを差し込んで接地させるといったことができずレジスト膜の帯電を十分に抑制することが困難になってしまうといった問題があった。一方、さらに荷重を大きくすると、今度は石英ガラス基板を破断させてしまい、パーティクルを発生させてしまうといった新たな問題につながってしまう。かかる問題は、マスク基板に限るものではなく、例えば、半導体基板に直接電子ビームを照射してパターンを描画する場合等にも同様に生じ得る。その他、接地させる場合だけではなく、半導体基板の絶縁膜下の導電層の抵抗値の測定を行う場合等にも絶縁膜を破断できず下層の導電層に到達できないといった問題が生じ得る。 With the recent miniaturization of patterns, in order to improve the etching resistance of the light-shielding film, it is considered to form a dense insulating film layer on the light-shielding film in order to improve the etching resistance of the light-shielding film. ing. Since a dense insulating film has a high tensile strength, it is difficult for a conventional earth pin to break the dense insulating film only by deforming it even if the load is increased, and it is difficult to penetrate the conductive film under the dense insulating film. There was a problem that it became. As a result, there is a problem that it is not possible to insert the ground pin into the conductive film to ground it, and it becomes difficult to sufficiently suppress the charging of the resist film. On the other hand, if the load is further increased, the quartz glass substrate will be broken this time, leading to a new problem such as generation of particles. This problem is not limited to the mask substrate, and may also occur, for example, when the semiconductor substrate is directly irradiated with an electron beam to draw a pattern. In addition, there may be a problem that the insulating film cannot be broken and the lower conductive layer cannot be reached, not only when the ground is grounded but also when the resistance value of the conductive layer under the insulating film of the semiconductor substrate is measured.

特開2012−015331号公報Japanese Unexamined Patent Publication No. 2012-015331

そこで、本発明の一態様は、緻密な被破断膜を破断させて下層膜と導通することが可能な導通接点針を提供する。 Therefore, one aspect of the present invention provides a conduction contact needle capable of breaking a dense film to be fractured and conducting conduction with the underlying film.

本発明の一態様の導通接点針は、
導電膜上に被破断膜が形成された基板を被破断膜上から押圧して、被破断膜を破断させて導電膜と導通する導通接点針であって、
針本体と、
針本体の先端部に形成された複数の凸部と、
を備え
前記複数の凸部によって、前記針本体の先端部分が丸みを帯びた曲面に形成されることを特徴とする。
The conduction contact needle of one aspect of the present invention is
It is a conduction contact needle that presses a substrate on which a fractured film is formed on a conductive film from above the fractured film to break the fractured film and conducts with the conductive film.
With the needle body
Multiple convex parts formed on the tip of the needle body,
Equipped with
The plurality of convex portions are characterized in that the tip end portion of the needle body is formed into a rounded curved surface.

また、複数の凸部の高さ寸法は、被破断膜の膜厚よりも大きく形成されると好適である。 Further, it is preferable that the height dimension of the plurality of convex portions is formed to be larger than the film thickness of the film to be broken.

また、被破断膜は、酸化クロム(CrO)を有し、
複数の凸部の隣り合う凸部間の隙間は1.3μm以上に形成されると好適である。
Further, the film to be broken has chromium oxide (CrO 2 ) and has.
It is preferable that the gap between the adjacent convex portions of the plurality of convex portions is formed to be 1.3 μm or more.

また、導電膜として、クロム(Cr)膜とタングステン(W)膜とのうちの1つが用いられると好適である。 Further, it is preferable that one of a chromium (Cr) film and a tungsten (W) film is used as the conductive film.

また、基板として、半導体基板と露光用マスク基板とのうちの1つが用いられると好適である。 Further, it is preferable that one of a semiconductor substrate and an exposure mask substrate is used as the substrate.

本発明の一態様によれば、緻密な被破断膜を破断させて下層膜と導通することができる。よって、導電膜上に形成された他の膜の帯電を抑制できる。 According to one aspect of the present invention, it is possible to break a dense fractured film and conduct it with the underlying film. Therefore, it is possible to suppress the charging of other films formed on the conductive film.

実施の形態1における導通接点針の構成を示す構成図である。It is a block diagram which shows the structure of the conduction contact needle in Embodiment 1. FIG. 実施の形態1における導通接点針の先端側から見た図である。It is a figure seen from the tip side of the conduction contact needle in Embodiment 1. FIG. 実施の形態1における導通接点針の導通状態の一例を示す断面図である。It is sectional drawing which shows an example of the conduction state of the conduction contact needle in Embodiment 1. FIG. 実施の形態1における導通接点針の先端部分の差し込み前後の状態の一例を示す断面図である。It is sectional drawing which shows an example of the state before and after the insertion of the tip part of the conduction contact needle in Embodiment 1. FIG. 実施の形態1における凸部のサイズと数と応力との関係の一例を示す図である。It is a figure which shows an example of the relationship between the size and the number of convex portions and stress in Embodiment 1. FIG. 実施の形態1における使用可能な凸部のサイズと数との関係の一例を示す図である。It is a figure which shows an example of the relationship between the size and the number of usable convex portions in Embodiment 1. FIG. 実施の形態1における凸部によって押圧された絶縁膜の状態と隣り合う凸部間の隙間サイズとの関係の一例を示す図である。It is a figure which shows an example of the relationship between the state of the insulating film pressed by the convex portion in Embodiment 1 and the gap size between adjacent convex portions. 実施の形態1における凸部の両端の辺にかかる応力差と隣り合う凸部間の隙間のサイズとの関係を示す図である。It is a figure which shows the relationship between the stress difference applied to the sides of both ends of a convex part in Embodiment 1 and the size of the gap between adjacent convex parts. 実施の形態1における凸部の配置状況の一例を示す図である。It is a figure which shows an example of the arrangement state of the convex part in Embodiment 1. FIG. 実施の形態1における凸部の先端面のエッジ部の面取り加工の発生応力に対する影響を説明するための図である。It is a figure for demonstrating the influence on the generated stress of the chamfering process of the edge portion of the tip surface of the convex portion in Embodiment 1. FIG. 実施の形態1と比較例とにおける導通接点針で被破断膜上から押圧した場合の接触抵抗値の一例を示す図である。It is a figure which shows an example of the contact resistance value at the time of pressing from the breaking film by the conduction contact needle in Embodiment 1 and the comparative example. 実施の形態1と比較例とにおける導通接点針で被破断膜上から押圧した場合の接触抵抗値の他の一例を示す図である。It is a figure which shows another example of the contact resistance value at the time of pressing from the breaking film by the conduction contact needle in Embodiment 1 and the comparative example. 実施の形態1と比較例とにおける接触痕の一例を説明するための図である。It is a figure for demonstrating an example of the contact mark in Embodiment 1 and the comparative example. 実施の形態1における描画装置の構成を示す概念図である。It is a conceptual diagram which shows the structure of the drawing apparatus in Embodiment 1. FIG. 実施の形態1における基板カバーを示す上面図である。It is a top view which shows the substrate cover in Embodiment 1. FIG. 図15の基板カバーが基板に装着された状態を示す上面図である。It is a top view which shows the state which the substrate cover of FIG. 15 is attached to a substrate. 図15の基板カバーの断面図である。It is sectional drawing of the substrate cover of FIG. 実施の形態2における導通接点針の構成を示す構成図である。It is a block diagram which shows the structure of the conduction contact needle in Embodiment 2.

実施の形態1.
図1は、実施の形態1における導通接点針の構成を示す構成図である。図2は、実施の形態1における導通接点針の先端側から見た図である。図1において、実施の形態1における導通接点針18は、針本体13と、針本体13の先端部に形成された複数の凸部11とを備えている。導通接点針18は、図1及び図2に示すように、針本体13が円柱状或いは四角柱状等で形成され、先端側(図1では下側)が先細りし、先細り部分のさらに先端部分が丸みを帯びた曲面、例えば、球状(SR形状)に形成される。先端側を先細りさせることで、押圧した際に膜中に侵入し易くできる。そして、かかる例えば球状に形成された先端部分の領域20が先端側から掘り込まれ、図1及び図2に示すように、四角柱状で形成された複数の凸部11(或いは凸部11間に形成される複数の凹部)を形成する。先端部分が丸みを帯びた曲面に複数の凸部11を形成することで、少なくとも曲面の先端に形成される凸部11を確実に導電膜に接触させることができる。領域20は、ホルム(holm)の式における見かけの接触面よりも大きな領域に設定する。これにより、見かけの接触面内には確実にホルム(holm)の式における真実接触面を形成する複数の凸部11が配置される。
Embodiment 1.
FIG. 1 is a configuration diagram showing a configuration of a conduction contact needle according to the first embodiment. FIG. 2 is a view seen from the tip end side of the conduction contact needle in the first embodiment. In FIG. 1, the conduction contact needle 18 according to the first embodiment includes a needle body 13 and a plurality of convex portions 11 formed on the tip of the needle body 13. As shown in FIGS. 1 and 2, the conduction contact needle 18 has a needle body 13 formed of a columnar or square columnar shape, the tip side (lower side in FIG. 1) is tapered, and the tip portion of the tapered portion is further tapered. It is formed on a rounded curved surface, for example, a spherical surface (SR shape). By tapering the tip side, it is possible to easily penetrate into the membrane when pressed. Then, for example, the region 20 of the tip portion formed in a spherical shape is dug from the tip side, and as shown in FIGS. 1 and 2, a plurality of convex portions 11 (or between the convex portions 11) formed in a square columnar shape are formed. Multiple recesses to be formed) are formed. By forming a plurality of convex portions 11 on a curved surface having a rounded tip portion, at least the convex portions 11 formed on the tip of the curved surface can be reliably brought into contact with the conductive film. The region 20 is set to a region larger than the apparent contact surface in the holm equation. As a result, a plurality of protrusions 11 that surely form the true contact surface in the formula of Holm are arranged in the apparent contact surface.

