JP5032840B2 - Method and apparatus for measuring and managing excavation depth - Google Patents

Method and apparatus for measuring and managing excavation depth Download PDF

Info

Publication number
JP5032840B2
JP5032840B2 JP2006352013A JP2006352013A JP5032840B2 JP 5032840 B2 JP5032840 B2 JP 5032840B2 JP 2006352013 A JP2006352013 A JP 2006352013A JP 2006352013 A JP2006352013 A JP 2006352013A JP 5032840 B2 JP5032840 B2 JP 5032840B2
Authority
JP
Japan
Prior art keywords
excavation
head tank
depth
excavating
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006352013A
Other languages
Japanese (ja)
Other versions
JP2008164350A (en
Inventor
修 柴田
豊 石川
達也 伊藤
昌樹 島袋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Chemico Co Ltd
Original Assignee
Onoda Chemico Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Chemico Co Ltd filed Critical Onoda Chemico Co Ltd
Priority to JP2006352013A priority Critical patent/JP5032840B2/en
Publication of JP2008164350A publication Critical patent/JP2008164350A/en
Application granted granted Critical
Publication of JP5032840B2 publication Critical patent/JP5032840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method and its equipment having high safety with high measurement precision by suppressing generation of air bubbles caused by negative pressure without requiring an air bubbles vent operation. <P>SOLUTION: In an equipment, an excavating and agitating equipment for excavating the ground surface vertically is set at the tip of the driving arm of a civil engineering work machinery, The equipment comprises: a head tank, set in the excavating and agitating equipment, filled with a liquid and opened to atmosphere; a pressure sensor, set in the civil engineering work machinery, measuring a liquid level of the head tank as a water head value H1 at the pressure receiving surface; a connection pipe connecting between the head tank and the pressure sensor; and a calculating means calculating excavation depth DP=-HI-HS+LO, when a height over the ground of the pressure sensor is represented as HS, and a vertical length between the head tank and the excavation tip of the excavating and agitating equipment is represented as L0. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、主にバックホウ等の土木工事機械をベースとし、アーム先端に掘削撹拌装置を具備し、セメント系固化材スラリー等を吐出しつつ、地表面から比較的厚く表層土を掘削・撹拌して地盤改良を行う地盤改良工事において、施工中の掘削撹拌装置の先端の貫入深度と、掘削撹拌装置の傾斜角を演算して、オペレータの表示器に表示し、さらにこれらのデータを記録する掘削深度を測定管理する方法及び装置に関するものである。   The present invention is mainly based on a civil engineering machine such as a backhoe, equipped with an excavating and agitating device at the tip of the arm, and excavating and agitating the surface soil relatively thickly from the ground surface while discharging cement-based solidifying material slurry and the like. In the ground improvement work, the depth of penetration of the tip of the excavator and the tilt angle of the excavator is calculated, displayed on the operator's display, and further recorded. The present invention relates to a method and apparatus for measuring and managing depth.

上記技術分野において実施されている先行技術に、図10aに示すものがある(特許文献1)。この先行技術においては、土木工事機械10の上に支柱を立ててそこにヘッドタンク32を固定設置し、掘削撹拌装置37の上部のブラケット24に設置した圧力センサ30の圧力(又は2個の圧力センサ30、31の平均圧力)と、ヘッドタンク32の水頭差を用いて貫入深度を測定し、また、2個の圧力センサ30、31の間の距離と圧力差から逆三角関数演算器と角度発信器を用いて混合撹拌装置の傾斜角を算出していた。   There is a prior art implemented in the above technical field as shown in FIG. 10a (Patent Document 1). In this prior art, a pillar is set up on the civil engineering machine 10, the head tank 32 is fixedly installed thereon, and the pressure (or two pressures) of the pressure sensor 30 installed on the bracket 24 on the upper part of the excavating and stirring device 37. The average penetration pressure of the sensors 30 and 31) and the water head difference of the head tank 32 are used to measure the penetration depth, and the inverse trigonometric function calculator and angle are calculated from the distance and pressure difference between the two pressure sensors 30 and 31. The inclination angle of the mixing and stirring device was calculated using a transmitter.

さらに詳しくは、図10aに示す掘削機における傾斜角及び掘削深度の測定装置は、自走式の土木工事機械10における油圧駆動アーム14の先端に着脱自在に設けた掘削撹拌装置37により、地表面の掘削を行なう装置において、前記土木工事機械10に設けたヘッドタンク32と前記掘削撹拌装置37に位置を変えて設けた2つの圧力センサ30,31とを導圧管33を介して連結し、前記2つの圧力センサ30,31の出力側34,35に掘削深度と傾斜角を演算する演算手段を結合し、この演算手段は、圧力センサ30,31からヘッドタンク32までのそれぞれの水頭値と、予め設定された圧力センサ30,31の相互間距離とから前記掘削撹拌装置37の傾斜角を演算し、かつ、前記いずれか一方の圧力センサ30又は31からヘッドタンク32までの水頭値と、予め設定されたヘッドタンク32から施工地面20までの距離及び掘削撹拌装置37の垂直長さとから掘削深度を演算するようにしたものである。   More specifically, the measuring device for the inclination angle and the excavation depth in the excavator shown in FIG. 10 a is obtained by excavating and agitating device 37 detachably provided at the tip of the hydraulic drive arm 14 in the self-propelled civil engineering machine 10. In the excavating apparatus, the head tank 32 provided in the civil engineering machine 10 and the two pressure sensors 30, 31 provided at different positions on the excavating and stirring apparatus 37 are connected via a pressure guiding pipe 33, and The calculation means for calculating the excavation depth and the inclination angle is coupled to the output sides 34 and 35 of the two pressure sensors 30 and 31, and the calculation means includes the respective head values from the pressure sensors 30 and 31 to the head tank 32, and The inclination angle of the excavating and stirring device 37 is calculated from the predetermined distance between the pressure sensors 30 and 31, and from either one of the pressure sensors 30 or 31 A water head value up Ddotanku 32 is obtained by adapted to calculating the excavation depth from the vertical length of the distance and the drilling stirrer 37 from the head tank 32 to a preset up construction ground 20.

図10aにおいて、HSは、適用する土木工事機械10の上に設けられたヘッドタンク32のヘッド水面から施工地面20までの高さであり、L0は、掘削深度の基準となる水位センサ30の受圧面から掘削撹拌装置37の掘削先端までの寸法で、いずれも固定値であるから、水位センサ30によって得られる変数の水頭値をH1とすれば、この水頭値H1に基づく垂直距離H1は、圧力センサ30からヘッドタンク32までの水頭値から演算手段で演算され、掘削深さDPは
DP=H1−HS+L0
で与えられる。
In FIG. 10a, HS is the height from the head water surface of the head tank 32 provided on the civil engineering machine 10 to be applied to the construction ground 20, and L0 is the pressure received by the water level sensor 30 as a reference for the excavation depth. Since the dimensions from the surface to the excavation tip of the excavation stirring device 37 are all fixed values, if the head value of the variable obtained by the water level sensor 30 is H1, the vertical distance H1 based on the head value H1 is the pressure It is calculated by the calculation means from the water head value from the sensor 30 to the head tank 32, and the excavation depth DP is DP = H1-HS + L0.
Given in.

また、掘削撹拌装置37が垂直である場合において、図11のように両水位センサ30,31が互いに高低差を持って取り付けられているときの受圧面間寸法L1と垂直方向の寸法差△H0は、固定値であるから、両水位センサ30,31の受圧面を結ぶ直線と水平面が成す角度θ0は、
θ0=sin−1(△H0/L1)
で与えられる固定値となる。
このとき、2つの水位センサ30,31が高低差なく、同一水平面に配置されていれば、
θ0=0
である。
Further, when the excavating and stirring device 37 is vertical, as shown in FIG. 11, when the water level sensors 30 and 31 are mounted with a difference in height from each other, the dimension L1 between the pressure-receiving surfaces and the dimension difference ΔH0 in the vertical direction. Is a fixed value, the angle θ0 formed by the straight line connecting the pressure receiving surfaces of both water level sensors 30, 31 and the horizontal plane is
θ0 = sin −1 (ΔH0 / L1)
It is a fixed value given by.
At this time, if the two water level sensors 30, 31 are arranged on the same horizontal plane without any difference in height,
θ0 = 0
It is.

