JP3800525B2 - Ground saturation measurement method and liquefaction prevention method - Google Patents

Ground saturation measurement method and liquefaction prevention method Download PDF

Info

Publication number
JP3800525B2
JP3800525B2 JP2002086864A JP2002086864A JP3800525B2 JP 3800525 B2 JP3800525 B2 JP 3800525B2 JP 2002086864 A JP2002086864 A JP 2002086864A JP 2002086864 A JP2002086864 A JP 2002086864A JP 3800525 B2 JP3800525 B2 JP 3800525B2
Authority
JP
Japan
Prior art keywords
saturation
ground
liquefaction
degree
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002086864A
Other languages
Japanese (ja)
Other versions
JP2003278141A (en
Inventor
紀治 三宅
信章 高坂
明 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2002086864A priority Critical patent/JP3800525B2/en
Publication of JP2003278141A publication Critical patent/JP2003278141A/en
Application granted granted Critical
Publication of JP3800525B2 publication Critical patent/JP3800525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地盤の飽和度を測定する方法、およびそれを用いた地盤の液状化防止方法に関する。
【0002】
【従来の技術】
周知のように、地盤の液状化とは、含水率の高い地盤が地震により衝撃や振動を受けて変形することに伴い、土粒子間に飽和状態で存在している間隙水の水圧が急激に上昇し、その結果、土粒子間の摩擦抵抗が消失して地盤があたかも液体のように挙動して耐力を失ってしまう現象をいう。
【0003】
そのような液状化を防止するためには、地盤強度を高める、あるいは地盤に細粒分を注入するといった手法が知られているが、最近においては地下水の揚水による液状化防止方法も有効であると考えられている。これは、図6に示すように対象地盤にスクリーン1aを有する井戸1を設けてそこから地下水を連続的に汲み上げて地下水位を低く維持することにより、液状化の根本原因である土粒子中の間隙水を地盤から排除してしまうというものである。
【0004】
しかし、上記のような地下水揚水による液状防止方法では、地下水位を常に低く維持するために地下水を常時連続的にしかも恒久的に揚水し続けなければならないから、それに要する運転費と維持管理費は膨大になるし、地下水位低下による圧密沈下が生じてしまう懸念もある。
【0005】
そのため、地下水を常時揚水して地下水位を常に低く維持するのではなく、地下水位を一時的に低下させて地盤の飽和度を低下させることで液状化を防止するという方法も提案されている。
【0006】
ここで、地盤の飽和度とは、土粒子間の間隙中に存在する間隙水の体積の割合(地盤中の地下水の体積/地盤の間隙体積)を示す指標であり、間隙全体に間隙水が完全に満たされている状態が飽和度100%であり、その状態では容易に液状化を生じてしまうものであり、通常の液状化地盤はこのような飽和状態にあると考えられる。しかし、土粒子の間隙中に多少なりとも気泡などの気相を混在させると飽和度が100%未満に低下し、そのような不飽和状態では液状化は格段に生じ難いものとなり、たとえば飽和度が95%の場合には飽和度100%の飽和状態の場合に比べて液状化に対する強度が1.5倍程度にまで高まり、飽和度90%では2倍程度に高まると考えられている。しかも、土粒子の間隙中に積極的に気泡などの気相を混在させて飽和度を低下させると、その気泡などの気相部分は土粒子の間隙中に封じ込まれて容易に抜けてしまうことなくそこにそのまま長期にわたって留まり、そのため一度低下させた飽和度が自ずと長期にわたって維持される性質を有する。
【0007】
そこで、液状化を防止するべき地盤から地下水の揚水を行って地下水位を一時的に低下させれば、地盤中の間隙水に気泡などの気相が混在して飽和度が低下し、もって液状化に対する強度を高めて液状化を防止することができるのであり、しかも、そのようにして飽和度を一度低下させれば不飽和状態は自ずと長く維持されるから、その後は揚水を停止しても支障がなく、図6に破線で示すように地下水位が自然に回復してもそのまま液状化防止効果を長期にわたって維持できるというのであり、極めて有効な方法であると考えられている。
【0008】
【発明が解決しようとする課題】
ところで、上記のような地盤の飽和度を低下させることで液状化を防止する方法においては、地盤の飽和度を長期にわたって低く維持するためには地下水位の上昇を抑制することが好ましいことは当然であり、そのために対象地盤の周囲を止水壁2により取り囲んで地下水位の自然上昇を抑制することが好ましいが、そのようにしたところでいずれは地下水位が回復して再び飽和状態に戻ることも想定されるため、このような液状化防止方法を真に有効なものとするためには、飽和度を定期的に監視し、飽和度が上昇して液状化が発生する懸念が生じた際には再揚水を行って地下水位を再び低下させることで飽和度を再び低下させる必要がある。
【0009】
その場合、飽和度を測定する必要が生じるが、現時点では飽和度を測定するための有効適切な手法はなく、そのため地盤から定期的にサンプリングを行って室内試験により飽和度を測定するか、あるいは図7に示すように比誘電率測定用のプローブ3および測定装置本体4により地盤の比誘電率を測定してそれから飽和度を推定することが考えられているが、いずれも面倒な手間と時間を要するばかりでなく、必ずしも高精度の測定ができないものであり、飽和度を測定するための有効適切な手法の開発が望まれていた。
【0010】
上記事情に鑑み、本発明は地盤の飽和度を簡便に測定する方法、およびその測定方法を利用した有効な液状化防止方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
請求項1の発明は、地盤の液状化に対する強度の指標となる飽和度を測定する方法であって、地盤の各深度におけるP波伝搬速度を測定し、その測定値から飽和度を求めることを基本とする。
【0012】
そして、請求項1の発明においては、地盤に設けた測定孔内にP波伝搬速度測定用のプローブを挿入して各深度におけるP波伝搬速度を測定することとし、その測定孔内には、形状保持用のリングを間隔をおいて装着した柔軟材料からなる蛇腹状の井戸管を設けることを特徴とする。
【0013】
請求項2の発明の液状化防止方法は、請求項1の発明の方法により地盤の飽和度を測定し、その結果に応じて地盤から揚水を行って地下水位を低下させることにより、地盤の飽和度を低下させて液状化に対する強度を高めることを特徴とする。
【0014】
【発明の実施の形態】
本発明の飽和度測定方法の実施形態を図1〜図4を参照して説明する。本実施形態の飽和度測定方法は、地下水面下の各位置におけるP波伝搬速度(以下ではVPと記す)を測定し、その測定値から飽和度を求めるようにしたものである。
【0015】
すなわち、飽和状態にある地盤においてはVPは約1600m/sであるが、不飽和状態の地盤におけるVPはそれよりも小さく、飽和度が低いほどVPも小さいことが知られており、したがって地盤のVPを測定すればその測定値から地盤の飽和度を求めることができることになる。
【0016】
そこで、本実施形態の測定方法では、対象地盤の各位置におけるVPを測定して図4に示すようなVPの分布を求めるとともに、この地盤のVPと飽和度との関係を予め調査しておき、それに基づいて地盤の飽和度を求めることとする。具体的には、対象地盤に図1に示すような測定孔5を設けて、その内部に起振器を内蔵したVP測定用のプローブ6を挿入し、巻き上げ機構7によりプローブ6を昇降させつつ各深度でのVPを連続的に測定して図4に示すようなVPの分布を求める。そして、予め調査しておいたデータを用いてデータ解析を行い、上記の分布から各深度における飽和度を求める。
【0017】
この際、測定孔5内には図2に示すように井戸管8を設けるが、その井戸管8として通常の鋼管や塩ビ管等の剛性材料を用いた場合には、起振器の振動が地盤に正確に伝わらないのでVPの測定値に影響が及んで精度の良い測定を行うことができない。そこで、本実施形態では図3に示すように、井戸管8として柔軟材料、たとえば不織布からなる肉厚の円筒体9を採用し、その内部に形状保持用のリング10を間隔をおいて多数装着した蛇腹状のものを採用しており、それにより起振器の振動を地盤にそのまま伝えて高精度の測定を行い得るものとなっている。
【0018】
このように、本実施形態の測定方法ではVP測定用のプローブ6によりVPを測定するのみで地盤の飽和度を求めることができ、したがって従来のようにサンプリングを行って室内試験により飽和度を求めたり、あるいは比誘電率を測定して飽和度を求める場合に比較して遙かに簡便に飽和度を求めることが可能である。
【0019】