導通接点針18は、導電性材料で構成される。例えば、導電性ダイヤモンド、或いは導電性ジルコニア等の超高硬度な導電性材料が用いられると好適である。なお、針本体13の形状は、円柱状或いは四角柱状の他、三角柱状、五角柱状、六角柱状、或いはそれ以上の多角柱状であっても構わない。また、先細りする先端側は、円錐状、或いは、三角錐状、四角錐状、五角錐状、六角錐状、若しくはそれ以上の多角錐状であっても構わない。また、凸部11の形状は、四角柱状の他、円柱状、三角柱状、五角柱状、六角柱状、或いはそれ以上の多角柱状であっても構わない。より好適には、四角柱以上の多角柱状或いは円柱状が望ましい。 The conductive contact needle 18 is made of a conductive material. For example, it is preferable to use an ultra-high hardness conductive material such as conductive diamond or conductive zirconia. The shape of the needle body 13 may be a triangular column, a pentagonal column, a hexagonal column, or a polygonal column of more than the columnar or square columnar. Further, the tapered tip side may be conical, triangular pyramid, quadrangular pyramid, pentagonal pyramid, hexagonal pyramid, or more polygonal pyramid. Further, the shape of the convex portion 11 may be a rectangular column, a triangular column, a pentagonal column, a hexagonal column, or a polygonal column having more than that. More preferably, a polygonal column or a columnar column having a quadrangular prism or more is desirable.

針本体13のサイズは、断面直径或いは断面1辺が0.1mm〜0.5mm程度が好適である。望ましくは0.2mm〜0.4mmが好適である。さらに望ましくは0.2mm〜0.3mmが好適である。また、長手方向の長さは、1mm〜5mm程度が好適である。望ましくは1mm〜3mmが好適である。さらに望ましくは1mm〜1.5mmが好適である。先端部分の球状は、SR10μm〜40μmが好適である。望ましくはSR15μm〜30μmが好適である。さらに望ましくはSR15μm〜25μmが好適である。なお、図1では、凸部11の幅Wと或いは凸部11間の隙間Lのサイズが同程度に示されているが、後述するように、隙間Lは、凸部11の幅Wよりも大きく形成される。 The size of the needle body 13 is preferably about 0.1 mm to 0.5 mm in cross-sectional diameter or one side of the cross-section. Desirably, 0.2 mm to 0.4 mm is preferable. More preferably, 0.2 mm to 0.3 mm is preferable. The length in the longitudinal direction is preferably about 1 mm to 5 mm. Desirably, 1 mm to 3 mm is suitable. More preferably, 1 mm to 1.5 mm is preferable. The spherical shape of the tip portion is preferably SR 10 μm to 40 μm. Desirably, SR 15 μm to 30 μm is suitable. More preferably, SR 15 μm to 25 μm is preferable. In FIG. 1, the width W of the convex portion 11 and the size of the gap L between the convex portions 11 are shown to be about the same, but as will be described later, the gap L is larger than the width W of the convex portion 11. It is formed large.

図3は、実施の形態1における導通接点針の導通状態の一例を示す断面図である。図3の例では、半導体装置を製造するための露光用マスク基板の断面を一例として示している。電子ビームが照射される露光用マスク基板300(描画前のマスクブランクス)では、ガラス基板302上に導電膜304が形成され、導電膜304上に絶縁膜306が形成され、絶縁膜306上にレジスト膜308が形成される。導電膜304の材料として、例えば、クロム(Cr)、タングステン(W)、及び窒化クロム(CrNx)等を用いると好適できる。レジスト膜308上からの描画後、現像、及びエッチングを経て残った絶縁膜306が遮光膜になって、かかる絶縁膜306のマスクパターンが形成される。上述したように、昨今のパターンの微細化に伴い、マスクパターンの形成にあたって、導電膜304(遮光膜)の耐エッチング性を向上させるべく、従来とは異なり、導電膜304上に緻密な絶縁膜306の層を形成する。緻密な絶縁膜306の材料として、例えば、酸化クロム(CrO)、窒化シリコン(SiNx)、或いは酸化シリコン(SiOx)等を用いると好適できる。緻密な絶縁膜306は、引張強度が大きい。そのため、従来のアースピンでは、レジスト膜を破断させることができても緻密な絶縁膜306を破断させることが困難であった。かかる点については、アースピンへの荷重を大きくしても、緻密な絶縁膜306を変形させるだけで破断させることができず、その下層の導電膜304まで侵入することが困難であった。その結果、導電膜304にアースピンを差し込み、接地させることができずレジスト膜308の帯電を十分に抑制することが困難になってしまうといった問題があった。これに対して、実施の形態1では、針本体13の先細り部分の先端部分に複数の凸部11を形成することによって、導電膜304上に被破断膜となる緻密な絶縁膜306とレジスト膜308とが形成された露光用マスク基板300(描画前のマスクブランクス)(基板の一例)を被破断膜上から押圧して、被破断膜を破断させて導電膜304と導通することができる。ここでは、緻密な絶縁膜306とレジスト膜308との積層膜が、導電膜304に通じるための被破断膜となる。なお、図3では、導通接点針18の先端部分の複数の凸部11の図示は省略している。次に、導通接点針18の先端部分の複数の凸部11の形状およびサイズ等の仕様について説明する。 FIG. 3 is a cross-sectional view showing an example of a conduction state of the conduction contact needle according to the first embodiment. In the example of FIG. 3, a cross section of an exposure mask substrate for manufacturing a semiconductor device is shown as an example. In the exposure mask substrate 300 (mask blanks before drawing) to which the electron beam is irradiated, the conductive film 304 is formed on the glass substrate 302, the insulating film 306 is formed on the conductive film 304, and the resist is formed on the insulating film 306. The film 308 is formed. As the material of the conductive film 304, for example, chromium (Cr), tungsten (W), chromium nitride (CrNx) and the like can be preferably used. After drawing from the resist film 308, the insulating film 306 remaining after development and etching becomes a light-shielding film, and a mask pattern of the insulating film 306 is formed. As described above, with the recent miniaturization of patterns, in order to improve the etching resistance of the conductive film 304 (light-shielding film) in forming the mask pattern, unlike the conventional case, a dense insulating film is formed on the conductive film 304. Form 306 layers. As the material of the dense insulating film 306, for example, chromium oxide (CrO 2 ), silicon nitride (SiNx), silicon oxide (SiOx), or the like can be preferably used. The dense insulating film 306 has a high tensile strength. Therefore, with the conventional earth pin, it is difficult to break the dense insulating film 306 even if the resist film can be broken. Regarding this point, even if the load on the ground pin was increased, the dense insulating film 306 could not be broken only by deforming it, and it was difficult to penetrate the conductive film 304 in the lower layer thereof. As a result, there is a problem that the ground pin cannot be inserted into the conductive film 304 and grounded, and it becomes difficult to sufficiently suppress the charging of the resist film 308. On the other hand, in the first embodiment, by forming a plurality of convex portions 11 at the tip portion of the tapered portion of the needle body 13, a dense insulating film 306 and a resist film serving as a broken film are formed on the conductive film 304. The exposure mask substrate 300 (mask blanks before drawing) (an example of the substrate) on which the 308 is formed can be pressed from above the broken film to break the broken film and conduct the conductive film 304. Here, the laminated film of the dense insulating film 306 and the resist film 308 becomes a fractured film for communicating with the conductive film 304. Note that, in FIG. 3, the illustration of the plurality of convex portions 11 at the tip portion of the conduction contact needle 18 is omitted. Next, specifications such as the shape and size of the plurality of convex portions 11 at the tip of the conduction contact needle 18 will be described.

