JP6979538B2 - Height difference measuring device and height difference measuring method - Google Patents

Height difference measuring device and height difference measuring method Download PDF

Info

Publication number
JP6979538B2
JP6979538B2 JP2020556326A JP2020556326A JP6979538B2 JP 6979538 B2 JP6979538 B2 JP 6979538B2 JP 2020556326 A JP2020556326 A JP 2020556326A JP 2020556326 A JP2020556326 A JP 2020556326A JP 6979538 B2 JP6979538 B2 JP 6979538B2
Authority
JP
Japan
Prior art keywords
height difference
pipe
container
liquid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020556326A
Other languages
Japanese (ja)
Other versions
JPWO2020235324A1 (en
Inventor
博由 田中
Original Assignee
博由 田中
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博由 田中 filed Critical 博由 田中
Publication of JPWO2020235324A1 publication Critical patent/JPWO2020235324A1/en
Application granted granted Critical
Publication of JP6979538B2 publication Critical patent/JP6979538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/04Hydrostatic levelling, i.e. by flexibly interconnected liquid containers at separated points

Description

本発明は、建設や土木もしくは農業に用いる地面や地盤の高低差や凹凸を測定する装置ならびにその装置を用いた測定方法であり、高低差や凹凸を点状に断続的に測定することができるだけではなく、1次元もしくは2次元で連続的に表示できる様にしたものである。 The present invention is a device for measuring the height difference and unevenness of the ground and ground used for construction, civil engineering or agriculture, and a measuring method using the device, and can measure the height difference and unevenness intermittently in dots. Instead, it can be displayed continuously in one or two dimensions.

農業における圃場工事や高層ビル建造や道路整備などの土木建設工事では、地面の傾斜や凹凸、高低差を知ることが大変重要である。農業における水稲栽培では、地面の傾斜や凹凸が、苗の水浸に差異を生じ、その生育に影響を及ぼし、品質の低下を生じる。また、高層のビルディングや高速道路等の建造時には、わずかな基礎の傾きも建物の脆弱化を招き、耐震力の減少や、耐久性の低下につながる。 In civil engineering construction work such as field construction, high-rise building construction, and road maintenance in agriculture, it is very important to know the slope, unevenness, and height difference of the ground. In paddy rice cultivation in agriculture, the slope and unevenness of the ground make a difference in the inundation of seedlings, affect their growth, and cause deterioration in quality. In addition, when constructing high-rise buildings and highways, even a slight inclination of the foundation causes the building to become weak, leading to a decrease in seismic resistance and durability.

現在まで、この様な高低差を測るためには、測量士の資格を持つ者が、大掛りな装置を用いて、2人がかりで行うか、近距離の測定が可能な、高価なレーザを用いた装置で行うのが一般的であり、測定に費やす費用が高額になると共に、技術的にも容易に測定するのは難しかった。 Until now, in order to measure such a height difference, a person with a qualification as a surveyor can use a large-scale device with two people or use an expensive laser that can measure at a short distance. It is generally performed with the device used, the cost for measurement is high, and it is technically difficult to measure easily.

そのため、従来、簡便に起伏や傾斜等を測定する方法として、連通管の原理を応用する方法が提案され、また基本的な原理は同じでありながら、より利便性を向上させる提案も多数なされてきた。 Therefore, conventionally, as a method for easily measuring undulations, inclinations, etc., a method of applying the principle of communication pipe has been proposed, and many proposals have been made to improve convenience while the basic principle is the same. rice field.

例えば、特許文献1は、連通管に水を満たしたホースと、両端に透明な管を用い、透明管の側部に目盛り板を取り付けたものを用いる。 これら透明管の中の液体先端位置を、目盛り板から読み取り、位置毎のその目盛りの差を計測することによって、各所の高低差や凹凸を測定する事ができる。 For example, Patent Document 1 uses a hose in which a communication pipe is filled with water, a transparent pipe at both ends, and a scale plate attached to a side portion of the transparent pipe. By reading the position of the tip of the liquid in these transparent tubes from the scale plate and measuring the difference in the scale for each position, it is possible to measure the height difference and unevenness at each location.

しかしながら、この様な方法は、測定部の位置を変えると、もう一方の基準とした側の液面も変化し、液面が両方共に変化するため、測定し辛いばかりでなく、高低差が大きい時には、内部の液があふれる出る場合があり、持ち運びや取扱が面倒であった。 However, in such a method, when the position of the measuring unit is changed, the liquid level on the other reference side also changes, and both liquid levels change, so that it is not only difficult to measure but also the height difference is large. Occasionally, the liquid inside could overflow, making it cumbersome to carry and handle.

特許文献2は、建設業界の軌道関係工事に用いられて、水平方向に点在する地点の高低差を測定する装置もしくは方法に関するものである。この特許文献2によると、計測水槽と基準水槽を備え、基準水槽近傍に置かれた給水タンクから各水槽に送水し、各地点の計測水槽から水をオーバーフローさせることで水面を一定に保ち、水面の差から高低差を測定する。この方法は、水が循環する為、水温差による比重誤差の防止が可能であるとの効果を提示している。ただ、この方法を用いる場合には、最初に特定位置を決め、その位置での計測となるため、位置の変更や測定点の増減が容易でなく、測定の柔軟性に欠ける。また、各位置では常に水のオーバーフローが起きる可能性があり、そのたびに水回りの後片付けが必要になるという課題もある。
また、特許文献3では、場所間の高低差だけでなく、その面内の高低差の変化量も測定できるとし、小型でありながら微細な高低差から大きな高低差までが測定可能であると述べているが、基本的に上記の特許文献1,2と同等な課題を含んでいる。
Patent Document 2 relates to a device or a method for measuring height differences between points scattered in the horizontal direction, which is used for track-related construction in the construction industry. According to this Patent Document 2, a measurement water tank and a reference water tank are provided, water is sent from a water supply tank placed near the reference water tank to each water tank, and water overflows from the measurement water tank at each point to keep the water surface constant and the water surface. The height difference is measured from the difference between. Since this method circulates water, it has been shown that it is possible to prevent a specific gravity error due to a difference in water temperature. However, when this method is used, since a specific position is first determined and measurement is performed at that position, it is not easy to change the position or increase or decrease the measurement point, and the measurement flexibility is lacking. In addition, there is a possibility that water overflows at each position at all times, and there is a problem that it is necessary to clean up the water around each time.
Further, Patent Document 3 states that not only the height difference between places but also the amount of change in the height difference in the plane can be measured, and it is possible to measure from a fine height difference to a large height difference even though it is small. However, it basically includes the same problems as those of Patent Documents 1 and 2 described above.

ところで、近年は、シリコンウエファーや金属の微細加工技術の進歩と共に、気圧センサの高精度化が進んでいる(例えば非特許文献1)。最近は、腕時計などにこの気圧センサが搭載されて、山登り等に使われることがある。この様な高度計は、この気圧センサ技術の進歩によって可能になっていると考えられる。そのためこの様な気圧センサを利用して、本発明の目的とするような、高低差を計測する事ができないかとも考えられる。しかしながら、風や気流の変動等を考慮すると100m離れた場所間でも、数cmの高低差を測定するという本発明の技術目的には、この様な気圧センサだけではとても到達することができないのである。 By the way, in recent years, with the progress of silicon wafers and metal microfabrication technology, the accuracy of barometric pressure sensors has been improved (for example, Non-Patent Document 1). Recently, this barometric pressure sensor is mounted on a wristwatch or the like and may be used for mountain climbing or the like. It is thought that such an altimeter is made possible by the progress of this barometric pressure sensor technology. Therefore, it may be possible to measure the height difference as the object of the present invention by using such a barometric pressure sensor. However, in consideration of fluctuations in wind and airflow, the technical object of the present invention of measuring a height difference of several centimeters even between places 100 m away cannot be reached by such a barometric pressure sensor alone. ..

実開平4−51618Real Kaihei 4-51618 特許第3938560Patent No. 3938560 特許第5824570Patent No. 5824570

ROHM 新商品速報 小型気圧センIC BM1383GLVROHM New Product Breaking News Small Atmospheric Pressure Sen IC BM1383GLV

本発明の目的とするところは、数mから数100m離れた場所間で、数cmの高低差、もしくは高度差を測定するというものであり、従来このような測定において、非常に面倒かつ不便なものは存在しても、安価に手に入れて、簡便に利用できる装置は、見あたらないのである。 An object of the present invention is to measure a height difference or an altitude difference of several centimeters between places separated by several meters to several hundred meters, which is very troublesome and inconvenient in the conventional measurement. Even if there are things, there is no device that can be obtained at a low price and used easily.

背景技術に述べた様に、従来の連通管の原理を用い、水面を開放して測定する方法は、多点の測定を連続的に行うためには、労力と時間を要する。つまり連通管方式では、大気中に液面を露出させた測定方法となるため、高低差によって液面が大きく変動し、測定管をその高低差に対応した長さにしておく必要がある。そのため、移動や運搬、設置の困難を伴うだけでなく、高低差の予測を間違うと、液あふれが生じ、また不足すると、液補充が必要になるという問題があり、現在まであまり広く用いられることがなかった。 As described in the background technology, the method of measuring with the water surface open using the principle of the conventional communication pipe requires labor and time to continuously measure multiple points. In other words, since the communication pipe method is a measurement method in which the liquid level is exposed to the atmosphere, the liquid level fluctuates greatly depending on the height difference, and it is necessary to make the measuring tube a length corresponding to the height difference. Therefore, not only is it difficult to move, transport, and install, but if the height difference is predicted incorrectly, liquid overflow will occur, and if it is insufficient, liquid replenishment will be required, and it has been widely used until now. There was no.

また、まだ本発明が目的とする様な高低差測定に使われた実用例は見当たらないが、気圧センサをそのまま使えないかということも考えられるが、前述したように気圧変動がそのまま高低差の誤差になるため、気流の乱れる条件では測定誤差が大きく、計測が難しい。 In addition, although there is no practical example used for height difference measurement as intended by the present invention, it is possible that the barometric pressure sensor can be used as it is, but as described above, the barometric pressure fluctuation is the same as the height difference. Since it becomes an error, the measurement error is large under the condition where the air flow is turbulent, and it is difficult to measure.

