JP6979207B2 - 配水制御システム - Google Patents

配水制御システム Download PDF

Info

Publication number
JP6979207B2
JP6979207B2 JP2018027277A JP2018027277A JP6979207B2 JP 6979207 B2 JP6979207 B2 JP 6979207B2 JP 2018027277 A JP2018027277 A JP 2018027277A JP 2018027277 A JP2018027277 A JP 2018027277A JP 6979207 B2 JP6979207 B2 JP 6979207B2
Authority
JP
Japan
Prior art keywords
pump
valve
schedule
water supply
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018027277A
Other languages
English (en)
Other versions
JP2019140954A (ja
Inventor
哲郎 中矢
篤 浪平
啓之 樽屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2018027277A priority Critical patent/JP6979207B2/ja
Publication of JP2019140954A publication Critical patent/JP2019140954A/ja
Application granted granted Critical
Publication of JP6979207B2 publication Critical patent/JP6979207B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

本発明は、配水制御システムに関し、特に、供給側である水源地のポンプ場と、需要側である灌漑地区における各水田と、上記ポンプ場と上記各水田との間を繋ぐパイプラインとを有して成る水利系統における配水の制御を行う配水制御システムに用いて好適なものである。
従来、給水パイプラインや用水路の整備された水田地域では、稲の生育や気象に応じた好ましい水位管理を行うため、水田の目標水位を適切に設定しておき、水田ごとに設置された給水バルブを自動制御することにより、水位測定値が目標水位の所定許容範囲内に収まるようにしたシステムが利用されている。
例えば、特許文献1には、対向する一対の農道間にわたって設けられた簡易畦畔によって水田が分割された複数の耕作区に対して、用水を一定の水位に供給するシステムが開示されている。特許文献1に記載の用水管理システムでは、一方の農道には給水パイプが埋設されており、他方の農道には排水パイプが埋設されている。給水パイプには、集水枡内に設置された給水ポンプによって強制的に用水が供給され、各給水バルブを通って各耕作区にそれぞれ用水が供給される。各耕作区内の用水は、水位調整器によって一定の水位とされて、余剰の用水が排水パイプによって集水枡内に還流される。
また、特許文献2には、複数の水田から構成される水田地域において、潅漑の効率化および低コスト化を図るために、水田ごとの給水バルブおよび水源地の揚水ポンプを遠隔自動操作することが開示されている。特許文献2に記載の水管理システムは、複数区画からなる水田地域に対して、1日当りの潅漑用水供給が限られていても、各水田に対して公平かつ十分な給水を行え、また寒冷地域であっても、冷水温障害を回避するような用水補給を行えるようにしたものである。
具体的には、複数区画からなる水田地域に対し、水田の水温と給水パイプラインの水温とを比較し、差が所定値以下であれば揚水ポンプを運転し、給水パイプラインに対して用水補給を行う。また、水田の目標水位と現水田水位とを比較して給水の必要性を判断し、その給水順序に従って水田への給水を行う。このとき、同時に給水が行われる水田の数が所定数を超えないように、また、給水量または給水圧が所定値を下回らないように給水タイミングを図る。
なお、水田の水位を調整するものではないが、特許文献3には、配水池から管路を介して配置された上水道の配水管路網から末端の需要家へ浄水をポンプで送水するための配水システムが開示されている。この特許文献3に記載された配水システムでは、配水管路網の入口に圧力計および流量計を設置するとともに、配水管路網の末端に圧力計を設置し、末端圧力設定値に基づいて吐出圧目標値を演算し、当該吐出圧目標値に基づいてポンプ運転台数およびポンプ回転数を制御する。また、監視DBに蓄積されている過去の流量実績値と操作員からの入力である天候・気温といった気象情報とに基づいて予測された時系列での1日分の需要予測値に基づいて、末端圧力を一定にするために必要となる吐出圧力をポンプQ−Hカーブおよび管路抵抗曲線により計算し、末端圧力制御のフィードフォワード信号を演算する。
特開平9−140280号公報 特開2001−161192号公報 特開2009−209523号公報
上記特許文献1に記載のシステムによれば、複数の水田に対して供給する用水を一定の水位に保つことが可能となる。しかしながら、特許文献1に記載のシステムでは、需要側である水田の水管理を行う仕組みが提供されているだけで、供給側であるポンプ場やパイプライン等の状況を考慮した水管理の仕組みは提供されていない。
そのため、特許文献1に記載のシステムを用いても、ポンプ場からの無効放流が発生したり、パイプラインや末端の給水パイプ等の設備に異常圧力が発生したりする等の問題を防ぐことができない。すなわち、水の使い過ぎや、逆に必要なときに水が供給されないなどの問題が生じる可能性がある。過剰な水利用は、ポンプの電気代の増大につながるだけでなく、過剰な圧力の発生により設備の破損などの事故の原因にもなる。
また、上記特許文献2に記載のシステムでは、水田の給水バルブを遠隔自動操作することにより、同時に給水が行われる水田の数が所定数を超えないようにしたり、水源地の揚水ポンプを遠隔自動操作することにより、給水量または給水圧が所定値を下回らないようにしたりすることが可能である。しかしながら、このシステムでは、需要側である水田における水管理と、供給側である揚水ポンプの水管理とが個別に行われているため、ポンプ場から水田までの全体において最適な配水の管理を行うことができない。そのため、特許文献2に記載のシステムを用いても、特許文献1のシステムと同様、水田に対する過剰放流や放流不足が発生したり、設備に異常圧力が発生したりする等の問題を防ぐことができない。
また、上記特許文献3に記載のシステムでは、配水管路網の入口と末端との双方を考慮した配水の管理を行うことが可能である。しかしながら、特許文献3に記載のシステムは、灌漑地区における水田に対する配水の管理を行うものではなく、個々の水田における需要に応じた最適な配水の管理を行うことはできない。そのため、特許文献3に記載のシステムを用いても、特許文献1や特許文献2のシステムと同様、水田に対する過剰放流や放流不足が発生したり、設備に異常圧力が発生したりする等の問題を防ぐことができない。
本発明は、このような問題を解決するために成されたものであり、ポンプ場、パイプラインおよび灌漑地区における各水田の全体の状況を考慮して、水田に対する過剰放流や放流不足のない適切な配水の管理を行うことができるようにすることを目的とする。