図10aの例では、ヘッドタンク32を、土木工事機械10に支柱等によってできるだけ高い位置に取り付けたが、低位置に取り付けても、圧力センサ30,31における受圧面85,86が負圧を検出することになるだけで、正圧の場合の上記動作例と変わるところはない。
しかし、図12のようにヘッドタンク32を低位置に設置した場合において、導圧管33の途中の頂部が所定高さ以上になると、誤動作の問題が発生することがある。これは、ヘッドタンク32に充填した圧力伝達媒体の液体が純水である場合、ヘッドタンク32の液面から導圧管33の頂部までの高さhが10.3mを越えると、頂部の部分が真空になることによる。そこで、ヘッドタンク32の取り付けに際しては、頂部とヘッドタンク32の高さhが10.3mを越えないように設定する必要がある。特に、水には、不純物、気泡などを含んでいるので、この高さhは、安全性を見越して7〜8mとする。
特開2004−157112号公報
In the example of FIG. 10a, the head tank 32 is attached to the civil engineering machine 10 as high as possible by a post or the like. However, the pressure receiving surfaces 85 and 86 of the pressure sensors 30 and 31 detect negative pressure even when attached to a low position. There is no difference from the above operation example in the case of positive pressure.
However, in the case where the head tank 32 is installed at a low position as shown in FIG. 12, if the top part of the pressure guiding tube 33 reaches a predetermined height or more, a problem of malfunction may occur. If the height h from the liquid level of the head tank 32 to the top of the pressure guiding pipe 33 exceeds 10.3 m when the liquid of the pressure transmission medium filled in the head tank 32 is pure water, the top portion will be By becoming a vacuum. Therefore, when the head tank 32 is attached, it is necessary to set the height h of the top portion and the head tank 32 so as not to exceed 10.3 m. In particular, since water contains impurities, bubbles, etc., this height h is set to 7 to 8 m in anticipation of safety.
JP 2004-157112 A

上述の従来の装置は、作業者に高度な熟練度を要求することなく、また、補助的報知要員を配置することなく、安価に作業能率の高い施工工事を可能にすることができるという効果を有する。
しかしながら、次のような若干の問題があった。
(1)前記特許文献1のように、掘削撹拌装置37の長さが短い場合において、図10bに示すように、掘削撹拌装置37の先端を地表部付近に上げたときに、圧力センサ31とヘッドタンク32の水位差(H1)が最大2mまでの場合には、液体循環系の導管内に気泡が析出するような問題はなかった。
しかし、掘削深度が約4m以上になると、図10cに示すように、掘削撹拌装置37の長さがそれに応じて長くなり、圧力センサ31とヘッドタンク32の水位差(H1)が2mを超えると、ヘッドタンク32の位置を土木工事機械10に直接設置した場合に、特に掘削撹拌装置37が最高位置になる掘削開始時から初期貫入時において、導水管内に生じる負圧が大きくなり、当該管理装置の液体循環系の導圧管内に気泡が析出し、測定誤差が大きくなり、施工精度が著しく低下する。そのため、気泡を除去するために、気泡抜き作業が必要となり、施工能力の大幅な低減に繋がる。
(2)そこで、液体循環系の導圧管内に負圧を生じさせないようにするためには、ヘッドタンク32の位置を高くする必要がある。そのために、図10dに示すように、土木工事機械10に支柱を設けヘッドタンク32をその支柱の上に設置することになるが、ヘッドタンク32を支持する支柱の高さが高くなればなるほど施工時の振動等が増幅してヘッドタンク32に大きな振動を与え、不安定になって測定誤差が大きくなるとともに、安全上の問題が生じる。
The above-described conventional apparatus has the effect that it is possible to perform construction work with high work efficiency at low cost without requiring a high degree of skill from the worker and without arranging auxiliary notification personnel. Have.
However, there are some problems as follows.
(1) When the length of the excavating and stirring device 37 is short as in Patent Document 1, when the tip of the excavating and stirring device 37 is raised to the vicinity of the ground surface as shown in FIG. When the water level difference (H1) of the head tank 32 was up to 2 m, there was no problem that bubbles were deposited in the conduit of the liquid circulation system.
However, when the digging depth is about 4 m or more, as shown in FIG. 10 c, the length of the digging agitation device 37 increases accordingly, and the water level difference (H1) between the pressure sensor 31 and the head tank 32 exceeds 2 m. When the position of the head tank 32 is directly installed on the civil engineering machine 10, the negative pressure generated in the water conduit increases from the start of excavation when the excavating and stirring device 37 reaches the highest position to the initial penetration, and the management device Bubbles are deposited in the pressure guiding tube of the liquid circulation system, resulting in a large measurement error and a significant decrease in construction accuracy. Therefore, in order to remove air bubbles, air bubble removal work is required, which leads to a significant reduction in construction capacity.
(2) Therefore, in order not to generate a negative pressure in the pressure guiding pipe of the liquid circulation system, the position of the head tank 32 needs to be increased. For this purpose, as shown in FIG. 10d, the civil engineering machine 10 is provided with a support column and the head tank 32 is installed on the support column. The higher the support column supporting the head tank 32, the greater the construction. The vibration at the time or the like is amplified to give a large vibration to the head tank 32, which becomes unstable and increases the measurement error, and causes a safety problem.

本発明は、ヘッドタンクの取り付け位置を低くしても、負圧による気泡の発生を抑制し、気泡抜き作業を必要とせず、測定精度と安全性の高い管理方法と装置を提供しようとするものである。   The present invention intends to provide a management method and apparatus that suppresses the generation of bubbles due to negative pressure even when the mounting position of the head tank is lowered, does not require a bubble removal operation, and has high measurement accuracy and safety. It is.

本発明は、地表面を垂直にのみ掘削する場合には、土木工事機械における駆動アームの先端に、地表面を垂直に掘削する掘削撹拌装置を設け、この掘削撹拌装置による掘削深度を測定管理する装置において、
前記掘削撹拌装置に設けられ、液体を充填し、かつ、大気に開放した液体容器の中に、多数の流通孔を穿設した複数の邪魔板を所定間隔で設置したヘッドタンクと、
前記土木工事機械に設けられ、前記ヘッドタンクの液面高さを水頭値H1として受圧面で測定する圧力センサと、
前記ヘッドタンクと圧力センサとの間を連結する導圧管と、
前記圧力センサの地上高さをHS、前記ヘッドタンクと掘削撹拌装置の掘削先端の垂直距離をL0としたときの掘削深度DP=−H1−HS+L0を演算する手段と
を具備した構成とする。
In the present invention, when excavating the ground surface only vertically, an excavation stirrer for excavating the ground surface vertically is provided at the tip of a drive arm in a civil engineering machine, and the excavation depth by the excavation stirrer is measured and managed. In the device
A head tank provided with a plurality of baffle plates provided at a predetermined interval in a liquid container which is provided in the excavating and stirring device and which is filled with liquid and opened to the atmosphere;
A pressure sensor that is provided in the civil engineering machine and measures the pressure level of the liquid level of the head tank as a water head value H1,
A pressure guiding pipe connecting between the head tank and the pressure sensor;
And a means for calculating a digging depth DP = −H1−HS + L0 when the ground height of the pressure sensor is HS and the vertical distance between the head tank and the digging tip of the digging agitator is L0.

本発明は、垂直のみならず、傾斜した方向にも掘削する場合には、前記構成に加えて、
前記掘削撹拌装置に設けられ、前記掘削撹拌装置の垂直線との傾斜角θを測定する傾斜角センサと、
前記圧力センサの地上高さをHS、前記ヘッドタンクと掘削撹拌装置の掘削先端の垂直距離をL0としたときの掘削深度DP=−H1−HS+L0cosθを演算する手段と
を具備した構成とする。
In the case of excavating not only vertically but also in an inclined direction, the present invention, in addition to the above configuration,
An inclination angle sensor that is provided in the excavation agitator and measures an inclination angle θ with respect to a vertical line of the excavator agitator;
And a means for calculating a depth of excavation DP = −H1−HS + L0cos θ, where HS is the ground height of the pressure sensor and L0 is a vertical distance between the head tank and the excavation tip of the excavating and stirring device.