図4は、実施の形態1における導通接点針の先端部分の差し込み前後の状態の一例を示す断面図である。図4(a)では、導通接点針18の先端部分の複数の凸部11を図3と同様の露光用マスク基板300(描画前のマスクブランクス)に差し込む前の状態を示している。露光用マスク基板300(描画前のマスクブランクス)において、導電膜304は、例えば、10〜30nmの膜厚で形成される。そして、絶縁膜306は、例えば、20〜40nmの膜厚で形成される。そして、レジスト膜308は、例えば、80〜200nmの膜厚で形成される。かかる露光用マスク基板300(描画前のマスクブランクス)に対して、導通接点針18を押圧して、複数の凸部11をレジスト膜308の上方から差し込むと、図4(b)に示すように、複数の凸部11は、レジスト膜308を破断させて侵入した後、下層の絶縁膜306を破断させる。そして、下層の導電膜304に到達する。その場合に、隣り合う凸部11間の隙間には、破断したレジスト膜308と絶縁膜306が埋め込まれていく。よって、複数の凸部11の高さ寸法Dは、レジスト膜308と絶縁膜306との膜厚の合計(被破断膜の膜厚)よりも大きく形成される。例えば、レジスト膜308と絶縁膜306との膜厚の合計が200nm(0.2μm)であれば、複数の凸部11の高さ寸法Dは、0.2μmよりも大きくなるように形成する。なお、図4(b)に示すように、隣り合う凸部11間の隙間には、凸部11が侵入したことによって押し遣られた膜部分も一緒に埋め込まれるので、複数の凸部11の高さ寸法Dは、かかる押し遣られた膜部分が逃げ込むことができる隙間分を確保することが有効である。よって、レジスト膜308と絶縁膜306との膜厚の合計よりも若干大きく形成する方が好適である。例えば、レジスト膜308と絶縁膜306との膜厚の合計の1.5倍以上にするとさらに好適である。例えば、レジスト膜308と絶縁膜306との膜厚の合計が200nm(0.2μm)であれば、複数の凸部11の高さ寸法Dは、0.2μm以上必要となり、0.3μm以上にするとさらに好適である。例えば、レジスト膜308のポアソン比が0.3〜0.4となる材料を用い、レジスト膜308と絶縁膜306との膜厚の合計が200nm(0.2μm)の場合に、複数の凸部11の高さ寸法Dは、0.3μmあれば十分な導通効果(抵抗値)を得ることができることが実験により確認されている。なお、必要な凸部11の高さ寸法D=(レジスト膜厚+絶縁膜厚)+(レジスト膜厚×ポアゾン比)で求めることができる。 FIG. 4 is a cross-sectional view showing an example of a state before and after insertion of the tip portion of the conduction contact needle according to the first embodiment. FIG. 4A shows a state before inserting the plurality of convex portions 11 of the tip portion of the conduction contact needle 18 into the exposure mask substrate 300 (mask blanks before drawing) similar to FIG. In the exposure mask substrate 300 (mask blanks before drawing), the conductive film 304 is formed, for example, with a film thickness of 10 to 30 nm. The insulating film 306 is formed, for example, with a film thickness of 20 to 40 nm. The resist film 308 is formed, for example, with a film thickness of 80 to 200 nm. When the conduction contact needle 18 is pressed against the exposure mask substrate 300 (mask blanks before drawing) and the plurality of convex portions 11 are inserted from above the resist film 308, as shown in FIG. 4 (b). The plurality of convex portions 11 break the resist film 308 and invade, and then break the underlying insulating film 306. Then, it reaches the conductive film 304 in the lower layer. In that case, the broken resist film 308 and the insulating film 306 are embedded in the gap between the adjacent convex portions 11. Therefore, the height dimension D of the plurality of convex portions 11 is formed to be larger than the total film thickness of the resist film 308 and the insulating film 306 (the film thickness of the film to be broken). For example, if the total film thickness of the resist film 308 and the insulating film 306 is 200 nm (0.2 μm), the height dimension D of the plurality of convex portions 11 is formed to be larger than 0.2 μm. As shown in FIG. 4B, since the film portion pushed by the invasion of the convex portion 11 is also embedded in the gap between the adjacent convex portions 11, the plurality of convex portions 11 have a plurality of convex portions 11. For the height dimension D, it is effective to secure a gap portion through which the pressed film portion can escape. Therefore, it is preferable to form the resist film 308 slightly larger than the total film thickness of the insulating film 306. For example, it is more preferable to make it 1.5 times or more the total film thickness of the resist film 308 and the insulating film 306. For example, if the total film thickness of the resist film 308 and the insulating film 306 is 200 nm (0.2 μm), the height dimension D of the plurality of convex portions 11 needs to be 0.2 μm or more, and is 0.3 μm or more. Then, it is more suitable. For example, when a material having a Poisson's ratio of the resist film 308 of 0.3 to 0.4 is used and the total thickness of the resist film 308 and the insulating film 306 is 200 nm (0.2 μm), a plurality of convex portions are formed. It has been confirmed by experiments that a sufficient conduction effect (resistance value) can be obtained if the height dimension D of 11 is 0.3 μm. It can be obtained by the required height dimension D of the convex portion 11 = (resist film thickness + insulating film thickness) + (resist film thickness × porezone ratio).

図5は、実施の形態1における凸部のサイズと数と応力との関係の一例を示す図である。図5において、縦軸は、各層に発生する応力を示し、横軸は凸部のサイズを示す。ここでは、例えば0.225N(23gf)の荷重で導通接点針18を押圧した場合を示している。また、図5では、凸部11が25個(B)、50個(D)、及び100個(F)、それぞれ形成された場合にCrO(絶縁膜306)に働く各応力の分布、及び凸部11が25個(A)、50個(C)、及び100個(E)、それぞれ形成された場合にクォーツ(Qz:ガラス基板302)に働く各応力の分布、が示されている。ここでの個数は、絶縁膜306及びクォーツを押圧する凸部11の個数を示す。 FIG. 5 is a diagram showing an example of the relationship between the size, number, and stress of the convex portions in the first embodiment. In FIG. 5, the vertical axis indicates the stress generated in each layer, and the horizontal axis indicates the size of the convex portion. Here, for example, the case where the conduction contact needle 18 is pressed with a load of 0.225N (23gf) is shown. Further, in FIG. 5, 25 (B), 50 (D), and 100 (F) convex portions 11 are formed, and the distribution of each stress acting on CrO 2 (insulating film 306) when the convex portions 11 are formed, and The distribution of each stress acting on the quartz (Qz: glass substrate 302) when 25 (A), 50 (C), and 100 (E) convex portions 11 are formed is shown. The number here indicates the number of the insulating film 306 and the convex portion 11 that presses the quartz.

実施の形態1において、導通接点針18が導電膜304と導通するためには、CrO(絶縁膜306)を破断させる必要がある。よって、CrOの破断応力(図5では、約3000MPa)よりも凸部11の先端の応力が大きくなるサイズと数の凸部11が必要となる。一方、導通接点針18がガラス基板302を破断させてしまうとパーティクルが発生するため望ましくない。よって、クォーツの破断応力(図5では、約14000MPa)よりも凸部11の先端の応力が小さくなるサイズと数の凸部11が必要となる。したがって、凸部11のサイズと数は、対象となる基板の材料によってその使用可能な範囲が決定される。なお、複数の凸部11によって、絶縁膜306を破断させる場合、凸部11の頂面(先端側端面)全面で膜を破断させるわけではなく、凸部11の頂面(先端側端面)を形成する周囲の辺に生じる応力集中によって破断させる。言い換えれば、せん断応力=荷重/(凸部11の頂面周囲の辺の長さの合計×個数)で近似できる。よって、図5で示す応力分布は、矩形の頂面(先端側端面)の周囲の辺に生じる集中応力の値で示している。複数の凸部の無い従来のアースピンでは、集中応力が生じる辺が不足している、或いは存在しないため、アースピンを押圧する荷重を増加しても結局アースピンの先端に絶縁膜306を破断させるだけの集中応力が生じない。その結果、絶縁膜306を変形させるだけで破断させるには至らない。これに対して、実施の形態1では、複数の凸部11によって、絶縁膜306を破断させるだけの集中応力を発生させることができる。その結果、絶縁膜306を破断させて、下層の導電膜304に到達できる。 In the first embodiment, in order for the conductive contact needle 18 to conduct with the conductive film 304, it is necessary to break CrO 2 (insulating film 306). Therefore, a size and number of convex portions 11 in which the stress at the tip of the convex portion 11 is larger than the breaking stress of CrO 2 (about 3000 MPa in FIG. 5) is required. On the other hand, if the conduction contact needle 18 breaks the glass substrate 302, particles are generated, which is not desirable. Therefore, it is necessary to have a size and number of convex portions 11 in which the stress at the tip of the convex portion 11 is smaller than the breaking stress of quartz (about 14000 MPa in FIG. 5). Therefore, the usable range of the size and number of the convex portions 11 is determined by the material of the target substrate. When the insulating film 306 is broken by the plurality of convex portions 11, the film is not broken on the entire top surface (tip side end face) of the convex portion 11, but the top surface (tip side end face) of the convex portion 11 is broken. It breaks due to the stress concentration that occurs on the surrounding edges that form. In other words, it can be approximated by shear stress = load / (total length of sides around the top surface of the convex portion 11 × number). Therefore, the stress distribution shown in FIG. 5 is indicated by the value of the concentrated stress generated on the peripheral side of the top surface (end surface on the tip side) of the rectangle. In the conventional ground pin without a plurality of protrusions, the side where the concentrated stress is generated is insufficient or does not exist, so that even if the load for pressing the ground pin is increased, the insulating film 306 is only broken at the tip of the ground pin. No concentrated stress occurs. As a result, the insulating film 306 is only deformed and not broken. On the other hand, in the first embodiment, the plurality of convex portions 11 can generate a concentrated stress sufficient to break the insulating film 306. As a result, the insulating film 306 can be broken to reach the lower conductive film 304.