上記した課題を解決するために、本発明の配水制御システムでは、供給側である水源地のポンプ場と、需要側である灌漑地区における各水田と、ポンプ場と各水田との間を繋ぐパイプラインとを有して成る水利系統における配水の制御を行う。具体的には、ポンプ場に設置される給水ポンプに関して、ポンプ回転数に応じたポンプ流量とポンプ圧力との相関関係を示したポンプ特性情報と、各水田に対して設置される給水バルブおよびパイプラインに対して必要に応じて設置される分水バルブを任意の組み合わせで開閉した場合に、開栓している給水バルブのうちポンプ場から最も損失の大きい位置にある給水バルブに対して必要最低水頭を与える際のポンプ流量とポンプ圧力との相関関係を示した損失特性情報と、各水田に設置された給水バルブおよびパイプラインに設置された分水バルブの使用状況を示す情報とに基づいて、給水ポンプのポンプ回転数を決定するようにしている。
上記のように構成した本発明によれば、ポンプ場における給水ポンプのポンプ流量とポンプ圧力の特性や、各水田における給水バルブおよびパイプラインにおける分水バルブの使用状況情報に基づいて、実際の各バルブの使用状況に合わせて、給水ポンプが過不足のない配水をするためのポンプ回転数を決定することができる。これにより、ポンプ場、パイプラインおよび各水田の全体の状況を考慮して、水田に対する過剰放流や放流不足のない適切な配水の管理を行うことができる。その結果、水田に対して必要以上に水が供給され過ぎたり、必要なときに水が供給されないなどの問題を防止でき、適正な配水管理による大幅な省エネおよび節水が可能となる。また、過剰圧力による設備の破損を防止することも可能となる。
本実施形態による配水制御システムの全体構成例を示す図である。 本実施形態のサーバが備える機能構成例を示すブロック図である。 ポンプ特性情報を模式的に示した図である。 損失特性情報を模式的に示した図である。 R曲線を算出する第1の方法を説明するための図である。 R曲線を算出する第2の方法を説明するための図である。 ポンプ回転数決定部の動作を説明するための図である。 変形例に係るサーバの機能構成例を示すブロック図である。 R曲線を補正する方法を説明するための図である。
以下、本発明の一実施形態を図面に基づいて説明する。図1は、本実施形態による配水制御システムの全体構成例を示す図である。図1に示すように、本実施形態の配水制御システムは、供給側である水源地のポンプ場100と、需要側である灌漑地区における複数の水田を有する圃場200と、ポンプ場100と圃場200の各水田との間を繋ぐパイプライン300とを有して成る水利系統における配水の制御を行うシステムである。
ポンプ場100には、水源地(図示せず)からパイプライン300への給水を行う給水ポンプ(揚水ポンプ)11と、当該給水ポンプ11のポンプ流量を測定する流量計12と、給水ポンプ11のポンプ圧力を測定する圧力計13と、流量計12および圧力計13に接続されたPLC(Programmable Logic Controller)14とが備えられている。PLC14は、インターネット等の通信ネットワーク700を介してサーバ400に接続可能であり、流量計12および圧力計13により測定されたポンプ流量およびポンプ圧力を所定のシーケンスに従ってサーバ400に送信する。
灌漑地区の圃場200は、図1の例では3つの圃場ブロックBL1,BL2,BL3に分けられており、各圃場ブロックBL1,BL2,BL3とパイプライン300との間(各圃場ブロックの入口)には、それぞれ分水バルブ31が設置されている。また、それぞれの分水バルブ31に対応して、分水バルブ31のバルブ流量を測定する流量計32と、分水バルブ31のバルブ圧力を測定する圧力計33とが設置されている。
それぞれの流量計32および圧力計33には、無線通信装置34が接続されている。無線通信装置34は、流量計32および圧力計33により測定された分水バルブ31のバルブ流量およびバルブ圧力をPLC25に送信する。この送信に際して、無線通信装置34は、どの分水バルブ31について測定されたバルブ流量およびバルブ圧力であるかを識別可能とするために、分水バルブ31に対して付与された固有のバルブIDを送信する。
なお、ここでは圃場200の灌漑地区を3つの圃場ブロックBL1,BL2,BL3に分ける例を示したが、ブロックの数はこれに限定されない。また、圃場200の規模によっては、複数の圃場ブロックに分けない場合もある(圃場ブロックが1つの場合に相当)。この場合、圃場ブロックの入口に分水バルブ31を設けることは不要であり、分水バルブ31に対応して流量計32、圧力計33および無線通信装置34を設置することも不要である。
1つの圃場ブロックは、農道や簡易畦畔などによって複数の水田(耕作区)に区画されている。区画された各水田には、給水バルブ21と、当該給水バルブ21のバルブ流量を測定する流量計22と、給水バルブ21のバルブ圧力を測定する圧力計23と、無線通信装置24とが設置されている。無線通信装置24は、流量計22および圧力計23により測定された給水バルブ21のバルブ流量およびバルブ圧力をPLC25に送信する。この送信に際して、無線通信装置24は、どの給水バルブ21について測定されたバルブ流量およびバルブ圧力であるかを識別可能とするために、給水バルブ21に対して付与された固有のバルブIDを送信する。
なお、図1では、1つの水田に設けられた給水バルブ21、流量計22、圧力計23および無線通信装置24にのみ符号を付しているが、他の水田も同様の構成を有している(図面を見やすくするために、符号の図示は省略している)。
PLC25は、インターネット等の通信ネットワーク700を介してサーバ400に接続可能であり、各水田の給水バルブ21に対応して設置された流量計22および圧力計23により測定された給水バルブ21のバルブ流量およびバルブ圧力と、分水バルブ31に対応して設置された流量計32および圧力計33により測定された分水バルブ31のバルブ流量およびバルブ圧力とを、所定のシーケンスに従ってサーバ400に送信する。
なお、給水バルブ21は、水田に給水される用水を一定の水位に保つように開栓および閉栓を自動的に制御する自動給水栓であってもよいし、農家が開栓および閉栓を手動で行う手動給水栓であってもよい。給水バルブ21が自動給水栓である場合、その水田には水位計が更に設置される。自動給水栓である給水バルブ21は、水位計により測定される水位を監視し、例えば、あらかじめ設定した水位よりも所定量だけ水位が下がったことを検知した場合にバルブを開栓する。そして、あらかじめ設定した水位に達したことを検知した場合にバルブを閉栓する。
圃場200の各水田は、これらの全てにおいて同時に耕作が行われているとは限らない。すなわち、気象条件や農家による耕作計画、その他種々の理由によって、ある期間において耕作を行っている水田と、耕作を行っていない水田とが混在することがあり得る。ある期間において耕作を行っている水田では、給水バルブ21が定期的あるいは非定期的に動作(開閉)する。ある期間において耕作を行っていない水田では、その期間中に給水バルブ21は動作(開閉)しない。
サーバ400は、ポンプ場100のPLC14から送られてくるポンプ流量およびポンプ圧力と、圃場200およびパイプライン300のPLC25から送られてくるバルブ流量およびバルブ圧力(給水バルブ21のバルブ流量およびバルブ圧力、分水バルブ31のバルブ流量およびバルブ圧力)とに基づいて、ポンプ場100からパイプライン300を介して圃場200の各水田に対して行う配水の制御を行う。これについての詳細は後述する。