ヘッドタンクは、液体を充填し、かつ、大気に開放した液体容器の中に、多数の流通孔を穿設した複数の邪魔板を所定間隔で設置することが好ましい。
導圧管は、一部又は全部が透明なパイプで構成することで、気泡の発生の有無を直接確認することができる。
液体は、不凍液を用いれば、寒冷地でも、冬期間でも用いることができる。
In the head tank, it is preferable that a plurality of baffle plates having a large number of flow holes are provided at predetermined intervals in a liquid container filled with liquid and opened to the atmosphere.
The pressure guiding tube can be directly confirmed as to whether or not bubbles are generated by forming a part or all of the pressure guiding tube with a transparent pipe.
If antifreeze is used, the liquid can be used even in cold regions or in winter.

本発明によれば、以下の効果を有する。
(1)ヘッドタンクを掘削撹拌装置に設け、圧力センサを土木工事機械に設けたので、掘削深度が4m以上になっても、掘削撹拌装置の長さに拘らずヘッドタンクの取り付け位置を高くする必要がない。
したがって、ヘッドタンクに大きな振動を与えることなく、安定した測定ができる。
(2)ヘッドタンクを掘削撹拌装置に設け、圧力センサを土木工事機械に設けたので、負圧でも気泡が発生する程の高さにする必要がなく、気泡の発生をなくし、頻繁な気泡抜き作業が不必要となり、施工能力が大幅に向上する。
(3)垂直のみならず、傾斜した方向にも掘削する場合には、傾斜角センサを掘削撹拌装置に設け、演算する手段で掘削深度DP=−H1−HS+L0cosθを演算することで容易に掘削深度を測定できる。
(4)ヘッドタンクを構成する液体容器の中に、多数の流通孔を穿設した複数の邪魔板を所定間隔で設置することによって、掘削中に生じる液面の揺れを抑制してより正確な測定ができる。
(5)導圧管は、一部又は全部が透明なパイプで構成することで、気泡の発生の有無を直接確認することができる。
(6)液体は、不凍液を用いれば、寒冷地でも、冬期間でも用いることができる。
The present invention has the following effects.
(1) Since the head tank is provided in the excavation agitation device and the pressure sensor is provided in the civil engineering machine, the head tank mounting position is increased regardless of the length of the excavation agitation device even when the excavation depth exceeds 4 m. There is no need.
Therefore, stable measurement can be performed without giving a large vibration to the head tank.
(2) Since the head tank is installed in the excavator and agitator and the pressure sensor is installed in the civil engineering machine, it is not necessary to make it so high that bubbles are generated even under negative pressure. Work is unnecessary, and construction capacity is greatly improved.
(3) When excavating not only vertically but also in an inclined direction, an inclination angle sensor is provided in the excavation stirrer, and the excavation depth DP = −H1−HS + L0 cos θ is easily calculated by a calculation means. Can be measured.
(4) By installing a plurality of baffle plates with a large number of flow holes in the liquid container constituting the head tank at predetermined intervals, the fluctuation of the liquid level that occurs during excavation can be suppressed and more accurate. Can measure.
(5) The pressure guiding tube can be directly confirmed as to whether or not bubbles are generated by forming a part or all of the pressure guiding tube with a transparent pipe.
(6) The liquid can be used even in a cold region or in winter if an antifreeze is used.

本発明は、土木工事機械における駆動アームの先端に取り付けた掘削撹拌装置によって、地表面を垂直に掘削する場合には、
前記掘削撹拌装置の上端部に設けたヘッドタンクの液面高さを、前記土木工事機械の車体などの安定した箇所に設けた圧力センサの受圧面でこれらの水頭値H1を得る工程と。
前記圧力センサの地上高さをHS、前記ヘッドタンクと掘削撹拌装置の掘削先端の垂直距離をL0としたとき掘削深度DP=−H1−HS+L0を演算する工程とを具備する。
The present invention, when excavating the ground surface vertically by the excavation stirring device attached to the tip of the drive arm in the civil engineering machine,
Obtaining the head height H1 of the liquid level of the head tank provided at the upper end of the excavator and agitation device at the pressure receiving surface of the pressure sensor provided at a stable location such as the body of the civil engineering machine;
And calculating a depth of excavation DP = −H1−HS + L0 where HS is the ground height of the pressure sensor and L0 is the vertical distance between the head tank and the excavation tip of the excavator agitator.

本発明は、垂直方向の掘削のみならず、傾斜した方向にも掘削する場合には、
前記水頭値H1を得る工程の外に、前記掘削撹拌装置に設けた傾斜角センサで掘削撹拌装置による垂直線に対する掘削傾斜角度θを検出する工程を付加し、さらに、演算の工程では、前記圧力センサの地上高さをHS、前記ヘッドタンクと掘削撹拌装置の掘削先端の距離をL0とするとともに、垂直線に対する掘削撹拌装置の傾斜角度をθとしたときの掘削深度DP=−H1−HS+L0cosθを演算する。
In the case of excavating not only in the vertical direction but also in the inclined direction,
In addition to the step of obtaining the water head value H1, a step of detecting the excavation inclination angle θ with respect to the vertical line by the excavation agitator with an inclination angle sensor provided in the excavation agitator is further added. The ground height of the sensor is HS, the distance between the head tank and the excavation tip of the excavator agitator is L0, and the excavation depth DP = −H1−HS + L0 cos θ when the inclination angle of the excavator agitator with respect to the vertical line is θ. Calculate.

掘削撹拌装置に設けたヘッドタンクの液面高さが土木工事機械に設けた圧力センサの受圧面より高いときは、+H1とし、掘削撹拌装置に設けたヘッドタンクの液面高さが土木工事機械に設けた圧力センサの受圧面より低いときは、−H1として演算する。   When the liquid level height of the head tank provided in the excavating agitator is higher than the pressure receiving surface of the pressure sensor provided in the civil engineering machine, it is set to + H1, and the liquid level height of the head tank provided in the excavating agitator is When the pressure sensor is lower than the pressure receiving surface of the pressure sensor, the calculation is performed as -H1.

地表面を垂直に掘削する場合には、
前記掘削撹拌装置に設けられ、液体を充填し、かつ、大気に開放したヘッドタンクと、
前記土木工事機械に設けられ、前記ヘッドタンクの液面高さを水頭値H1として受圧面で測定する圧力センサと、
前記ヘッドタンクと圧力センサとの間を連結する導圧管と、
前記圧力センサの地上高さをHS、前記ヘッドタンクと掘削撹拌装置の掘削先端の垂直距離をL0としたときの掘削深度DP=−H1−HS+L0を演算する手段と
を具備した装置とする。
When excavating the ground surface vertically,
A head tank provided in the excavating and stirring device, filled with liquid and opened to the atmosphere;
A pressure sensor that is provided in the civil engineering machine and measures the pressure level of the liquid level of the head tank as a water head value H1,
A pressure guiding pipe connecting between the head tank and the pressure sensor;
And a means for calculating a digging depth DP = −H1−HS + L0 where HS is the ground height of the pressure sensor and L0 is a vertical distance between the head tank and the digging tip of the digging agitator.

垂直方向の掘削のみならず、傾斜した方向にも掘削する場合には、
前記掘削撹拌装置に設けられ、液体を充填し、かつ、大気に開放したヘッドタンクと、
前記掘削撹拌装置に設けられ、前記掘削撹拌装置の垂直線との傾斜角θを測定する傾斜角センサと、
前記土木工事機械に設けられ、前記ヘッドタンクの液面高さを水頭値H1として受圧面で測定する圧力センサと、
前記ヘッドタンクと圧力センサとの間を連結する導圧管と、
前記圧力センサの地上高さをHS、前記ヘッドタンクと掘削撹拌装置の掘削先端の垂直距離をL0としたときの掘削深度DP=−H1−HS+L0cosθを演算する手段と
を具備した装置とする。
When excavating not only in the vertical direction but also in the inclined direction,
A head tank provided in the excavating and stirring device, filled with liquid and opened to the atmosphere;
An inclination angle sensor that is provided in the excavation agitator and measures an inclination angle θ with respect to a vertical line of the excavator agitator;
A pressure sensor that is provided in the civil engineering machine and measures the pressure level of the liquid level of the head tank as a water head value H1,
A pressure guiding pipe connecting between the head tank and the pressure sensor;
And a means for calculating a digging depth DP = −H1−HS + L0cos θ when the ground height of the pressure sensor is HS and the vertical distance between the head tank and the digging tip of the digging agitator is L0.

ヘッドタンクは、液体を充填し、かつ、大気に開放した液体容器の中に、多数の流通孔を穿設した複数の邪魔板を所定間隔で設置する。
導圧管は、気泡の発生を確認するため、一部又は全部が透明なパイプとする。
液体は、冬期間、寒冷地でも使用できるようにするため、不凍液を用いる。
In the head tank, a plurality of baffle plates having a large number of flow holes are provided at predetermined intervals in a liquid container filled with liquid and opened to the atmosphere.
In order to confirm the generation of bubbles, the pressure guiding tube is a partly or entirely transparent pipe.
The liquid is antifreeze so that it can be used even in cold regions during the winter.

以下、本発明による掘削深度を測定管理する方法及び装置の実施例1を図面に基づいて説明する。
まず、図6に基づきグラウトの製造、供給から地盤改良のために施工地盤を掘削、撹拌し、グラウトを注入するまでの一般的な一連の流れを説明する。
グラウト主剤、例えばセメントなどは、サイロ40からコンベア41を介して計量槽43へ送られ、図示しない水を供給して撹拌機42に送られ撹拌翼44によって撹拌され、できあがったグラウト49は、供給槽45からさらに流量計46を経由してグラウトポンプ47によって圧送され、圧送ホース48を介してフロントアタッチメントである掘削撹拌装置37へ送られ、支柱38の下方端部からグラウト49を地盤へ注入しつつ、掘削撹拌装置37の撹拌ビット39で軟弱土を掘削し、撹拌して混合する。この施工地面20に掘削孔21を順次掘削することで改良土23が形成される。
この図6において、53は、発電機である。
Hereinafter, Embodiment 1 of the method and apparatus for measuring and managing the excavation depth according to the present invention will be described with reference to the drawings.
First, a general series of flow from the manufacture and supply of grout to excavation and agitation of the ground for ground improvement and injection of grout will be described with reference to FIG.
A grout base material, such as cement, is sent from the silo 40 to the measuring tank 43 via the conveyor 41, supplied with water (not shown), sent to the stirrer 42 and stirred by the stirring blade 44, and the finished grout 49 is supplied. The tank 45 is further pumped by a grout pump 47 via a flow meter 46, and is fed to a drilling and stirring device 37, which is a front attachment, via a pumping hose 48, and a grout 49 is injected into the ground from the lower end of the column 38. Meanwhile, the soft soil is excavated by the agitation bit 39 of the excavating and agitating device 37 and agitated and mixed. The improved soil 23 is formed by sequentially excavating the excavation holes 21 in the construction ground 20.
In FIG. 6, reference numeral 53 denotes a generator.

前記土木工事機械10と掘削撹拌装置37に搭載した掘削深度を測定管理する装置を図1に基づき説明すると、クローラ11によって自走する方式の土木工事機械10には、油圧駆動アーム12,13が順次連結され、その先端にフロントアタッチメントとして比較的厚く表土層を掘削可能な掘削撹拌装置37がブラケット24を介在して着脱自在に取り付けられている。この掘削撹拌装置37は、垂直な掘削撹拌装置37の下端部に撹拌ビット39が回転自在に設けられ、この撹拌ビット39によって施工地面20が掘削される。
図1は、孔壁19が正しく垂直に施工されている状態を示した側面図である。この掘削撹拌装置37は、一般に、油圧駆動アーム12,13及び油圧シリンダ18、18を介してオペレータが操縦室から掘削深度、掘削傾斜角を自在に調整し得るようになっている。
An apparatus for measuring and managing the depth of excavation mounted on the civil engineering machine 10 and the excavating and agitating device 37 will be described with reference to FIG. 1. In the civil engineering machine 10 of the type self-propelled by the crawler 11, hydraulic drive arms 12 and 13 are provided. An excavation and stirring device 37 that is sequentially connected and can excavate a relatively thick topsoil layer as a front attachment is detachably attached via a bracket 24 at the front end. In the excavating and stirring device 37, a stirring bit 39 is rotatably provided at the lower end portion of the vertical excavating and stirring device 37, and the construction ground 20 is excavated by the stirring bit 39.
FIG. 1 is a side view showing a state in which the hole wall 19 is correctly and vertically constructed. The excavator agitation device 37 is generally configured such that an operator can freely adjust the excavation depth and the excavation inclination angle from the cockpit via the hydraulic drive arms 12 and 13 and the hydraulic cylinders 18 and 18.

また、前記掘削撹拌装置37の上端部のブラケット24には、支持部材50に支持されてヘッドタンク32と傾斜角センサ57が設けられている。前記土木工事機械10の安定した車体の一箇所には、圧力センサ31が設けられる。この圧力センサ31は、油圧駆動アーム12,13に沿って設けられた透明な導圧管33を介して前記ヘッドタンク32に連結されてヘッドタンク32からの水頭圧が測定できるようになっている。   The bracket 24 at the upper end of the excavating and stirring device 37 is provided with a head tank 32 and an inclination angle sensor 57 supported by a support member 50. A pressure sensor 31 is provided at one place of the stable vehicle body of the civil engineering machine 10. The pressure sensor 31 is connected to the head tank 32 via a transparent pressure guiding pipe 33 provided along the hydraulic drive arms 12 and 13 so that the water head pressure from the head tank 32 can be measured.

前記土木工事機械10の操縦室15には、監視盤36が設置されている。この監視盤36は、図5(a)(b)に示すように、正面にディスプレ81と電源スイッチ82とゼロ設定スイッチ83が設けられている。
このディスプレイ81は、単に表示機能を保有するのみでなく、パネルタッチスイッチ機能を持つプログラマブル表示器を採用することも可能であり、その場合には、他の入力を得て、工事施工プログラム、工事進捗状況、施工偏差など選択的にオペレータに報知せしめることも可能である。
A monitoring panel 36 is installed in the cockpit 15 of the civil engineering machine 10. As shown in FIGS. 5A and 5B, the monitoring panel 36 is provided with a display 81, a power switch 82, and a zero setting switch 83 on the front.
This display 81 not only has a display function, but can also employ a programmable display having a panel touch switch function. It is also possible to selectively notify the operator of progress, construction deviation, etc.

前記ヘッドタンク32と傾斜角センサ57の取付けと具体的構造を図2乃至図4に基づき説明する。
図2において、油圧駆動アーム13と掘削撹拌装置37を連結するブラケット24に、掘削撹拌装置37の支柱38と一直線をなす複数本の支持部材50を固着し、この支持部材50の上端部にヘッドタンク32と傾斜角センサ57を取り付けた取付け板56を固定する。
前記ヘッドタンク32は、図3(a)(b)に示すように、円形筒を横にしたような液体容器55からなり、この液体容器55には、液面監視管29が備えられていて、圧力伝達媒体としての液体25が充填される。この液体25は、環境汚染がなく、安価であることから、一般に、水が使用されるが、水に限られるものではなく、寒冷地においては、エチレングリコールを主体とした車両用不凍液を用いることができ、また、応答速度を速めるために粘性の少ないアルコール類を用いたり、応答速度を遅くするために粘性の大きい油類を用いたり、目的に応じて選択することができる。
The mounting and specific structure of the head tank 32 and the inclination angle sensor 57 will be described with reference to FIGS.
In FIG. 2, a plurality of support members 50, which are aligned with the pillars 38 of the excavation stirring device 37, are fixed to a bracket 24 that connects the hydraulic drive arm 13 and the excavation stirring device 37, and a head is attached to the upper end portion of the support member 50. The mounting plate 56 to which the tank 32 and the inclination angle sensor 57 are attached is fixed.
As shown in FIGS. 3 (a) and 3 (b), the head tank 32 is composed of a liquid container 55 which is a circular cylinder. The liquid container 55 is provided with a liquid level monitoring tube 29. The liquid 25 as a pressure transmission medium is filled. Since this liquid 25 is free from environmental pollution and is inexpensive, water is generally used. However, the liquid 25 is not limited to water, and in cold regions, an antifreeze for vehicles mainly composed of ethylene glycol is used. In addition, alcohols having a low viscosity can be used to increase the response speed, or oils having a high viscosity can be used to decrease the response speed.

前記液体容器55の上端部には、流体注入口28と気泡抜き管52が設けられ、下端部には、液体導出口64と予備の管接続口73が設けられている。また、液体容器55の側面には、液面監視管29が取り付けられている。
前記気泡抜き管52には、ヘッドタンク32としての計測時には開放し、運搬などの不使用時には閉鎖する気泡抜き弁65が設けられている。前記液体導出口64と圧力センサ31の間は、気泡の発生を確認するために透明な導圧管33で連結されている。
前記液体容器55の内部には、掘削撹拌装置37による掘削時に液体25の液面が激しく揺れるのを抑制するために、小さな流通孔27を多数穿設した邪魔板26が収納されている。この邪魔板26は、図4(a)に示すように、厚さ1mm程度の鉄板に、直径6〜10mm程度の流通孔27を10〜15mm程度の間隔で穿設したもので、これを10〜15mm間隔で3〜4枚を垂直に配置する。また、全方向の揺れに対応するため図4(b)に示すように、複数枚ずつ直交して井桁状に組み込んでもよい。
The liquid container 55 is provided with a fluid inlet 28 and a bubble vent pipe 52 at the upper end, and a liquid outlet 64 and a spare pipe connection port 73 at the lower end. A liquid level monitoring tube 29 is attached to the side surface of the liquid container 55.
The bubble removal pipe 52 is provided with a bubble removal valve 65 that is opened when the head tank 32 is measured and closed when not used for transportation. The liquid outlet 64 and the pressure sensor 31 are connected by a transparent pressure guiding tube 33 in order to confirm the generation of bubbles.
In the liquid container 55, a baffle plate 26 in which a large number of small flow holes 27 are formed is housed in order to prevent the liquid level of the liquid 25 from violently shaking during excavation by the excavating and stirring device 37. As shown in FIG. 4 (a), the baffle plate 26 is formed by drilling through holes 27 having a diameter of about 6 to 10 mm at intervals of about 10 to 15 mm on an iron plate having a thickness of about 1 mm. 3-4 sheets are arranged vertically at intervals of -15 mm. Further, in order to deal with the shaking in all directions, as shown in FIG.

前記傾斜角センサ57は、例えば、市販のサーボ方式重力加速度検出タイプが使用され、信号ケーブル34によって前記監視盤36に接続され、この傾斜角センサ57から発せられる傾斜角信号は、操縦室15内に設けられた監視盤36へ与えられ、掘削撹拌装置37の傾斜角として表示されるように構成されている。   For example, a commercially available servo-type gravitational acceleration detection type is used as the tilt angle sensor 57 and is connected to the monitoring panel 36 by a signal cable 34, and the tilt angle signal emitted from the tilt angle sensor 57 is stored in the cockpit 15. It is given to the monitoring board 36 provided in, and is configured to be displayed as an inclination angle of the excavating and stirring device 37.

以上のような構成において、グラウトポンプ47によって圧送されたグラウト49を、圧送ホース48を介して掘削撹拌装置37へ送り、支柱38の下方端部から地盤へ注入しつつ、撹拌ビット39で軟弱土を掘削し、撹拌して混合する。一般的には、掘削撹拌装置37の支柱38を垂直に立て、この施工地面20に垂直な掘削孔21を順次掘削することで改良土23が形成される。
また、図9に示すように、施工区域内に埋設管72等があって、垂直に掘削できないときには、あえて傾斜を持たせて順次掘削することで改良土23が形成される。
In the configuration as described above, the grout 49 pumped by the grout pump 47 is sent to the excavating and stirring device 37 via the pumping hose 48 and injected into the ground from the lower end of the support column 38, while the stirring bit 39 is used for soft soil. Drill and stir to mix. Generally, the improvement soil 23 is formed by standing upright the support | pillar 38 of the excavation stirring apparatus 37, and excavating the excavation hole 21 perpendicular | vertical to this construction ground 20 sequentially.
In addition, as shown in FIG. 9, when there is a buried pipe 72 or the like in the construction area and it is not possible to excavate vertically, the improved soil 23 is formed by intentionally excavating with an inclination.

つぎに、掘削撹拌装置37による掘削深度の計測原理を説明する。
図7(a)(b)において、
HSは、適用する土木工事機械10上に安定した状態で設置された圧力センサ31の受圧面から施工地面20までの高さであり、
L0は、掘削深度の基準となるヘッドタンク32の液面から掘削撹拌装置37の掘削先端までの垂直方向の寸法で、いずれも固定値である。
ここで、水頭値H1は、ヘッドタンク32の液面と掘削深度の基準となる圧力センサ31の受圧面との水頭差に基づき演算された高低差で、変数値であるが水頭差が測定されれば容易に求められる。
従って、掘削深さDPは次式で与えられる。
DP=−H1−HS+L0
なお、掘削方向が垂直のみならず、図9に示すように、掘削撹拌装置37を傾斜して掘削する場合の傾斜方向も含む場合には、一般式は、次式で与えられる。
DP=−H1−HS+L0cosθ
ここで、傾斜角θは、掘削撹拌装置37に傾斜角センサ57を設置しているのでL0cosθは容易に演算できる。
Next, the measurement principle of the excavation depth by the excavation stirring device 37 will be described.
7A and 7B,
HS is the height from the pressure receiving surface of the pressure sensor 31 installed in a stable state on the civil engineering machine 10 to be applied to the construction ground 20,
L0 is a dimension in the vertical direction from the liquid level of the head tank 32, which serves as a reference for the excavation depth, to the excavation tip of the excavation agitator 37, and both are fixed values.
Here, the water head value H1 is a height difference calculated based on the water head difference between the liquid level of the head tank 32 and the pressure receiving surface of the pressure sensor 31 serving as a reference for excavation depth, and is a variable value, but the water head difference is measured. If it is easy to find.
Therefore, the excavation depth DP is given by the following equation.
DP = -H1-HS + L0
When the excavation direction is not only vertical but also includes the inclination direction when excavating and agitating the excavator agitation device 37 as shown in FIG. 9, the general formula is given by the following equation.
DP = −H1−HS + L0 cos θ
Here, since the inclination angle sensor 57 is installed in the excavation stirring device 37, L0 cos θ can be easily calculated.

さらに具体的には、図7(a)に示すように、ヘッドタンク32の液面が掘削深度の基準となる圧力センサ31の液面より高い位置の場合であって、かつ、垂直方向に掘削する場合は、水頭値H1≧0、cosθ=1であるから、掘削深さDPは次式で与えられる。
DP=−H1−HS+L0
また、図7(b)に示すように、ヘッドタンク32の液面が掘削深度の基準となる圧力センサ31の液面より低い位置の場合であって、かつ、垂直方向に掘削する場合は、水頭値H1<0、cosθ=1であるから、掘削深さDPは次式で与えられる。
DP=−(−H1)−HS+L0=H1−HS+L0
図9に示すように、掘削撹拌装置37を傾斜して掘削する場合、すなわち、垂直線に対して角度θをもって掘削する場合の掘削深さDPは次式で与えられる。
DP=−H1−HS+L0cosθ
More specifically, as shown in FIG. 7A, when the liquid level of the head tank 32 is higher than the liquid level of the pressure sensor 31 as a reference for the excavation depth, the excavation is performed in the vertical direction. In this case, since the head value H1 ≧ 0 and cos θ = 1, the excavation depth DP is given by the following equation.
DP = -H1-HS + L0
Further, as shown in FIG. 7 (b), when the liquid level of the head tank 32 is lower than the liquid level of the pressure sensor 31 serving as a reference for the excavation depth, and when excavating in the vertical direction, Since the head value H1 <0 and cos θ = 1, the excavation depth DP is given by the following equation.
DP = − (− H1) −HS + L0 = H1−HS + L0
As shown in FIG. 9, the excavation depth DP when excavating with the excavation stirring device 37 inclined, that is, excavating at an angle θ with respect to the vertical line is given by the following equation.
DP = −H1−HS + L0 cos θ

図7(b)において、水頭値H1<0の場合、深度検出のための液体循環系に負圧が作動することになるが、本発明では、圧力センサ31を支柱なしで土木工事機械10の車体に直接安定した状態で設置し、かつ、ヘッドタンク32を掘削撹拌装置37の上端部に取り付けたことにより、該負圧の値は、高々2m程度であり、気泡の発生はないことが実験によって確認されている。ただし、H1が−2m以上になると、気泡の発生が認められ、測定精度に影響することが確認されている。   In FIG. 7 (b), when the water head value H1 <0, a negative pressure is applied to the liquid circulation system for depth detection. In the present invention, the pressure sensor 31 is used for the civil engineering machine 10 without a column. An experiment was conducted in which the negative pressure value was about 2 m at most and no bubbles were generated by installing the head tank 32 in a stable state directly on the vehicle body and attaching the head tank 32 to the upper end of the excavating and stirring device 37. Has been confirmed by. However, when H1 is −2 m or more, generation of bubbles is recognized, and it has been confirmed that measurement accuracy is affected.

つぎに、図8は、図7(a)(b)に基づき説明した掘削深度DPを求める式に従って、具体的な演算方法を示すブロックダイヤグラムである。
図8において、ヘッドタンク32の水頭圧を発信する圧力センサ31からのアナログ信号は、A/Dコンバータ51によってデジタル変換されて水頭圧H1が得られ、この水頭値信号H1は、加算演算器67に送られる。基準水頭設定器66では、傾斜角センサ57の出力値θを基にして−HS+L0cosθが演算され、加算演算器67に送られる。この加算演算器67では、−H1と−HS+L0cosθが加算され、掘削深度DP(=−H1−HS+L0cosθ)が得られ、D/Aコンバータ69を介して記録計62へ出力され、また、変換増幅器68を介して深度表示器70へ出力され、さらに図示されない記録媒体(M)への掘削深度記録信号71として出力され、記録、表示、記憶される。
なお、掘削撹拌装置37が垂直に掘削する場合には、基準水頭設定器66に傾斜角センサ57からの傾斜角信号cosθ=1を入力して、基準水頭設定器66にて設定した既知の−HS+L0が加算演算器67に送られて−H1と加算される。
Next, FIG. 8 is a block diagram showing a specific calculation method according to the equation for obtaining the excavation depth DP described based on FIGS. 7 (a) and 7 (b).
In FIG. 8, the analog signal from the pressure sensor 31 that transmits the head pressure of the head tank 32 is digitally converted by the A / D converter 51 to obtain the head pressure H1, and the head value signal H1 is added to the addition calculator 67. Sent to. The reference head setter 66 calculates −HS + L0 cos θ based on the output value θ of the tilt angle sensor 57 and sends it to the addition calculator 67. In this addition calculator 67, −H1 and −HS + L0 cos θ are added to obtain the excavation depth DP (= −H1−HS + L0 cos θ), which is output to the recorder 62 via the D / A converter 69, and the conversion amplifier 68 Is output to the depth indicator 70, and is further output as a drilling depth recording signal 71 to a recording medium (M) (not shown) to be recorded, displayed and stored.
When the excavating and agitating device 37 excavates vertically, the tilt angle signal cos θ = 1 from the tilt angle sensor 57 is input to the reference head setting device 66, and the known − HS + L0 is sent to the addition calculator 67 and added to -H1.

減算演算器57によって得られた掘削撹拌装置37の傾斜角信号は、D/Aコンバータ59を介して記録計62へ出力されて記録され、また、変換増幅器58を介して傾斜角表示器60へ出力されて表示され、さらに図示されない記録媒体(M)への傾斜角記録信号61として出力されて記録媒体に記憶される。   The tilt angle signal of the excavating and agitating device 37 obtained by the subtracting calculator 57 is output to the recorder 62 through the D / A converter 59 and recorded, and also to the tilt angle indicator 60 through the conversion amplifier 58. It is output and displayed, and is further output as a tilt angle recording signal 61 to a recording medium (M) (not shown) and stored in the recording medium.

図8に示す実施例では、説明を簡単にするため、傾斜角センサ57及び基準水頭設定器66は、あらかじめ出力が固定的に設定されているものとした。しかし、ヘッドタンク32を搭載した掘削撹拌装置37を垂直に保持して、深度ゼロの位置に置いたときに発せられる圧力センサ31のデジタル変換出力値を、図5(a)(b)に示した監視盤36のゼロ設定スイッチ83からの信号によってラッチゲートを介して取り込み、メモリーレジスタに記憶することにより、自動設定するよう構成することが可能である。   In the embodiment shown in FIG. 8, the output of the tilt angle sensor 57 and the reference head setting device 66 is fixed in advance in order to simplify the description. However, the digitally converted output value of the pressure sensor 31 that is generated when the excavating and stirring device 37 on which the head tank 32 is mounted is held vertically and placed at a depth of zero is shown in FIGS. It can be configured to automatically set by taking in through a latch gate by a signal from the zero setting switch 83 of the monitoring panel 36 and storing it in a memory register.

なお、圧力伝達媒体が水以外の液体であって液体密度をρ、大気圧をp、重力加速度をgとしたとき、高さhは、
h<p/(ρg)
に設定することが望ましい。
When the pressure transmission medium is a liquid other than water and the liquid density is ρ, the atmospheric pressure is p, and the gravitational acceleration is g, the height h is
h <p / (ρg)
It is desirable to set to.

前記実施例では、図1に示すように、フロントアタッチメントとして油圧駆動アーム13の先端に、ブラケット24を着脱自在に取り付け、このブラケット24の下端部の支柱38の両側に水平方向に回転する撹拌ビット39を取り付けたものについて説明したが、図10に示すような無端帯チェーンに掘削・撹拌翼を取り付けたものであってもよい。   In the embodiment, as shown in FIG. 1, a bracket 24 is detachably attached to the tip of a hydraulic drive arm 13 as a front attachment, and a stirring bit that rotates horizontally on both sides of a column 38 at the lower end of the bracket 24. Although what attached 39 was demonstrated, what attached the excavation and stirring blade to the endless belt chain as shown in FIG. 10 may be used.

前記実施例では、掘削機として、グラウトを注入しつつ地表面を掘削、撹拌して表層地盤を改良する掘削機に利用する場合について説明したが、必ずしもグラウトの注入を伴なわず、フロントアタッチメントが単に地表面を掘削する掘削機に利用するものであっても良い。   In the above embodiment, the case where the ground surface is excavated and stirred as the excavator is used for an excavator that improves the surface ground by agitating and agitating the ground surface, but the front attachment is not necessarily accompanied by grout injection. It may be used for an excavator that simply excavates the ground surface.

本発明による掘削深度を測定管理する方法及び装置の一実施例を示す垂直に掘削時の説明図である。It is explanatory drawing at the time of an excavation which shows one Example of the method and apparatus for measuring and managing the excavation depth by this invention. ヘッドタンク32と傾斜角センサ57の取り付け状態の詳細な斜視図である。FIG. 5 is a detailed perspective view of a state in which the head tank 32 and the tilt angle sensor 57 are attached. (a)は、ヘッドタンク32の一部を切り欠いた正面図、(b)は、ヘッドタンク32と傾斜角センサ57の取付け状態を示す側面図である。FIG. 4A is a front view in which a part of the head tank 32 is cut away, and FIG. (a)(b)は、ヘッドタンク32の内部に取り付けた邪魔板26のそれぞれ異なる例を示す斜視図である。(A) (b) is a perspective view which shows the example from which each baffle plate 26 attached to the inside of the head tank 32 differs. 操縦室に設けられる監視盤の一実施例を示もので、(a)は、側面図、(b)は、正面図である。An example of the monitoring board provided in a cockpit is shown, (a) is a side view, (b) is a front view. 地盤改良掘削、撹拌部分に、注入するグラウトの製造、供給する装置をも加えた一連の作業の説明図である。It is explanatory drawing of a series of operation | work which also added the manufacture and supply apparatus of the grout to inject | pour into the ground improvement excavation and the stirring part. 掘削深度DPの測定原理を説明するためのもので、(a)は、水頭値H1が+のときの説明図、(b)は、水頭値H1が−のときの説明図である。It is for demonstrating the measurement principle of excavation depth DP, (a) is explanatory drawing when water head value H1 is +, (b) is explanatory drawing when water head value H1 is-. 掘削深度と傾斜角を求める具体的な演算方法を示すブロックダイヤグラムである。It is a block diagram which shows the specific calculation method which calculates | requires excavation depth and an inclination angle. 傾斜して掘削している状態を示す説明図である。It is explanatory drawing which shows the state which is inclined and excavated. 背景技術を説明するための垂直掘削状態の説明図である。It is explanatory drawing of the vertical excavation state for demonstrating background art. 背景技術を説明するための説明図であって、掘削撹拌装置37の長さが短い場合の説明図である。It is explanatory drawing for demonstrating background art, Comprising: It is explanatory drawing in case the length of the excavation stirring apparatus 37 is short. 背景技術を説明するための説明図であって、掘削撹拌装置37の長さが長く、かつ、ヘッドタンク32を土木工事機械10に直接設置した場合の説明図である。It is explanatory drawing for demonstrating background art, Comprising: The length of the excavation stirring apparatus 37 is long, and it is explanatory drawing at the time of installing the head tank 32 in the civil engineering machine 10 directly. 背景技術を説明するための説明図であって、掘削撹拌装置37の長さが長く、かつ、ヘッドタンク32を高さの高い支柱の上に設置した場合の説明図である。It is explanatory drawing for demonstrating background art, Comprising: The length of the excavation stirring apparatus 37 is long, and is explanatory drawing at the time of installing the head tank 32 on a high support | pillar. 背景技術により掘削深度を求めるための説明図である。It is explanatory drawing for calculating | requiring excavation depth by background art. 背景技術により掘削深度を求めるための他の説明図である。It is other explanatory drawing for calculating | requiring excavation depth by background art.

符号の説明Explanation of symbols

10…土木工事機械、11…クローラ、12…油圧駆動アーム、13…油圧駆動アーム、14…油圧駆動アーム、15…操縦室、17…ビット、18…油圧シリンダ、19…垂直孔壁、20…施工地面、21…掘削孔、22…掘削底面、23…改良土、24…ブラケット、25…液体、26…邪魔板、27…流通孔、28…流体注入口、29…液面監視管、30…圧力センサ、31…圧力センサ、32…ヘッドタンク、33…導圧管、34…信号ケーブル、35…信号ケーブル、36…監視盤、37…掘削撹拌装置、38…支柱、39…撹拌ビット、40…サイロ、41…コンベア、42…撹拌機(アジテータ)、43…計量槽、44…撹拌翼、45…供給槽、46…流量計、47…グラウトポンプ、48…圧送ホース、49…グラウト、50…支持部材、51…A/Dコンバータ、52…気泡抜き管、53…発電機、55…液体容器、56…取付け板、57…傾斜角センサ、58…変換増幅器、59…D/Aコンバータ、60…傾斜角表示器、61…記録媒体用傾斜角信号、62…記録計、64…液体導出口、65…気泡抜き弁、66…基準水頭設定器、67…加算演算器、68…変換増幅器、69…D/Aコンバータ、70…掘削深度表示器、71…記録媒体用深度信号、72…埋設管、73…予備の管接続口、81…ディスプレイ、82…電源スイッチ、83…ゼロ設定スイッチ、85…受圧面、86…受圧面、87…受信計、88…受信計。   DESCRIPTION OF SYMBOLS 10 ... Civil engineering machine, 11 ... Crawler, 12 ... Hydraulic drive arm, 13 ... Hydraulic drive arm, 14 ... Hydraulic drive arm, 15 ... Cockpit, 17 ... Bit, 18 ... Hydraulic cylinder, 19 ... Vertical hole wall, 20 ... Construction ground, 21 ... excavation hole, 22 ... excavation bottom surface, 23 ... improved soil, 24 ... bracket, 25 ... liquid, 26 ... baffle plate, 27 ... flow hole, 28 ... fluid inlet, 29 ... liquid level monitoring pipe, 30 DESCRIPTION OF SYMBOLS ... Pressure sensor, 31 ... Pressure sensor, 32 ... Head tank, 33 ... Pressure guiding pipe, 34 ... Signal cable, 35 ... Signal cable, 36 ... Monitoring board, 37 ... Excavation stirring apparatus, 38 ... Strut, 39 ... Stirring bit, 40 ... silo, 41 ... conveyor, 42 ... stirrer (agitator), 43 ... weighing tank, 44 ... stirring blade, 45 ... supply tank, 46 ... flow meter, 47 ... grout pump, 48 ... pressure feed hose, 49 ... grout, 5 DESCRIPTION OF SYMBOLS ... Supporting member, 51 ... A / D converter, 52 ... Bubble vent pipe, 53 ... Generator, 55 ... Liquid container, 56 ... Mounting plate, 57 ... Inclination angle sensor, 58 ... Conversion amplifier, 59 ... D / A converter, DESCRIPTION OF SYMBOLS 60 ... Inclination angle indicator, 61 ... Recording medium inclination angle signal, 62 ... Recorder, 64 ... Liquid outlet, 65 ... Air bubble removal valve, 66 ... Reference head setting device, 67 ... Addition computing unit, 68 ... Conversion amplifier , 69 ... D / A converter, 70 ... Depth depth indicator, 71 ... Depth signal for recording medium, 72 ... Embedded pipe, 73 ... Spare pipe connection port, 81 ... Display, 82 ... Power switch, 83 ... Zero setting switch 85 ... pressure receiving surface, 86 ... pressure receiving surface, 87 ... receiver, 88 ... receiver.

Claims (7)

土木工事機械における駆動アームの先端に、地表面を垂直に掘削可能な掘削撹拌装置を設け、この掘削撹拌装置による掘削深度を測定管理する方法において、
前記掘削撹拌装置に設けられ、液体を充填し、かつ、大気に開放した液体容器の中に、多数の流通孔を穿設した複数の邪魔板を所定間隔で設置したヘッドタンクの液面高さを、前記土木工事機械に設けた圧力センサの受圧面でこれらの水頭値H1を得る工程と、
前記圧力センサの地上高さをHS、前記ヘッドタンクと掘削撹拌装置の掘削先端の垂直距離をL0としたとき掘削深度DP=−H1−HS+L0を演算する工程と
からなることを特徴とする掘削深度を測定管理する方法。
In the method of measuring and managing the excavation depth by this excavation agitation device, provided at the tip of the drive arm in the civil engineering machine is an excavation agitation device capable of excavating the ground surface vertically,
Wherein is found provided drilling stirrer, a liquid was filled, and, in a liquid container open to the atmosphere, the liquid surface height of the head tank which is installed a plurality of baffles bored a number of circulation holes at predetermined intervals The step of obtaining these water head values H1 at the pressure receiving surface of the pressure sensor provided in the civil engineering machine,
The depth of excavation comprises the step of calculating an excavation depth DP = −H1−HS + L0 where HS is the ground height of the pressure sensor, and L0 is the vertical distance between the head tank and the excavation tip of the excavation agitator. How to manage and measure.
土木工事機械における駆動アームの先端に、地表面を掘削可能な掘削撹拌装置を設け、この掘削撹拌装置による掘削深度を測定管理する方法において、
前記掘削撹拌装置に設けられ、液体を充填し、かつ、大気に開放した液体容器の中に、多数の流通孔を穿設した複数の邪魔板を所定間隔で設置したヘッドタンクの液面高さを、前記土木工事機械に設けた圧力センサの受圧面でこれらの水頭値H1を得る工程と、
前記掘削撹拌装置に設けた傾斜角センサで掘削撹拌装置による垂直線に対する掘削傾斜角度θを検出する工程と、
前記圧力センサの地上高さをHS、前記ヘッドタンクと掘削撹拌装置の掘削先端の距離をL0とするとともに、前記傾斜角度θとにより掘削深度DP=−H1−HS+L0cosθを演算する工程と
からなることを特徴とする掘削深度を測定管理する方法。
In the method of measuring and managing the excavation depth by this excavation agitation device, provided at the tip of the drive arm in the civil engineering machine is an excavation agitation device capable of excavating the ground surface,
Liquid level height of a head tank provided with a plurality of baffle plates provided at a predetermined interval in a liquid container that is provided in the excavating and stirring device and is filled with liquid and opened to the atmosphere. Obtaining these water head values H1 at the pressure receiving surface of the pressure sensor provided in the civil engineering machine,
A step of detecting a digging inclination angle θ with respect to a vertical line by the digging agitator with an inclination angle sensor provided in the digging agitator;
A step of calculating the depth of excavation DP = −H1−HS + L0cosθ from the inclination angle θ while setting the ground height of the pressure sensor to HS, the distance between the head tank and the excavation tip of the excavator agitator to L0. A method for measuring and managing the depth of excavation.
土木工事機械における駆動アームの先端に、地表面を垂直に掘削可能な掘削撹拌装置を設け、この掘削撹拌装置による掘削深度を測定管理する装置において、
前記掘削撹拌装置に設けられ、液体を充填し、かつ、大気に開放した液体容器の中に、多数の流通孔を穿設した複数の邪魔板を所定間隔で設置したヘッドタンクと、
前記土木工事機械に設けられ、前記ヘッドタンクの液面高さを水頭値H1として受圧面で測定する圧力センサと、
前記ヘッドタンクと圧力センサとの間を連結する導圧管と、
前記圧力センサの地上高さをHS、前記ヘッドタンクと掘削撹拌装置の掘削先端の垂直距離をL0としたときの掘削深度DP=−H1−HS+L0を演算する手段と
を具備したことを特徴とする掘削深度を測定管理する装置。
In the apparatus for measuring and managing the depth of excavation by this excavation agitation device, provided at the tip of the drive arm in the civil engineering machine is an excavation agitation device capable of excavating the ground surface vertically,
A head tank provided with a plurality of baffle plates provided at a predetermined interval in a liquid container which is provided in the excavating and stirring device and which is filled with liquid and opened to the atmosphere;
A pressure sensor that is provided in the civil engineering machine and measures the pressure level of the liquid level of the head tank as a water head value H1,
A pressure guiding pipe connecting between the head tank and the pressure sensor;
Means for calculating a digging depth DP = −H1−HS + L0 when HS is a ground height of the pressure sensor and L0 is a vertical distance between the head tank and a digging tip of a digging agitator. A device that measures and manages drilling depth.
土木工事機械における駆動アームの先端に、地表面を掘削可能な掘削撹拌装置を設け、この掘削撹拌装置による掘削深度を測定管理する装置において、
前記掘削撹拌装置に設けられ、液体を充填し、かつ、大気に開放した液体容器の中に、多数の流通孔を穿設した複数の邪魔板を所定間隔で設置したヘッドタンクと、
前記掘削撹拌装置に設けられ、前記掘削撹拌装置の垂直線との傾斜角θを測定する傾斜角センサと、
前記掘削撹拌装置に設けられ、掘削撹拌装置による垂直線に対する掘削傾斜角度θを検出する傾斜角センサと、
前記土木工事機械に設けられ、前記ヘッドタンクの液面高さを水頭値H1として受圧面で測定する圧力センサと、
前記ヘッドタンクと圧力センサとの間を連結する導圧管と、
前記圧力センサの地上高さをHS、前記ヘッドタンクと掘削撹拌装置の掘削先端の垂直距離をL0としたときの掘削深度DP=−H1−HS+L0cosθを演算する手段と
を具備したことを特徴とする掘削深度を測定管理する装置。
In the apparatus for measuring and managing the excavation depth by this excavation agitation device, provided at the tip of the drive arm in the civil engineering machine is an excavation agitation device capable of excavating the ground surface,
A head tank provided with a plurality of baffle plates provided at a predetermined interval in a liquid container which is provided in the excavating and stirring device and which is filled with liquid and opened to the atmosphere;
An inclination angle sensor that is provided in the excavation agitator and measures an inclination angle θ with respect to a vertical line of the excavator agitator;
An inclination angle sensor which is provided in the excavation agitator and detects an excavation inclination angle θ with respect to a vertical line by the excavation agitator;
A pressure sensor that is provided in the civil engineering machine and measures the pressure level of the liquid level of the head tank as a water head value H1,
A pressure guiding pipe connecting between the head tank and the pressure sensor;
And means for calculating a depth of excavation DP = −H1−HS + L0cos θ when the ground height of the pressure sensor is HS and the vertical distance between the head tank and the excavation tip of the excavation agitator is L0. A device that measures and manages drilling depth.
圧力センサは、土木工事機械の安定した車体の一箇所に設けられ、ヘッドタンクは、駆動アームと掘削撹拌装置を連結するブラケットに設けられていることを特徴とする請求項3又は4記載の掘削深度を測定管理する装置。5. The excavation according to claim 3, wherein the pressure sensor is provided in one place of a stable vehicle body of the civil engineering machine, and the head tank is provided in a bracket connecting the drive arm and the excavation stirring device. Device for measuring and managing depth. 導圧管は、一部又は全部が透明なパイプからなることを特徴とする請求項3、4又は5記載の掘削深度を測定管理する装置。 6. The apparatus for measuring and managing the excavation depth according to claim 3, 4 or 5 , wherein the pressure guiding pipe is partially or entirely made of a transparent pipe. 液体は、不凍液からなることを特徴とする請求項3、4又は5記載の掘削深度を測定管理する装置。   6. The apparatus for measuring and managing the depth of excavation according to claim 3, wherein the liquid is made of antifreeze.
JP2006352013A 2006-12-27 2006-12-27 Method and apparatus for measuring and managing excavation depth Active JP5032840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352013A JP5032840B2 (en) 2006-12-27 2006-12-27 Method and apparatus for measuring and managing excavation depth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352013A JP5032840B2 (en) 2006-12-27 2006-12-27 Method and apparatus for measuring and managing excavation depth

Publications (2)

Publication Number Publication Date
JP2008164350A JP2008164350A (en) 2008-07-17
JP5032840B2 true JP5032840B2 (en) 2012-09-26

Family

ID=39694063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352013A Active JP5032840B2 (en) 2006-12-27 2006-12-27 Method and apparatus for measuring and managing excavation depth

Country Status (1)

Country Link
JP (1) JP5032840B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544055B2 (en) * 2009-02-13 2014-07-09 芝浦メカトロニクス株式会社 Inkjet coating device
JP6463235B2 (en) * 2015-08-31 2019-01-30 三菱電機ビルテクノサービス株式会社 Dimensional measuring device
JP6203445B1 (en) * 2017-03-31 2017-09-27 株式会社加藤建設 Ground improvement device and method of building diagonally improved wall
JP6979538B2 (en) * 2019-05-17 2021-12-15 博由 田中 Height difference measuring device and height difference measuring method
CN114059603A (en) * 2021-10-29 2022-02-18 张锦圣 Base pipe of inclinometer for civil engineering deep foundation pit
CN115152344A (en) * 2022-07-07 2022-10-11 湖南旭晟环境科技有限公司 Automatic plowing device for soil protection

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148610U (en) * 1980-04-07 1981-11-09
JPS5716911U (en) * 1980-07-04 1982-01-28
SE436436B (en) * 1981-06-18 1984-12-10 Eurotrade Machine Pool Ab DEPTH METER FOR EXCAVATORS
JP3975185B2 (en) * 2002-10-15 2007-09-12 東都電機工業株式会社 Measuring device for tilt angle and excavation depth in excavator
JP2005225410A (en) * 2004-02-16 2005-08-25 Kato Construction Co Ltd Traveling control device of construction machinery, and ground improvement machine

Also Published As

Publication number Publication date
JP2008164350A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP5032840B2 (en) Method and apparatus for measuring and managing excavation depth
CN101910522B (en) Loader and loader implement control system
CN110206493A (en) A kind of full-sleeve full-rotation construction process for bored pile
CN105525634B (en) Anti-slide pile monitoring system and monitoring method and anti-slide pile construction method
US7010873B2 (en) Continuous underground trench excavating method and excavator therefor
KR100870722B1 (en) Deep cement mixing device for sea construction and construction work method using therewith
JP5670044B2 (en) Surface ground improvement method and backhoe
JP5084849B2 (en) Construction management system for ground improvement machines
JP2000220134A (en) Control method for soil improvement work and controller for soil improvement machine
JP5268070B2 (en) Slime property management method and automatic slime processing equipment
JP3975185B2 (en) Measuring device for tilt angle and excavation depth in excavator
CN110686739A (en) River water level measuring device
JP2010121438A (en) Soil improvement managing device and soil improving method
JP5055974B2 (en) Construction method of underground structure, ground excavation equipment
JP2012177274A (en) Multiaxis type continuous wall groove drilling machine
JP2008095388A (en) Construction management method in mixing processing construction method and its device
JP2018150760A (en) Earth drill machine
JP2005351121A (en) Stabilizing liquid slime control system using electric specific resistance sensor
JP3825687B2 (en) Submarine pipe burying machine and submarine pipe burying method
KR20070000791A (en) Automatic control system for insert limit of casing pipe in soft ground improvement and method thereof
JP2003041569A (en) Device and method for ground improvement
KR100473146B1 (en) A perpendicularity proofreading instrument for boring and the method thereof
US20230323628A1 (en) Machine for performing excavations, in particular for drilling, and method associated to such machine
JPH07229139A (en) Construction method for soil cement column continuous wall
CN117266835A (en) Auxiliary drilling vertical monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

R150 Certificate of patent or registration of utility model

Ref document number: 5032840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250