図6は、実施の形態1における使用可能な凸部のサイズと数との関係の一例を示す図である。図6では、縦軸に凸部11の頂面(先端側端面)を形成する周囲の辺のサイズ(正方形の1辺)を示し、横軸に凸部11の膜への接触個数を示している。図6では、図5の説明で使用可能とした範囲を示し、CrOの破断応力境界とクォーツの破断応力境界の2線の間の領域のサイズと個数(本数)が凸部の使用範囲となる。例えば、凸部11の膜への接触個数を40個に設定する場合、凸部11の頂面(先端側端面)を形成する周囲の辺のサイズ(正方形の1辺)は0.3μm〜0.47μmのサイズで形成可能である。例えば、凸部11の膜への接触個数を60個に設定する場合、凸部11の頂面(先端側端面)を形成する周囲の辺のサイズ(正方形の1辺)は0.22μm〜0.42μmのサイズで形成可能である。逆に、凸部11の頂面(先端側端面)を形成する周囲の辺のサイズ(正方形の1辺)を0.3μmに設定すると、凸部11の膜への接触個数を40〜105個の範囲で形成可能となる。複数の凸部11を製造する場合、現実的には、凸部11の頂面(先端側端面)を形成する周囲の辺のサイズ(正方形の1辺)は0.05μm以上が望ましい。より望ましくは、0.2μm〜0.5μmのサイズが好適である。さらに望ましくは、0.3μm〜0.4μmのサイズが好適である。凸部11の膜への接触個数は25個以上が望ましい。より望ましくは、30〜65個が好適である。導通接点針18を製造する場合には、実際には絶縁膜306に接触しない凸部11も含めて、かかる条件範囲で決まる接触個数以上の凸部11を形成すればよい。これにより、絶縁膜306の破断に必要な個数の凸部11を確保できる。 FIG. 6 is a diagram showing an example of the relationship between the size and the number of usable convex portions in the first embodiment. In FIG. 6, the vertical axis shows the size of the peripheral side (one side of the square) forming the top surface (tip side end surface) of the convex portion 11, and the horizontal axis shows the number of contacts of the convex portion 11 with the film. There is. FIG. 6 shows the range that can be used in the explanation of FIG. 5, and the size and number (number) of the region between the two lines of the breaking stress boundary of CrO 2 and the breaking stress boundary of quartz is the range of use of the convex portion. Become. For example, when the number of contacts of the convex portion 11 to the film is set to 40, the size of the peripheral side (one side of the square) forming the top surface (tip side end surface) of the convex portion 11 is 0.3 μm to 0. It can be formed with a size of .47 μm. For example, when the number of contacts of the convex portion 11 to the film is set to 60, the size of the peripheral side (one side of the square) forming the top surface (tip side end surface) of the convex portion 11 is 0.22 μm to 0. It can be formed with a size of .42 μm. On the contrary, when the size of the peripheral side forming the top surface (tip side end surface) of the convex portion 11 (one side of the square) is set to 0.3 μm, the number of contacts of the convex portion 11 with the film is 40 to 105. It can be formed within the range of. When manufacturing a plurality of convex portions 11, in reality, it is desirable that the size of the peripheral side (one side of the square) forming the top surface (tip side end surface) of the convex portion 11 is 0.05 μm or more. More preferably, a size of 0.2 μm to 0.5 μm is suitable. More preferably, a size of 0.3 μm to 0.4 μm is suitable. It is desirable that the number of contacts of the convex portion 11 with the film is 25 or more. More preferably, 30 to 65 pieces are suitable. When manufacturing the conductive contact needle 18, it is sufficient to form the convex portions 11 having the number of contacts or more determined by the condition range, including the convex portions 11 that do not actually contact the insulating film 306. As a result, the number of convex portions 11 required for breaking the insulating film 306 can be secured.

図7は、実施の形態1における凸部によって押圧された絶縁膜の状態と隣り合う凸部間の隙間サイズとの関係の一例を示す図である。図7(a)では、隣り合う凸部11間の隙間のサイズ(距離)L1が十分な大きさで形成された場合における隣り合う複数の凸部11によって押圧された絶縁膜306の断面状態を示す。図7(b)では、隣り合う凸部11間の隙間のサイズ(距離)L2が十分な大きさよりも狭く形成された場合における隣り合う複数の凸部11によって押圧された絶縁膜306の断面状態を示す。L1>L2となる。凸部11が絶縁膜306を押圧する場合、実際に絶縁膜306を破断するのは、凸部11の頂面(先端側端面)を形成する周囲の辺の作用による。よって、かかる辺に集中応力を生じさせる必要がある。ここで、図7(b)に示すように、隣り合う凸部11間の隙間のサイズ(距離)Lが狭い場合、例えば、左端に位置する凸部11の左側の辺a1と、右端に位置する凸部11の右側の辺b3と、には集中応力が生じる。その結果、かかる2辺a1,b3では、絶縁膜306を少なくとも変形させる(ひずませる)ことができる。しかし、2辺a1,b3で変形させられた絶縁膜306は、2辺a1,b3の間では平坦のままの状態を維持してしまう。言い換えれば、中央の凸部11では、絶縁膜306は変形しない。すなわち、中央の凸部11の辺a2,b2には、集中応力が生じていない。同様に、左端に位置する凸部11の右側の辺b1と、右端に位置する凸部11の左側の辺a3でも絶縁膜306は変形しない。言い換えれば、辺b1,a3には、集中応力が生じていない。よって、このまま荷重を大きくしても、辺b1,a2,b2,a3では、絶縁膜306を破断することが困難になる。その結果、少なくとも中央の凸部11は下層の導電膜304に接触できない。これでは、真実接触面を構成する凸部11の個数が不足し、帯電防止に必要な接触抵抗値を得られなくなってしまう。一方、図7(a)に示すように、隣り合う凸部11間の隙間のサイズ(距離)L1が十分な大きさに確保されると、絶縁膜306に接触する隣り合う凸部11のすべての辺で絶縁膜306を少なくとも変形させる(ひずませる)ことができる。すなわち、隣り合う凸部11のすべての辺a1,b1,a3,b3で集中応力を生じさせることができる。そして、かかる各辺の応力がそれぞれ絶縁膜306のせん断応力(引っ張り応力)を超えれば、それぞれ絶縁膜306を破断できる。その結果、隣り合う凸部11を下層の導電膜304に接触させることができる。よって、真実接触面を構成する凸部11の個数を確保でき、帯電防止に必要な接触抵抗値を得ることができる。したがって、隣り合う凸部11のすべての辺a1,b1,a3,b3で絶縁膜306のせん断応力(引っ張り応力)を超える応力が得られるような隣り合う凸部11間の隙間のサイズ(距離)L1で複数の凸部11を形成すればよい。 FIG. 7 is a diagram showing an example of the relationship between the state of the insulating film pressed by the convex portion in the first embodiment and the gap size between the adjacent convex portions. FIG. 7A shows a cross-sectional state of the insulating film 306 pressed by the plurality of adjacent convex portions 11 when the size (distance) L1 of the gap between the adjacent convex portions 11 is formed to be sufficiently large. show. In FIG. 7B, the cross-sectional state of the insulating film 306 pressed by the plurality of adjacent convex portions 11 when the size (distance) L2 of the gap between the adjacent convex portions 11 is formed narrower than sufficient. Is shown. L1> L2. When the convex portion 11 presses the insulating film 306, the insulating film 306 is actually broken due to the action of the surrounding side forming the top surface (tip side end surface) of the convex portion 11. Therefore, it is necessary to generate a concentrated stress on such a side. Here, as shown in FIG. 7B, when the size (distance) L of the gap between the adjacent convex portions 11 is narrow, for example, the left side side a1 of the convex portion 11 located at the left end and the position at the right end. Concentrated stress is generated on the right side b3 of the convex portion 11 to be formed. As a result, the insulating film 306 can be at least deformed (distorted) on the two sides a1 and b3. However, the insulating film 306 deformed by the two sides a1 and b3 maintains a flat state between the two sides a1 and b3. In other words, the insulating film 306 is not deformed at the central convex portion 11. That is, no concentrated stress is generated on the sides a2 and b2 of the central convex portion 11. Similarly, the insulating film 306 is not deformed by the right side b1 of the convex portion 11 located at the left end and the left side a3 of the convex portion 11 located at the right end. In other words, no concentrated stress is generated on the sides b1 and a3. Therefore, even if the load is increased as it is, it becomes difficult to break the insulating film 306 on the sides b1, a2, b2, and a3. As a result, at least the central convex portion 11 cannot come into contact with the lower conductive film 304. In this case, the number of convex portions 11 constituting the true contact surface is insufficient, and the contact resistance value required for antistatic cannot be obtained. On the other hand, as shown in FIG. 7A, when the size (distance) L1 of the gap between the adjacent convex portions 11 is secured to a sufficient size, all of the adjacent convex portions 11 in contact with the insulating film 306 are all. The insulating film 306 can be at least deformed (distorted) at the side of. That is, concentrated stress can be generated on all the sides a1, b1, a3, b3 of the adjacent convex portions 11. Then, if the stress on each side exceeds the shear stress (tensile stress) of the insulating film 306, the insulating film 306 can be broken. As a result, the adjacent convex portions 11 can be brought into contact with the lower conductive film 304. Therefore, the number of convex portions 11 constituting the true contact surface can be secured, and the contact resistance value required for antistatic can be obtained. Therefore, the size (distance) of the gap between the adjacent convex portions 11 so that the stress exceeding the shear stress (tensile stress) of the insulating film 306 can be obtained on all the sides a1, b1, a3, b3 of the adjacent convex portions 11. A plurality of convex portions 11 may be formed at L1.