サーバ400には、通信ネットワーク700を介して、ポンプ場100の施設管理者が使用する管理者端末500と、圃場200の農家が使用する農家端末600とが接続可能に構成されている。管理者端末500および農家端末600は、サーバ400にアクセスすることにより、給水ポンプ11、分水バルブ31および給水バルブ21の動作状況の他、後述するようにして決定された給水ポンプ11の回転数など、サーバ400にて処理した結果の情報を閲覧することができるようになっている。また、管理者端末500および農家端末600は、サーバ400にアクセスすることにより、配水の制御に関連する情報を入力することもできるようになっている。
図2は、サーバ400が備える機能構成例を示すブロック図である。図2に示すように、サーバ400は、その機能構成として、ポンプ特性情報取得部41、損失特性情報取得部42、使用状況情報取得部43およびポンプ回転数決定部44を備えている。これらの各機能ブロック41〜44は、ハードウェア、DSP(Digital Signal Processor)、ソフトウェアの何れによっても構成することが可能である。例えばソフトウェアによって構成する場合、上記各機能ブロック41〜44は、実際にはコンピュータのCPU、RAM、ROMなどを備えて構成され、RAMやROM、ハードディスクまたは半導体メモリ等の記録媒体に記憶されたプログラムが動作することによって実現される。
ポンプ特性情報取得部41は、ポンプ場100に設置される給水ポンプ11に関して、ポンプ回転数に応じたポンプ流量とポンプ圧力との相関関係を示したポンプ特性情報を取得する。図3は、このポンプ特性情報を模式的に示した図である。図3では、横軸にポンプ流量Q[m2/s]、縦軸にポンプ圧力H[m:水柱メートル]をとって表したQ−H曲線を示している。N0〜N3は、給水ポンプ11の回転数を示しており、その大小関係はN>N>N>Nである。これらのポンプ回転数に応じたQ−H曲線は、使用する給水ポンプ11の設計値(諸元)から決まるものである。
例えば、ポンプ特性情報取得部41は、給水ポンプ11のメーカが公表している諸元情報を入力し、ポンプ回転数に応じたポンプ流量とポンプ圧力との相関関係を示したポンプ特性情報として、給水ポンプ11のQ−H曲線を取得する。なお、入力する諸元情報がQ−H曲線そのものである場合は、入力したQ−H曲線をそのままポンプ特性情報として取得すればよい。一方、入力する諸元情報が、離散的なポンプ流量とポンプ圧力との組み合わせ値である場合には、それらの離散値から近似曲線を算出し、当該近似曲線から成るQ−H曲線をポンプ特性情報として取得すればよい。なお、諸元情報の入力は、例えば、ポンプ場100の施設管理者が管理者端末500から入力する。
損失特性情報取得部42は、圃場200の各水田に対して設置される給水バルブ21およびパイプライン300に対して必要に応じて設置される分水バルブ31を任意の組み合わせで開閉した場合に、開栓している給水バルブ21のうちポンプ場100からの損失が最も大きく水の出にくい位置にある給水バルブ21(以下、開栓中最大損失バルブという)に対して必要最低水頭を与える際のポンプ流量とポンプ圧力との相関関係を示した損失特性情報を取得する。ここで、パイプライン300に対して分水バルブ31が必要に応じて設置される場合とは、圃場200が複数の圃場ブロックに分割されている場合である。
必要最低水頭とは、給水バルブ21から必要な水が流れるのに必要な圧力である。例えば、給水バルブ21から水田への水の供給量をあらかじめ設定し、給水バルブ21のポンプからパイプへの摩擦損失、パイプの曲がりなどの形状損失を考慮した公知の節点水頭法を用いた定常パイプライン解析により、必要最低水頭を算出することが可能である。この場合、ポンプ場100からの損失が最も大きく水の出にくい位置とは、摩擦損失および形状損失の両方による損失を含めて、最も水の出にくい位置という意味である。損失特性とは、給水バルブ21や分水バルブ31のパイプ内を水が流れるときに生じる圧力損失を示す特性である。
図4は、この損失特性情報を模式的に示した図である。図4では、横軸にポンプ流量Q[m2/s]、縦軸にポンプ圧力H[m]をとって表したR曲線を示している。R曲線の右側端点にあるO点は、全ての水田の全ての給水バルブ21を開栓したとき(これを最大使用流量時または全バルブ開栓時という)に、ポンプ場100から最も損失が大きい位置にある給水バルブ21に対して必要最低水頭を与えるのに必要な給水ポンプ11のポンプ流量とポンプ圧力とを示している。また、R曲線の左側端点にあるS点は、ポンプ場100から最も損失が大きい位置にある水田の給水バルブ21のみを開栓したとき(これを最大損失バルブ開栓時という)に、当該給水バルブ21に対して必要最低水頭を与えるのに必要な給水ポンプ11のポンプ流量とポンプ圧力とを示している。
O点とS点との間の曲線上の各点は、全体の水利系統上にある複数の給水バルブ21および複数の分水バルブ31のうち、1つまたは複数のバルブを任意の組み合わせで開栓した場合に、開栓している給水バルブ21のうちポンプ場100から最も損失が大きい位置にある給水バルブ21(開栓中最大損失バルブ)に対して必要最低水頭を与えるのに必要な給水ポンプ11のポンプ流量とポンプ圧力とを示している。
損失特性情報取得部42は、この図4に示すようなR曲線を損失特性情報として算出し、取得する。R曲線の算出には、種々の方法を適用することが可能である。以下に、その算出方法を2つ例示する。
図5は、第1の方法を説明するための図である。第1の方法を用いる場合、損失特性情報取得部42は、まず、バルブを単体で開いたときに生じる損失が最大となる給水バルブ21を定常パイプライン解析により見つける。次に、給水バルブ21および分水バルブ31を任意の組み合わせで開閉した場合に開栓中最大損失バルブに必要最低水頭を与えるのに必要なポンプ流量とポンプ圧力との組み合わせを、それぞれ定常パイプライン解析により算出する。図5において、○印で示す各プロット点が、それぞれの算出結果を示している。次に、損失特性情報取得部42は、これらのプロット点から1つの近似曲線を算出し、当該近似曲線をR曲線とする。
図6は、第2の方法を説明するための図である。第2の方法を用いる場合、損失特性情報取得部42は、まず、最大損失バルブ開栓時に最大損失となるS点におけるポンプ流量およびポンプ圧力と、全バルブ開栓時に最大損失となるO点におけるポンプ流量およびポンプ圧力のみを算出する。ここでの算出方法は、上述のパイプライン解析、または給水バルブ21を順番に開いたときの最大損失を現地で求める方法のいずれかでもよい。後者の場合、給水バルブ21を単体で開くときに、流量計22および圧力計23の情報を得ることにより、最大損失点を自動で見つけることができるため、パイプライン解析を行わなくてもS点を求めることが可能である。
次に、損失特性情報取得部42は、S点とO点とを結ぶ多項式を求めることにより、当該多項式により表される曲線をR曲線とする。なお、多項式のモード(形状のモード)はあらかじめ設定しておく。第2の方法によれば、給水バルブ21と分水バルブ31とが多くの組み合わせで開閉している場合のバルブ流量とバルブ圧力とを計算しなくてもR曲線を推定することが可能である。また、どの給水バルブ21が開閉しているかの開閉情報を把握することで、最大損失バルブの位置が変わったときも自動でS点を感知することができ、それに応じてR曲線を引きなおすことで、より適正な配水を行うことが可能になる。なお、給水バルブ21の開閉情報は、後述するように、各水田の流量計22および圧力計23から無線通信装置24およびPLC25を介してサーバ400に送られてくる使用状況情報(バルブID)に基づいて把握することが可能である。