図5は上記の飽和度測定方法を用いた液状化防止方法の一実施形態を示す。本実施形態の液状化防止方法は、図6に示したものと同様に、対象地盤を止水壁2により取り囲み、その内部に井戸1を設け、井戸1からの揚水により地下水位を一時的に低下させて飽和度を低下させ、それによって地盤の液状化に対する強度を高めて液状化防止効果を得た後は、揚水を停止して地下水位の上昇を許容するようにし、その後、飽和度を定期的に測定して飽和度が所定値を越えて上昇した時点で再揚水を行うようにしたものである。そして、本実施形態では飽和度の測定を図1に示した方法により行うべく、VP測定用の測定孔5を設けておき、プローブ6により定期的にVPの測定を行って飽和度を求め、飽和度が予め設定した許容値以上になった場合には井戸1から再揚水を行って地下水位を再び低下させ、飽和度を再び低下させることで液状化に対する強度を高めるようにしている。したがって本実施形態の液状化防止方法では、VPの測定結果に基づいて飽和度が上昇した場合には自動的に再揚水を行って液状化防止効果を回復させることができ、必要最少限の手間、費用で液状化防止効果を長期にわたって確保することができる。
【0020】
【発明の効果】
請求項1の発明は、P波伝搬速度から飽和度を求めるので、従来のサンプリングによる室内試験による場合や、比誘電率の測定による場合に比べて飽和度を簡便に測定することができる。
【0021】
特に、P波伝搬速度を測定するための測定孔に、形状保持用のリングを間隔をおいて装着した柔軟材料からなる蛇腹状の井戸管を設けるようにしたので、P波伝搬速度を精度良く測定することができる。
【0022】
請求項2の発明は、P波伝搬速度を測定することで飽和度を測定し、その結果に応じて地盤から揚水を行って地下水位を低下させることで地盤の飽和度を低下させるので、飽和度が予め設定した許容値を越えた場合には速やかに再揚水を行うことのみで、地下水位を再び低下させて飽和度を再び低下させ、それによって液状化防止効果を回復させることができるから、必要最少限の手間、費用で液状化防止効果を長期にわたって確保することができる。
【図面の簡単な説明】
【図1】 本発明の飽和度測定方法の一実施形態を示す概要図である。
【図2】 同、VP測定用の測定孔を示す図である。
【図3】 同、図2におけるIII部の拡大図である。
【図4】 同、VPと飽和度との関係を示す図である。
【図5】 本発明の液状化防止方法の一実施形態を示す概要図である。
【図6】 地下水位を低下させることによる液状化防止方法の概念図である。
【図7】 同、他の例を示す概念図である。
【符号の説明】
1 井戸
2 止水壁
5 測定孔
6 プローブ
7 巻き上げ機構
8 井戸管
9 円筒体
10 リング
P P波伝搬速度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the degree of saturation of the ground, and a method for preventing liquefaction of the ground using the same.
[0002]
[Prior art]
As is well known, the liquefaction of the ground means that the water pressure of the pore water that exists in a saturated state between the soil particles suddenly increases as the ground with a high water content undergoes deformation due to impact or vibration due to an earthquake. As a result, the friction resistance between soil particles disappears, and the ground behaves like a liquid and loses its proof strength.
[0003]
In order to prevent such liquefaction, techniques such as increasing the ground strength or injecting fine particles into the ground are known, but recently, a liquefaction prevention method by pumping groundwater is also effective. It is believed that. This is because, as shown in FIG. 6, the well 1 having the screen 1a is provided on the target ground, and the groundwater is continuously pumped from the well 1 to keep the groundwater level low. It is to eliminate pore water from the ground.
[0004]
However, in the liquid prevention method by pumping groundwater as described above, groundwater must be continuously and permanently pumped in order to keep the groundwater level low at all times. There is a concern that it will become enormous and consolidation settlement will occur due to a drop in groundwater level.
[0005]
Therefore, a method of preventing liquefaction by temporarily lowering the groundwater level and lowering the saturation level of the ground instead of constantly pumping up the groundwater and maintaining the groundwater level constantly low has been proposed.
[0006]
Here, the degree of saturation of the ground is an index indicating the ratio of the volume of pore water existing in the gap between the soil particles (volume of groundwater in the ground / volume of the gap in the ground). A completely filled state has a saturation degree of 100%, and in that state, liquefaction easily occurs, and it is considered that a normal liquefied ground is in such a saturated state. However, if a gas phase such as bubbles is mixed in the gaps between the soil particles, the saturation level is reduced to less than 100%. In such an unsaturated state, liquefaction is much less likely to occur. It is considered that the strength against liquefaction increases to about 1.5 times when the saturation level is 95%, and about twice as high when the saturation level is 90%. Moreover, if the gas phase such as bubbles is positively mixed in the gaps between the soil particles to lower the saturation, the gas phase parts such as the bubbles are easily trapped in the gaps between the earth particles. Therefore, it has the property that it stays there for a long period of time, so that the degree of saturation once lowered is maintained for a long period of time.
[0007]
Therefore, if groundwater is pumped from the ground where liquefaction should be prevented and the groundwater level is lowered temporarily, gas phase such as bubbles is mixed with pore water in the ground, and the degree of saturation is lowered. It is possible to increase the strength against liquefaction and prevent liquefaction, and if the degree of saturation is lowered once in this way, the unsaturated state is maintained for a long time, so even if pumping is stopped thereafter There is no hindrance, and as shown by the broken line in FIG. 6, even if the groundwater level naturally recovers, the effect of preventing liquefaction can be maintained as it is for a long time, which is considered to be an extremely effective method.