図8は、実施の形態1における凸部の両端の辺にかかる応力差と隣り合う凸部間の隙間のサイズとの関係を示す図である。隣り合う凸部11が共に絶縁膜306を確実に破断させるには、各凸部11の両端の辺(例えば、図7(a)の辺a1,b1)に絶縁膜306を変形させる(ひずませる)応力が生じ、かつ、両端の辺(例えば、図7(a)の辺a1,b1)に生じる応力差が0になる状態が最も望ましい。応力差を0にするためには、図8の例では、隣り合う凸部11間の隙間のサイズ(距離)Lが1.8μm必要であることがわかる。ただし、実験の結果、隣り合う凸部11間の隙間のサイズ(距離)Lが1.3μm以上あれば、応力差が0でなくても、隣り合う凸部11が共に絶縁膜306を破断できることがわかっている。 FIG. 8 is a diagram showing the relationship between the stress difference applied to the sides of both ends of the convex portion in the first embodiment and the size of the gap between the adjacent convex portions. In order for the adjacent convex portions 11 to surely break the insulating film 306 together, the insulating film 306 is deformed (distorted) to the sides at both ends of each convex portion 11 (for example, the sides a1 and b1 in FIG. 7A). ) It is most desirable that the stress is generated and the stress difference generated on the sides at both ends (for example, the sides a1 and b1 in FIG. 7A) becomes zero. In the example of FIG. 8, in order to make the stress difference 0, it can be seen that the size (distance) L of the gap between the adjacent convex portions 11 needs to be 1.8 μm. However, as a result of the experiment, if the size (distance) L of the gap between the adjacent convex portions 11 is 1.3 μm or more, the adjacent convex portions 11 can both break the insulating film 306 even if the stress difference is not 0. I know.

図9は、実施の形態1における凸部の配置状況の一例を示す図である。針本体13の先細り部分の先端部に、例えば、凸部11と隙間とを1:1のサイズで格子状に複数の凸部11を形成した場合を図9(b)に示す。かかる場合、導通作業を実施後は凸部11間にコンタミが付着してしまった。これに対して、針本体13の先細り部分の先端部に、例えば、凸部11間の隙間Lを凸部11のサイズWに対して十分大きくなるように千鳥格子状に複数の凸部11を形成した場合を図9(a)に示す。かかる場合、導通作業を実施後のコンタミの付着は見られなかった。この結果から、隣り合う凸部11間の隙間寸法Lが狭すぎると絶縁膜306の破断が困難になるばかりでなく、レジスト膜308を破断させた際のコンタミが付着してしまうといった問題が生じることがわかった。よって、隣り合う凸部11間の隙間寸法Lが凸部の幅Wと同程度になる梨地加工等で複数の凸部を製造する場合についても隙間が狭くなってしまい、同様の問題が生じることになる。かかる点からも凸部11間の隙間Lを所定長さ以上確保することが効果的であることがわかる。 FIG. 9 is a diagram showing an example of the arrangement state of the convex portion in the first embodiment. FIG. 9B shows a case where, for example, a plurality of convex portions 11 are formed in a grid pattern with a size of 1: 1 between the convex portions 11 and the gaps at the tip of the tapered portion of the needle body 13. In such a case, contamination adhered between the convex portions 11 after the conduction work was performed. On the other hand, at the tip of the tapered portion of the needle body 13, for example, a plurality of convex portions 11 in a houndstooth pattern so that the gap L between the convex portions 11 is sufficiently large with respect to the size W of the convex portions 11. Is shown in FIG. 9 (a). In such a case, no contamination was observed after the conduction work was performed. From this result, if the gap dimension L between the adjacent convex portions 11 is too narrow, not only the insulating film 306 is difficult to break, but also the contamination when the resist film 308 is broken is adhered. I understand. Therefore, even when a plurality of convex portions are manufactured by satin finishing or the like in which the gap dimension L between the adjacent convex portions 11 is about the same as the width W of the convex portions, the gap becomes narrow and the same problem occurs. become. From this point as well, it can be seen that it is effective to secure the gap L between the convex portions 11 to a predetermined length or more.

図10は、実施の形態1における凸部の先端面のエッジ部の面取り加工の発生応力に対する影響を説明するための図である。図10の例では、絶縁膜306(CrOx)層に対する応力として、凸部11の頂面(先端側端面)を形成する周囲の辺のサイズ(正方形の1辺)を0.35μmに設定し、−0.175μm変位させた場合を一例として示している。凸部11の先端面の面取り加工として、R0.025μmからR寸法を大きくするのに伴い発生応力が比例して小さくなり、R0.05μm付近で変曲点を迎え、その後、R寸法を大きくするのに伴い発生応力が収束していく。よって、凸部11の先端面のエッジ部は、鋭角(シャープ)であるほど好適であり、さらに望ましくは変曲点(R0.05μm)よりも小さいとなお好適である。 FIG. 10 is a diagram for explaining the influence on the generated stress of the chamfering process of the edge portion of the tip surface of the convex portion in the first embodiment. In the example of FIG. 10, as the stress on the insulating film 306 (CrOx) layer, the size of the peripheral side (one side of the square) forming the top surface (tip side end surface) of the convex portion 11 is set to 0.35 μm. The case of displacement of −0.175 μm is shown as an example. As chamfering of the tip surface of the convex portion 11, the generated stress decreases proportionally as the R dimension is increased from R0.025 μm, an inflection is reached near R0.05 μm, and then the R dimension is increased. As a result, the generated stress converges. Therefore, it is preferable that the edge portion of the tip surface of the convex portion 11 has an acute angle (sharpness), and more preferably smaller than the inflection point (R0.05 μm).

図11は、実施の形態1と比較例とにおける導通接点針で被破断膜上から押圧した場合の接触抵抗値の一例を示す図である。図11(a)では、先端に複数の凸部11が無い従来のアースピン(比較例)を基板の被破断膜(絶縁膜306及びレジスト膜308の積層膜)上から押圧した場合における基板表面の接触抵抗との関係の一例を示している。接触抵抗値の単位はアドレスユニット(A.U.)で示している。図11(b)では、先端に複数の凸部11が配置された実施の形態1における導通接点針(アースピン)を基板の被破断膜(絶縁膜306及びレジスト膜308の積層膜)上から押圧した場合における、荷重と基板表面の接触抵抗との関係の一例を示している。接触抵抗値の単位はアドレスユニット(A.U.)で示している。実施の形態1と比較例とでそれぞれN1〜N5の5つのサンプルを用いて測定した。ここでは、パーティクルを発生させないようにクォーツ(ガラス基板302)を破断させない荷重の範囲で測定した結果を示している。
図11(a)に示すように、複数の凸部11が無い従来のアースピンでは、荷重を大きくしてもほとんど接触抵抗値が変わらないことがわかる。これは、アースピンが絶縁膜306の下層に配置される導電膜304と接触できていないことを示す。これに対して、実施の形態1では、図11(b)に示すように、荷重をかけることで、接触抵抗値が大きく下がることがわかる。図11(b)の例では、0.2N以上でいずれのサンプルでもほぼ収束しており、かかる荷重以上で実施の形態1のアースピンがN1〜N5のいずれのサンプルでも絶縁膜306の下層に配置される導電膜304に十分接触できていることがわかる。かかる点は、被破断膜のうち特に破断しにくい緻密な絶縁膜306を破断することができていることを示す。以上からもクォーツ(ガラス基板302)を破断させない荷重の範囲で絶縁膜306を破断させるには、実施の形態1の形状が有効であることがわかる。
FIG. 11 is a diagram showing an example of the contact resistance value when pressed from above the fractured film by the conduction contact needle in the first embodiment and the comparative example. In FIG. 11A, the surface of the substrate when a conventional earth pin (comparative example) having no plurality of convex portions 11 at the tip is pressed from above the fractured film (laminated film of the insulating film 306 and the resist film 308) of the substrate. An example of the relationship with contact resistance is shown. The unit of the contact resistance value is indicated by the address unit (AU). In FIG. 11B, the conduction contact needle (earth pin) in the first embodiment in which the plurality of protrusions 11 are arranged at the tip is pressed from above the broken film (laminated film of the insulating film 306 and the resist film 308) of the substrate. An example of the relationship between the load and the contact resistance on the surface of the substrate is shown. The unit of the contact resistance value is indicated by the address unit (AU). In the first embodiment and the comparative example, five samples of N1 to N5 were used for measurement. Here, the results of measurement are shown in the range of the load that does not break the quartz (glass substrate 302) so as not to generate particles.
As shown in FIG. 11A, it can be seen that in the conventional ground pin having no plurality of convex portions 11, the contact resistance value hardly changes even if the load is increased. This indicates that the ground pin is not in contact with the conductive film 304 arranged under the insulating film 306. On the other hand, in the first embodiment, as shown in FIG. 11B, it can be seen that the contact resistance value is greatly reduced by applying a load. In the example of FIG. 11B, all the samples are almost converged at 0.2 N or more, and the earth pin of the first embodiment is arranged under the insulating film 306 in any of the samples N1 to N5 at the applied load or more. It can be seen that the conductive film 304 is sufficiently in contact with the conductive film 304. This point indicates that the dense insulating film 306, which is particularly difficult to break among the broken films, can be broken. From the above, it can be seen that the shape of the first embodiment is effective for breaking the insulating film 306 within the range of the load that does not break the quartz (glass substrate 302).