使用状況情報取得部43は、圃場200の各水田に設置された給水バルブ21およびパイプライン300に設置された分水バルブ31の使用状況を示す情報を、通信ネットワークを介して取得する。すなわち、使用状況情報取得部43は、各水田の給水バルブ21に対応して設置された流量計22および圧力計23と、パイプライン300の分水バルブ31に対応して設置された流量計32および圧力計33とにより測定されたバルブ流量およびバルブ圧力の少なくとも一方に関する測定情報を、各バルブのバルブIDと共に、PLC25から通信ネットワーク700を介して使用状況情報として取得する。
なお、以下では一例として、使用状況情報取得部43がバルブ流量の測定情報を取得するものとして説明する。この場合、使用状況情報取得部43が取得したバルブ流量が“0”でない値を示すときは、その測定値に対応するバルブは使用状態にある(動作中)と言える。一方、バルブ流量が“0”の値を示すときは、その測定値に対応するバルブは不使用状態にある(停止中)と言える。
上述したように、圃場200の各水田は、これらの全てにおいて同時に耕作が行われているとは限らず、動作している給水バルブ21と動作していない給水バルブ21とが存在する。使用状況情報取得部43は、耕作期間に該当する水田に設置された給水バルブ21が開栓しているときに流量計22により測定されたバルブ流量と、分水バルブ31が開栓しているときに流量計32により測定されたバルブ流量とを取得する。
ポンプ回転数決定部44は、ポンプ特性情報取得部41により取得されたポンプ特性情報(Q−H曲線)と、損失特性情報取得部42により取得された損失特性情報(R曲線)と、使用状況情報取得部43により取得された使用状況情報とに基づいて、給水ポンプ11のポンプ回転数を決定する。
具体的には、ポンプ回転数決定部44は、損失特性情報取得部42により取得された損失特性情報(R曲線)と、使用状況情報取得部43により取得される使用状況情報とに基づいて、当該使用状況情報により開栓していることが示されている給水バルブ21のうちポンプ場100から最も損失が大きい位置にある給水バルブ(開栓中最大損失バルブ)に対して必要最低水頭を与えるのに必要なポンプ流量およびポンプ圧力を需要情報として求める。そして、ポンプ回転数決定部44は、当該求めた需要情報と、ポンプ特性情報取得部41により取得されたポンプ特性情報(Q−H曲線)とに基づいて、給水ポンプ11のポンプ回転数を決定する。
以下に、このポンプ回転数決定部44の処理内容を詳しく説明する。まず、ポンプ回転数決定部44は、使用状況情報取得部43により測定情報と共に取得されたバルブIDに基づいて、どの給水バルブ21および分水バルブ31が同期間に動作中であるかを特定する。なお、耕作期間中の複数の水田に設置された複数の給水バルブ21であっても、必ずしも同時に開栓されるとは限らない。そこで、ポンプ回転数決定部44は、瞬時的なタイミングで同時に測定情報が取得された各バルブ21,31を動作中と特定するのではなく、所定の期間内に測定情報が取得された各バルブ21,31を同期間に動作中と特定する。
使用状況情報取得部43により取得された使用状況情報(バルブID)に基づいて、動作中の各バルブ21,31(所定の期間内に開栓しているバルブ)を特定できると、ポンプ回転数決定部44は、損失特性情報取得部43により取得された損失特性情報(R曲線)に基づいて、動作中の給水バルブ21のうちポンプ場100から最も損失が大きい位置にある開栓中最大損失バルブに対して必要最低水頭を与えるのに必要なポンプ流量およびポンプ圧力を特定することが可能となる。
すなわち、ポンプ回転数決定部44は、実際に動作中のバルブ21,31を開栓する一方、動作中ではない他のバルブを閉栓した場合に、開栓中最大損失バルブに必要最低水頭を与えるのに必要なポンプ流量とポンプ圧力との組み合わせを、図5を用いて説明した各プロット点の算出と同様に、定常パイプライン解析により算出する。このようにして算出した値は、R曲線上に存在するとは限らない。R曲線自体が近似曲線だからである。そこで、ポンプ回転数決定部44は、算出された値に最も近いR曲線上の値を求め、このR曲線の値を、開栓中最大損失バルブに対して必要最低水頭を与えるのに必要なポンプ流量およびポンプ圧力として特定する。ポンプ回転数決定部44は、こうして特定したR曲線上のポンプ流量およびポンプ圧力を、圃場200の各水田における需要情報として求める。
次いで、ポンプ回転数決定部44は、ポンプ特性情報取得部41により取得されたポンプ回転数に応じたポンプ特性情報(Q−H曲線)のうち、上記のようにして求めた需要情報で示されるR曲線上のポンプ流量およびポンプ圧力を曲線上の値として有するQ−H曲線を特定する。そして、当該特定Q−H曲線のポンプ回転数を、需要情報に応じた給水ポンプ11のポンプ回転数として決定する。
なお、ここでは、R曲線上のポンプ流量およびポンプ圧力を、圃場200の各水田における需要情報として求めるようにしたが、測定情報から算出されるポンプ流量およびポンプ圧力の少なくとも一方を、圃場200の各水田における需要情報として求めるようにしてもよい。この場合、ポンプ回転数決定部44は、まず、使用状況情報取得部43により取得される使用状況情報に基づいて、当該使用状況情報により開栓していることが示されている給水バルブ21のうち開栓中最大損失バルブに対して必要最低水頭を与えるのに必要なポンプ流量およびポンプ圧力の少なくとも一方を定常パイプライン解析により求め、これを需要情報とする。例えば、ポンプ流量を需要情報として求めるものとする。
次に、ポンプ回転数決定部44は、当該需要情報として求めたポンプ流量と、ポンプ特性情報取得部41により取得されたポンプ特性情報(Q−H曲線)と、損失特性情報取得部42により取得された損失特性情報(R曲線)とに基づいて、給水ポンプ11のポンプ回転数を決定する。すなわち、上記のように需要情報として求めたポンプ流量となるR曲線上の点を求めた後、ポンプ回転数に応じたQ−H曲線のうち、上記のようにして求めたR曲線上の点を通るQ−H曲線を特定する。そして、当該特定Q−H曲線のポンプ回転数を、需要情報に応じた給水ポンプ11のポンプ回転数として決定する。
図7は、このポンプ回転数決定部44の動作を説明するための図である。図7において、ポンプ回転数NのQ−H曲線は、全バルブ開栓時に開栓中最大損失バルブに対して必要最低水頭を与えるのに必要な給水ポンプ11のポンプ流量QAとポンプ圧力とを示したO点を通るQ−H曲線であり、ポンプ回転数を最大のNとすべき場合を示したものである。
これに対し、ポンプ回転数決定部44により算出された需要情報が、例えばポンプ流量QBで特定されるR曲線上のSB点の値であった場合、ポンプ回転数決定部44は、このSB点を通るQ−H曲線を特定し、当該特定したQ−H曲線のポンプ回転数N1を、需要情報に応じた給水ポンプ11のポンプ回転数として決定する。
同様に、ポンプ回転数決定部44により算出された需要情報が、例えばポンプ流量QCで特定されるR曲線上のSC点の値であった場合、ポンプ回転数決定部44は、このSC点を通るQ−H曲線を特定し、当該特定したQ−H曲線のポンプ回転数N2を、需要情報に応じた給水ポンプ11のポンプ回転数として決定する。また、ポンプ回転数決定部44により算出された需要情報が、例えばポンプ流量QDで特定されるR曲線上のSD点の値であった場合、ポンプ回転数決定部44は、このSD点を通るQ−H曲線を特定し、当該特定したQ−H曲線のポンプ回転数N3を、需要情報に応じた給水ポンプ11のポンプ回転数として決定する。
従来は、給水バルブ21や分水バルブ31の実際の使用状況を考慮した配水管理を行っていなかったため、放流不足が生じないようにするため、給水ポンプ11のポンプ回転数を高めの値(例えば、N0)に設定して運用していた。これに対し、本実施形態では、給水バルブ21や分水バルブ31の実際の使用状況を考慮して給水ポンプ11のポンプ回転数を求めるようにしている。