[0008]
[Problems to be solved by the invention]
By the way, in the method of preventing liquefaction by reducing the saturation of the ground as described above, it is naturally preferable to suppress the rise of the groundwater level in order to keep the saturation of the ground low over a long period of time. Therefore, it is preferable to surround the target ground with the water blocking wall 2 to suppress the natural rise of the groundwater level. However, in such a case, the groundwater level may eventually recover and return to saturation again. Therefore, in order to make such a liquefaction prevention method truly effective, the degree of saturation is regularly monitored, and when there is a concern that the degree of saturation increases and liquefaction occurs. Need to reduce the saturation again by re-pumping and lowering the groundwater level again.
[0009]
In that case, it is necessary to measure the degree of saturation, but at present there is no effective and appropriate method for measuring the degree of saturation. Therefore, sampling from the ground periodically and measuring the degree of saturation by laboratory tests, or As shown in FIG. 7, it is considered that the relative permittivity of the ground is measured by the relative permittivity measuring probe 3 and the measuring device main body 4 and the saturation is estimated therefrom, but both are troublesome labor and time. In addition, it is not always possible to measure with high accuracy, and the development of an effective and appropriate method for measuring the degree of saturation has been desired.
[0010]
In view of the above circumstances, an object of the present invention is to provide a method for easily measuring the degree of saturation of the ground, and an effective liquefaction prevention method using the measurement method.
[0011]
[Means for Solving the Problems]
The invention according to claim 1 is a method for measuring the degree of saturation as an index of strength against liquefaction of the ground, and measures the P-wave propagation velocity at each depth of the ground and obtains the degree of saturation from the measured value. Basic .
[0012]
In the invention of claim 1, the probe for measuring the P wave propagation velocity is inserted into the measurement hole provided in the ground, and the P wave propagation velocity at each depth is measured. In the measurement hole, A bellows-shaped well pipe made of a flexible material having a shape-retaining ring mounted at intervals is provided.
[0013]
The liquefaction prevention method of the invention of claim 2 measures the degree of saturation of the ground by the method of the invention of claim 1 , and according to the result, pumps water from the ground to lower the groundwater level, thereby saturating the ground. It is characterized by increasing the strength against liquefaction by decreasing the degree.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the saturation measurement method of the present invention will be described with reference to FIGS. The saturation measurement method of this embodiment measures the P wave propagation velocity (hereinafter referred to as V P ) at each position below the groundwater surface, and obtains the saturation from the measured value.
[0015]
That is, in the ground in the saturation V P is about 1600 m / s, the V P in soil unsaturated state less than, it is known that V P the lower the saturation is small, hence it is possible to determine the degree of saturation of the ground from the measured value by measuring the V P of the ground.
[0016]
Therefore, in the measurement method of this embodiment, V P at each position of the target ground is measured to obtain the distribution of V P as shown in FIG. 4, and the relationship between the V P of the ground and the degree of saturation is investigated in advance. Aside from this, the saturation level of the ground is determined. Specifically, by providing a measurement hole 5 as shown in FIG. 1 to a subject ground, insert the probe 6 for V P measured with a built-in exciter therein, raises and lowers the probe 6 by winding mechanism 7 Meanwhile, V P at each depth is continuously measured to obtain the distribution of V P as shown in FIG. Then, data analysis is performed using previously investigated data, and the saturation at each depth is obtained from the above distribution.
[0017]