この気圧センサによる高低差測定の難しさの原因は、本質的には空気の密度が小さいからであり、空気の密度が1cmあたりで0.00129gに過ぎないためである。つまり、気圧による高低差測定を行う場合には、1cmあたりの高低差で、0.00129gの圧力変化を捉えなければならない。これは圧力単位に変換すると0.126Paとなり、現代の気圧測定技術では測定困難な値である。しかも、屋外での測定を考えるとき、風の影響や気流の乱れなど考慮すると、たとえMEMS((Micro Electro Mechanical Systems)技術が大きく進歩したとしても、広い面積に渡って高低差を気圧計のみを用いて数cmの誤差でとらえることは、不可能であると考えられる。The reason why it is difficult to measure the height difference with this barometric pressure sensor is that the density of air is essentially small, and the density of air is only 0.00129 g per 1 cm 3. That is, when measuring the height difference by atmospheric pressure, it is necessary to capture the pressure change of 0.00129 g with the height difference per 1 cm. This is 0.126 Pa when converted to pressure units, which is a value that is difficult to measure with modern barometric pressure measurement technology. Moreover, when considering outdoor measurements, considering the effects of wind and turbulence of airflow, even if MEMS ((Micro Electro Mechanical Systems) technology makes great progress, only barometers can be used for height differences over a wide area. It is considered impossible to capture it with an error of several centimeters.

上記の様な問題点を解決するために、本発明の高低差測定装置並びに高低差測定方法は、従来より、よく知られた連通管の考え方に立脚しつつ、MEMSを利用した気圧センサ技術の進歩を利用したものであり、測定位置の高低差を内部の連通する液体の高さ変化に置き換え、その液体の高さ変化に相当する液体重量を圧力差(もしくは気圧差)として測定し、測定した圧力差を再び高低差に置き換えて、地面等の高低差変化を求めるものであり、また、その結果を連続的に場所の関数として表示しようとするものである。 In order to solve the above problems, the height difference measuring device and the height difference measuring method of the present invention are based on the well-known concept of communication pipes, and are based on the pressure sensor technology using MEMS. Utilizing progress, the height difference of the measurement position is replaced with the height change of the communicating liquid inside, and the liquid weight corresponding to the height change of the liquid is measured and measured as the pressure difference (or pressure difference). The pressure difference is replaced with the height difference again to obtain the height difference change of the ground or the like, and the result is continuously displayed as a function of the place.

具体的には、水やシリコンオイル等の液体を満たした管の一方もしくは両端を封止して、封止した端の片方、場合によっては両方に圧力センサを配置する。両端を封止する場合は、必ず少なくとも一方の端には、気体部分を残し、また、片方の端のみを封止する場合には、封止した側に、圧力センサを配置する。 Specifically, one or both ends of a tube filled with a liquid such as water or silicone oil are sealed, and pressure sensors are placed on one or both of the sealed ends. When sealing both ends, be sure to leave a gas portion at at least one end, and when sealing only one end, place a pressure sensor on the sealed side.

計測方法は、まず両端を一旦、位置を固定し、初期位置とする。その初期位置での圧力を測定し、次に、一方は固定した状態で、もう一方の端を移動させる。次に移動先で再び圧力を測定する。そしてその初期位置での圧力と移動先での圧力の差を求め、hPaをcmに変換する。この求められたcm単位の値に補正を行って初期位置と移動先での高低差とするのである。この圧力差測定は、連通管の概念を利用しているために、非常に遠方まで測定が可能であり、圧力は、音速で伝わるため非常に応答が早い。 In the measurement method, first, both ends are temporarily fixed in position and set as the initial position. The pressure at its initial position is measured, then one is fixed and the other end is moved. Next, the pressure is measured again at the destination. Then, the difference between the pressure at the initial position and the pressure at the destination is obtained, and hPa is converted into cm. The calculated value in cm is corrected to obtain the height difference between the initial position and the destination. Since this pressure difference measurement uses the concept of a communication pipe, it can be measured from a very long distance, and the pressure is transmitted at the speed of sound, so that the response is very quick.

その際、移動した端の初期位置と移動先との距離をレーザ距離計やウオーキングメジャー等によって計測し、移動先の初期位置との高低差を距離の関数で表す。このデータはWiFi等でパソコンやタブレットに送信し、距離に対する高低差のグラフとして表示するのである。 At that time, the distance between the initial position of the moved end and the moved destination is measured by a laser range finder, a walking measure, or the like, and the height difference from the initial position of the moved destination is expressed by a function of the distance. This data is transmitted to a personal computer or tablet by WiFi or the like, and displayed as a graph of the height difference with respect to the distance.

また、パイプ端部の移動は、測定するべき位置である移動先まで人が運んで行うこともできるが、自動走行の移動ロボットに運ばせ、移動ロボットの位置を、GPSや地磁気センサおよびジャイロセンサ、加速度センサなども加えた装置によって測定を行うことで、各位置での高低差をcm単位で3次元的に表すことも可能である。ただ、移動時は圧力データが変動するため、圧力の計測には、一時的に移動を休止したほうが、データのばらつきを抑えることができる。 In addition, the movement of the end of the pipe can be performed by a person carrying it to the destination where it should be measured, but it is carried by an automatically traveling mobile robot, and the position of the mobile robot is determined by GPS, a geomagnetic sensor, and a gyro sensor. It is also possible to express the height difference at each position three-dimensionally in cm units by measuring with a device including an acceleration sensor and the like. However, since the pressure data fluctuates during movement, it is better to temporarily suspend the movement for pressure measurement to suppress the variation in data.

ロボット等で自動計測を行うと、人間が関与せずに、遠方までをくまなく自動で移動させることができるため、適当なアルゴリズムを組めば、測定を必要とする地域を全面に渡って有限なポイントを設定して測定できる。この各ポイントで測定された高低差を、有限要素法による数学的解析によって、ポイント間を結び、ポイント間の高低差を類推できる様にすれば、測定地域の全面を3次元の測定値として利用できる様になる。 When automatic measurement is performed with a robot or the like, it is possible to automatically move all the way to a distant place without human involvement, so if an appropriate algorithm is set up, the area requiring measurement is finite over the entire area. You can set points and measure. If the height difference measured at each point is connected between points by mathematical analysis by the finite element method and the height difference between points can be inferred, the entire surface of the measurement area can be used as a three-dimensional measured value. You will be able to do it.

また、本発明を従来用いられている距離測定用の巻き尺の中に組み込むと、距離と高低差もしくは水平位置差を同時に測定することができる。つまり、巻き尺の引き出し板もしくは帯をパイプ状の構造とするか、パイプを張り付けた構造とし、このパイプに液を満たして、一端に圧力センサを埋め込んで今までに述べた方法と同様の方法で、圧力差を計測し、距離と高低差を同時に求めるのである。この高低差を距離と一緒に液晶表示すると、地面の傾斜や、凹凸が距離とともに、簡便でしかも安価に計測できる。 Further, by incorporating the present invention into a tape measure for distance measurement conventionally used, it is possible to measure the distance and the height difference or the horizontal position difference at the same time. In other words, the drawer plate or band of the winding scale has a pipe-like structure, or a pipe is attached, and this pipe is filled with liquid, and a pressure sensor is embedded at one end, using the same method as described so far. , The pressure difference is measured, and the distance and the height difference are obtained at the same time. When this height difference is displayed on the liquid crystal display together with the distance, the inclination of the ground and the unevenness can be measured easily and inexpensively together with the distance.

本発明を利用すると、非常に簡便に、地表面や建物等の高低差や起伏が、数100m離れていても、数cmオーダの高い精度で計測可能であり、その際、距離も同時に測定するようにすると、従来計測が不可能であったような非常に大きな建造物などの微小な傾斜も、容易に測定できる。 By using the present invention, it is possible to measure the height difference and undulations of the ground surface, buildings, etc. with high accuracy of several centimeters even if they are several hundred meters apart, and at that time, the distance is also measured at the same time. By doing so, it is possible to easily measure a minute inclination such as a very large building, which was impossible to measure in the past.

また、曲がった場所で、従来何度も計測を繰り返さないとわからなかったような高低差測定も、パイプ先端さえ移動できれば、一度の計測で、簡単に可能となる。例えば、湾曲した道路の100m先の位置までの傾斜や、建物の表側を通る道路と裏側を通る道路の高さの差を知りたい場合なども、パイプ先端を表側から裏側まで移動するだけで、簡単かつ迅速に測定ができるのである。 In addition, if the tip of the pipe can be moved, it is possible to easily measure the height difference in a curved place, which was not possible without repeating the measurement many times. For example, if you want to know the slope of a curved road to a position 100 m away, or the difference in height between the road that passes through the front side of the building and the road that passes through the back side, simply move the tip of the pipe from the front side to the back side. It is possible to measure easily and quickly.

また、地滑り等の災害予防に本発明を利用することも考えられる。本発明を使った装置は、非常に安価に製造が可能なため、各地滑りの危険がある地域に設置し、常にWiFi等でモニターしておけば、わずかの地表面に起きた高さ変化をとらえることができるため、地面が大きく滑る前に、地滑りの予測が可能となり、災害を未然に防ぐことが可能になる。 It is also conceivable to use the present invention for disaster prevention such as landslides. Since the device using the present invention can be manufactured at a very low cost, if it is installed in an area where there is a risk of slipping in various places and constantly monitored by WiFi or the like, a slight change in height on the ground surface can be detected. Since it can be grasped, it is possible to predict the landslide before the ground slips greatly, and it is possible to prevent a disaster.

また、本発明ではパイプの一端を開放して計測もできるが、両端を密封して、計測することができる様にもしているため、持ち運びが容易であり、保管がしやすく、故障が起こりにくいという効果もある。 Further, in the present invention, one end of the pipe can be opened for measurement, but since both ends are sealed so that measurement can be performed, it is easy to carry, easy to store, and less likely to cause a failure. There is also the effect.

本発明は、作業者が各場所の高低差を知るために、基準となる位置から、パイプ端部を持ち歩くことも可能であるが、自動掃除機で使われているようなアルゴリズムを移動ロボットに組み込み、その移動ロボットに位置を知るためのGPSや地磁気センサ等を取り付けて、移動した場所を明確にすれば、ある面積に渡って二次元的に高低差測定を行うことができるので、ある地域全体に渡って、高低差データを位置との関数の形で得ることができる。このデータを、有限要素法の様な数学的な処理を行うことによって、全面積に渡っての起伏や傾斜等が連続的に明確になり、土木、建設において非常に有効な三次元データを作ることができる。 In the present invention, the operator can carry the end of the pipe from the reference position in order to know the height difference of each place, but the algorithm as used in the automatic vacuum cleaner is applied to the mobile robot. If you install a GPS or geomagnetic sensor to know the position of the mobile robot and clarify the location where you moved, you can measure the height difference two-dimensionally over a certain area. Throughout, height difference data can be obtained in the form of a function with the position. By performing mathematical processing such as the finite element method on this data, the undulations and slopes over the entire area are continuously clarified, and very effective 3D data is created in civil engineering and construction. be able to.