このようにすれば、給水バルブ21や分水バルブ31がどのような使用状況であっても常に最大のポンプ回転数Nで給水ポンプ11を稼働させる場合に比べて、給水バルブ21や分水バルブ31の実際の使用状況(どれが動作中か)に合わせて、給水ポンプ11が過不足のない配水をするためのポンプ回転数(例えば、N1,N2,N3)を適切に決定することができる。
例えば、需要情報としてのポンプ流量がSBの場合は、最大のポンプ回転数Nで給水ポンプ11を動作させる場合に比べて、ポンプ圧力を図7に示すHBだけ低減することができる。同様に、需要情報としてのポンプ流量がSCの場合はポンプ圧力をHCだけ低減することができ、需要情報としてのポンプ流量がSDの場合はポンプ圧力をHDだけ低減することができる。ここで、SB>SC>SD、HB<HC<HDであり、需要のポンプ流量が少ないほど、給水ポンプ11のポンプ圧力の低減効果は高くなる。
以上のようにして決定された給水ポンプ11のポンプ回転数は、管理者端末500や農家端末600からサーバ400にアクセスして閲覧可能な情報として提供される。ポンプ場100の施設管理者は、管理者端末500からサーバ400にアクセスし、上述のようにして決定された給水ポンプ11のポンプ回転数を確認し、それに従って実際に給水ポンプ11のポンプ回転数を制御する。
これにより、ポンプ場100、圃場200およびパイプライン300の全体の状況を考慮して、各水田に対する過剰放流や放流不足のない適切な配水の管理を行うことができる。その結果、水田に対して必要以上に水が供給され過ぎたり、必要なときに水が供給されないなどの問題を防止でき、適正な配水管理による大幅な省エネおよび節水が可能となる。また、過剰圧力による設備の破損を防止することも可能となる。
なお、サーバ400と通信可能な制御装置(インバータなどを含む)をポンプ場100に設け、サーバ400のポンプ回転数決定部44により決定されたポンプ回転数を制御装置に通知することにより、当該決定されたポンプ回転数となるように、給水ポンプ11のポンプ回転数を制御装置によって自動的に制御するようにしてもよい。また、サーバ400が備えるポンプ特性情報取得部41、損失特性情報取得部42、使用状況情報取得部43およびポンプ回転数決定部44の機能を、ポンプ場100の制御装置が備えるようにしてもよい。なお、この制御装置は、特許請求の範囲の制御部に相当する。
上記実施形態では、給水バルブ21に対応して設置された流量計22および圧力計23と、分水バルブ31に対応して設置された流量計32および圧力計33とにおける使用状況情報に基づいて給水ポンプ11のポンプ回転数を決定する例について説明したが、給水ポンプ11および給水バルブ21の使用予定に関してあらかじめ入力したスケジュール情報に基づいて、給水ポンプ11のポンプ回転数を決定するようにすることも可能である。
図8は、スケジュール情報に基づいてポンプ回転数を決定する変形例に係るサーバ400の機能構成例を示すブロック図である。なお、この図8において、図2に示した符号と同一の符号を付したものは同一の機能を有するものであるので、ここでは重複する説明を省略する。図8に示すように、変形例に係るサーバ400は、その機能構成として、スケジュール作成部45を更に備えている。また、ポンプ回転数決定部44に代えてポンプ回転数決定部44’を備えている。
スケジュール作成部45は、ポンプ場100に設置される給水ポンプ11の稼働に関する所定期間のスケジュール(以下、ポンプスケジュールという)と、各水田に設置される給水バルブ21およびパイプライン300に設置される分水バルブ31の少なくとも一方の開閉に関する所定期間のスケジュール(以下、バルブスケジュールという)とを作成する。そのための具体的な機能構成として、スケジュール作成部45は、スケジュール入力部45Aおよびスケジュール調整部45Bを備えている。
スケジュール入力部45Aは、管理者端末500から所定期間(例えば、1ヵ月間または数ヵ月間)のポンプスケジュールを入力するとともに、農家端末600から同じ所定期間のバルブスケジュールを入力する。ポンプスケジュールは、水源地の貯水状況、所定期間における天気予報情報、ポンプ場100の施設のメンテナンスを含む運転状況などを考慮して、ポンプ場100の施設管理者により設定されるものであり、給水ポンプ11をどのタイミングでどの程度の流量で稼働させるかを示す情報である。
また、バルブスケジュールは、水田の耕作運用状況や稲の生育状況などに基づく水利用の需要を考慮して、圃場200の農家により設定されるものである。具体的には、バルブスケジュールは、圃場200における各水田のうち、どの水田の給水バルブ21をどのタイミングで開栓するかや、パイプライン300に設置された各分水バルブ31のうち、どの分水バルブ31をどのタイミングで開栓するかなどを示す情報である。このバルブスケジュールにより、圃場200の全体としてどのタイミングでどの程度の流量の水が必要となるかが特定されることになる。
スケジュール調整部45Bは、スケジュール入力部45Aにより入力されたポンプスケジュールで特定されるポンプ流量と、スケジュール入力部45Aにより入力されたバルブスケジュールで特定されるバルブ流量との間に差分がある場合、その差分がなくなるように、ポンプスケジュールまたはバルブスケジュールを調整する。バルブスケジュールで特定されるバルブ流量とは、圃場200の全体として同時に開栓する(厳密な意味で同時であることを意味するものではなく、所定単位期間内のどこかのタイミングで開栓することを意味する)予定の給水バルブ21に流れる水の総流量である。
具体的には、スケジュール調整部45Bは、ポンプスケジュールで特定されるポンプ流量が、バルブスケジュールで特定されるバルブ流量より少ない場合、その差分がなくなるように、バルブ流量を減らすようにバルブスケジュールを調整する。一方、ポンプスケジュールで特定されるポンプ流量が、バルブスケジュールで特定されるバルブ流量より多い場合、その差分がなくなるように、ポンプ流量を減らすようにポンプスケジュールを調整する。
ポンプスケジュールで特定されるポンプ流量がバルブスケジュールで特定されるバルブ流量より少ない場合とは、農家の水需要量に対し、水源での貯水量が足りない場合である。この場合は、農家の水需要により入力されたバルブスケジュールの通りに水の供給を行うことができない。よって、この場合は、圃場200の全体でのバルブ流量を減らすようにバルブスケジュールを調整する。例えば、スケジュール調整部45Bは、あらかじめ設定しておいた水管理ルールに基づいて、どの給水バルブ21のバルブ流量をどの程度減らすのか、あるいは、どの分水バルブ31のバルブ流量をどの程度減らすのかなどを決定する。
水管理ルールとは、圃場ブロック毎に水配分の優先順位を設定したルールである。例えば、上流側の水田に対して優先的に給水するといったルールがその一例である。また、図1のように分水バルブ31よりも下流側に3つの圃場ブロックBL1,BL2,BL3がある場合において、水源地の水が不足する場合は、上流側の圃場ブロックからBL1,BL2,BL3の順で給水を行うルールとしてもよい。このとき、圃場ブロックBL1に給水する場合は、他の圃場ブロックBL2,BL3の分水バルブ31は閉じておく。また、圃場ブロックBL2,BL3への給水時も同じように、給水しない圃場ブロックの分水バルブ31は閉じる。こうすることで、使用していない給水バルブ21に余剰な水が配水されるのを防ぐ効果がある。このような水管理ルールは、一般的に、地域毎に慣行によって決められた優先度を示すものである。よって、このルールは任意の内容であらかじめ設定しておくことが可能である。なお、水管理ルールを設定せず、例えば複数の給水バルブ21のバルブ流量を均等に減らすことによって、ポンプスケジュールを満たすようなバルブスケジュールとなるように調整する構成としてもよい。