図12は、実施の形態1と比較例とにおける導通接点針で被破断膜上から押圧した場合の接触抵抗値の他の一例を示す図である。図12では、クォーツ(ガラス基板302)を破断させる荷重かどうかに関係なく、荷重をかけて得られた基板表面の接触抵抗の測定結果の一例を示す。図12では、先端に複数の凸部11が無い従来のアースピン(比較例)を基板の被破断膜(絶縁膜306及びレジスト膜308の積層膜)上から押圧した場合における基板表面の接触抵抗と、先端に複数の凸部11が配置された実施の形態1における導通接点針(アースピン)を基板の被破断膜(絶縁膜306及びレジスト膜308の積層膜)上から押圧した場合における基板表面の接触抵抗との測定結果の一例を示す。ここでは、比較例のアースピンと実施の形態1のアースピンとについて、それぞれ複数のサンプル品を作成し、その効果を測定した。先端に複数の凸部11が無い従来のアースピン(比較例)では、サンプルの中には荷重を大きくかけたことで絶縁膜306を何等かの影響で破断させて、その下層に辿り着き接触抵抗値が低くなったものも存在したが、荷重を大きくしても接触抵抗値の許容閾値Kthよりも高いものも多くあり、接触抵抗値がばらついてしまった。これに対して、先端に複数の凸部11が配置された実施の形態1では、いずれも接触抵抗値が許容閾値Kthよりも低く抑えられ、ばらつきが小さかった。かかる点からも実施の形態1のアースピンではいずれのサンプルでも絶縁膜306の下層に配置される導電膜304に十分接触できていることがわかる。 FIG. 12 is a diagram showing another example of the contact resistance value when pressed from above the fractured film by the conduction contact needle in the first embodiment and the comparative example. FIG. 12 shows an example of the measurement result of the contact resistance of the substrate surface obtained by applying the load regardless of whether or not the load breaks the quartz (glass substrate 302). In FIG. 12, the contact resistance of the substrate surface when a conventional ground pin (comparative example) having no plurality of convex portions 11 at the tip is pressed from above the broken film (laminated film of the insulating film 306 and the resist film 308) of the substrate. The surface of the substrate when the conduction contact needle (earth pin) in the first embodiment in which the plurality of protrusions 11 are arranged at the tip is pressed from above the broken film (laminated film of the insulating film 306 and the resist film 308) of the substrate. An example of the measurement result with the contact resistance is shown. Here, a plurality of sample products were prepared for each of the ground pin of the comparative example and the ground pin of the first embodiment, and their effects were measured. In the conventional earth pin (comparative example) which does not have a plurality of convex portions 11 at the tip, the insulating film 306 is broken by some influence due to a large load applied to the sample, and the contact resistance reaches the lower layer thereof. There were some with lower values, but many of them were higher than the allowable threshold value Kth of the contact resistance value even when the load was increased, and the contact resistance values varied. On the other hand, in the first embodiment in which the plurality of convex portions 11 are arranged at the tip, the contact resistance value is suppressed to be lower than the allowable threshold value Kth, and the variation is small. From this point as well, it can be seen that the ground pin of the first embodiment is sufficiently in contact with the conductive film 304 arranged under the insulating film 306 in any of the samples.

図13は、実施の形態1と比較例とにおける接触痕の一例を説明するための図である。図13(a)では、先端に複数の凸部11が無い従来のアースピン(比較例)を用いて、クォーツ(ガラス基板302)を破断させない荷重の範囲で基板を押圧した場合の接触痕の一例を示す。図13(b)では、先端に複数の凸部11が配置された実施の形態1を用いて、クォーツ(ガラス基板302)を破断させない荷重の範囲で基板を押圧した場合の接触痕の一例を示す。比較例では、図13(a)に示すように、基板の表面の膜を変形させるだけで、アースピンが導電膜304に到達していない。これに対して、実施の形態1を用いた実験では、図13(b)に示すように、アースピンの凸部がクォーツ(ガラス基板302)まで変形させて、凸部11の痕を生成するケースを確認している。このように、実施の形態1では、アースピンを導電膜304に到達させることができる。 FIG. 13 is a diagram for explaining an example of contact marks in the first embodiment and the comparative example. FIG. 13A shows an example of contact marks when the substrate is pressed within a load range that does not break the quartz (glass substrate 302) by using a conventional earth pin (comparative example) having no plurality of convex portions 11 at the tip. Is shown. FIG. 13B shows an example of contact marks when the substrate is pressed within a load range that does not break the quartz (glass substrate 302) by using the first embodiment in which a plurality of convex portions 11 are arranged at the tips. show. In the comparative example, as shown in FIG. 13A, the earth pin does not reach the conductive film 304 only by deforming the film on the surface of the substrate. On the other hand, in the experiment using the first embodiment, as shown in FIG. 13B, the convex portion of the earth pin is deformed to the quartz (glass substrate 302) to generate a mark of the convex portion 11. Is confirmed. As described above, in the first embodiment, the ground pin can reach the conductive film 304.

以上のように被破断膜の破断及び導電膜304との導通に優れた実施の形態1の導通接点針(アースピン)を搭載する装置の一例について以下に説明する。実施の形態1では、荷電粒子ビームの一例として、電子ビームを用いた構成について説明する。但し、荷電粒子ビームは、電子ビームに限るものではなく、イオンビーム等の荷電粒子を用いたビームでも構わない。また、荷電粒子ビーム装置の一例として、可変成形型の描画装置について説明する。 An example of an apparatus equipped with the conduction contact needle (earth pin) of the first embodiment, which is excellent in breaking the fractured film and conducting with the conductive film 304 as described above, will be described below. In the first embodiment, a configuration using an electron beam will be described as an example of a charged particle beam. However, the charged particle beam is not limited to the electron beam, and a beam using charged particles such as an ion beam may be used. Further, as an example of the charged particle beam apparatus, a variable molding type drawing apparatus will be described.

図14は、実施の形態1における描画装置の構成を示す概念図である。図1において、描画装置100は、描画機構150と制御部160を備えている。描画装置100は、荷電粒子ビーム描画装置の一例である。特に、可変成形型(VSB型)の描画装置の一例である。描画機構150は、電子鏡筒102と描画室103を備えている。電子鏡筒102内には、電子銃201、照明レンズ202、第1の成形アパーチャ203、投影レンズ204、偏向器205、第2の成形アパーチャ206、対物レンズ207、及び偏向器208が配置されている。描画室103内には、少なくともXY方向に移動可能なXYステージ105が配置される。XYステージ105上には、レジストが塗布された基板101が配置される。ここでは、例えば、上述した露光用マスク基板300(描画前のマスクブランクス)が配置される。露光用マスク基板300(描画前のマスクブランクス)では、ガラス基板302上にクロム(Cr)等の遮光膜(導電膜304)、酸化クロム等の絶縁膜306、及びレジスト膜308の順で各膜が積層されている。基板101として、露光用マスク基板300(描画前のマスクブランクス)の代わりに、シリコンウェハ等の半導体装置を製造するための半導体基板が配置されても構わない。かかる半導体基板においても、導電膜304、緻密な絶縁膜306、及びレジスト膜308の順で各膜が積層されている。基板101は、基板カバー10が装着された状態でXYステージ105上に配置される。基板カバー10を介して基板101は描画装置100のグランドに接続され、グランド電位に維持される。 FIG. 14 is a conceptual diagram showing the configuration of the drawing apparatus according to the first embodiment. In FIG. 1, the drawing apparatus 100 includes a drawing mechanism 150 and a control unit 160. The drawing device 100 is an example of a charged particle beam drawing device. In particular, it is an example of a variable molding type (VSB type) drawing apparatus. The drawing mechanism 150 includes an electronic lens barrel 102 and a drawing chamber 103. An electron gun 201, an illumination lens 202, a first molded aperture 203, a projection lens 204, a deflector 205, a second molded aperture 206, an objective lens 207, and a deflector 208 are arranged in the electron barrel 102. There is. In the drawing chamber 103, an XY stage 105 that can move at least in the XY direction is arranged. A substrate 101 coated with a resist is arranged on the XY stage 105. Here, for example, the above-mentioned exposure mask substrate 300 (mask blanks before drawing) is arranged. In the exposure mask substrate 300 (mask blanks before drawing), each film is on the glass substrate 302 in the order of a light-shielding film (conductive film 304) such as chromium (Cr), an insulating film 306 such as chromium oxide, and a resist film 308. Are laminated. As the substrate 101, a semiconductor substrate for manufacturing a semiconductor device such as a silicon wafer may be arranged instead of the exposure mask substrate 300 (mask blanks before drawing). Also in such a semiconductor substrate, each film is laminated in the order of the conductive film 304, the dense insulating film 306, and the resist film 308. The substrate 101 is arranged on the XY stage 105 with the substrate cover 10 attached. The substrate 101 is connected to the ground of the drawing apparatus 100 via the substrate cover 10 and is maintained at the ground potential.

制御部160は、制御計算機ユニット110、制御回路120、及び磁気ディスク装置等の記憶装置140を有している。制御計算機ユニット110、制御回路120、及び記憶装置140は、図示しないバスを介して互いに接続されている。制御回路120は、描画機構150に接続され、描画機構150の各構成を駆動制御する。 The control unit 160 has a control computer unit 110, a control circuit 120, and a storage device 140 such as a magnetic disk device. The control computer unit 110, the control circuit 120, and the storage device 140 are connected to each other via a bus (not shown). The control circuit 120 is connected to the drawing mechanism 150 and drives and controls each configuration of the drawing mechanism 150.

ここで、図1では、実施の形態1を説明する上で必要な構成部分について記載している。描画装置100にとって、通常、必要なその他の構成が含まれても構わないことは言うまでもない。導通接点針18が基板101の被破断膜上から押圧して、被破断膜を破断させて導電膜と導通すると共に、導通接点針18にグランド電位が印加された状態で、描画機構150(照射機構)は、基板101に電子ビームを照射する。ここでは、描画機構150は、電子ビームを用いて基板101にパターンを描画する。描画機構150の動作を、以下、具体的に説明する。 Here, FIG. 1 describes the components necessary for explaining the first embodiment. It goes without saying that the drawing apparatus 100 may usually include other necessary configurations. The conduction contact needle 18 presses from above the fractured film of the substrate 101 to break the fractured film and conduct with the conductive film, and the drawing mechanism 150 (irradiation) is in a state where the ground potential is applied to the conduction contact needle 18. The mechanism) irradiates the substrate 101 with an electron beam. Here, the drawing mechanism 150 draws a pattern on the substrate 101 using an electron beam. The operation of the drawing mechanism 150 will be specifically described below.