また、長さ測定は、日常的に用いられる巻き尺やコンベックスによって簡単にできるが、その場所が、別の場所と比較して、高低差がどの程度であるかという点については、計測が難しい。卑近な効果を奏する例として、エアコン等の排水等を考えるとき、床に対して僅か並行より傾けて排水管を通しても、床が傾いている場合があり、うまく排水できないことがある。そのような場合、水平位置の高低差が重要になるが、水準器を用いても、離れている場所との比較が難しく、排水パイプのための壁の穴あけ等が容易でなかった。 In addition, although length measurement can be easily performed with a tape measure or convex that is used on a daily basis, it is difficult to measure the height difference between the place and another place. As an example of producing a familiar effect, when considering drainage of an air conditioner or the like, the floor may be tilted even if it is tilted slightly parallel to the floor through the drain pipe, and drainage may not be successful. In such a case, the height difference of the horizontal position is important, but even if a spirit level is used, it is difficult to compare with a distant place, and it is not easy to make a hole in the wall for the drainage pipe.

本発明を巻き尺やコンベックスと一体化することによって、非常に安価な装置となり、比較的離れた場所の水平差を簡単に測ることができる様になるため、水平を必要とする穴あけ等の作業が正確になり、日常的な様々な場面での利用効果も高いと考えられる。 By integrating the present invention with a tape measure or convex, it becomes a very inexpensive device, and it becomes possible to easily measure the horizontal difference at a relatively distant place, so that work such as drilling that requires horizontal can be performed. It will be accurate and will be highly effective in various everyday situations.

本発明の高低差測定装置とその実施方法を示した説明図である。(実施例1)It is explanatory drawing which showed the height difference measuring apparatus of this invention and the implementation method thereof. (Example 1) 本発明の高低差測定装置とその実施方法を示した説明図である。(実施例2)It is explanatory drawing which showed the height difference measuring apparatus of this invention and the implementation method thereof. (Example 2) (a)本発明の高低差測定装置とその実施方法を示した説明図である。(実施例3)(b)実施例3に若干の変更を加えた実施例3の類型例である。(a) It is explanatory drawing which showed the height difference measuring apparatus of this invention and the implementation method thereof. (Example 3) (b) This is a type example of Example 3 in which a slight modification is made to Example 3. 本発明の装置を検証するための実験で得た測定データを示した図である。It is a figure which showed the measurement data obtained in the experiment for verifying the apparatus of this invention. 本発明の高低差測定装置を示した立体斜視図である。(実施例4)It is a 3D perspective view which showed the height difference measuring apparatus of this invention. (Example 4) 実施例4の内部構造を概略的に説明した図である。It is a figure which briefly explained the internal structure of Example 4. 本発明の高低差測定装置を示した立体斜視図である。(実施例5)It is a 3D perspective view which showed the height difference measuring apparatus of this invention. (Example 5)

本発明の高低差測定装置、並びに高低差測定方法は、基本的には古くから知られる連通する管の液面の高さが等しくなるという連通管の考え方に立脚している。しかもそれに加えて、近年のMEMS(Micro Electric Mechanical System)気圧センサーモジュールを用いた気圧測定技術の著しい進歩を利用することで、たとえ100m離れた場所でも、数cmの誤差で、地面の傾斜や高低差をとらえることができる方法を発明したものである。 The height difference measuring device and the height difference measuring method of the present invention are basically based on the idea of communicating pipes that the liquid levels of the communicating pipes are equal to each other, which has been known for a long time. Moreover, by utilizing the remarkable progress of barometric pressure measurement technology using the recent MEMS (Micro Electric Mechanical System) barometric pressure sensor module, even at a distance of 100 m, the ground inclination and elevation can be increased by a few centimeters. He invented a method that can catch the difference.

これは、初期位置と測定位置の地表面の高度差を、連通管の原理を用いて液体重量変化に置き換えることで、高度差に相当する気圧差を775倍程度に増幅して測定するものである。この方法によって、数cmの高度は測定可能な圧力差となり、その圧力差をもって、地表面の高低差に置き換えて示そうとするものである。 By replacing the altitude difference between the initial position and the measurement position on the ground surface with a change in liquid weight using the principle of communication pipes, the pressure difference corresponding to the altitude difference is amplified to about 775 times and measured. be. By this method, an altitude of several cm becomes a measurable pressure difference, and the pressure difference is used to replace the height difference of the ground surface.

つまり、構造的には非常に簡単でありながら、精度が高く、ダイナミックレンジが広い、高分解能な高低差測定装置および測定方法である。
以下に具体的な構成を上げて、各代表的な実施形態を示して発明を開示する。
In other words, it is a high-resolution height difference measuring device and measuring method that is structurally very simple, yet has high accuracy and a wide dynamic range.
Hereinafter, the invention will be disclosed by showing specific embodiments and showing typical embodiments.

図1は、本発明の高低差測定装置およびその測定方法を示した第1番目の実施形態の実施例1である。図中の101は基準容器であり、パイプ107の一端をそのままの形で用いてもよいが、本実施例1では特別に容器を設けて端部構成としている。基準容器101内部には、空間部分102と液体部分103が存在している。また、この基準容器101には、電動開閉バルブ104が取り付けられている。また、この実施例1では基準容器101の空間部分102に圧力センサ105が設けられている。この基準容器101は固定のための台座106で支えられている。 FIG. 1 is Example 1 of the first embodiment showing the height difference measuring device of the present invention and the measuring method thereof. Reference numeral 101 in the figure is a reference container, and one end of the pipe 107 may be used as it is, but in the first embodiment, a special container is provided to form the end portion. Inside the reference container 101, a space portion 102 and a liquid portion 103 exist. Further, an electric opening / closing valve 104 is attached to the reference container 101. Further, in the first embodiment, the pressure sensor 105 is provided in the space portion 102 of the reference container 101. The reference container 101 is supported by a pedestal 106 for fixing.

この基準容器101内の液体は、液体を満たしたパイプ107により、液体の移動可能な状態で測定容器108に接続されている。測定容器108はパイプ107のそのままの形状で使ってもよいが、少し端部を太くしておくほうが、圧力センサの挿入等に便利である。またこの測定容器108は、基準容器101より内径を小さくして作られており、空間部分109の液体部分110と接する液面の面積は、基準容器101の空間部分102が液体部分103に接する液面の面積より十分小さくしている。この測定容器108の内部には、MEMS構造の圧力センサ111が取り付けられいるが、外部とは、密閉シールドされており、データ取り出しのための信号線だけが、測定容器108から外部に引き出されている。この信号線は外部に取り付けられた電子回路112に引き込まれている。 The liquid in the reference container 101 is connected to the measuring container 108 in a movable state by a pipe 107 filled with the liquid. The measuring container 108 may be used in the same shape as the pipe 107, but it is more convenient to insert the pressure sensor or the like by making the end slightly thicker. Further, the measuring container 108 is made to have an inner diameter smaller than that of the reference container 101, and the area of the liquid surface in contact with the liquid portion 110 of the space portion 109 is such that the space portion 102 of the reference container 101 is in contact with the liquid portion 103. It is sufficiently smaller than the area of the surface. A pressure sensor 111 having a MEMS structure is attached to the inside of the measuring container 108, but it is hermetically shielded from the outside, and only the signal line for extracting data is pulled out from the measuring container 108 to the outside. There is. This signal line is drawn into an electronic circuit 112 attached to the outside.

この電子回路112には、WiFi通信可能な電子モジュールが搭載されており、圧力センサ111から得られたデジタルデータと、本実施例1では圧力センサに付随した温度センサから得られる温度データ、およびレーザ測長機114のデータが、WiFiにてタブレット端末113に送られて、高低差と距離が液晶画面に表示される。 The electronic circuit 112 is equipped with an electronic module capable of WiFi communication, and has digital data obtained from the pressure sensor 111, temperature data obtained from the temperature sensor attached to the pressure sensor in the first embodiment, and a laser. The data of the length measuring device 114 is sent to the tablet terminal 113 by WiFi, and the height difference and the distance are displayed on the liquid crystal screen.

測定容器108には、レーザ測長機114にて、基準容器101との距離を、常に測長できる様にしており、基準容器101との距離を測定容器108の初期位置に代用して測定する。測定容器108には、車輪115が取り付けられて地面116上を転がり移動することが可能になっており、基準容器101と測定容器108間の距離を測定しながら、圧力センサ111にて圧力測定ができる様になっている。 The measuring container 108 is provided with a laser length measuring machine 114 so that the distance from the reference container 101 can always be measured, and the distance from the reference container 101 is substituted for the initial position of the measuring container 108 for measurement. .. A wheel 115 is attached to the measuring container 108 so that it can roll and move on the ground 116, and the pressure is measured by the pressure sensor 111 while measuring the distance between the reference container 101 and the measuring container 108. You can do it.

本発明による第1番目の実施形態の高低差測定装置構成については、以上に述べた通りであるが、次に高低差測定を行う方法について述べる。 The height difference measuring device configuration of the first embodiment according to the present invention is as described above, but next, a method of performing height difference measurement will be described.

まず、基準容器101と測定容器108を固定して初期位置を決める。本実施形態では、測定容器108を移動させて、測定容器108の初期位置と移動後位置の高低差を測定する。最初に電動開閉バルブ104に指示を与えて開放しておき、大気圧と空間部分102の気圧を同じにする。本実施例1では電動開閉バルブを用いているが、もちろん手動によるバルブを用いてもよい。この大気圧を圧力センサ105によって測定する。この大気圧は高低差測定中に大きく変動した際に、補正するものであり、長時間に渡る測定や、急に低気圧が通過する等によって、大きな気圧変化が起こることがない限り、補正値はそれほど大きくならず、ほとんどが誤差範囲に収まる。 First, the reference container 101 and the measuring container 108 are fixed and the initial position is determined. In the present embodiment, the measuring container 108 is moved to measure the height difference between the initial position and the post-moving position of the measuring container 108. First, an instruction is given to the electric opening / closing valve 104 to open it so that the atmospheric pressure and the pressure of the space portion 102 are the same. In the first embodiment, an electric on-off valve is used, but of course, a manual valve may be used. This atmospheric pressure is measured by the pressure sensor 105. This atmospheric pressure is corrected when it fluctuates greatly during height difference measurement, and it is a correction value unless a large change in atmospheric pressure occurs due to long-term measurement or sudden passage of low pressure. Is not so large and most of it is within the margin of error.

通常は基準容器101と測定容器108は近接させて、初期位置を決める。図1は、測定容器108を移動した後の状態を示している。この移動位置で圧力センサ111の測定を行う。その際同時に、この圧力センサ付随の温度センサによる温度とレーザ測長機114による基準容器101との距離も測定する。この移動による距離は、レーザ測長機114を用いているがために、本来測定容器108の初期位置と移動後の距離を測定すべきところ、測定容器108の初期位置を基準容器101で代用したものである。尚、温度測定は温度が大きく変化した場合の圧力データの補正用であり、通常の測定時には、それほど大きく温度変化が起こることはない。 Normally, the reference container 101 and the measurement container 108 are brought close to each other to determine the initial position. FIG. 1 shows a state after moving the measuring container 108. The pressure sensor 111 is measured at this moving position. At the same time, the distance between the temperature by the temperature sensor attached to the pressure sensor and the reference container 101 by the laser length measuring machine 114 is also measured. Since the laser length measuring machine 114 is used for the distance due to this movement, the initial position of the measuring container 108 and the distance after the movement should be measured, but the initial position of the measuring container 108 is substituted by the reference container 101. It is a thing. It should be noted that the temperature measurement is for correcting the pressure data when the temperature changes significantly, and the temperature change does not occur so much during normal measurement.

この圧力データと温度データおよびレーザ測長機114から得られた距離のデータは、電子回路112に集められ、WiFiでタブレット端末113に無線送信される。タブレット端末では、TCPやUDPに対応した言語であるProcessingで書かれたプログラムによって、WiFiの受信とデータの処理、および液晶表示が行われる。 The pressure data, the temperature data, and the distance data obtained from the laser length measuring device 114 are collected in the electronic circuit 112 and wirelessly transmitted to the tablet terminal 113 by WiFi. In the tablet terminal, WiFi reception, data processing, and liquid crystal display are performed by a program written in Processing, which is a language corresponding to TCP and UDP.

本実施例1では、パイプ107は半透明性のものを用い、着色した不凍液を含む水が入っている。パイプ107が可視化できる様にいているのは、何らかの原因で気泡がパイプ107の内部に混入した場合、速やかに色の変化によって、そのことを知るためである。ただ着色しなくてもある程度は、気泡混入の認識が可能なので、液の着色は必要に応じて行う。気泡混入を防ぐ理由は、気泡がパイプ107内の液を部分的にでも断続させると、測定に大きな誤差を生じるためである。 In the first embodiment, the pipe 107 is translucent and contains water containing a colored antifreeze liquid. The reason why the pipe 107 can be visualized is that if air bubbles are mixed into the inside of the pipe 107 for some reason, the color changes promptly to know that. However, since it is possible to recognize the inclusion of air bubbles to some extent without coloring, the liquid is colored as necessary. The reason for preventing air bubbles from entering is that if the air bubbles partially interrupt the liquid in the pipe 107, a large error will occur in the measurement.

測定容器108は車輪115上に乗せられており、パイプ107はフレキシブルなものを用いているので、測定容器108は、地面116上を、起伏を越えて、自在に動くことができる。図1の様に、測定容器108の移動位置では、初期位置より地面116がへこんでいる。そのため、連通管の原理から、一定水面高さを保つため、基準容器101の液面は降下しようとし、測定容器108内の液面は上昇しようとする。しかし空間部分108は閉じているため、それらの力は空間部分108に圧力として働き、空間部分を圧縮させるのである。そのため、測定容器108の空間部分109の圧力を測定すると、初期圧力との間に、地面の起伏に対応する水圧差が生じ、この圧力の差を、再び地面116の高低差に変換できるのである。 Since the measuring container 108 is placed on the wheel 115 and the pipe 107 is flexible, the measuring container 108 can freely move on the ground 116 over the undulations. As shown in FIG. 1, at the moving position of the measuring container 108, the ground 116 is dented from the initial position. Therefore, from the principle of communication pipes, in order to maintain a constant water level, the liquid level of the reference container 101 tends to fall, and the liquid level in the measuring container 108 tends to rise. However, since the space portion 108 is closed, those forces act as pressure on the space portion 108 and compress the space portion. Therefore, when the pressure of the space portion 109 of the measuring container 108 is measured, a water pressure difference corresponding to the undulations of the ground is generated between the pressure and the initial pressure, and this pressure difference can be converted into the height difference of the ground 116 again. ..

基準容器101の液体部分103の空間部分102と接する面積は、測定容器108の液体部分110の空間部分109と接する面積より大きくしているが、これは、測定容器108が地面116の凹凸によって変化した際に、基準容器101内の液面変化をできるだけ小さく抑えるためであり、この基準容器101と測定容器108の液面変化は、圧力測定後の補正値となる。つまり、実際の高低差は、圧力から求めた高低差から、基準容器101の液面が下がった量と、測定容器108の液面が上がった量を足し引きして求められるのである。そのため、基準容器101の液面を、誤差範囲の変化に留めることができれば、基準容器101の液面変化を無視でき、測定容器108の液面を参照するだけで補正が済み、両方を参照するという手間を半減できるのである。 The area of the reference container 101 in contact with the space portion 102 of the liquid portion 103 is larger than the area of the measurement container 108 in contact with the space portion 109 of the liquid portion 110, but this is because the measurement container 108 changes due to the unevenness of the ground 116. This is to suppress the change in the liquid level in the reference container 101 as small as possible, and the change in the liquid level between the reference container 101 and the measurement container 108 is a correction value after the pressure measurement. That is, the actual height difference is obtained by adding and subtracting the amount of the liquid level of the reference container 101 lowered and the amount of the liquid level of the measuring container 108 raised from the height difference obtained from the pressure. Therefore, if the liquid level of the reference container 101 can be limited to the change in the error range, the change in the liquid level of the reference container 101 can be ignored, and the correction is completed only by referring to the liquid level of the measurement container 108, and both are referred to. The effort can be halved.

本実施例では、基準容器101を大気開放し、気圧が一定の条件で測定しているため、非常に安定した計測値が得られる一方、いくつかの課題がある。一つは、電動開閉バルブの開閉が面倒であり、もし測定時に開放を忘れると、開放した場合とそうでない場合とで、測定値が異なり、大きい過誤をひき起こす可能性があるということであり、利用は可能であっても、改善すべき点として課題が残る。 In this embodiment, since the reference container 101 is opened to the atmosphere and the atmospheric pressure is measured under a constant condition, a very stable measured value can be obtained, but there are some problems. One is that opening and closing the electric open / close valve is troublesome, and if you forget to open it at the time of measurement, the measured value will be different depending on whether it is opened or not, and it may cause a big error. Although it can be used, there are still issues to be improved.

また、パイプ107内部の液体として水を用いる場合。基準容器101を大気開放しているため、水の蒸発と散逸が起き、常に水量に注意していないと、水量が減少して測定に支障がでる。そのため、この第一番目の実施形態である実施例1では、内部の液体として水を使うことをやめ、シリコンオイル等の、蒸発しにくい液体を用いることを試みたが、本実施例1では、パイプが常に密閉された状態ではないため、基準容器101が、何かの拍子に倒れた場合等に、液が漏れ出るために、後始末に手間がかかるという課題があった。 When water is used as the liquid inside the pipe 107. Since the reference container 101 is open to the atmosphere, water evaporates and dissipates, and if the amount of water is not always paid attention, the amount of water decreases and the measurement is hindered. Therefore, in the first embodiment, the first embodiment, the use of water as the internal liquid is stopped, and an attempt is made to use a liquid that does not easily evaporate, such as silicon oil. However, in the first embodiment, the liquid is hard to evaporate. Since the pipe is not always sealed, there is a problem that it takes a lot of time and effort to clean up the reference container 101 because the liquid leaks out when the reference container 101 falls down in some way.

図2は、本発明の高低差測定装置及びその測定方法を示した、第二番目の実施形態の実施例2である。第一番目の実施形態である実施例1との大きな改善点は、実施例1で行った基準容器の開閉操作をやめ、常にパイプ全体の密閉状態を維持する点にある。こうすることで、本装置のパイプ部分は完全に外気に対して孤立するので、持ち運びの利便性が向上するばかりでなく、測定ごとに弁の開閉をする必要がなくなり、弁の開放忘れによる測定の失敗を防止することができる。 FIG. 2 is Example 2 of the second embodiment showing the height difference measuring device of the present invention and the measuring method thereof. A major improvement from the first embodiment, the first embodiment, is that the opening / closing operation of the reference container performed in the first embodiment is stopped and the entire pipe is always kept in a sealed state. By doing so, the pipe part of this device is completely isolated from the outside air, which not only improves the convenience of carrying, but also eliminates the need to open and close the valve for each measurement, and measurement by forgetting to open the valve. Can prevent failure.

ただ、反面、基準容器の大気開放を行わない為に、基準容器のパイプ内の液面にかかる圧力は、安定した一定値を継続する大気圧ではなくなり、測定容器内にかかる圧力と同様に、基準容器の圧力も変化する。そのため、常に基準容器、測定容器両方の圧力と液面を測定するか、どちらかの圧力と液面から、他方を計算し、補正を行う必要が出てくるのである。 However, on the other hand, since the reference container is not opened to the atmosphere, the pressure applied to the liquid level in the pipe of the reference container is no longer the atmospheric pressure that keeps a stable constant value, and is the same as the pressure applied in the measuring container. The pressure in the reference vessel also changes. Therefore, it is necessary to always measure the pressure and liquid level of both the reference container and the measuring container, or calculate the other from the pressure and liquid level of either one and make a correction.

図2において、基準容器201と測定容器207はパイプ206の端部を拡大したものであり、液体が注入されており、基準容器201と測定容器207内には、空間部分205と210が作られている。またその空間部分205および210と接して、液体部分203と208が液面を形成している。この液面近傍にはシリコンオイルが、不凍液を混在させた水の上部に注入されており、水はパイプ206に充満している。 In FIG. 2, the reference container 201 and the measurement container 207 are enlarged ends of the pipe 206, and liquid is injected, and space portions 205 and 210 are created in the reference container 201 and the measurement container 207. ing. Further, the liquid portions 203 and 208 form a liquid surface in contact with the space portions 205 and 210. Silicone oil is injected into the upper part of the water mixed with the antifreeze liquid in the vicinity of the liquid level, and the water fills the pipe 206.

距離測定は、車輪214の軸に取り付けられたロータリーエンコーダ215から出力されるパルスを電子回路211に送り、カウントして係数を乗じて距離に変換している。またこの電子回路211には、気圧センサ209からの圧力や温度データも送られてきており、これらの情報は、ZigBee等のワイアレスモジュールを介してノート型のPC212にて解釈、処理され、液晶画面に表示される。 In the distance measurement, a pulse output from the rotary encoder 215 attached to the shaft of the wheel 214 is sent to the electronic circuit 211, counted, multiplied by a coefficient, and converted into a distance. In addition, pressure and temperature data from the barometric pressure sensor 209 are also sent to this electronic circuit 211, and these information are interpreted and processed by a notebook-type PC 212 via a wireless module such as ZigBee, and the liquid crystal screen. Is displayed in.

本実施例2では、移動の際に液を満たしたホース206が、測定の邪魔にならない様に、車輪214の軸周囲に弱いゼンマイバネ(表示せず)を介して巻き取られている。そのためパイプ206を必要な距離だけ出し終え、元に戻す場合はバネの力で元の状態に巻き取る事ができる。また、本実施例2では基準容器201にも気圧センサ202を設けているが、測定容器207の気圧センサ209か、基準容器201の気圧センサ202かのどちらか一方だけの圧力情報でも、解析計算によって、高低差の計測が可能である。 In the second embodiment, the hose 206 filled with the liquid during movement is wound around the axis of the wheel 214 via a weak spring (not displayed) so as not to interfere with the measurement. Therefore, when the pipe 206 has been pulled out for a required distance and then returned to its original state, it can be wound back to its original state by the force of a spring. Further, in the second embodiment, the barometric pressure sensor 202 is also provided in the reference container 201, but the pressure information of only one of the barometric pressure sensor 209 of the measuring container 207 and the barometric pressure sensor 202 of the reference container 201 can be analyzed and calculated. It is possible to measure the height difference.

測定方法は、ほぼ実施例1と同じであるが、以下の手順で行う。測定開始時に、まず基準容器201と測定容器207の位置を固定して初期位置とし、この時の気圧センサ202と209の圧力、温度の値を読み取り、各初期圧力、温度とする。次に測定容器を必要な距離だけ移動させて、移動後位置での圧力と温度の値を測定し、移動後圧力、温度とする。その際、車輪214に取り付けたロータリーエンコーダ215のパルスもカウントしており、その値から移動した距離を求めている。本実施例2では測定容器207を移動させるが、基準容器201を移動させて計測しても、高低差の測定は可能である。 The measuring method is almost the same as that of the first embodiment, but the procedure is as follows. At the start of measurement, the positions of the reference container 201 and the measurement container 207 are first fixed to be the initial positions, and the pressure and temperature values of the barometric pressure sensors 202 and 209 at this time are read and used as the initial pressure and temperature. Next, move the measuring container by the required distance, measure the pressure and temperature values at the post-movement position, and use the post-movement pressure and temperature. At that time, the pulse of the rotary encoder 215 attached to the wheel 214 is also counted, and the distance traveled is obtained from that value. In the second embodiment, the measuring container 207 is moved, but even if the reference container 201 is moved for measurement, the height difference can be measured.

通常、短時間の測定では温度はほとんど変化がないので、温度補正はわずかであるが、測定容器207を移動させた際に、温度が大きく変化した場合には、ボイルシャルルの法則に基づき、圧力が絶対温度に比例することを利用して、移動後の圧力を初期位置での温度と移動後の温度を比較して補正する。液体部分203と208の表面には、蒸気圧の低いシリコンオイルを浮かべているために、温度による蒸気圧の補正は必要がないが、シリコンオイルを用いず、水をそのまま液体部分全体に用いている場合は、温度が大きく変化する場合は、水蒸気圧の補正も必要となる。 Normally, the temperature does not change much in a short time measurement, so the temperature correction is slight, but if the temperature changes significantly when the measuring container 207 is moved, the pressure is based on Boyle-Charles' law. Is proportional to the absolute temperature, and the pressure after movement is corrected by comparing the temperature at the initial position with the temperature after movement. Since silicon oil with low vapor pressure is floating on the surfaces of the liquid parts 203 and 208, it is not necessary to correct the vapor pressure by temperature, but water is used as it is for the entire liquid part without using silicon oil. If so, it is also necessary to correct the vapor pressure if the temperature changes significantly.

気圧センサ202と気圧センサ209から得た圧力データは、先に述べた補正を加えて、正規化した後、移動後圧力と初期圧力を比較し、地面213の高低差を導く。例えば、図2の様に、測定容器207を移動させた際に、地面213が測定容器207の初期位置と比較して、移動後位置の水平高さ(高度)が低くなっているときには、測定容器207の空間部分210と液体部分208の間の液面は、地面213が低くなった分だけ、連通管の原理により、初期位置での液面に戻ろうとし、パイプ内の液体によって押され、空間部分210が加圧される。 The pressure data obtained from the barometric pressure sensor 202 and the barometric pressure sensor 209 are normalized by adding the above-mentioned correction, and then the post-movement pressure and the initial pressure are compared to derive the height difference of the ground 213. For example, as shown in FIG. 2, when the measuring container 207 is moved and the horizontal height (altitude) of the position after the movement is lower than the initial position of the measuring container 207, the measurement is performed. The liquid level between the space portion 210 and the liquid portion 208 of the container 207 tries to return to the liquid level at the initial position by the amount that the ground 213 is lowered, and is pushed by the liquid in the pipe. , The space portion 210 is pressurized.

一方、基準容器201の空間部分205は、測定容器207の位置が低下したために、初期位置からパイプ206内の液体の引く力によって、減圧されることになる。基準容器201内の、液体部分203と空間部分205の接する面積が、測定容器207内の液体部分208と空間部分210の接する面積より、十分に大きくとられている場合は、基準容器201内の液面変化は、測定容器207の液面変化に比べて小さくなる。 On the other hand, since the position of the measuring container 207 is lowered, the space portion 205 of the reference container 201 is decompressed by the pulling force of the liquid in the pipe 206 from the initial position. When the contact area between the liquid portion 203 and the space portion 205 in the reference container 201 is sufficiently larger than the contact area between the liquid portion 208 and the space portion 210 in the measurement container 207, the contact area in the reference container 201 The liquid level change is smaller than the liquid level change of the measuring container 207.

その場合は、わずかな地面213の起伏に対しては、基準容器201の空間部分205の容積変化はほとんどなくなるため、基準容器201内の圧力もほとんど変化しないため、実施例1と同様な方法で高低差を計測できる。ただし、大きな起伏変化に対しては、基準容器201、測定容器207の両方の圧力が変化するため、気圧センサ202と気圧センサ209両方の圧力データを参照して高低差の計算をする必要があり、同時に、基準容器210と測定容器207の液面の変化の補正も加えなければならない。 In that case, since the volume change of the space portion 205 of the reference container 201 hardly changes with respect to the slight undulation of the ground 213, the pressure in the reference container 201 also hardly changes, so that the method is the same as that of the first embodiment. Height difference can be measured. However, since the pressures of both the reference container 201 and the measuring container 207 change for a large undulation change, it is necessary to calculate the height difference by referring to the pressure data of both the barometric pressure sensor 202 and the barometric pressure sensor 209. At the same time, correction of changes in the liquid levels of the reference container 210 and the measuring container 207 must be added.

一方、圧力センサをどちらか1つにして測定する場合は、測定容器207と基準容器201の内径を同じにして、空間部分205と210の液体部分203と208に接する面積を同じにする。そうすることによって、パイプ206内の液量は一定であるため、一方の液面の低下もしくは上昇量は、他方と同じ値になる。そのように、一方の液面変化を測定し、他方を予測し、数値計算で高低差を導くのである。 On the other hand, when measuring with either one of the pressure sensors, the inner diameters of the measuring container 207 and the reference container 201 are made the same, and the areas of the space portions 205 and 210 in contact with the liquid portions 203 and 208 are made the same. By doing so, since the amount of liquid in the pipe 206 is constant, the amount of decrease or increase in the liquid level of one becomes the same value as that of the other. In this way, one liquid level change is measured, the other is predicted, and the height difference is derived by numerical calculation.

以上の様に、本実施例2は、実施例1の様に片側を開放するための開閉弁に伴う課題は除かれるが、両端に密閉空間があるために、両空間の液面と圧力変化の監視が必要となるという面倒な課題が残る。 As described above, in the second embodiment, the problem associated with the on-off valve for opening one side as in the first embodiment is excluded, but since there are closed spaces at both ends, the liquid level and pressure change in both spaces are eliminated. The troublesome problem that the monitoring of the is required remains.

本実施形態は、実施例1と実施例2の課題や問題点を改善しようとする過程で生まれたものであり、液面の監視が不要になる、より利便性を向上させた新しい知見が含まれる。実施例1や実施例2の開発実験を繰り返す内に、本実施例のような方法が可能であることを、たまたま発見したものであり、連通管の考え方に立脚しつつも、片側に空間のない状態で気圧を測定するという、連通管の概念を超えた、まったく新しい考え方に到達したものである。ただ、MEMS型の圧力センサの内部に微小な空間部分が残っているのではないかということも考えられるが、その場合は、実施例2の改良として、非常に微細な空間を、圧力計の測定部に形成して、圧縮膨張による液面変化を誤差範囲程度にまで微小に抑えたということになるが、今のところは明確ではない。 This embodiment was born in the process of trying to improve the problems and problems of Examples 1 and 2, and includes new findings that improve convenience and eliminate the need for monitoring the liquid level. Is done. While repeating the development experiments of Example 1 and Example 2, it happened that a method like this example was possible, and while based on the concept of communication pipes, there was a space on one side. It has reached a completely new way of thinking that goes beyond the concept of communication pipes to measure atmospheric pressure without it. However, it is possible that a minute space remains inside the MEMS type pressure sensor, but in that case, as an improvement of Example 2, a very fine space is created in the pressure gauge. It is said that the liquid level change due to compression and expansion was suppressed to an error range by forming it in the measuring part, but it is not clear at present.

図3の(a)は、本発明の高低差測定装置およびその測定方法の第3番目の実施形態の一つであり、それを実施例3として開示したものである。本実施例3では、測定容器308を、遠隔的にコントロールして移動させることが可能な、移動ロボット312に装着している。しかも、基準容器302は、空間部分をなくし、MEMS式の気圧センサ303が基準容器302内に液浸されて、密封されている。本実施例では、液体は比重が1に近く、粘性の低いシリコンオイルを用いている。 FIG. 3A is one of the third embodiments of the height difference measuring device and the measuring method thereof of the present invention, which is disclosed as Example 3. In the third embodiment, the measuring container 308 is attached to a mobile robot 312 that can be remotely controlled and moved. Moreover, the reference container 302 has no space portion, and the MEMS type barometric pressure sensor 303 is immersed in the reference container 302 and sealed. In this embodiment, the liquid uses silicon oil having a specific gravity close to 1 and low viscosity.

基準容器302と測定容器308は、パイプ309の両端に取り付けられている。この基準容器302や測定容器308は、パイプ309の端部をそのまま利用してもよいのであるが、やや空間を広げる方が、基準容器302にあっては、気圧センサ303の挿入の容易性、測定容器308にあっては、空間部分311の作り易さのため、容器状にしているのである。先に述べた様に、測定容器308は、基準容器302と異なり、空間部分311が作られ、液体部分310との間に液面を作っている。また、パイプ309は全体的に密封されており、外気から遮断されている。 The reference container 302 and the measuring container 308 are attached to both ends of the pipe 309. For the reference container 302 and the measurement container 308, the end portion of the pipe 309 may be used as it is, but it is easier to insert the pressure sensor 303 in the reference container 302 if the space is slightly widened. The measuring container 308 is shaped like a container because of the ease of making the space portion 311. As described above, in the measuring container 308, unlike the reference container 302, a space portion 311 is formed, and a liquid level is formed between the measuring container 308 and the liquid portion 310. Further, the pipe 309 is totally sealed and shielded from the outside air.

測定容器308は、 移動ロボット312に搭載されて、地面314を移動し、凹凸や起伏の情報を、パイプ309内のシリコンオイルを介して、基準容器302内面に配置した気圧センサ303に伝える。この気圧センサ303による測定データは、計測モジュール301に伝えられ、処理され、地面314の高低差として表示される。 The measuring container 308 is mounted on the mobile robot 312, moves on the ground 314, and transmits information on unevenness and undulations to the barometric pressure sensor 303 arranged on the inner surface of the reference container 302 via the silicon oil in the pipe 309. The measurement data by the barometric pressure sensor 303 is transmitted to the measurement module 301, processed, and displayed as the height difference of the ground 314.

本実施例3では、基準容器302は支柱304によって支えられ、パイプ309は巻き取り機307によって巻き取る構造になっており、パイプ309の出し入れは、モータ306への指令によって行われる。またその際、モータの回転数と巻き径の関係から、距離を割り出すことができる様にしている。そのため、パイプ309が1列に積層されて巻き取られている。パイプ309の出し入れを容易にするために、基準容器302や計測モジュール301は一体となって、移動ロボット312の方向に回転する様になっており、回転を容易にするために、ベアリング305が用いられている。 In the third embodiment, the reference container 302 is supported by the support column 304, the pipe 309 is wound by the winder 307, and the pipe 309 is taken in and out by a command to the motor 306. At that time, the distance can be calculated from the relationship between the rotation speed of the motor and the winding diameter. Therefore, the pipes 309 are laminated in one row and wound up. In order to facilitate the insertion and removal of the pipe 309, the reference container 302 and the measurement module 301 are integrated and rotate in the direction of the mobile robot 312, and the bearing 305 is used to facilitate the rotation. Has been done.

また、計測モジュールからは、WiFi無線通信によって、コンピュータ315にデータが送られ、距離と高低差のグラフが描かれ、基準容器302位置を所定位置に移動させながら、測定することで、3次元的なグラフが描けるようにもしている。ただ、実際上は、基準容器302を移動することが面倒であるため、現在は、基準容器302を中心として、その周囲を円周状に測定する方法を用いているが、この場合、支柱は中心に1本だけにして、基準容器302が回転可能な状態にして、支える方法を用いる。 In addition, data is sent from the measurement module to the computer 315 by WiFi wireless communication, a graph of distance and height difference is drawn, and measurement is performed while moving the reference container 302 position to a predetermined position in three dimensions. I also try to draw a nice graph. However, in practice, it is troublesome to move the reference container 302, so currently, a method of measuring around the reference container 302 in a circumferential shape is used, but in this case, the support column is used. A method is used in which only one container is provided in the center so that the reference container 302 can rotate and is supported.

この、実施例3(a)では、基準容器302内に液体を満たして、測定容器308を移動させる方法を採用したが、測定容器308を液体で満たして、その中に圧力センサを浸して、圧力測定し、その圧力差によって高低差を求めることも可能である。その際は、基準容器302に空間部分を設けなくてはならない。また、移動ロボット312に、GPSや地磁気センサを搭載して、圧力や温度のデータと共に、コンピュータ315にデータを送信すれば、任意の面積全体の高低差を測定でき、3次元的な地図を容易に描くことができる。 In Example 3 (a), the method of filling the reference container 302 with a liquid and moving the measuring container 308 was adopted, but the measuring container 308 was filled with the liquid and the pressure sensor was immersed in the liquid. It is also possible to measure the pressure and obtain the height difference from the pressure difference. In that case, a space portion must be provided in the reference container 302. In addition, if the mobile robot 312 is equipped with a GPS or geomagnetic sensor and data is transmitted to the computer 315 together with pressure and temperature data, it is possible to measure the height difference of any area and facilitate a three-dimensional map. Can be drawn on.

この内容をより明確に示すために、図3に(b)として図によって示した。(a)と(b)で共通するものは、同じ番号をもちいている。 In order to show this content more clearly, it is shown graphically as (b) in FIG. Those common to (a) and (b) use the same number.

図3の(b)においては(a)と異なり、基準容器302は液体で満たさず、空間部分315が存在し、液体部分316と接しており、密閉栓317によって、外気とは封止されている。一方、測定容器308は、液体が充満しており、気圧センサ318が浸漬されている。この気圧センサのデジタル信号は、電子モジュール320に伝えられる。また、この電子モジュール320には、移動ロボットの車軸に取り付けられた、エンコーダ321からのパルスデータも伝えられているため、このパルス数から測定容器308がどの程度動いたかの距離測定ができる。 In (b) of FIG. 3, unlike (a), the reference container 302 is not filled with the liquid, the space portion 315 exists, is in contact with the liquid portion 316, and is sealed from the outside air by the sealing stopper 317. There is. On the other hand, the measuring container 308 is filled with a liquid, and the barometric pressure sensor 318 is immersed therein. The digital signal of this barometric pressure sensor is transmitted to the electronic module 320. Further, since the pulse data from the encoder 321 attached to the axle of the mobile robot is also transmitted to the electronic module 320, it is possible to measure the distance of how much the measuring container 308 has moved from this number of pulses.

これらのデータは、電子モジュール320にて処理され、コンピュータ315にWiFi送信され、処理されて表示装置に表示される。 These data are processed by the electronic module 320, transmitted to the computer 315 by WiFi, processed, and displayed on the display device.

本実施例では、(a)は、基準容器302側にて、モータ306の回転数から距離を割り出す方法を述べているが、(b)では移動ロボット312の軸に、ロータリエンコーダ321を取り付け、その値から距離を割り出す方法を述べた。 In this embodiment, (a) describes a method of determining the distance from the rotation speed of the motor 306 on the reference container 302 side, but in (b), the rotary encoder 321 is attached to the shaft of the mobile robot 312. I described how to calculate the distance from that value.

また、測定は、例えば0.1m移動して、0.5秒休止しその休止間に、圧力を測定する方法をとるべきであり、移動と休止を繰り返しつつ圧力測定するのが望ましい。移動中は、パイプ309が揺れ動くため、圧力変動ノイズが大きくなり、それを測定データとすると、本来の正しいデータが明確でなくなり、望ましい結果が得られなくなるのである。この移動量と休止時間は測定する対象の面がどの程度なめらかか、もしくは、どの程度荒れているか等、またどの程度高精細の高低差図を作るか等を考慮して決める必要がある。 In addition, the measurement should be performed by, for example, moving 0.1 m, resting for 0.5 seconds, and measuring the pressure during the rest, and it is desirable to measure the pressure while repeating the movement and the rest. Since the pipe 309 sways during the movement, the pressure fluctuation noise becomes large, and if it is used as the measurement data, the original correct data becomes unclear and the desired result cannot be obtained. It is necessary to determine the amount of movement and the rest time in consideration of how smooth the surface of the object to be measured is, how rough it is, and how high-definition height difference map is to be created.

本実施例では、気圧センサ303や318を用いているが、現在商品として生産されている気圧センサは300hPa程度から、1300hPa程度までを計測することができる様になっているものが多い。本実施例では、高低差を上下方向で測定するため、気圧センサが上限と下限の中間で動作するのが望ましい。 In this embodiment, the barometric pressure sensors 303 and 318 are used, but many of the barometric pressure sensors currently produced as commercial products can measure from about 300 hPa to about 1300 hPa. In this embodiment, since the height difference is measured in the vertical direction, it is desirable that the barometric pressure sensor operates between the upper limit and the lower limit.

そのため、パイプ内の気圧を500hPa程度減じて、初期の気圧中心部を800hPa程度のところに落ち着かせ、上下で500hPaの測定ができる様にする。このように、パイプ内を減圧することで、上下方向に5mの高低差の測定が可能になる。 Therefore, the atmospheric pressure in the pipe is reduced by about 500 hPa to settle the initial atmospheric pressure center at about 800 hPa so that the measurement of 500 hPa can be performed up and down. By reducing the pressure inside the pipe in this way, it is possible to measure a height difference of 5 m in the vertical direction.

本発明では、パイプを封止しており、パイプ内を満たす液体としてシリコンオイルを用いれば、トリチェリの真空は生じないため、高低差が10m以上でも測定が可能である。ただ、そのためには、差圧が1000hPaより大きい圧力に耐えうる圧力センサを用いる必要がある。どのような圧力センサを選ぶかは、測定対象と、その時の測定精度や最小測定分解能をいくらにするかによって決める必要がある。 In the present invention, if the pipe is sealed and silicon oil is used as the liquid that fills the inside of the pipe, a vacuum of Torricelli does not occur, so that the measurement can be performed even if the height difference is 10 m or more. However, for that purpose, it is necessary to use a pressure sensor that can withstand a pressure having a differential pressure greater than 1000 hPa. It is necessary to decide what kind of pressure sensor to select depending on the measurement target and the measurement accuracy and minimum measurement resolution at that time.

本実施例3では、図3の(a)と(b)において示した様に、パイプ309の一端が液体で満たされ、気圧センサ303もしくは318が液浸されてている。そのため、パイプ309内部に密閉された液体は、移動できない状態になっており、液面や、空間部分の体積変化がない。そのため、実施例1や実施例2の様な液面変化や空間部分の圧力変化による補正の必要がないという画期的な特徴がある。 In the third embodiment, as shown in FIGS. 3A and 3B, one end of the pipe 309 is filled with a liquid, and the barometric pressure sensor 303 or 318 is immersed in the liquid. Therefore, the liquid sealed inside the pipe 309 is in a state of being immovable, and there is no change in the volume of the liquid surface or the space portion. Therefore, there is an epoch-making feature that there is no need for correction due to a liquid level change or a pressure change in a space portion as in the first and second embodiments.

では、何故連通管でありながら、両端に空間が必要でないのかという点について、一つには、MEMSの気圧センサー内部に微小な空間が残存している場合が考えられる。もう一つの考え方として、海底に潜った場合に体にかかる圧力と同じ考え方が適用できるのではないかとも考えられる。どちらが正しい考え方になるかは、今後の研究を待たざるを得ないが、実用上は、正しい高低差の結果が得られるのであるから、実用上での問題はないと思われる。 Then, regarding the reason why the communication pipe does not require space at both ends, one of the cases is that a minute space remains inside the pressure sensor of the MEMS. As another way of thinking, it is possible that the same way of thinking as the pressure applied to the body when diving under the sea can be applied. We have to wait for future research to decide which is the correct way of thinking, but in practice, it seems that there is no problem in practical use because the correct height difference result can be obtained.