なお、ここではスケジュール調整部45Bが自動的にバルブスケジュールを調整する例について説明したが、これに限定されない。例えば、ポンプスケジュールで特定されるポンプ流量がバルブスケジュールで特定されるバルブ流量に対してどの程度少ないかの情報を、農家端末600からサーバ400にアクセスして閲覧可能な情報として提示する。そして、この情報を確認した農家が、農家端末600からバルブスケジュールを再入力することによって、バルブスケジュールの調整を行うようにしてもよい。
逆に、ポンプスケジュールで特定されるポンプ流量がバルブスケジュールで特定されるバルブ流量より多い場合とは、農家の水需要量に対し、水源から水供給量が余剰している場合である。この場合は、農家の水需要量をそのまま満たす程度に水源からの水供給量を減らせばよい。よって、この場合は、余剰分の水供給量を減らすようにポンプスケジュールを調整する。
ポンプ回転数決定部44’は、スケジュール調整部45Bにより調整されたポンプスケジュールで特定されるポンプ流量、ポンプ特性情報取得部41により取得されたポンプ特性情報(Q−H曲線)、および、損失特性情報取得部42により取得された損失特性情報(R曲線)に基づいて、給水ポンプ11のポンプ回転数を決定する。このポンプ回転数決定部44’の動作は、使用状況情報に基づいて特定されるポンプ流量を需要情報として用いることに代えて、ポンプスケジュールに基づいて特定されるポンプ流量を需要情報として用いること以外は、上述した実施形態と同様である。
また、上記実施形態では、全バルブ開栓時における開栓中最大損失バルブに対して必要最低水頭を与えるのに必要なポンプ流量とポンプ圧力とを示したO点と、最大損失バルブ開栓時における開栓中最大損失バルブに対して必要最低水頭を与えるのに必要なポンプ流量とポンプ圧力とを示したS点との間を繋ぐR曲線を求める例について説明したが、これに限定されない。
上記実施形態で求めたR曲線は、ポンプ場100から最も損失が大きい給水バルブ21を末端流量として作成したものであるが、ポンプ場100から最も近い位置にあり損失が小さい給水バルブ21のみを開栓して給水するときは、S点よりも小さなポンプ圧力で良い。そこで、図9に示すように、S点のポンプ圧力を下方修正するように補正し、補正後のS’点とO点との結ぶR曲線を求めるようにしてもよい。すなわち、給水バルブ21の開栓箇所をリアルタイムで把握することで、より需要に応じた最適なポンプ運転を行うことが可能になる。このようにすることで、さらなる節水と節電が可能になる。
なお、給水バルブ21が自動給水栓の場合、給水バルブ21の開閉状況や水位計により測定される水田の水位を示す情報を、PLC41から通信ネットワーク700を介してサーバ400に送信するようにしてもよい。この場合、各水田の水位の上昇速度に基づいて、給水バルブ21による給水量を推定することができるので、R曲線をより実態に近い状態に補正することができる。すなわち、給水バルブ21の位置的な使用状況が分かるため、ポンプ場100に近い位置の給水バルブ21しか開栓していない場合は、推定した給水バルブ21の給水量に応じてポンプ回転数をN3よりも小さい値に落とすことが可能になる。
例えば、図6のように第2の方法によってS点とO点とを結ぶR曲線を算出した上で、図9のようにR曲線を補正することにより、第1の方法で示した多数のプロット点を算出するパイプライン解析が不要で、かつ、より実態にあったR曲線を求めて給水ポンプ11のポンプ回転数を決定することができる。
なお、給水バルブ21の全てが自動給水栓である必要はなく、部分的に設置されている自動給水栓から送られてくる開閉状況や、バルブ流量やバルブ圧力の測定情報に基づいて、パイプライン300の上流から下流までの位置関係から全体の使用状況を推定してR曲線を作成することが可能である。例えば、ある位置にある給水バルブ21の測定情報に基づいて、それより下流にある給水バルブ21は使用していないなどと推定することが可能である。
また、上記実施形態では、動作中の各バルブ21,31に対応して設置された流量計12,22および圧力計13,23の測定情報をサーバ400に送信し、当該測定情報と共に送信するバルブIDによって、動作中のバルブ(所定期間内に開栓しているバルブ)を特定する例について説明したが、本発明はこれに限定されない。例えば、各バルブ21,31の開閉情報をバルブIDと共にサーバ400に送信するようにしてもよい。または、動作中の各バルブ21,31のバルブIDのみを送信するようにしてもよい。測定情報は、管理者端末500や農家端末600からサーバ400にアクセスして閲覧可能な情報としてのみ用いるようにしてよい。
また、上記実施形態では、圃場200の各水田における給水バルブ21やパイプライン300の分水バルブ31の使用状況情報をサーバ400に送信し、サーバ400においてポンプ場100における給水ポンプ11のポンプ回転数を決定する例について説明した。また、当該決定したポンプ回転数に基づいて給水ポンプ11のポンプ回転数を自動制御することについても言及した。これに対し、スケジュールの調整結果に基づいて、サーバ400からPLC25および無線通信装置34を介して制御信号を送信することにより、自動給水栓で構成した分水バルブ31の開閉を自動的に制御するようにしてもよい。例えば、水源地の水が不足する場合において、スケジュール調整後に、上述した水管理ルールに従って圃場ブロックBL1,BL2,BL3毎に給水制限を行う場合、給水を行わない圃場ブロックに対応する分水バルブ31を閉め、または開度を制限して流量を調整するなどの制御を自動で行うようにすることが可能である。
同様に、スケジュールの調整結果に基づいて、サーバ400からPLC25および無線通信装置24を介して制御信号を送信することにより、自動給水栓で構成した給水バルブ21の開閉を自動的に制御するようにしてもよい。例えば、上述した水管理ルールに従って、給水を行わない水田に対応する給水バルブ21を閉め、または開度を制限して流量を調整するなどの制御を自動で行うようにすることが可能である。
なお、以上のように、サーバ400が調整後のバルブスケジュールに従って給水バルブ21や分水バルブ31の開閉を自動制御する場合、サーバ400は、水管理ルールの情報をあらかじめ記憶しておく。
なお、上述した給水バルブ21や分水バルブ31の自動制御は、サーバ400からの制御ではなく、ポンプ場100が備える制御装置からの制御に基づいて行うようにすることも可能である。例えば、図8に示した機能構成をポンプ場100の制御装置が備え、当該制御装置で調整したバルブスケジュールに従って、給水バルブ21や分水バルブ31の開閉を遠隔で自動制御することが可能である。
その他、上記実施形態は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
11 給水ポンプ
21 給水バルブ
22,32 流量計
23,33 圧力計
24,34 無線通信装置
41 ポンプ特性情報取得部
42 損失特性情報取得部
43 使用状況情報取得部
44,44’ ポンプ回転数決定部
45 スケジュール作成部
45A スケジュール入力部
45B スケジュール調整部
100 ポンプ場
200 圃場
300 パイプライン
400 サーバ