At this time, a well pipe 8 is provided in the measurement hole 5 as shown in FIG. 2. When a rigid material such as a normal steel pipe or a vinyl chloride pipe is used as the well pipe 8, vibration of the exciter is generated. it is impossible to perform accurate measurements span affect the measured value of V P because soil do not accurately transmitted. Therefore, in this embodiment, as shown in FIG. 3, a flexible material, for example, a thick cylindrical body 9 made of non-woven fabric is used as the well tube 8, and a large number of shape-retaining rings 10 are mounted in the inside thereof at intervals. As a result, the vibration of the exciter can be transmitted to the ground as it is and high-precision measurement can be performed.
[0018]
As described above, in the measurement method of the present embodiment, the saturation level of the ground can be obtained only by measuring V P with the probe 6 for V P measurement. It is possible to obtain the saturation level more easily than when obtaining the saturation level by measuring the relative dielectric constant or by obtaining the saturation level.
[0019]
FIG. 5 shows an embodiment of a liquefaction prevention method using the above saturation measurement method. In the liquefaction prevention method of the present embodiment, the target ground is surrounded by the water blocking wall 2 as in the case shown in FIG. 6, the well 1 is provided in the interior, and the groundwater level is temporarily set by pumping from the well 1. After lowering the saturation level to increase the strength of the ground against liquefaction and obtaining the liquefaction prevention effect, stop pumping to allow the groundwater level to rise, and then increase the saturation level. Re-pumping is performed when the degree of saturation rises above a predetermined value measured periodically. The order in this embodiment performed by the method shown in FIG. 1 the measurement of saturation, may be provided with a measurement hole 5 for V P measured, the degree of saturation was measured regularly V P by the probe 6 When the saturation level is equal to or higher than a preset allowable value, the groundwater level is lowered again from the well 1 to lower the groundwater level again, and the saturation level is lowered again to increase the strength against liquefaction. . Therefore, in the liquefaction prevention method of this embodiment, when the degree of saturation rises based on the measurement result of V P , the liquefaction prevention effect can be restored by automatically performing re-pumping, and the minimum necessary The effect of preventing liquefaction can be ensured over a long period of time and cost.
[0020]
【The invention's effect】
According to the first aspect of the present invention, since the saturation is obtained from the P-wave propagation velocity, the saturation can be easily measured as compared with the case of the conventional laboratory test using sampling or the measurement of relative permittivity.
[0021]
In particular, a bellows-shaped well tube made of a flexible material with a ring for holding a shape is provided in the measurement hole for measuring the P-wave propagation velocity at an interval. Can be measured.
[0022]
The invention of claim 2 measures the degree of saturation by measuring the P wave propagation velocity, and reduces the ground saturation by lowering the groundwater level by pumping water from the ground according to the result. If the degree exceeds the preset allowable value, it is only possible to re-pump water quickly, and the groundwater level is lowered again to lower the saturation level, thereby restoring the effect of preventing liquefaction. The liquefaction prevention effect can be secured over a long period of time with the minimum necessary effort and cost.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an embodiment of a saturation measurement method of the present invention.
FIG. 2 is a view showing a measurement hole for VP measurement.
3 is an enlarged view of a portion III in FIG.
FIG. 4 is a diagram showing the relationship between VP and saturation.
FIG. 5 is a schematic view showing an embodiment of the liquefaction prevention method of the present invention.
FIG. 6 is a conceptual diagram of a liquefaction prevention method by lowering the groundwater level.
FIG. 7 is a conceptual diagram showing another example.
[Explanation of symbols]
1 well 2 cut-off wall 5 measurement hole 6 probe 7 winding mechanism 8 well pipe 9 the cylindrical body 10 ring V P P-wave propagation velocity