電子銃201(放出部)から放出された電子ビーム200は、照明レンズ202により矩形の穴を持つ第1の成形アパーチャ203全体を照明する。ここで、電子ビーム200をまず矩形に成形する。そして、第1の成形アパーチャ203を通過した第1のアパーチャ像の電子ビーム200は、投影レンズ204により第2の成形アパーチャ206上に投影される。偏向器205によって、かかる第2の成形アパーチャ206上での第1のアパーチャ像は偏向制御され、ビーム形状と寸法を変化させる(可変成形を行なう)ことができる。かかる可変成形はショット毎に行なわれ、通常ショット毎に異なるビーム形状と寸法に成形される。そして、第2の成形アパーチャ206を通過した第2のアパーチャ像の電子ビーム200は、対物レンズ207により焦点を合わせ、偏向器208によって偏向され、連続的に移動するXYステージ105に配置された試料101の所望する位置に照射される。 The electron beam 200 emitted from the electron gun 201 (emission unit) illuminates the entire first molded aperture 203 having a rectangular hole by the illumination lens 202. Here, the electron beam 200 is first formed into a rectangular shape. Then, the electron beam 200 of the first aperture image that has passed through the first molded aperture 203 is projected onto the second molded aperture 206 by the projection lens 204. By the deflector 205, the first aperture image on the second molded aperture 206 is deflected and can change the beam shape and dimensions (variable molding). Such variable molding is performed for each shot, and is usually molded into a different beam shape and size for each shot. Then, the electron beam 200 of the second aperture image that has passed through the second molded aperture 206 is focused by the objective lens 207, deflected by the deflector 208, and placed on the continuously moving XY stage 105. The desired position of 101 is irradiated.

図15は、実施の形態1における基板カバーを示す上面図である。図16は、図15の基板カバーが基板に装着された状態を示す上面図である。図17は、図15の基板カバーの断面図である。基板カバー10は、3つの接点サポート部材12(12a,12b,12c)及びフレーム16(枠状部材の一例)を備えている。接点サポート部材12(12a,12b,12c)は、3点指示で基板カバー10を支持する位置にフレーム16の上面側から取り付けされている。そして、接点サポート部材12(12a,12b,12c)は、フレーム16の内周端よりも内側に張り出すように取り付けられている。内側に張り出すだけではなく、さらに外周端よりも外側に張り出すように取り付けられてもよい。接点サポート部材12は、フレーム16に、例えば、ねじ止め或いは溶接等で固定されている。各接点サポート部材12(12a,12b,12c)の裏面側には、フレーム16の内周端よりも内側の位置に接点部となる導通接点針18(ここではアースピン)が先端を裏面側に向けて配置される。 FIG. 15 is a top view showing the substrate cover according to the first embodiment. FIG. 16 is a top view showing a state in which the board cover of FIG. 15 is mounted on the board. FIG. 17 is a cross-sectional view of the substrate cover of FIG. The board cover 10 includes three contact support members 12 (12a, 12b, 12c) and a frame 16 (an example of a frame-shaped member). The contact support members 12 (12a, 12b, 12c) are attached from the upper surface side of the frame 16 at positions that support the substrate cover 10 with three-point instructions. The contact support member 12 (12a, 12b, 12c) is attached so as to project inward from the inner peripheral end of the frame 16. It may be attached not only to project inward but also to project outward from the outer peripheral edge. The contact support member 12 is fixed to the frame 16 by, for example, screwing or welding. On the back surface side of each contact support member 12 (12a, 12b, 12c), a conduction contact needle 18 (here, an earth pin) serving as a contact portion is located inside the inner peripheral end of the frame 16 so that the tip thereof faces the back surface side. Will be placed.

フレーム16は、板材により構成され、外周寸法が基板101の外周端よりも大きく、内側の中央部に形成された開口部の寸法が基板101の外周端よりも小さく形成されている。すなわち、図16に示すように基板101の上部に基板カバー10を上方から重ねた場合に、点線で示す基板101の外周部の全周がフレーム16に重なるように形成されている。このように、基板カバー10は、基板101の外周部全体を上方からカバーする。そして、基板カバー10を基板101に取り付けた際に、3つの導通接点針18が基板101上に形成されている膜内に食い込み、同じく基板101上に形成されている導電膜と導通する。 The frame 16 is made of a plate material, and the outer peripheral dimension is larger than the outer peripheral edge of the substrate 101, and the dimension of the opening formed in the inner central portion is smaller than the outer peripheral edge of the substrate 101. That is, as shown in FIG. 16, when the substrate cover 10 is overlapped on the upper portion of the substrate 101 from above, the entire circumference of the outer peripheral portion of the substrate 101 shown by the dotted line is formed so as to overlap the frame 16. In this way, the substrate cover 10 covers the entire outer peripheral portion of the substrate 101 from above. Then, when the substrate cover 10 is attached to the substrate 101, the three conduction contact needles 18 bite into the film formed on the substrate 101 and conduct with the conductive film also formed on the substrate 101.

基板カバー10は、全体が導電性材料で形成されているもの、或いは全体が絶縁材料で形成され、その表面に導電性材料がコーティングされているもの等が好適である。導電性材料としては、金属材料、例えば銅(Cu)やチタン(Ti)およびその合金等が好適であり、絶縁材料としては、例えばアルミナ等のセラミックス材料等が好適である。 The substrate cover 10 is preferably entirely made of a conductive material, or is entirely formed of an insulating material and the surface thereof is coated with a conductive material. As the conductive material, a metal material such as copper (Cu) or titanium (Ti) and an alloy thereof is suitable, and as an insulating material, a ceramic material such as alumina is suitable.

そして、基板カバー10を基板101に装着することによって、3つの導通接点針18が緻密で破断しにくい絶縁膜を破断して、下層の導電膜と導通する。導通接点針18は、基板カバー10を介してグランド電位に接続される。かかる構成により、基板101表面に電子ビーム200が衝突或いは散乱することによって生じた帯電を抑制できる。その結果、電子ビーム200の軌道が曲げられることを抑制し、高精度な寸法のパターンを描画できる。 Then, by mounting the substrate cover 10 on the substrate 101, the three conductive contact needles 18 break the dense and hard-to-break insulating film and conduct with the lower conductive film. The conduction contact needle 18 is connected to the ground potential via the substrate cover 10. With such a configuration, it is possible to suppress the charge generated by the collision or scattering of the electron beam 200 on the surface of the substrate 101. As a result, it is possible to suppress bending of the orbit of the electron beam 200 and draw a pattern having high accuracy.

以上のように、実施の形態1によれば、緻密な被破断膜を破断させて下層膜と導通することができる。よって、導電膜304上に形成された他の膜の帯電を抑制できる。 As described above, according to the first embodiment, it is possible to break the dense film to be broken and conduct the film with the lower layer film. Therefore, it is possible to suppress the charging of other films formed on the conductive film 304.

実施の形態2.
実施の形態1では、針本体13の先細りさせた先端側の端を例えば球状に形成している場合を示したがこれに限るものではない。以下、特に説明する点以外の内容は実施の形態1と同様である。
Embodiment 2.
In the first embodiment, the case where the tapered tip end of the needle body 13 is formed into, for example, a spherical shape is shown, but the present invention is not limited to this. Hereinafter, the contents other than the points particularly described are the same as those in the first embodiment.

図18は、実施の形態2における導通接点針の構成を示す構成図である。図18において、導通接点針18の針本体13の先細りさせた先端側の端が平面であってもよい。そして、かかる平面が先端側から掘り込まれ、例えば四角柱状で形成された複数の凸部11(或いは凸部11間に形成される複数の凹部)を形成してもよい。その他の点は、図1と同様である。かかる構成でも、緻密な被破断膜を破断させて下層膜と導通することができる。なお、図18に形成されている凸部11は先端側の面全てに形成されていても良いし、面の一部に形成されていても良い。実施の形態2によれば、実施の形態1と同様の効果を得ることができる。 FIG. 18 is a configuration diagram showing the configuration of the conduction contact needle according to the second embodiment. In FIG. 18, the tapered end end side of the needle body 13 of the conduction contact needle 18 may be a flat surface. Then, such a plane may be dug from the tip side to form, for example, a plurality of convex portions 11 (or a plurality of concave portions formed between the convex portions 11) formed of a square columnar shape. Other points are the same as in FIG. Even with such a configuration, it is possible to break a dense fractured film and conduct it with the underlying film. The convex portion 11 formed in FIG. 18 may be formed on the entire surface on the distal end side, or may be formed on a part of the surface. According to the second embodiment, the same effect as that of the first embodiment can be obtained.

以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。導通接点針18を差し込む基板は、露光用マスク基板300に限るものではなく、例えば、半導体基板に直接電子ビームを照射してパターンを描画する際に半導体基板に差し込む場合にも適用できる。その他、グランド接続させる場合だけではなく、半導体基板の絶縁膜下の導電層の抵抗値の測定を行う場合等にも適用できる。 The embodiment has been described above with reference to specific examples. However, the present invention is not limited to these specific examples. The substrate into which the conduction contact needle 18 is inserted is not limited to the exposure mask substrate 300, and can be applied to, for example, a case where the semiconductor substrate is directly irradiated with an electron beam and inserted into the semiconductor substrate when drawing a pattern. In addition, it can be applied not only to the case of ground connection but also to the case of measuring the resistance value of the conductive layer under the insulating film of the semiconductor substrate.

また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。例えば、描画装置100を制御する制御部構成については、記載を省略したが、必要とされる制御部構成を適宜選択して用いることは言うまでもない。 Further, although the description of parts not directly required for the description of the present invention such as the device configuration and the control method is omitted, the required device configuration and the control method can be appropriately selected and used. For example, the description of the control unit configuration for controlling the drawing apparatus 100 has been omitted, but it goes without saying that the required control unit configuration is appropriately selected and used.

その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての導通接点針は、本発明の範囲に包含される。 In addition, all conductive contact needles having the elements of the present invention and which can be appropriately redesigned by those skilled in the art are included in the scope of the present invention.

10 基板カバー
11 凸部
12 接点サポート部材
13 針本体
16 フレーム
18 導通接点針
100 描画装置
101 基板
102 電子鏡筒
103 描画室
105 XYステージ
110 制御計算機ユニット
120 制御回路
140 記憶装置
150 描画部
160 制御部
200 電子ビーム
201 電子銃
202 照明レンズ
203 第1の成形アパーチャ
204 投影レンズ
205 偏向器
206 第2の成形アパーチャ
207 対物レンズ
208 偏向器
300 露光用ガラス基板
302 ガラス基板
304 導電膜
306 絶縁膜
308 レジスト膜
10 Board cover 11 Convex part 12 Contact support member 13 Needle body 16 Frame 18 Conductive contact needle 100 Drawing device 101 Board 102 Electronic lens barrel 103 Drawing room 105 XY stage 110 Control computer unit 120 Control circuit 140 Storage device 150 Drawing unit 160 Control unit 200 Electron beam 201 Electron gun 202 Illumination lens 203 First molded aperture 204 Projection lens 205 Deflector 206 Second molded aperture 207 Objective lens 208 Deflector 300 Exposure glass substrate 302 Glass substrate 304 Conductive 306 Insulation film 308 Resist film

Claims (6)

導電膜上に被破断膜が形成された基板を前記被破断膜上から押圧して、前記被破断膜を破断させて前記導電膜と導通する導通接点針であって、
針本体と、
前記針本体の先端部に形成された複数の凸部と、
を備え
前記複数の凸部によって、前記針本体の先端部分が丸みを帯びた曲面に形成されることを特徴とする導通接点針。
A conductive contact needle in which a substrate having a fractured film formed on a conductive film is pressed from above the fractured film to break the fractured film and conduct with the conductive film.
With the needle body
A plurality of convex portions formed on the tip of the needle body,
Equipped with
A conduction contact needle, characterized in that the tip portion of the needle body is formed into a rounded curved surface by the plurality of convex portions.
前記複数の凸部の高さ寸法は、前記被破断膜の膜厚よりも大きく形成されることを特徴とする請求項1記載の導通接点針。 The conduction contact needle according to claim 1, wherein the height dimension of the plurality of convex portions is formed to be larger than the film thickness of the fractured film. 前記被破断膜は、酸化クロム(CrO)を有し、
前記複数の凸部の隣り合う凸部間の隙間は1.3μm以上に形成されることを特徴とする請求項1又は2記載の導通接点針。
The fractured film has chromium oxide (CrO 2 ) and has.
The conduction contact needle according to claim 1 or 2, wherein a gap between adjacent convex portions of the plurality of convex portions is formed to be 1.3 μm or more.
前記導電膜として、クロム(Cr)膜とタングステン(W)膜とのうちの1つが用いられることを特徴とする請求項1〜3いずれか記載の導通接点針。 The conductive contact needle according to any one of claims 1 to 3, wherein one of a chromium (Cr) film and a tungsten (W) film is used as the conductive film. 前記基板として、半導体基板と露光用マスク基板とのうちの1つが用いられることを特徴とする請求項1〜4いずれか記載の導通接点針。 The conduction contact needle according to any one of claims 1 to 4, wherein one of a semiconductor substrate and an exposure mask substrate is used as the substrate. 前記複数の凸部は、頂面を形成する辺を有することを特徴とする請求項1〜5いずれか記載の導通接点針。 The conduction contact needle according to any one of claims 1 to 5, wherein the plurality of convex portions have a side forming a top surface.
JP2017127431A 2016-09-05 2017-06-29 Conductive contact needle Active JP6982992B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW106128198A TWI684070B (en) 2016-09-05 2017-08-21 Conducting contact pin and charged particle beam device
US15/687,886 US10373793B2 (en) 2016-09-05 2017-08-28 Conductive contact point pin and charged particle beam apparatus
KR1020170109372A KR102019549B1 (en) 2016-09-05 2017-08-29 Conductive contact neddle and charged particle beam apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016173138 2016-09-05
JP2016173138 2016-09-05

Publications (2)

Publication Number Publication Date
JP2018041954A JP2018041954A (en) 2018-03-15
JP6982992B2 true JP6982992B2 (en) 2021-12-17

Family

ID=61624011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017127431A Active JP6982992B2 (en) 2016-09-05 2017-06-29 Conductive contact needle

Country Status (3)

Country Link
JP (1) JP6982992B2 (en)
KR (1) KR102019549B1 (en)
TW (1) TWI684070B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7034867B2 (en) * 2018-08-31 2022-03-14 株式会社ニューフレアテクノロジー Abnormality judgment method and drawing device
JP7037513B2 (en) * 2019-02-14 2022-03-16 株式会社ニューフレアテクノロジー Drawing device and drawing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289592A (en) * 1993-04-06 1994-10-18 Toppan Printing Co Ltd Production of photomask
JPH1151970A (en) * 1997-07-31 1999-02-26 Nec Corp Probe card
JP3428397B2 (en) * 1997-10-14 2003-07-22 松下電器産業株式会社 Organic electroluminescent device and method of manufacturing the same
US7247895B2 (en) * 2001-07-26 2007-07-24 The Board Of Trustees Of The University Of Illinois Electrostatic nanolithography probe actuation device and method
US8988091B2 (en) * 2004-05-21 2015-03-24 Microprobe, Inc. Multiple contact probes
JP2007218675A (en) * 2006-02-15 2007-08-30 Fujitsu Ltd Probe, and manufacturing method of probe
JP2008058809A (en) * 2006-09-01 2008-03-13 Nuflare Technology Inc Substrate cover, and charged particle beam drawing device and method
JP2009198238A (en) * 2008-02-20 2009-09-03 Totoku Electric Co Ltd Probe needle and method of manufacturing the same
JP2010038803A (en) * 2008-08-07 2010-02-18 Japan Electronic Materials Corp Contact probe and method for manufacturing the same
JP2010074059A (en) * 2008-09-22 2010-04-02 Nuflare Technology Inc Ground pin, ground plate, charged particle beam-drawing system, and charged particle beam-drawing method

Also Published As

Publication number Publication date
KR20180027346A (en) 2018-03-14
KR102019549B1 (en) 2019-09-06
JP2018041954A (en) 2018-03-15
TW201820044A (en) 2018-06-01
TWI684070B (en) 2020-02-01

Similar Documents

Publication Publication Date Title
JP5116996B2 (en) Charged particle beam drawing method, exposure apparatus, and device manufacturing method
JP7030663B2 (en) Semiconductor device and charged particle beam exposure device
US11302511B2 (en) Field curvature correction for multi-beam inspection systems
US7922501B2 (en) Substrate earthing mechanism for use in charged-particle beam writing apparatus
TWI647734B (en) Masking aperture array and charged particle beam depicting device
JP2012015246A (en) Device and method for drawing charged particle beam
JP6982992B2 (en) Conductive contact needle
JP2006222230A (en) Proximity effect correction method
US10373793B2 (en) Conductive contact point pin and charged particle beam apparatus
JP5897888B2 (en) Charged particle beam lithography system
JP2006032814A (en) Exposure method, method of adjusting pattern dimension, and method of obtaining defocusing amount
US6972417B2 (en) Apparatus and methods for patterning a reticle blank by electron-beam inscription with reduced exposure of the reticle blank by backscattered electrons
TW202101516A (en) Multiple charged-particle beam apparatus and methods
JP2008004596A (en) Charged particle beam drawing method, aligner, and process for fabricating device
JP4468752B2 (en) Charged particle beam exposure method, charged particle beam exposure apparatus and device manufacturing method
JP6646463B2 (en) Signal charged particle deflector, signal charged particle detection system, charged particle beam device, and method of detecting signal charged particle beam
US9343323B2 (en) Method of producing aperture member
JP2004153032A (en) Complementary mask for exposure, its manufacturing method and its manufacturing program
JP5293021B2 (en) Electron beam drawing method and electron beam drawing apparatus
TW468196B (en) Projection lithography device utilizing charged particles
JP6819075B2 (en) Electron beam drawing device
JP2007048804A (en) Charged particle beam lithography apparatus and method of forming same
JP2000353662A (en) Stencil reticle including scattering pattern for electron beam projection lithography
JP2007096012A (en) Method and device for drawing
JPH03230514A (en) Electron beam aligner and aligning method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R150 Certificate of patent or registration of utility model

Ref document number: 6982992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150