Claims (7)

  1. 供給側である水源地のポンプ場と、需要側である灌漑地区における複数の水田を有する圃場と、上記ポンプ場と上記圃場の各水田との間を繋ぐパイプラインとを有して成る水利系統における配水の制御を行う配水制御システムであって、
    上記ポンプ場に設置される給水ポンプに関して、ポンプ回転数に応じたポンプ流量とポンプ圧力との相関関係を示したポンプ特性情報を取得するポンプ特性情報取得部と、
    上記各水田に対して設置される給水バルブおよび上記パイプラインに対して必要に応じて設置される分水バルブを任意の組み合わせで開閉した場合に、開栓している上記給水バルブのうち上記ポンプ場から最も損失の大きい位置にある給水バルブに対して必要最低水頭を与える際のポンプ流量とポンプ圧力との相関関係を示した損失特性情報を取得する損失特性情報取得部と、
    上記各水田に設置された上記給水バルブおよび上記パイプラインに設置された上記分水バルブの使用状況を示す情報を、通信ネットワークを介して取得する使用状況情報取得部と、
    上記ポンプ特性情報取得部により取得された上記ポンプ特性情報、上記損失特性情報取得部により取得された上記損失特性情報、および、上記使用状況情報取得部により取得された上記使用状況情報に基づいて、上記給水ポンプのポンプ回転数を決定するポンプ回転数決定部とを備えたことを特徴とする配水制御システム。
  2. 上記ポンプ回転数決定部は、上記損失特性情報取得部により取得された上記損失特性情報と、上記使用状況情報取得部により取得される上記使用状況情報とに基づいて、当該使用状況情報により開栓していることが示されている上記給水バルブのうち上記ポンプ場から最も損失の大きい位置にある給水バルブに対して上記必要最低水頭を与えるのに必要なポンプ流量およびポンプ圧力を需要情報として求め、当該求めた需要情報と、上記ポンプ特性情報取得部により取得された上記ポンプ特性情報とに基づいて、上記給水ポンプのポンプ回転数を決定することを特徴とする請求項1に記載の配水制御システム。
  3. 上記ポンプ回転数決定部は、上記使用状況情報取得部により取得される上記使用状況情報に基づいて、当該使用状況情報により開栓していることが示されている上記給水バルブのうち上記ポンプ場から最も損失の大きい位置にある給水バルブに対して上記必要最低水頭を与えるのに必要なポンプ流量およびポンプ圧力の少なくとも一方を需要情報として求め、当該求めた需要情報と、上記ポンプ特性情報取得部により取得された上記ポンプ特性情報と、上記損失特性情報取得部により取得された上記損失特性情報とに基づいて、上記給水ポンプのポンプ回転数を決定することを特徴とする請求項1に記載の配水制御システム。
  4. 上記ポンプ場に設置される上記給水ポンプの稼働に関する所定期間のスケジュールであるポンプスケジュールと、上記各水田に設置される上記給水バルブおよび上記パイプラインに必要に応じて設置される上記分水バルブの少なくとも一方の開閉に関する上記所定期間のスケジュールであるバルブスケジュールとを作成するスケジュール作成部を更に備え、
    上記スケジュール作成部は、
    上記ポンプスケジュールおよび上記バルブスケジュールを入力するスケジュール入力部と、
    上記スケジュール入力部により入力された上記ポンプスケジュールで特定されるポンプ流量と、上記スケジュール入力部により入力された上記バルブスケジュールで特定されるバルブ流量との間に差分がある場合、その差分がなくなるように、上記ポンプスケジュールまたは上記バルブスケジュールを調整するスケジュール調整部とを備えることを特徴とする請求項1〜3の何れか1項に記載の配水制御システム。
  5. 上記スケジュール調整部は、上記スケジュール入力部により入力された上記ポンプスケジュールで特定されるポンプ流量が、上記スケジュール入力部により入力された上記バルブスケジュールで特定されるバルブ流量より少ない場合、その差分がなくなるように、上記バルブ流量を減らすように上記バルブスケジュールを調整する一方、上記スケジュール入力部により入力された上記ポンプスケジュールで特定されるポンプ流量が、上記スケジュール入力部により入力された上記バルブスケジュールで特定されるバルブ流量より多い場合、その差分がなくなるように、上記ポンプ流量を減らすように上記ポンプスケジュールを調整し、
    上記ポンプ回転数決定部は、上記スケジュール調整部により調整された上記ポンプスケジュールで特定されるポンプ流量、上記ポンプ特性情報取得部により取得された上記ポンプ特性情報、および、上記損失特性情報取得部により取得された上記損失特性情報に基づいて、上記給水ポンプのポンプ回転数を決定することを特徴とする請求項4に記載の配水制御システム。
  6. 上記ポンプ回転数決定部により決定されたポンプ回転数となるように、上記給水ポンプのポンプ回転数を自動的に制御する制御部を更に備えたことを特徴とする請求項1〜5の何れか1項に記載の配水制御システム。
  7. 上記スケジュール調整部により上記バルブスケジュールの調整が行われた場合、当該調整後のバルブスケジュールおよび所定の水管理ルールに従って、上記給水バルブおよび上記分水バルブの少なくとも一方の開閉を自動的に制御する制御部を更に備えたことを特徴とする請求項4または5に記載の配水制御システム。
JP2018027277A 2018-02-19 2018-02-19 配水制御システム Active JP6979207B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018027277A JP6979207B2 (ja) 2018-02-19 2018-02-19 配水制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027277A JP6979207B2 (ja) 2018-02-19 2018-02-19 配水制御システム

Publications (2)

Publication Number Publication Date
JP2019140954A JP2019140954A (ja) 2019-08-29
JP6979207B2 true JP6979207B2 (ja) 2021-12-08

Family

ID=67770609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027277A Active JP6979207B2 (ja) 2018-02-19 2018-02-19 配水制御システム

Country Status (1)

Country Link
JP (1) JP6979207B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7412021B2 (ja) 2020-02-06 2024-01-12 株式会社ナイルワークス 水管理システム、水管理サーバ及び水管理方法
JP7418288B2 (ja) 2020-06-05 2024-01-19 株式会社クボタ 給配水管理システム、圃場水管理装置及び灌漑用水管理装置
JP7018093B2 (ja) 2020-06-25 2022-02-09 株式会社クボタ 圃場水管理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816618A (ja) * 1981-07-24 1983-01-31 株式会社日立製作所 水田かんがいポンプの運転制御方法
JPS63296627A (ja) * 1987-05-29 1988-12-02 Toshiba Corp 農業水利設備の制御装置
JPH1042726A (ja) * 1996-07-31 1998-02-17 Ebara Corp 農業用水給水設備
JP4301691B2 (ja) * 2000-03-31 2009-07-22 株式会社日立製作所 田圃灌漑システム
JP5010504B2 (ja) * 2008-02-29 2012-08-29 株式会社東芝 配水圧力最適制御装置
US10095246B2 (en) * 2013-12-02 2018-10-09 Kabushiki Kaisha Toshiba Leakage suppression apparatus, leakage suppression system, and leakage suppression program

Also Published As

Publication number Publication date
JP2019140954A (ja) 2019-08-29

Similar Documents

Publication Publication Date Title
JP6979207B2 (ja) 配水制御システム
US20200253140A1 (en) Irrigation management
RU2579424C2 (ru) Система и способ управления давлением в сети
AU2017203097B2 (en) Demand management system for fluid networks
JP7418288B2 (ja) 給配水管理システム、圃場水管理装置及び灌漑用水管理装置
CN105988378A (zh) 循环冷却水控制系统及加药控制装置和方法
KR20150065360A (ko) 지능형 상수도 관망 시스템 및 수압 조절 방법
JP7369190B2 (ja) 地域暖房ネットワークにおける熱発生の機能停止または機能不全中に質量流量を平衡状態にする方法及びシステム
Planells Alandi et al. Design of water distribution networks for on-demand irrigation
CN203240634U (zh) 一种基于热水供暖系统中动态平衡机组的装置
JP2019179293A (ja) 圃場給水予約システム、圃場水管理システム、圃場水管理サーバ、灌漑用水管理システム及び灌漑用水管理サーバ
KR20140010623A (ko) 상수 관망 내 자동 압력 제어 방법 및 이를 포함하는 시스템
CN115183318B (zh) 基于负荷预测和热量进度一致的供热调节方法和相关设备
JP6399235B2 (ja) 配水計画システム、配水計画方法及びプログラム記録媒体
CN115293514A (zh) 区域能源供给的控制方法、系统及存储介质
FI129350B (fi) Informaatiojärjestelmä kaukolämpöverkostolle ja menetelmä kaukolämpöverkoston yhteydessä
JP7418299B2 (ja) 圃場水管理装置
CN220489247U (zh) 一种用于供热二级网水力平衡调节系统
DK181198B1 (en) Method and system for pressure regulation in a fluid supply network
RU2314457C1 (ru) Способ обеспечения расчетного расхода теплоносителя
JP2005293236A (ja) 導管網圧力制御方法および装置
Buchleiter et al. Management of multiple pump stations
CN116624915A (zh) 一种基于供回水温差的确定管网水力失调度的方法
JP2020089276A (ja) 用水管理システム、用水管理装置および用水管理方法
CN116066894A (zh) 一种供热监管方法和相关装置

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201116

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6979207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150