Claims (2)

地盤の液状化に対する強度の指標となる飽和度を測定する方法であって、地盤の各深度におけるP波伝搬速度を測定し、その測定値から飽和度を求めるべく、地盤に設けた測定孔内にP波伝搬速度測定用のプローブを挿入して各深度におけるP波伝搬速度を測定することとし、その測定孔内には、形状保持用のリングを間隔をおいて装着した柔軟材料からなる蛇腹状の井戸管を設けることを特徴とする地盤の飽和度測定方法。A method for measuring the degree of saturation, which is an index of strength against liquefaction of the ground, in which the P wave propagation velocity at each depth of the ground is measured, and in order to obtain the degree of saturation from the measured value, A probe for measuring the P-wave propagation speed is inserted into the P-wave to measure the P-wave propagation speed at each depth, and in the measurement hole, a bellows made of a flexible material having a shape-retaining ring mounted at intervals. A ground saturation measuring method, characterized in that a well pipe is provided. 請求項1記載の方法により地盤の飽和度を測定し、その結果に応じて地盤から揚水を行って地下水位を低下させることにより、地盤の飽和度を低下させて液状化に対する強度を高めることを特徴とする地盤の液状化防止方法。 The soil saturation is measured by the method according to claim 1 and the groundwater level is lowered by pumping the ground according to the result, thereby reducing the ground saturation and increasing the strength against liquefaction. A method for preventing ground liquefaction.
JP2002086864A 2002-03-26 2002-03-26 Ground saturation measurement method and liquefaction prevention method Expired - Fee Related JP3800525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002086864A JP3800525B2 (en) 2002-03-26 2002-03-26 Ground saturation measurement method and liquefaction prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002086864A JP3800525B2 (en) 2002-03-26 2002-03-26 Ground saturation measurement method and liquefaction prevention method