そこで、図4は、パイプ長を5mとして、実施例3(b)の測定容器308の移動位置を固定し、上下方向に測定容器を垂直移動させて、その高さをルーラーで測定して値を比較したものである。ルーラーで測定した高低差は、横軸にて示し、本発明によって測定した高低差は、縦軸にて示した。黒丸は測定値を絶対値で示したものであり、0点から延びる実直線は、ルーラーによる高低差と本発明の装置による高低差が一致する点を結んだものである。一方点線は、黒丸の測定値を結んだ近似線である。 Therefore, in FIG. 4, the pipe length is 5 m, the moving position of the measuring container 308 of the third embodiment (b) is fixed, the measuring container is vertically moved in the vertical direction, and the height is measured by a ruler. Is a comparison. The height difference measured by the ruler is shown on the horizontal axis, and the height difference measured by the present invention is shown on the vertical axis. The black circles indicate the measured values as absolute values, and the solid straight line extending from the 0 point connects the points where the height difference by the ruler and the height difference by the apparatus of the present invention match. On the other hand, the dotted line is an approximate line connecting the measured values of the black circles.

図4にてわかるように、ルーラーによる高低差の方が本発明による高低差よりも8%程度大きい。これは、パイプに封入している液体の比重が1より小さいことや、気圧センサをシリコンオイルに浸して、気圧を測定しているため、粘度等の影響が出ている等の原因が考えられるが、何度かの繰り返し実験を行ったところ、ほぼ再現性が得られ、かつ直線性から逸脱しないため、この値を補正値としている。つまり、本実施例3を用いた場合は。本発明の装置から得た値を、ルーラーの高低差に合わせるためには、補正係数として1.08を掛け合わせる必要がある。 As can be seen in FIG. 4, the height difference due to the ruler is about 8% larger than the height difference according to the present invention. This may be due to the fact that the specific gravity of the liquid sealed in the pipe is less than 1, and that the barometric pressure is measured by immersing the barometric pressure sensor in silicon oil, which affects the viscosity and other factors. However, as a result of repeated experiments several times, almost reproducibility was obtained and the linearity was not deviated, so this value was used as the correction value. That is, when the present embodiment 3 is used. In order to match the value obtained from the apparatus of the present invention with the height difference of the ruler, it is necessary to multiply by 1.08 as a correction coefficient.

図5は実施例4を示したものであり、本発明の第4番目の実施形態である。基本的な考え方は、これまでに述べた実施例と異ならない。パイプの一方の端を液体で充満させ、他方の端に液体と接する空間部分を設け、液体の充満した端の方に気圧センサを挿入している点は、実施例3の応用展開と言える。実施例3をより一般的な家庭での使用に向く様に簡略化し、利用拡大を目的としたものである。つまり、この実施例4は、市販されているコンベックスもしくは巻き尺の距離測定に加えて、高低差の測定が可能となるように機能を拡張したものと言える。 FIG. 5 shows Example 4, which is the fourth embodiment of the present invention. The basic idea is not different from the examples described so far. It can be said that the application development of the third embodiment is that one end of the pipe is filled with a liquid, a space portion in contact with the liquid is provided at the other end, and the barometric pressure sensor is inserted toward the end filled with the liquid. The third embodiment is simplified so as to be suitable for general household use, and the purpose is to expand the use. That is, it can be said that the fourth embodiment has an expanded function so that the height difference can be measured in addition to the distance measurement of the convex or tape measure on the market.

図5にて説明を行うと、巻取り機501の内部には、液体溜めがあり、その液体溜めから、パイプ504が引き出されて、測定容器505に繋がっている。パイプ504は、スケーラ503に接着されており、パイプ504は閉止栓506によって外部とは完全に密閉されている。測定容器505は、液体が空間と接する状態で密閉され、液体も空間を構成する気体も漏れ出ることはない。 As described in FIG. 5, there is a liquid reservoir inside the winder 501, and a pipe 504 is pulled out from the liquid reservoir and connected to the measuring container 505. The pipe 504 is adhered to the scaler 503, and the pipe 504 is completely sealed from the outside by a closing stopper 506. The measuring container 505 is sealed so that the liquid is in contact with the space, and neither the liquid nor the gas constituting the space leaks out.

図5では、外見しかわからないため、図6によって内部の様子を簡略化して示した。図6では、説明を分かり易くするために、図5に表したものと同じ部位の符号は、同じものを用いてあらわしている。 In FIG. 5, since only the appearance can be seen, the inside is simplified and shown by FIG. In FIG. 6, for the sake of clarity, the same parts as those shown in FIG. 5 are represented by the same reference numerals.

図6において、巻き取り機501の内部には、パイプ504が巻き込まれており、コイルばね603とスケーラ部503(図5参照、図6中には示さず)が繋がっている。パイプ504は基準容器605に繋がっており、基準容器605内には、パイプ内に注入されている液体と同じ液体が充満している。本実施例4では、液体としては、比較的低粘度のシリコンオイルを用いている。パイプ504は測定容器505とつながっており、測定容器内は空間部分608と液体部分609に分かれている。基準容器605、測定容器505を含むパイプ504は閉止栓506によって外気から完全に密封されている。 In FIG. 6, a pipe 504 is wound inside the winder 501, and a coil spring 603 and a scaler portion 503 (see FIG. 5, not shown in FIG. 6) are connected to each other. The pipe 504 is connected to the reference container 605, and the reference container 605 is filled with the same liquid as the liquid injected into the pipe. In Example 4, a silicone oil having a relatively low viscosity is used as the liquid. The pipe 504 is connected to the measuring container 505, and the inside of the measuring container is divided into a space portion 608 and a liquid portion 609. The pipe 504 including the reference container 605 and the measuring container 505 is completely sealed from the outside air by the closing stopper 506.

使用法としては、例えば、図6に示す様に、測定対象物611が、巻き取り機501の前方にあり、その水平位置の高低差と距離を知りたい場合、測定を始める前の初期位置は、巻き取り機501を固定した状態での位置であり、スイッチ(図示せず)を入れると、表示が現れ、高低差は0cmと表示される。図6では、少し起伏があり、表示は+Hcmとなる。距離はスケーラから読みLcmである。測定対象物611のところまで、測定容器505を移動させる際に、巻き取り機501は固定しているため、内部に設置した基準容器605も固定されている。 As a usage, for example, as shown in FIG. 6, when the object to be measured 611 is in front of the winder 501 and you want to know the height difference and the distance of the horizontal position, the initial position before starting the measurement is , The position in the state where the winder 501 is fixed, and when the switch (not shown) is turned on, a display appears and the height difference is displayed as 0 cm. In FIG. 6, there are some undulations, and the display is + Hcm. The distance is L cm reading from the scaler. Since the winder 501 is fixed when the measuring container 505 is moved to the measurement target object 611, the reference container 605 installed inside is also fixed.

図5のストッパ502は、一時的にスケーラ503とパイプ504の動きを止めるものであり、この位置で、リセットボタン508でリセットすると、この測定容器505の位置が高低差0となって、次に移動した場所との相対的な高低差を測定することができる。リセットしないで、測定容器505を移動させた場合は、初期位置との高低差となる。 The stopper 502 in FIG. 5 temporarily stops the movement of the scaler 503 and the pipe 504. When the reset button 508 is reset at this position, the position of the measuring container 505 becomes 0, and then the height difference becomes 0. It is possible to measure the relative height difference from the moved place. If the measuring container 505 is moved without resetting, the height difference from the initial position will be obtained.

図7は第5番目の実施形態である実施例5である。本実施例5は基本的には、実施例4と同じ考え方であるが、横に寝かして使う様に工夫したものである。このようにすることで、液晶表示が見やすく、かつ設置が安定するという利点がある。 FIG. 7 is a fifth embodiment, the fifth embodiment. This Example 5 is basically the same idea as the Example 4, but is devised so that it can be used by lying down on its side. By doing so, there is an advantage that the liquid crystal display is easy to see and the installation is stable.

図7において、巻き取り機701の内部には、パイプ706が巻き取られており、このパイプは、片端が、基準容器703に繋がり、もう一方が測定容器707に繋がっている。測定容器707内には、液体が充満しており、気圧センサ708がその中に浸って、外部に端子部が取り出されている。もう一方の端にある基準容器703の内部は、液体部分と空間部分に分かれており、空間部分は閉止栓702で密封されている。それゆえパイプ706は、外気とは完全に密封状態にある。 In FIG. 7, a pipe 706 is wound inside the winder 701, and one end of the pipe is connected to the reference container 703 and the other end is connected to the measuring container 707. The measuring container 707 is filled with a liquid, the barometric pressure sensor 708 is immersed in the liquid, and the terminal portion is taken out to the outside. The inside of the reference container 703 at the other end is divided into a liquid part and a space part, and the space part is sealed with a closing stopper 702. Therefore, the pipe 706 is completely sealed from the outside air.

パイプ706はフレキシブルなものを用いているため、四方に自在に動き、フレキシブルな信号線が接着されている。この信号線は気圧センサ708を駆動するためのものであり、電圧線、グランド線とSCL、SDAからなる信号線で構成されている。測定容器707を巻き取り機701に引き寄せられた位置が初期位置であり、そこから引き出した距離が、液晶表示部710に表示され、同時に、測定容器707が上下に振れた位置と初期位置との高低差が、液晶表示部710に表示される。 Since the pipe 706 is flexible, it can move freely in all directions and a flexible signal line is adhered to it. This signal line is for driving the barometric pressure sensor 708, and is composed of a voltage line, a ground line, and a signal line composed of SCL and SDA. The position where the measuring container 707 is pulled to the winder 701 is the initial position, the distance pulled out from the measuring container 707 is displayed on the liquid crystal display unit 710, and at the same time, the position where the measuring container 707 swings up and down and the initial position are The height difference is displayed on the liquid crystal display unit 710.

ストッパ709の働きは、実施例4と同じであり、引き出し位置を固定し、リセットボタン704の働きは、移動後の位置を0として、初期化リセットする場合に利用する。 The function of the stopper 709 is the same as that of the fourth embodiment, the pull-out position is fixed, and the function of the reset button 704 is used when the position after movement is set to 0 and the initialization is reset.

以上、縷々述べた様に、本発明の高低差測定装置を利用することによって、田や畑の高低差を容易に、かつ安価にしかも必要な面積に渡って、三次元的に測定できる様になるため、排水、田の平たん化、など様々な利用が可能になる。また建設や土木現場においては、曲がった道路や、隣の道路との高低差などでも、非常に容易に測定できるほか、直接的に見えない場所でもパイプさえ通せれば、高低差も測定が可能となり、大いに利用に供することになる。また、安全対策面では、地滑りなどの対策時に、本発明を用いて常時監視っできる様にしていれば、非常に安価に、事前予告が可能になり、災害予測に非常に有効だと思われる。 As described above, by using the height difference measuring device of the present invention, the height difference of rice fields and fields can be measured easily, inexpensively, and over the required area in three dimensions. Therefore, it can be used for various purposes such as drainage and flattening of rice fields. Also, at construction and civil engineering sites, it is very easy to measure the height difference between a curved road and the adjacent road, and even in a place that is not directly visible, it is possible to measure the height difference as long as a pipe can be passed through. It will be greatly used. In terms of safety measures, if the present invention can be used to constantly monitor when taking measures such as landslides, advance notice can be made at a very low cost, which is considered to be very effective for disaster prediction. ..

また、家庭用として用いれば、今までは測定が難しかった、離れた場所での高低差を、距離との関係で、巻き尺の様な感覚で簡易に測定することができるため、エアコンの穴開けや、曲がった場所での樋の傾斜測定など様々な利用が可能となる。 In addition, if it is used for home use, it is possible to easily measure the height difference at a distant place, which was difficult to measure until now, in relation to the distance, as if it were a tape measure. It can also be used for various purposes such as measuring the inclination of a gutter in a bent place.

101、302、605 基準容器
108、315、608 空間部分
110、316、609 液体部分
107、309、504 パイプ
108、308、505 測定容器
111 圧力センサ
209、318、604 気圧センサ
112 電子回路
215,321 ロータリーエンコーダ
306 モータ
307,501 巻き取り機
312 移動ロボット
101, 302, 605 Reference container 108, 315, 608 Space part 110, 316, 609 Liquid part 107, 309, 504 Pipe 108, 308, 505 Measuring container 111 Pressure sensor 209, 318, 604 Barometric pressure sensor 112 Electronic circuit 215, 321 Rotary encoder 306 Motor 307,501 Winder 312 Mobile robot

Claims (2)

液体を注入したパイプ(もしくはチューブ)の、少なくとも一端は、大気に対して開閉可能とし、前記パイプのもう一端は、閉塞させてパイプ内部の圧力を測定できる様に圧力センサを設け、大気開放が可能な前記一端をO端と名付け、大気に対して開放可能とし、別の閉塞した端をS端と名付け、前記S端のパイプ内部の圧力を、前記圧力センサによって継続的もしくは断続的に測定し、前記S端もしくはO端のどちらか一方を移動させて、前記圧力センサによる圧力測定値の変化から、前記移動したO端とS端の水平位置高低差(以後高低差と呼ぶ)を求める方法であって、前記O端もしくは、前記S端を歩行用距離測定器(ロードメジャー)の車輪軸の近傍に配置し、前記ロードメジャーによる距離測定と前記高低差測定方法によって得られる高低差によって、各移動場所での地面の起伏や傾斜の測定ができる様にしたことを特徴とする高低差測定方法。 At least one end of the pipe (or tube) into which the liquid is injected can be opened and closed with respect to the atmosphere, and the other end of the pipe is closed to provide a pressure sensor so that the pressure inside the pipe can be measured. The possible end is named the O end, which is open to the atmosphere, the other closed end is named the S end, and the pressure inside the pipe at the S end is measured continuously or intermittently by the pressure sensor. Then, either the S end or the O end is moved, and the horizontal position height difference (hereinafter referred to as the height difference) between the moved O end and the S end is obtained from the change in the pressure measurement value by the pressure sensor. In the method, the O end or the S end is arranged in the vicinity of the wheel axis of the walking distance measuring device (road measure), and the distance is measured by the load measure and the height difference obtained by the height difference measuring method is used. , A height difference measurement method characterized by being able to measure the undulations and slopes of the ground at each moving location. 液体を注入したパイプ(もしくはチューブ)の、少なくとも一端は、大気に対して開閉可能とし、前記パイプのもう一端は、閉塞させてパイプ内部の圧力を測定できる様に圧力センサを設け、大気開放が可能な前記一端をO端と名付け、大気に対して開放可能とし、別の閉塞した端をS端と名付け、前記S端のパイプ内部の圧力を、前記圧力センサによって継続的もしくは断続的に測定し、前記S端もしくはO端のどちらか一方を移動させて、前記圧力センサによる圧力測定値の変化から、前記移動したO端とS端の水平位置の高低差を求められる様に構成したものであり、前記パイプの一端を歩行用距離測定器(ロードメジャー)の車輪軸の近傍に配置して概水平方向への移動を可能とし、前記パイプの他の一端を固定するように構成したことを特徴とする高低差測定装置。 At least one end of the pipe (or tube) into which the liquid is injected can be opened and closed with respect to the atmosphere, and the other end of the pipe is closed to provide a pressure sensor so that the pressure inside the pipe can be measured. The possible end is named the O end, which is open to the atmosphere, the other closed end is named the S end, and the pressure inside the pipe at the S end is measured continuously or intermittently by the pressure sensor. Then, either the S end or the O end is moved, and the height difference between the moved O end and the S end can be obtained from the change in the pressure measurement value by the pressure sensor. Therefore, one end of the pipe is arranged near the wheel axis of the walking distance measuring device (road measure) to enable movement in the approximately horizontal direction, and the other end of the pipe is fixed. A height difference measuring device characterized by.
JP2020556326A 2019-05-17 2020-04-30 Height difference measuring device and height difference measuring method Active JP6979538B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019093422 2019-05-17
JP2019093422 2019-05-17
PCT/JP2020/018285 WO2020235324A1 (en) 2019-05-17 2020-04-30 Height difference measurement device and height difference measurement method

Publications (2)

Publication Number Publication Date
JPWO2020235324A1 JPWO2020235324A1 (en) 2021-06-10
JP6979538B2 true JP6979538B2 (en) 2021-12-15

Family

ID=73458432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020556326A Active JP6979538B2 (en) 2019-05-17 2020-04-30 Height difference measuring device and height difference measuring method

Country Status (2)

Country Link
JP (1) JP6979538B2 (en)
WO (1) WO2020235324A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115876154B (en) * 2023-03-07 2023-05-16 四川省水利科学研究院 Accurate measuring device for elevation in tunnel
CN117249809B (en) * 2023-11-17 2024-02-06 中铁电气化局集团有限公司 Railway bridge track elevation transfer indicating device and construction method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS476342B1 (en) * 1966-08-11 1972-02-23
JPS49130259A (en) * 1973-04-16 1974-12-13
JPS5221855A (en) * 1975-08-13 1977-02-18 Hitachi Ltd Continuous measuring appratus of floor uneveness
JPS5256561A (en) * 1975-11-02 1977-05-10 Nippon Telegr & Teleph Corp <Ntt> Vertical position measuring system
JPH0830655B2 (en) * 1989-06-28 1996-03-27 東京都 Equipment for measuring the slope of buried pipelines
JP2861563B2 (en) * 1991-12-07 1999-02-24 株式会社村田製作所 Ultrasonic thread length meter
JPH1062165A (en) * 1996-08-23 1998-03-06 Cosmo Keiki:Kk Device for measuring elevation difference
US6026914A (en) * 1998-01-28 2000-02-22 Alberta Oil Sands Technology And Research Authority Wellbore profiling system
JP2002168617A (en) * 2000-12-01 2002-06-14 Shinei Denshi Keisokki Kk Device and system for measuring tubular object such as tunnel
US20060000104A1 (en) * 2004-07-02 2006-01-05 Patton Ryan A Tubular measuring device
JP5032840B2 (en) * 2006-12-27 2012-09-26 小野田ケミコ株式会社 Method and apparatus for measuring and managing excavation depth
US8061050B2 (en) * 2010-02-19 2011-11-22 Argov Shachar J Hydrostatic sensor device and method for measuring below-ground elevation changes in grade
JP5372897B2 (en) * 2010-12-10 2013-12-18 株式会社 ソキア・トプコン Surveying system
CN202814392U (en) * 2012-08-17 2013-03-20 广州市市政工程设计研究院 System for quickly measuring ground height differences
JP2014211405A (en) * 2013-04-22 2014-11-13 セイコーエプソン株式会社 Mems pressure sensor, electronic device, altimeter, electronic apparatus and movable body
JP6829108B2 (en) * 2017-02-24 2021-02-10 セイコーインスツル株式会社 Altimeter and altitude detection method
CN109163700B (en) * 2018-10-19 2020-11-06 中铁大桥局第七工程有限公司 Walking type static force level gauge and leveling method

Also Published As

Publication number Publication date
JPWO2020235324A1 (en) 2021-06-10
WO2020235324A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP6979538B2 (en) Height difference measuring device and height difference measuring method
US8842024B2 (en) Lower atmosphere ascent and descent observation experimental tool
CN104950093B (en) The suction stress measurement device of unsaturated soil
CN107576365A (en) A kind of liquid container and its fluid flow detection method for showing flow
US20090105969A1 (en) Method and Device for the Assessment of Fluid Collection Networks
US8909484B2 (en) Automated hydraulic property measurement apparatus
US9068840B2 (en) Pitot tube velocimeter system
KR101124272B1 (en) Geographical displacement sensing unit
JP4523904B2 (en) Water level measuring device and water level measuring system using this water level measuring device
CN202119509U (en) Liquidometer suitable for underground pond with large area
FI122514B (en) Portable electronic pressure measuring device
JP2006292443A (en) Method for measuring inclination of floating roof of floating roof type tank
JPH10281854A (en) Apparatus for measuring change amount of water level or the like
KR102016378B1 (en) A method and system for detection of slope collapse using position information of sensor
CN102384740B (en) Self-leveling direct-reading type static force leveling instrument
CN104978476A (en) Method for carrying out on-site supplementary survey of indoor map by smartphone
CN109163700A (en) Walking hydrostatic level and leveling measuring method
Kjelldorff et al. Water current measurements using oceanographic bottom lander LoTUS
CN109596258A (en) A kind of reversible formula earth pressure gauge
JP3800525B2 (en) Ground saturation measurement method and liquefaction prevention method
US8424369B2 (en) Surface tension measuring device and method thereof
CN204240980U (en) Absolute altitude, level copy survey instrument
JP5824570B1 (en) Height difference measuring device
CN210400376U (en) Direct-reading pipeline gradient measuring instrument
EP0301534A1 (en) Asymmetrical displacement flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201013

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201013

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6979538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150