Publications (2)

Publication Number Publication Date
JP2003278141A JP2003278141A (en) 2003-10-02
JP3800525B2 true JP3800525B2 (en) 2006-07-26

Family

ID=29233310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086864A Expired - Fee Related JP3800525B2 (en) 2002-03-26 2002-03-26 Ground saturation measurement method and liquefaction prevention method

Country Status (1)

Country Link
JP (1) JP3800525B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291556A (en) * 2005-04-11 2006-10-26 Shimizu Corp Saturation measurement method of in situ ground
JP5092103B1 (en) * 2011-11-28 2012-12-05 強化土株式会社 Ground improvement method and ground improvement equipment by soil desaturation
JP2014074283A (en) * 2012-10-04 2014-04-24 Maeda Corp Liquefaction prevention method through ground unsaturation
JP2014084556A (en) * 2012-10-19 2014-05-12 Maeda Corp Liquefaction prevention method through partial ground desaturation
JP6340714B2 (en) * 2014-03-10 2018-06-13 五洋建設株式会社 Ground liquefaction prevention method
CN107587499B (en) * 2017-10-09 2019-12-24 浙江科技学院 Liquefiable sandy soil foundation reinforcing device and reinforcing method

Also Published As

Publication number Publication date
JP2003278141A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
Hvorslev Time lag and soil permeability in ground-water observations
Haigh et al. Permeability and stiffness of sands at very low effective stresses
Luo et al. Progressive failure behavior of cohesive soil slopes under water drawdown conditions
JP5544443B2 (en) Uncertainty reduction technique in pressure pulse collapse test
Mory et al. A field study of momentary liquefaction caused by waves around a coastal structure
CN108776175A (en) A kind of frost wall mean compressive strength ultrasonic detection method
JP3800525B2 (en) Ground saturation measurement method and liquefaction prevention method
Luo et al. On the soil slope failure mechanism considering the mutual effect of bedrock and drawdown
Askarinejad et al. A novel technique to monitor subsurface movements of landslides
Soriano Camelo et al. Centrifuge modeling of the seismic behavior of soft clay slopes
Demars et al. Measurement of wave‐induced pressures and stresses in a sandbed
Liu et al. Pore pressure observation: pressure response of probe penetration and tides
Liu et al. Tilt deformation and instability of the slope for predicting rainfall-induced landslide
JP2003278140A (en) Method for measuring degree of saturation of ground and method for preventing liquefaction
JP3800509B2 (en) Ground saturation measurement method and liquefaction prevention method
JP4766423B2 (en) Evaluation method and program for slope failure and structural damage by energy
Chaturvedi et al. Instrumentation based dynamics study of Tangni landslide near Chamoli, Uttrakhand
Bonjean et al. Monitoring of the foundations of a coastal structure submitted to breaking waves: Occurrence of momentary liquefaction
Dijkstra et al. 44 DENSITY CHANGES NEAR AN ADVANCING DISPLACEMENT PILE IN SAND
JPH0617413A (en) Ground liquefaction detection method and device thereof
Zhang et al. Effects of confining pressure on gas and water permeabilities of rocks
Biller Detection of seepage-induced internal instability using acoustic emission
KR101887532B1 (en) Forewarning system for large scale deformation in clay ground by tracking elastic anisotropy of clays, and method for the same
Bihs et al. Interpretation of consolidation parameters from CPTU results in sensitive clays
JP2006291556A (en) Saturation measurement method of in situ ground

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees