JP6974234B2 - 車両の電源システム - Google Patents

車両の電源システム Download PDF

Info

Publication number
JP6974234B2
JP6974234B2 JP2018066768A JP2018066768A JP6974234B2 JP 6974234 B2 JP6974234 B2 JP 6974234B2 JP 2018066768 A JP2018066768 A JP 2018066768A JP 2018066768 A JP2018066768 A JP 2018066768A JP 6974234 B2 JP6974234 B2 JP 6974234B2
Authority
JP
Japan
Prior art keywords
storage device
power storage
battery
power
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018066768A
Other languages
English (en)
Other versions
JP2019180111A (ja
Inventor
宏和 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018066768A priority Critical patent/JP6974234B2/ja
Priority to CN201910236273.9A priority patent/CN110316003B/zh
Publication of JP2019180111A publication Critical patent/JP2019180111A/ja
Application granted granted Critical
Publication of JP6974234B2 publication Critical patent/JP6974234B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、車両の電源システムに関する。より詳しくは、2つの蓄電装置と、電力を消費して蓄電装置を加温する加温装置と、外部の電力を供給する外部電力供給部と、を備える車両の電源システムに関する。
電動車両は、蓄電装置から供給される電力を用いてモータを駆動することによって走行する。この蓄電装置には、リチウムイオン電池やニッケル水素電池等の化学電池が多く用いられている。しかしながら化学電池は、化学反応によって化学エネルギを直流の電力に変換するため、その温度が低くなるほど充電能力及び放電能力共に低下する特性がある。
そこで低温環境下で外部充電器によって蓄電装置を充電する場合には、外部充電器から供給される電力で車両に搭載されたヒータを駆動し、蓄電装置を加温しながら蓄電装置を充電するものが多い。例えば特許文献1の電源システムでは、第1蓄電装置と、第2蓄電装置と、第1蓄電装置を加温するヒータとを備えるものにおいて、外部充電器から供給される電力で第1蓄電装置を充電する際には、外部充電器と第2蓄電装置との電気的な接続を遮断した状態で、外部充電器から供給される電力を第1蓄電装置とヒータとに供給している。
特開2016−63645号公報
ところで特許文献1の電源システムのように、2つの蓄電装置を備えるものでは、外部充電器から供給される電力を用いることによって、ヒータを駆動し、第1蓄電装置を充電し、さらに第2蓄電装置を充電したい場合もある。しかしながら特許文献1の発明では、外部充電器と第2蓄電装置との間には、2つのコンバータが設けられているため、外部充電器から供給される電力で第2蓄電装置を充電しようとすると、これら2つのコンバータを駆動する必要があり、電力のロスが大きい。
そこで第2蓄電装置を、第1蓄電装置を加温するためのヒータが設けられている回路に接続することが考えられる。しかしながらヒータと第2蓄電装置とを同じ回路に接続してしまうと、第2蓄電装置の状態に応じてヒータの出力が低下してしまうおそれがある。すなわち、外部充電器から供給される電力で第2蓄電装置を充電する場合、第2蓄電装置の状態に応じて外部充電器の出力電圧を制限する必要があるが、そうすると第2蓄電装置の状態に応じてヒータの出力も制限されてしまい、第1蓄電装置を十分に加温できず、ひいては第1蓄電装置の充電に時間がかかってしまうおそれがある。
本発明は、第2蓄電装置と第1蓄電装置を加温するための加温装置とが同じ回路に接続された電源システムにおいて、第1蓄電装置を速やかに充電できる電源システムを提供することを目的とする。
(1)本発明に係る車両(例えば、後述の車両V)の電源システム(例えば、後述の電源システム1)は、車両の動力発生源に電力を供給する第1蓄電装置(例えば、後述の第1バッテリB1)及び第2蓄電装置(例えば、後述の第2バッテリB2)と、前記第1蓄電装置が接続された第1回路(例えば、後述の第1電力線21)と、電力を消費して前記第1蓄電装置を加温する加温装置(例えば、後述のヒータH)と、前記加温装置が接続された第2回路(例えば、後述の第2電力線22)と、前記第2回路と前記第2蓄電装置とを接続又は遮断する切替手段(例えば、後述の第2バッテリコンタクタC2)と、前記第1回路と前記第2回路との間で電圧を変換する電圧変換器(例えば、後述の電圧変換器4)と、前記第1回路又は前記第2回路に接続された外部電力供給部(例えば、後述の交流充電器51、及び直流充電器61)と、前記外部電力供給部から供給される電力で前記第1蓄電装置が充電されるように前記電圧変換器及び前記外部電力供給部を制御する制御装置(例えば、後述のECU7)と、を備え、前記制御装置は、前記第2蓄電装置と前記第2回路とを遮断した状態で前記外部電力供給部から前記第2回路に供給される電力で前記加温装置を駆動する遮断モード、又は前記第2蓄電装置と前記第2回路とを接続した状態で前記外部電力供給部から前記第2回路に供給される電力で前記第2蓄電装置を充電する接続モードの下で前記第1蓄電装置を充電することを特徴とする。
(2)この場合、前記電源システムは、前記第2回路の電圧が前記第2蓄電装置の電圧よりも高い状態で、前記加温装置によって前記第1蓄電装置を加温しながら当該第1蓄電装置を充電する場合において、前記第2蓄電装置の接続の可否を判定する接続可否判定手段(例えば、後述のECU7、及び後述の図4Aにおける第1接続可否判定処理の実行に係る手段)をさらに備え、前記制御装置は、前記接続可否判定手段により接続不可と判定された場合には前記遮断モードの下で前記第1蓄電装置を加温しながら当該第1蓄電装置を充電し、前記接続可否判定手段により接続可と判定された場合には前記接続モードの下で前記第1蓄電装置を加温しながら当該第1蓄電装置及び前記第2蓄電装置を充電することが好ましい。
(3)この場合、前記電源システムは、前記第1蓄電装置の温度である第1温度を取得する温度取得手段(例えば、後述の第1バッテリセンサユニット81)と、前記第2蓄電装置の電圧である第2電圧を取得する電圧取得手段(例えば、後述の第2バッテリセンサユニット82)と、を備え、前記接続可否判定手段は、前記第2電圧及び前記第1温度に基づいて前記第2蓄電装置の接続の可否を判定することが好ましい。
(4)この場合、前記電源システムは、前記第1温度に基づいて前記加温装置に対する要求出力を算出する要求出力算出手段(例えば、後述のECU7、及び後述の図5のS34の処理の実行に係る手段)と、前記第2蓄電装置と前記第2回路とを接続した状態で、前記外部電力供給部から前記第2回路に供給される電力で前記加温装置を駆動した場合に前記加温装置で実現可能な可能出力を算出する可能出力算出手段(例えば、後述の図5のS32の処理の実行に係る手段)と、を備え、前記接続可否判定手段は、前記可能出力が前記要求出力以上である場合には前記第2蓄電装置を接続可と判定し、前記可能出力が前記要求出力より小さい場合には前記第2蓄電装置を接続不可と判定することが好ましい。
(5)この場合、前記第1蓄電装置は、前記第2蓄電装置よりも出力重量密度が低くかつエネルギ重量密度が高いことが好ましい。
(6)本発明に係る車両(例えば、後述の車両V)の電源システム(例えば、後述の電源システム1)は、車両の動力発生源に電力を供給する第1蓄電装置(例えば、後述の第1バッテリB1)及び第2蓄電装置(例えば、後述の第2バッテリB2)と、前記第1蓄電装置が接続された第1回路(例えば、後述の第1電力線21)と、電気負荷(例えば、後述のヒータH、及びエアコンA等)が接続された第2回路(例えば、後述の第2電力線22)と、前記第2回路と前記第2蓄電装置とを接続又は遮断する切替手段(例えば、後述の第2バッテリコンタクタC2)と、前記第1回路と前記第2回路との間で電圧を変換する電圧変換器(例えば、後述の電圧変換器4)と、前記第1回路又は前記第2回路に接続された外部電力供給部(例えば、後述の交流充電器51、及び直流充電器61)と、前記外部電力供給部から供給される電力で前記第1蓄電装置が充電されるように前記電圧変換器及び前記外部電力供給部を制御する制御装置(例えば、後述のECU7)と、を備え、前記制御装置は、前記第2蓄電装置と前記第2回路とを遮断した状態で前記外部電力供給部から前記第2回路に供給される電力で前記電気負荷を駆動する遮断モード、又は前記第2蓄電装置と前記第2回路とを接続した状態で前記外部電力供給部から前記第2回路に供給される電力で前記第2蓄電装置を充電する接続モードの下で前記第1蓄電装置を充電することを特徴とする。
(1)本発明の電源システムでは、第1蓄電装置が接続された第1回路と加温装置が接続された第2回路とを、電圧変換器で接続する。また第2蓄電装置は、切替手段を介して第2回路に接続し、外部電力供給部は、第1回路又は第2回路に接続する。制御装置は、外部電力供給部から供給される電力で、第1蓄電装置が充電されるように電圧変換器及び外部電力供給部を制御する。また制御装置は、切替手段によって第2蓄電装置と第2回路とを遮断した状態で外部電力供給部から第2回路に供給される電力で加温装置を駆動する遮断モード、又は切替手段によって第2蓄電装置と第2回路とを接続した状態で外部電力供給部から第2回路に供給される電力で第2蓄電装置を充電する接続モードの下で第1蓄電装置を充電する。遮断モードの下では、第2蓄電装置と第2回路との接続が遮断されているため、第2蓄電装置を充電できないが加温装置の出力が制限されることもないため、第1蓄電装置を速やかに加温しながら第1蓄電装置を充電することができる。また接続モードの下では、第2蓄電装置と第2回路とが接続されているため、第1蓄電装置を加温しながら第1蓄電装置及び第2蓄電装置を同時に充電できる。すなわち第2蓄電装置が加温装置の出力を制限するおそれがなければ、接続モードの下では、第1蓄電装置を速やかに加温しながら第1蓄電装置及び第2蓄電装置を同時に充電できる。よって電源システムでは、遮断モード又は接続モードの下で第1蓄電装置を充電可能とすることにより、第2蓄電装置によって第1蓄電装置の加温を妨げないようにしながら、第1蓄電装置を速やかに充電できる。
(2)第2回路の電圧を高くするほど、加温装置の出力を高くでき、ひいては第1蓄電装置を速やかに加温できる。しかしながら第2回路の電圧を第2蓄電装置の電圧よりも高くしすぎた場合、第2蓄電装置を第2回路に接続すると、第2蓄電装置に過大な充電電流が流れてしまい、第2蓄電装置が劣化するおそれがある。そこで電源システムでは、第2回路の電圧が第2蓄電装置の電圧よりも高い状態で、加温装置によって第1蓄電装置を加温する場合には、接続可否判定手段によって第2蓄電装置の接続の可否を判定する。そして制御装置は、接続不可と判定された場合には遮断モードの下で第1蓄電装置を加温しながら第1蓄電装置を充電し、接続可と判定された場合には、接続モードの下で第1蓄電装置を加温しながら第1蓄電装置及び第2蓄電装置を充電する。これにより、第1蓄電装置の加温を妨げないようにしながら第1蓄電装置を速やかに充電でき、さらに第2蓄電装置の劣化も抑制できる。
(3)第1温度は、加温装置に要求される出力と相関がある。すなわち、第1温度が低くなるほど、加温装置に要求される出力も増加するため、これに応じて第2回路の電圧も高くする必要がある。一方、第2電圧は、第2蓄電装置を充電する際に許容される充電電圧の上限と相関がある。またこの充電電圧の上限が第2回路の電圧より低い場合、第2蓄電装置の劣化を防止するためには、第2蓄電装置を第2回路に接続することができない。以上のように、第1温度及び第2電圧は、第2蓄電装置と第2回路との接続可否と相関がある。そこで電源システムでは、これら第1温度及び第2電圧に基づいて第2蓄電装置の接続の可否を判定する。これにより、第1蓄電装置の加温を妨げずかつ第2蓄電装置が劣化しないように、第2蓄電装置の接続の可否を判定できる。
(4)本発明の電源システムでは、要求出力算出手段によって加温装置に対する要求出力を算出し、可能出力算出手段によって第2蓄電装置と第2回路とを接続した状態で第2回路に供給される電力で加温装置を駆動した場合に加温装置で実現可能な可能出力を算出する。さらに接続可否判定手段では、可能出力が要求出力以上である場合には第2蓄電装置を接続可と判定し、可能出力が要求出力より小さい場合には第2蓄電装置を接続不可と判定する。これにより加温装置の出力が要求出力を下回らないようにしながら第2蓄電装置と第2回路とを接続したり遮断したりできるので、第1蓄電装置の加温を妨げないようにしながら第1蓄電装置を速やかに充電できる。
(5)本発明の電源システムでは、上述のように第1蓄電装置の加温を妨げないようにしながら第1蓄電装置を速やかに充電できる。これに対し本発明の電源システムでは、第1蓄電装置として、第2蓄電装置よりも出力重量密度が低くかつエネルギ重量密度が高いものを用いる。すなわち第1蓄電装置として、第2蓄電装置よりも充電に時間がかかる容量型のものを用いる。よって電源システムによれば、第1蓄電装置に多くの電力を速やかに蓄えることができる。
(6)第2蓄電装置が接続される回路には、上述のように第1蓄電装置を加温するための加温装置だけでなく、様々な電気負荷が接続される場合がある。またこのような電源システムでは、電気負荷を利用しながら第1蓄電装置を充電する場合、第2蓄電装置の状態に応じて電気負荷の出力が制限されてしまい、利用者が違和感を覚える場合がある。これに対し本発明の電源システムでは、制御装置は、切替手段によって第2蓄電装置と第2回路とを遮断した状態で外部電力供給部から第2回路に供給される電力で電気負荷を駆動する遮断モード、又は切替手段によって第2蓄電装置と第2回路とを接続した状態で外部電力供給部から第2回路に供給される電力で第2蓄電装置を充電する接続モードの下で第1蓄電装置を充電する。遮断モードの下では、第2蓄電装置と第2回路との接続が遮断されているため、第2蓄電装置を充電できないが電気負荷の出力が制限されることもない。また接続モードの下では、第2蓄電装置と第2回路とが接続されているため、電気負荷を利用しながら第1蓄電装置及び第2蓄電装置を同時に充電できる。すなわち第2蓄電装置が電気負荷の出力を制限するおそれがなければ、接続モードの下では、電気負荷を利用しながら第1蓄電装置及び第2蓄電装置を同時に充電できる。よって電源システムでは、遮断モード又は接続モードの下で第1蓄電装置を充電可能とすることにより、第2蓄電装置によって電気負荷の出力を制限しないようにしながら、第1蓄電装置を充電できる。
本発明の一実施形態に係る電源システムを搭載する車両の構成を示す図である。 交流充電器を用いた遮断モードの下での外部充電時における電力の流れを模式的に示す図である。 交流充電器を用いた接続モードの下での外部充電時における電力の流れを模式的に示す図である。 直流充電器の高出力ポートを用いた遮断モードの下での外部充電時における電力の流れを模式的に示す図である。 直流充電器の高出力ポートを用いた接続モードの下での外部充電時における電力の流れを模式的に示す図である。 交流充電器から供給される電力で2つのバッテリが充電されるように電力回路や交流充電器を制御する外部充電制御処理の具体的な手順を示すフローチャートである(その1)。 交流充電器から供給される電力で2つのバッテリが充電されるように電力回路や交流充電器を制御する外部充電制御処理の具体的な手順を示すフローチャートである(その2)。 第1接続可否判定処理の具体的な手順を示すフローチャートである。 開回路電圧に基づいて電気負荷可能出力を算出するマップの一例である。 第2接続可否判定処理の具体的な手順を示すフローチャートである。
以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本実施形態に係る電源システム1を搭載する電動車両V(以下、単に「車両」という)の構成を示す図である。車両Vは、電源システム1と、電動発電機である駆動モータMと、駆動輪Wと、を備える。
駆動モータMは、主として車両Vが走行するための動力を発生する。駆動モータMの出力軸は、図示しない動力伝達機構を介して駆動輪Wに連結されている。電源システム1から駆動モータMに電力を供給することにより駆動モータMで発生させたトルクは、図示しない動力伝達機構を介して駆動輪Wに伝達され、駆動輪Wを回転させ、車両Vを走行させる。また駆動モータMは、車両Vの減速回生時には発電機として作用する。駆動モータMによって発電された電力は、電源システム1が備える後述の第1バッテリB1や第2バッテリB2に充電される。
電源システム1は、駆動モータMに電力を供給する第1蓄電装置としての第1バッテリB1及び第2蓄電装置としての第2バッテリB2と、電力を消費して第1バッテリB1を加温する加温装置かつ電気負荷としてのヒータHと、電力を消費して車室内の温度を調節する電気負荷としてのエアコンAと、これら第1バッテリB1とヒータHとエアコンAと駆動モータMとが設けられた電力回路2と、第1バッテリB1と電力回路2とを接続又は遮断する第1バッテリコンタクタC1と、第2バッテリB2と電力回路2とを接続又は遮断する第2バッテリコンタクタC2と、外部から供給される電力を電力回路2に供給する交流充電器51及び直流充電器61と、これら電力回路2と充電器51,61とを制御する電子制御ユニット7(以下、「ECU7」との略称を用いる)と、を備える。
第1バッテリB1は、化学エネルギを電気エネルギに変換する放電と、及び電気エネルギを化学エネルギに変換する充電との両方が可能な二次電池である。以下では、この第1バッテリB1として、電極間をリチウムイオンが移動することで充放電を行う所謂リチウムイオン蓄電池を用いた場合について説明するが、本発明はこれに限らない。
第1バッテリB1には、第1バッテリB1の内部状態を推定するため第1バッテリセンサユニット81が設けられている。第1バッテリセンサユニット81は、ECU7において第1バッテリB1の充電率や温度等を取得するために必要な物理量を検出し、検出値に応じた信号をECU7へ送信する複数のセンサによって構成される。より具体的には、第1バッテリセンサユニット81は、第1バッテリB1の端子電圧を検出する電圧センサ、第1バッテリB1を流れる電流を検出する電流センサ、及び第1バッテリB1の温度を検出する温度センサ等によって構成される。ECU7は、第1バッテリセンサユニット81から送信される検出値を用いた既知のアルゴリズムに基づいて、バッテリの蓄電量を百分率で表した充電率を算出する。またECU7は、第1バッテリセンサユニット81から送信される検出値に基づいて第1バッテリB1の温度や電圧を取得する。
第1バッテリB1は、第1バッテリコンタクタC1を介して第1電力線21に接続されている。第1バッテリコンタクタC1は、ECU7から送信される信号に応じて閉成又は開成することにより、第1バッテリB1と第1電力線21とを接続又は遮断する。
第2バッテリB2は、化学エネルギを電気エネルギに変換する放電と、及び電気エネルギを化学エネルギに変換する充電との両方が可能な二次電池である。以下では、この第2バッテリB2として、電極間をリチウムイオンが移動することで充放電を行う所謂リチウムイオン蓄電池を用いた場合について説明するが、本発明はこれに限らない。第2バッテリB2は、例えばキャパシタを用いてもよい。
第2バッテリB2は、第2バッテリコンタクタC2を介して第2電力線22に接続されている。第2バッテリコンタクタC2は、ECU7から送信される信号に応じて閉成又は開成することにより、第2バッテリB2と第2電力線22とを接続又は遮断する。
第2バッテリB2には、第2バッテリB2の内部状態を推定するため第2バッテリセンサユニット82が設けられている。第2バッテリセンサユニット82は、ECU7において第2バッテリB2の充電率や温度等を取得するために必要な物理量を検出し、検出値に応じた信号をECU7へ送信する複数のセンサによって構成される。より具体的には、第2バッテリセンサユニット82は、第2バッテリB2の端子電圧を検出する電圧センサ、第2バッテリB2を流れる電流を検出する電流センサ、及び第2バッテリB2の温度を検出する温度センサ等によって構成される。ECU7は、第2バッテリセンサユニット82から送信される検出値を用いた既知のアルゴリズムに基づいて、第2バッテリB2の充電率を算出する。またECU7は、第2バッテリセンサユニット82から送信される検出値に基づいて第2バッテリB2の温度や電圧を取得する。
ここで、第1バッテリB1の特性と第2バッテリB2の特性を比較する。
先ず、第1バッテリB1の満充電時電圧は第2バッテリB2の満充電時電圧よりも高い。このため車両Vの走行中や、充電器51,61を用いてこれらバッテリB1,B2を充電している間は、第1バッテリB1が直接的に接続されている後述の第1電力線21の電圧は、第2バッテリB2が直接的に接続されている第2電力線22の電圧よりも高い。
また第1バッテリB1は、第2バッテリB2よりも出力重量密度が低くかつエネルギ重量密度が高い。すなわち、第1バッテリB1は、エネルギ重量密度の点で第2バッテリB2よりも優れる。また第2バッテリB2は、出力重量密度の点で第1バッテリB1よりも優れる。なお、エネルギ重量密度とは、単位重量あたりの電力量[Wh/kg]であり、出力重量密度とは、単位重量あたりの電力[W/kg]である。したがって、エネルギ重量密度が優れている第1バッテリB1は、高容量を主目的とした容量型の蓄電装置であり、出力重量密度が優れている第2バッテリB2は、高出力を主目的とした出力型の蓄電装置である。
ヒータHは、電気ヒータであり、後述の第2電力線22における電力を消費して発熱し、図示しない冷却水回路を通流する冷却水を加温する。この冷却水回路は、第1バッテリB1に接している。したがってヒータHは、冷却水を加温することによって、第1バッテリB1を加温する。ヒータHの出力は、ECU7によって制御される。
エアコンAは、第2電力線22における電力を消費して車室内の空気の温度を調整する。このエアコンAの出力は、利用者による操作パネル(図示せず)の操作に基づいて、ECU7によって制御される。
電力回路2は、駆動モータMとの間で電力の授受を行うインバータ3と、このインバータ3の直流入出力端子と第1バッテリB1とを接続する第1回路としての第1電力線21と、第2バッテリB2、ヒータH、及びエアコンAが接続された第2回路としての第2電力線22と、第2電力線22と第1電力線21とを接続する電圧変換器4と、第2電力線22の電圧を検出する第2電圧センサ24と、を備える。
インバータ3は、例えば、複数のスイッチング素子(例えば、IGBT)をブリッジ接続して構成されるブリッジ回路を備えた、パルス幅変調によるPWMインバータであり、直流電力と交流電力とを変換する機能を備える。インバータ3は、その直流入出力側において第1電力線21に接続され、その交流入出力側において駆動モータMのU相、V相、W相の各コイルに接続されている。インバータ3は、ECU7の図示しないゲートドライブ回路から所定のタイミングで生成されるゲート駆動信号に従って各相のスイッチング素子をオン/オフ駆動することにより、第1電力線21における直流電力を三相交流電力に変換して駆動モータMに供給したり、駆動モータMから供給される三相交流電力を直流電力に変換して第1電力線21に供給したりする。
電圧変換器4は、第1電力線21と第2電力線22とを接続し、第1電力線21と第2電力線22との間で電圧を変換する。電圧変換器4は、リアクトル、平滑コンデンサ、及び複数のスイッチング素子(例えば、IGBT)等を組み合わせて構成され、これら第1電力線21と第2電力線22との間で直流電圧を変換する所謂双方向DCDCコンバータである。電圧変換器4は、ECU7の図示しないゲートドライブ回路から所定のタイミングで生成されるゲート駆動信号に従って上記複数のスイッチング素子をオン/オフ駆動することにより、昇圧機能と降圧機能を発揮する。昇圧機能とは、低圧側である第2電力線22における電力を昇圧して第1電力線21に出力する機能をいい、これにより第2電力線22側から第1電力線21側へ電流が流れる。また降圧機能とは、高圧側である第1電力線21における電力を降圧して第2電力線22に出力する機能をいい、これにより第1電力線21側から第2電力線22側へ電流が流れる。
第2電圧センサ24は、第2電力線22の電圧を検出し、検出値に応じた信号をECU7へ送信する。ECU7は、第2電圧センサ24から送信される検出値に基づいて第2電力線22の電圧を取得する。
交流充電器51は、充電ライン52を介して第2電力線22に接続されている。交流充電器51は、例えば図示しない家庭用商用交流電源から供給される交流電力を直流電力に変換し充電ライン52へ供給する。交流充電器51の出力は、ECU7によって制御される。
直流充電器61は、高出力充電ライン62及び低出力充電ライン63を介して第1電力線21及び第2電力線22に接続されている。直流充電器61は、図示しない充電ステーション、商業施設、及び公共施設等に設置された外部急速充電器から供給される直流電力を高出力充電ライン62又は低出力充電ライン63へ供給する。
直流充電器61は、高出力ポート61Hと低出力ポート61Lとを備える。高出力ポート61Hは、高出力充電ライン62を介して第1電力線21に接続されている。低出力ポート61Lは、低出力充電ライン63を介して第2電力線22に接続されている。直流充電器61は、外部急速充電器の出力電圧が第1バッテリB1の満充電時電圧よりも高い場合には、外部急速充電器から供給される電力を、高出力ポート61Hを介して第1電力線21に供給する。また直流充電器61は、外部急速充電器の出力電圧が第1バッテリB1の満充電時電圧よりも低い場合には、外部急速充電器から供給される電力を、低出力ポート61Lを介して第2電力線22に供給する。なお直流充電器61の出力は、例えば、ECU7と外部充電器との間で行われるPLC通信を利用して、ECU7によって制御される。
ECU7は、マイクロコンピュータであり、走行中及びバッテリB1,B2の外部充電時に、インバータ3、電圧変換器4、第2バッテリコンタクタC2、及び充電器51,61等を操作することによって、バッテリB1,B2の充放電を制御する。
先ず、車両Vが走行中である場合におけるECU7によるバッテリB1,B2の充放電制御の概要を説明する。
上述のように、第1バッテリB1は容量型であり、第2バッテリB2は出力型である。そこでECU7は、定速走行時や緩やかな加速時等、駆動モータMで要求される電力が比較的少ない場合には、電圧変換器4をオフにし、第1バッテリB1から放電される電力を駆動モータMに供給する。そして加速時や登坂時等のように、第1バッテリB1のみでは駆動モータMで要求される電力を賄いきれない場合には、電圧変換器4を駆動することによって第1バッテリB1に加えて第2バッテリB2から放電される電力を駆動モータMに供給する。
このように第2バッテリB2は、運転者による要求が生じた場合に、この要求に応じて第1バッテリB1の出力を補うように用いられるため、運転者による要求に常に応えられるようにするためには、第2バッテリB2の充電率は予め定められた通常時下限充電率(例えば、20〜50%程度)以上で維持されることが好ましい。このように第2バッテリB2の充電率を通常時下限充電率以上で維持する手段として、例えば、駆動モータMで発生する回生電力を、一旦全て第1バッテリB1に充電しておき、その後必要に応じて第1バッテリB1から放電される電力で第2バッテリB2を充電することが考えられる。しかしながらこの場合、駆動モータMで発生した回生電力を、電圧変換器4を介して直接第2バッテリB2に充電する場合と比較して、第1バッテリB1の充電及び放電を経るため、損失が大きい。そこでECU7は、減速時に駆動モータMで発生する回生電力は、第1バッテリB1よりも第2バッテリB2に優先して多く充電されるように電圧変換器4を駆動する。
このように電源システム1では、減速時に駆動モータMで発生する回生電力は、第1バッテリB1よりも第2バッテリB2に優先的に多く充電されるようになっている。このため、減速時に発生する回生電力を第2バッテリB2で受け入れられるよう、第2バッテリB2の充電率には上限も定められている。このためECU7は、車両Vの走行中である場合には、第2バッテリB2の充電率が予め定められた通常時上限充電率(例えば、50〜80%程度)以下で維持されるように、第1バッテリB1から放電される電力と第2バッテリB2から放電される電力との割合を制御する。
次に、交流充電器51を用いた外部充電の実行時におけるECU7による充放電制御の概要について説明する。交流充電器51と図示しない交流電力供給源とを充電ケーブルで接続すると、ECU7は、交流充電器51から供給される電力を用いることによって、遮断モード及び接続モードの何れかの充電モードの下で第1バッテリB1及び/又は第2バッテリB2を充電することが可能となっている。
図2Aは、交流充電器51を用いた遮断モードの下での外部充電時における電力の流れを模式的に示す図である。
遮断モードでは、ECU7は、第1バッテリコンタクタC1を閉成し、かつ第2バッテリコンタクタC2を開成することによって第2バッテリB2と第2電力線22との接続を遮断した状態で、交流充電器51から第2電力線22に電力を供給する。また遮断モードでは、ECU7は、電圧変換器4を駆動し、交流充電器51から第2電力線22に供給される電力を昇圧して第1電力線21に供給し、この第1電力線21における電力で第1バッテリB1を充電する。
遮断モードでは、このようにして第1バッテリB1を充電しながら、第2電力線22における電力を用いて、必要に応じてヒータHやエアコンAを駆動することが可能となっている。遮断モードでは、第2バッテリB2と第2電力線22との接続は遮断されている。このためECU7は、ヒータHやエアコンAの要求出力が実現するように、第2バッテリB2の状態とは無関係に第2電力線22の電圧を調整することが可能となっている。
図2Bは、交流充電器51を用いた接続モードの下での外部充電時における電力の流れを模式的に示す図である。
接続モードでは、ECU7は、第2バッテリコンタクタC2を閉成することによって第2バッテリB2と第2電力線22とを接続した状態で、交流充電器51から第2電力線22に電力を供給し、この第2電力線22における電力で第2バッテリB2を充電する。また接続モードでは、ECU7は、第1バッテリコンタクタC1を閉成しかつ電圧変換器4を駆動し、第2電力線22における電力を昇圧して第1電力線21に供給し、この第1電力線21における電力で第1バッテリB1を充電することもできる。接続モードでは、このようにして第1バッテリB1及び第2バッテリB2を充電しながら、第2電力線22における電力を用いて、必要に応じてヒータHやエアコンAを駆動することが可能となっている。
以上のような遮断モード又は接続モードの下での第1バッテリB1の充電は、直流充電器61の低出力ポート61Lを用いた外部充電時にも実行可能である。またその具体的な手順は、図2A及び図2Bを参照して説明した手順とほぼ同じであるので、その図示及び詳細な説明は省略する。
次に、直流充電器61の高出力ポート61Hを用いた外部充電の実行時におけるECU7による充放電制御の概要について説明する。直流充電器61に図示しない外部急速充電器の充電ケーブルを接続すると、ECU7は、直流充電器61から供給される電力を用いることによって、遮断モード及び接続モードの何れかの充電モードの下で第1バッテリB1及び第2バッテリB2を充電することが可能となっている。
図3Aは、直流充電器61の高出力ポート61Hを用いた遮断モードの下での外部充電時における電力の流れを模式的に示す図である。
遮断モードでは、ECU7は、第1バッテリコンタクタC1を閉成し、かつ第2バッテリコンタクタC2を開成することによって第2バッテリB2と第2電力線22との接続を遮断した状態で、高出力ポート61Hから第1電力線21に電力を供給する。また遮断モードでは、ECU7は、第1電力線21に供給される電力を用いて第1バッテリB1を充電するとともに、電圧変換器4を駆動し、第1電力線21における電力を降圧して第2電力線22に供給する。
遮断モードでは、このようにして第1バッテリB1を充電しながら、第2電力線22における電力を用いて、必要に応じてヒータHやエアコンAを駆動することが可能となっている。遮断モードでは、第2バッテリB2と第2電力線22との接続は遮断されている。このためECU7は、ヒータHやエアコンAの要求出力が実現するように、第2バッテリB2の状態とは無関係に第2電力線22の電圧を調整することが可能となっている。
図3Bは、直流充電器61の高出力ポート61Hを用いた接続モードの下での外部充電時における電力の流れを模式的に示す図である。
接続モードでは、ECU7は、第2バッテリコンタクタC2を閉成することによって第2バッテリB2と第2電力線22とを接続した状態で、高出力ポート61Hから第1電力線21に電力を供給する。また接続モードでは、ECU7は、電圧変換器4を駆動し、第1電力線21における電力を降圧して第2電力線22に供給し、この第2電力線22における電力で第2バッテリB2を充電する。また接続モードでは、ECU7は、第1バッテリコンタクタC1を閉成することによって、第1電力線21に供給される電力を用いて第1バッテリB1を充電することもできる。接続モードでは、このようにして第1バッテリB1及び第2バッテリB2を充電しながら、第2電力線22における電力を用いて、必要に応じてヒータHやエアコンAを駆動することが可能となっている。
図4A及び図4Bは、交流充電器51から供給される電力でバッテリB1,B2が充電されるように電力回路2や交流充電器51を制御する外部充電制御処理の具体的な手順を示すフローチャートである。この外部充電制御処理は、図示しない充電ケーブルによって交流充電器51と外部の交流電力供給源とが接続された後、充電完了フラグの値が“1”になるまで、ECU7において所定の制御周期で繰り返し実行される。充電完了フラグとは、第1バッテリB1及び第2バッテリB2の充電が共に終了していることを明示するフラグであり、初期値は“0”である。
始めにS1では、ECU7は、第2バッテリB2の充電率が所定の第2終了判定充電率以下であるか否かを判定する。この第2終了判定充電率は、第2バッテリB2の充電が完了したか否かを判定するために第2バッテリB2の充電率に対して設定される閾値であり、例えば100%である。ECU7は、S1の判定結果がNOである場合にはS2に移り、S1の判定結果がYESである場合にはS10に移る。
S2では、ECU7は、第2バッテリB2の充電率が第2終了判定充電率に達しており、第2バッテリB2を第2電力線22に接続する必要はないと判断し、第2バッテリコンタクタC2を開成し、S3に移る。S3では、ECU7は、第2コンタクタフラグの値を“1”にし、S4に移る。この第2コンタクタフラグは、第2バッテリコンタクタC2の状態を示すフラグであり、“0”又は“1”の値を取り得る。第2コンタクタフラグの値が“0”であることは、第2バッテリコンタクタC2は開成した状態であることを示し、第2コンタクタフラグの値が“1”であることは、第2バッテリコンタクタC2は閉成した状態であることを示す。
S4では、ECU7は、第1バッテリB1の充電率が所定の第1終了判定充電率以下であるか否かを判定する。この第1終了判定充電率は、第1バッテリB1の充電が完了したか否かを判定するために第1バッテリB1の充電率に対して設定される閾値であり、例えば100%である。ECU7は、S4の判定結果がNOである場合、すなわち2つのバッテリB1,B2の充電率が共に終了判定充電率を超えている場合には、S5に移り、充電完了フラグの値を“1”にし、図4A及び図4Bの処理を終了する。
S4の判定結果がYESである場合、すなわち第1バッテリB1のみ継続して充電を行う必要がある場合には、ECU7は、S6に移る。S6では、ECU7は、第1バッテリB1が低温であり第1バッテリB1の加温が要求されている場合や、利用者によってエアコンAの利用が要求されている場合には、交流充電器51から第2電力線22に供給される電力を用いてヒータH及びエアコンAを駆動し、S7に移る。なおこの場合、第2バッテリB2と第2電力線22との接続は遮断されているため、ECU7は、第2バッテリB2の状態に関わらず、ヒータH及びエアコンAで要求されている出力が実現されるように、交流充電器51の出力を制御する。S7では、ECU7は、図2Aを参照して説明した遮断モードの下で第1バッテリB1を充電し、図4A及び図4Bの処理を終了する。
S10では、ECU7は、第1バッテリB1の充電率が上記第1終了判定充電率以下であるか否かを判定する。ECU7は、S10の判定結果がYESである場合、すなわち2つのバッテリB1,B2の充電率が共に終了判定充電率に達していない場合には、S11に移る。
S11では、ECU7は、第2コンタクタフラグの値が“1”であるか否か、すなわち現時点において既に第2バッテリコンタクタC2が閉成した状態であるか否かを判定する。S11の判定結果がYESである場合、すなわち後述の第1接続可否判定処理(S14参照)において、第2バッテリB2を第2電力線22に接続して良いと判定され、第2バッテリコンタクタC2が閉成されている場合には、ECU7は、S12に移る。
S12では、ECU7は、第1バッテリB1が低温であり第1バッテリB1の加温が要求されている場合や、利用者によってエアコンAの利用が要求されている場合には、交流充電器51から第2電力線22に供給される電力を用いてヒータH及びエアコンAを駆動し、S13に移る。なおこの場合、後述の第1接続可否判定処理(S14参照)の判定を経て第2バッテリB2と第2電力線22とが接続されているため、ECU7は、第2バッテリB2の状態に関わらず、ヒータH及びエアコンAで要求されている出力が実現されるように、交流充電器51の出力を制御する。S13では、ECU7は、図2Bを参照して説明した接続モードの下で第1バッテリB1と第2バッテリB2とを同時に充電し、図4A及び図4Bの処理を終了する。
S11の判定結果がNOである場合、すなわち現時点において第2バッテリコンタクタC2がまだ閉成されていない場合には、ECU7は、S14に移る。S14では、ECU7は、第1接続可否判定処理を実行した後、S15に移る。この第1接続可否判定処理は、第2電力線22の電圧を第2バッテリB2の開回路電圧(すなわち、第2バッテリコンタクタC2が開成され、第2バッテリB2を第2電力線22に接続していない状態における第2バッテリB2の電圧)よりも高くした状態で、ヒータHやエアコンAを駆動しながら第1バッテリB1を充電する場合において、第2バッテリB2を第2電力線22に接続して良いか否かを判定し、判定結果に応じて第2バッテリコンタクタC2を閉成する処理である。この第1接続可否判定処理の詳細な手順については、後に図5を参照して説明する。
S15では、ECU7は、第2コンタクタフラグの値が“1”であるか否かを判定する。S15の判定結果がYESである場合、ECU7は、S12に移り、上記のように必要に応じてヒータH及びエアコンAを駆動し、S13に移り、接続モードの下で第1バッテリB1と第2バッテリB2とを同時に充電し、図4A及び図4Bの処理を終了する。
S15の判定結果がNOである場合、ECU7は、S6に移り、上記のように必要に応じてヒータH及びエアコンAを駆動し、S7に移り、遮断モードの下で第1バッテリB1を充電し、図4A及び図4Bの処理を終了する。
図5は、第1接続可否判定処理の具体的な手順を示すフローチャートである。
始めにS31では、ECU7は、第2バッテリセンサユニット82から送信される信号に基づいて、第2バッテリB2の開回路電圧を取得し、S32に移る。
S32では、ECU7は、S31で取得した開回路電圧に基づいて、例えば図6に示すようなマップを検索することによって電気負荷可能出力を算出し、S33に移る。ここで電気負荷可能出力とは、仮に第2バッテリB2と第2電力線22とを接続した場合において、交流充電器51から第2電力線22に供給される電力で、第2電力線22に接続されているヒータH及びエアコンA等の電気負荷を駆動した場合に、これら電気負荷で実現可能な出力に相当する。第2電力線22の電圧を第2バッテリB2の開回路電圧よりも高くした状態で第2バッテリB2と第2電力線22とを接続すると、第2バッテリB2には第2電力線22から充電電流が流れ、第2バッテリB2が充電される。しかしながらこの際、第2バッテリB2の劣化を抑制するためには、第2電力線22の電圧は、第2バッテリB2の開回路電圧に応じて定まる充電電圧の上限を超えないようにする必要がある。この電気負荷可能出力とは、第2電力線22の電圧が第2バッテリB2の充電電流の上限を超えないように交流充電器51の出力を制御した場合に、上記電気負荷で実現可能な出力に相当する。図6のマップの例によれば、電気負荷可能出力は、第2バッテリB2の開回路電圧が高くなるほど大きくなるように算出される。
S33では、ECU7は、第1バッテリセンサユニット81から送信される信号に基づいて、第1バッテリB1の温度を取得し、S34に移る。S34では、ECU7は、取得した第1バッテリB1の温度に基づいて、ヒータHに対する要求出力を算出し、S35に移る。第1バッテリB1の温度が低くなるほど、第1バッテリB1を速やかに加温する必要がある。そこでS34では、ECU7は、第1バッテリB1の温度が低くなるほどヒータHに対する要求出力を大きくする。
S35では、ECU7は、利用者による操作パネルの操作に基づいて、エアコンAに対する要求出力を算出し、S36に移る。S36では、ECU7は、S32で算出した電気負荷可能出力が、S34で算出したヒータHに対する要求出力とS35で算出したエアコンAに対する要求出力との和以上であるか否かを判定する。
S36の判定結果がYESである場合、すなわち電気負荷可能出力がヒータH及びエアコンAの要求出力の和以上であり、第2バッテリB2を第2電力線22に接続しても、ヒータH及びエアコンAの出力が制限されるおそれがない場合には、第2バッテリB2を第2電力線22に接続してよいと判断し、S37に移る。S37では、ECU7は、第2バッテリコンタクタC2を閉成した後、S38に移り、第2コンタクタフラグの値を“1”にし、図4AのS15に移る。
S36の判定結果がNOである場合、すなわち電気負荷可能出力がヒータH及びエアコンAの要求出力の和より小さく、第2バッテリB2を第2電力線22に接続すると、ヒータH及びエアコンAの出力を制限する必要がある場合には、第2バッテリB2と第2電力線22との接続を不許可とするべく、第2バッテリコンタクタC2を開成したまま、図4AのS15に移る。
図4A及び図4Bの説明に戻り、ECU7は、S10の判定結果がNOである場合、すなわち第2バッテリB2のみ充電を継続する必要がある場合には、S20に移る。S20では、ECU7は、第2コンタクタフラグの値が“1”であるか否かを判定する。S20の判定結果がYESである場合、ECU7は、S21に移る。
S21では、ECU7は、利用者によってエアコンAの利用が要求されている場合には、交流充電器51から第2電力線22に供給される電力を用いてエアコンAを駆動し、S22に移る。なおこの場合、上述の第1接続可否判定処理(S14参照)や第2接続可否判定処理(S23参照)等の判定を経て第2バッテリB2と第2電力線22とが接続されているため、ECU7は、第2バッテリB2の状態に関わらず、エアコンAで要求されている出力が実現されるように、交流充電器51の出力を制御する。またこの場合、S12と異なり、第1バッテリB1を充電する必要がないので、ヒータHを駆動する必要もない。S22では、ECU7は、図2Bを参照して説明した接続モードの下で第2バッテリB2を充電し、図4A及び図4Bの処理を終了する。
S20の判定結果がNOである場合、すなわち現時点において第2バッテリコンタクタC2がまだ閉成されていない場合には、ECU7は、S23に移る。S23では、ECU7は、第2接続可否判定処理を実行した後、S24に移る。この第2接続可否判定処理は、第2電力線22の電圧を第2バッテリB2の開回路電圧よりも高くした状態で、エアコンAを駆動する場合において、第2バッテリB2を第2電力線22に接続して良いか否かを判定し、判定結果に応じて第2バッテリコンタクタC2を閉成する処理である。この第2接続可否判定処理の詳細な手順については、後に図7を参照して説明する。
S24では、ECU7は、第2コンタクタフラグの値が“1”であるか否かを判定する。S24の判定結果がYESである場合、ECU7は、S21に移り、上記のように必要に応じてエアコンAを駆動し、S22に移り、接続モードの下で第2バッテリB2を充電し、図4A及び図4Bの処理を終了する。
S24の判定結果がNOである場合、すなわち第2接続可否判定処理においても第2バッテリB2を第2電力線22に接続できないと判定された場合には、ECU7は、第2バッテリB2の充電が完了していない場合であっても、S5に移り、充電完了フラグの値を“1”にし、図4A及び図4Bの処理を終了する。
図7は、第2接続可否判定処理の具体的な手順を示すフローチャートである。
始めにS51では、ECU7は、第2バッテリセンサユニット82から送信される信号に基づいて、第2バッテリB2の開回路電圧を取得し、S52に移る。
S52では、ECU7は、S51で取得した開回路電圧に基づいて、例えば図6に示すようなマップを検索することによって電気負荷可能出力を算出し、S53に移る。
S53では、ECU7は、利用者による操作パネルの操作に基づいて、エアコンAに対する要求出力を算出し、S54に移る。S54では、ECU7は、S52で算出した電気負荷可能出力が、S53で算出したエアコンAに対する要求出力以上であるか否かを判定する。
S54の判定結果がYESである場合、すなわち電気負荷可能出力がエアコンAの要求出力以上であり、第2バッテリB2を第2電力線22に接続しても、エアコンAの出力が制限されるおそれがない場合には、第2バッテリB2を第2電力線22に接続してよいと判断し、S55に移る。S55では、ECU7は、第2バッテリコンタクタC2を閉成した後、S56に移り、第2コンタクタフラグの値を“1”にし、図4AのS23に移る。
S54の判定結果がNOである場合、すなわち電気負荷可能出力がエアコンAの要求出力より小さく、第2バッテリB2を第2電力線22に接続すると、エアコンAの出力を制限する必要がある場合には、第2バッテリB2と第2電力線22との接続を不許可とするべく、第2バッテリコンタクタC2を開成したまま、図4AのS23に移る。
なお、以上のような外部充電制御処理は、直流充電器61の高出力ポート61H及び低出力ポート61Lを用いた外部充電時にも実行可能である。またその実行手順は、交流充電器51を直流充電器61の高出力ポート61H又は低出力ポート61Lに置き換えればよいので、その図示及び詳細な説明は省略する。
本実施形態に係る電源システム1によれば、以下の効果を奏する。
(1)電源システム1においてECU7は、第2バッテリコンタクタC2によって第2バッテリB2と第2電力線22とを遮断した状態で交流充電器51から第2電力線22に供給される電力でヒータHやエアコンAを駆動する遮断モード、又は第2バッテリコンタクタC2によって第2バッテリB2と第2電力線22とを接続した状態で交流充電器51から第2電力線22に供給される電力で第2バッテリB2を充電する接続モードの下で第1バッテリB1を充電する。よって電源システム1では、遮断モード又は接続モードの下で第1バッテリB1を充電可能とすることにより、第2バッテリB2によって第1バッテリB1の加温を妨げないようにしながら、第1バッテリB1を速やかに充電できる。
(2)電源システム1では、第2電力線22の電圧が第2バッテリB2の開回路電圧よりも高い状態で、ヒータHによって第1バッテリB1を加温する場合には、第1接続可否判定処理によって第2バッテリB2の接続の可否を判定する。そしてECU7は、接続不可と判定された場合には遮断モードの下で第1バッテリB1を加温しながら第1バッテリB1を充電し、接続可と判定された場合には、接続モードの下で第1バッテリB1を加温しながら第1バッテリB1及び第2バッテリB2を充電する。これにより、第1バッテリB1の加温を妨げないようにしながら第1バッテリB1を速やかに充電でき、さらに第2バッテリB2の劣化も抑制できる。
(3)第1バッテリB1の温度及び第2バッテリB2の開回路電圧は、第2バッテリB2と第2電力線22との接続可否と相関がある。そこで第1接続可否判定処理では、これら第1バッテリB1の温度及び第2バッテリB2の開回路電圧に基づいて第2バッテリB2の接続の可否を判定する。これにより、第1バッテリB1の加温を妨げずかつ第2バッテリB2が劣化しないように、第2バッテリB2の接続の可否を判定できる。
(4)第1接続可否判定処理では、ヒータHに対する要求出力を算出し、電気負荷可能出力を算出する。さらに第1接続可否判定処理では、電気負荷可能出力がヒータHに対する要求出力以上である場合には第2バッテリB2を接続可と判定し、可能出力が要求出力より小さい場合には第2バッテリB2を接続不可と判定する。これによりヒータHの出力が要求出力を下回らないようにしながら第2バッテリB2と第2電力線22とを接続したり遮断したりできるので、第1バッテリB1の加温を妨げないようにしながら第1バッテリB1を速やかに充電できる。
(5)電源システム1では、上述のように第1バッテリB1の加温を妨げないようにしながら第1バッテリB1を速やかに充電できる。これに対し電源システム1では、第1バッテリB1として、第2バッテリB2よりも出力重量密度が低くかつエネルギ重量密度が高いものを用いる。すなわち第1バッテリB1として、第2バッテリB2よりも充電に時間がかかる容量型のものを用いる。よって電源システム1によれば、第1バッテリB1に多くの電力を速やかに蓄えることができる。
(6)第2電力線22には、上述のように第1バッテリB1を加温するためのヒータHだけでなく、様々な電気負荷、例えばエアコンAが接続される場合がある。また電源システム1では、エアコンAを利用しながら第1バッテリB1を充電する場合、第2バッテリB2の状態に応じてエアコンAの出力が制限されてしまい、利用者が違和感を覚える場合がある。これに対し電源システム1では、ECU7は、第2バッテリコンタクタC2によって第2バッテリB2と第2電力線22とを遮断した状態で交流充電器51から第2電力線22に供給される電力でエアコンAを駆動する遮断モード、又は第2バッテリコンタクタC2によって第2バッテリB2と第2電力線22とを接続した状態で交流充電器51から第2電力線22に供給される電力で第2バッテリB2を充電する接続モードの下で第1バッテリB1を充電する。遮断モードの下では、第2バッテリB2と第2電力線22との接続が遮断されているため、第2バッテリB2を充電できないがエアコンAの出力が制限されることもない。また接続モードの下では、第2バッテリB2と第2電力線22とが接続されているため、エアコンAを利用しながら第1バッテリB1及び第2バッテリB2を同時に充電できる。すなわち第2バッテリB2がエアコンAの出力を制限するおそれがなければ、接続モードの下では、エアコンAを利用しながら第1バッテリB1及び第2バッテリB2を同時に充電できる。よって電源システム1では、遮断モード又は接続モードの下で第1バッテリB1を充電可能とすることにより、第2バッテリB2によってエアコンAの出力を制限しないようにしながら、第1バッテリB1を充電できる。
V…車両
M…駆動モータ(動力発生源)
1…電源システム
B1…第1バッテリ(第1蓄電装置)
81…第1バッテリセンサユニット(温度取得手段)
B2…第2バッテリ(第2蓄電装置)
82…第2バッテリセンサユニット(電圧取得手段)
C2…第2バッテリコンタクタ(切替手段)
H…ヒータ(加温装置、電気負荷)
A…エアコン(電気負荷)
2…電力回路
21…第1電力線
22…第2電力線
3…インバータ
4…電圧変換器
51…交流充電器(外部電力供給部)
61…直流充電器(外部電力供給部)
7…ECU(制御装置、接続可否判定手段、要求出力算出手段、可能出力算出手段)

Claims (6)

  1. 車両の動力発生源に電力を供給する第1蓄電装置及び第2蓄電装置と、
    前記第1蓄電装置が接続された第1回路と、
    電力を消費して前記第1蓄電装置を加温する加温装置と、
    前記加温装置が接続された第2回路と、
    前記第2回路と前記第2蓄電装置とを接続又は遮断する切替手段と、
    前記第1回路と前記第2回路との間で電圧を変換する電圧変換器と、
    前記第1回路又は前記第2回路に接続された外部電力供給部と、
    前記外部電力供給部から供給される電力で前記第1蓄電装置が充電されるように前記電圧変換器及び前記外部電力供給部を制御する制御装置と、を備える車両の電源システムであって、
    前記制御装置は、前記第2蓄電装置と前記第2回路とを遮断した状態で前記外部電力供給部から前記第2回路に供給される電力で前記加温装置を駆動する遮断モード、又は前記第2蓄電装置と前記第2回路とを接続した状態で前記外部電力供給部から前記第2回路に供給される電力で前記第2蓄電装置を充電する接続モードの下で前記第1蓄電装置を充電することを特徴とする車両の電源システム。
  2. 前記第2回路の電圧が前記第2蓄電装置の電圧よりも高い状態で、前記加温装置によって前記第1蓄電装置を加温しながら当該第1蓄電装置を充電する場合において、前記第2蓄電装置の接続の可否を判定する接続可否判定手段をさらに備え、
    前記制御装置は、前記接続可否判定手段により接続不可と判定された場合には前記遮断モードの下で前記第1蓄電装置を加温しながら当該第1蓄電装置を充電し、前記接続可否判定手段により接続可と判定された場合には前記接続モードの下で前記第1蓄電装置を加温しながら当該第1蓄電装置及び前記第2蓄電装置を充電することを特徴とする請求項1に記載の車両の電源システム。
  3. 前記第1蓄電装置の温度である第1温度を取得する温度取得手段と、
    前記第2蓄電装置の電圧である第2電圧を取得する電圧取得手段と、を備え、
    前記接続可否判定手段は、前記第2電圧及び前記第1温度に基づいて前記第2蓄電装置の接続の可否を判定することを特徴とする請求項2に記載の車両の電源システム。
  4. 前記第1温度に基づいて前記加温装置に対する要求出力を算出する要求出力算出手段と、
    前記第2蓄電装置と前記第2回路とを接続した状態で、前記外部電力供給部から前記第2回路に供給される電力で前記加温装置を駆動した場合に前記加温装置で実現可能な可能出力を算出する可能出力算出手段と、を備え、
    前記接続可否判定手段は、前記可能出力が前記要求出力以上である場合には前記第2蓄電装置を接続可と判定し、前記可能出力が前記要求出力より小さい場合には前記第2蓄電装置を接続不可と判定することを特徴とする請求項3に記載の車両の電源システム。
  5. 前記第1蓄電装置は、前記第2蓄電装置よりも出力重量密度が低くかつエネルギ重量密度が高いことを特徴とする請求項1から4の何れかに記載の車両の電源システム。
  6. 車両の動力発生源に電力を供給する第1蓄電装置及び第2蓄電装置と、
    前記第1蓄電装置が接続された第1回路と、
    電気負荷が接続された第2回路と、
    前記第2回路と前記第2蓄電装置とを接続又は遮断する切替手段と、
    前記第1回路と前記第2回路との間で電圧を変換する電圧変換器と、
    前記第1回路又は前記第2回路に接続された外部電力供給部と、
    前記外部電力供給部から供給される電力で前記第1蓄電装置が充電されるように前記電圧変換器及び前記外部電力供給部を制御する制御装置と、を備える車両の電源システムであって、
    前記制御装置は、前記第2蓄電装置と前記第2回路とを遮断した状態で前記外部電力供給部から前記第2回路に供給される電力で前記電気負荷を駆動する遮断モード、又は前記第2蓄電装置と前記第2回路とを接続した状態で前記外部電力供給部から前記第2回路に供給される電力で前記第2蓄電装置を充電する接続モードの下で前記第1蓄電装置を充電することを特徴とする車両の電源システム。
JP2018066768A 2018-03-30 2018-03-30 車両の電源システム Active JP6974234B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018066768A JP6974234B2 (ja) 2018-03-30 2018-03-30 車両の電源システム
CN201910236273.9A CN110316003B (zh) 2018-03-30 2019-03-27 车辆的电源系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018066768A JP6974234B2 (ja) 2018-03-30 2018-03-30 車両の電源システム

Publications (2)

Publication Number Publication Date
JP2019180111A JP2019180111A (ja) 2019-10-17
JP6974234B2 true JP6974234B2 (ja) 2021-12-01

Family

ID=68112791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018066768A Active JP6974234B2 (ja) 2018-03-30 2018-03-30 車両の電源システム

Country Status (2)

Country Link
JP (1) JP6974234B2 (ja)
CN (1) CN110316003B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450523B2 (ja) 2020-12-08 2024-03-15 プライムプラネットエナジー&ソリューションズ株式会社 車両走行システムおよび車両
JP2023108524A (ja) * 2022-01-25 2023-08-04 トヨタ自動車株式会社 車両
CN117429285B (zh) * 2023-12-18 2024-03-26 宁波均胜新能源研究院有限公司 一种动力电池充电电路及其控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066675A1 (ja) * 2010-11-19 2012-05-24 トヨタ自動車株式会社 車両の充電装置
JP6406495B2 (ja) * 2014-02-12 2018-10-17 三菱自動車工業株式会社 車両用電池システム
JP6024684B2 (ja) * 2014-02-21 2016-11-16 トヨタ自動車株式会社 蓄電システム
JP6176223B2 (ja) * 2014-11-04 2017-08-09 トヨタ自動車株式会社 バッテリシステム
JP6329930B2 (ja) * 2015-09-29 2018-05-23 本田技研工業株式会社 駆動装置、輸送機器及び制御方法
JP6493344B2 (ja) * 2016-09-12 2019-04-03 トヨタ自動車株式会社 自動車

Also Published As

Publication number Publication date
JP2019180111A (ja) 2019-10-17
CN110316003A (zh) 2019-10-11
CN110316003B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
JP7072424B2 (ja) 車両の電源システム
JP5886734B2 (ja) 電動車両
US8659182B2 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
US8766566B2 (en) System for causing temperature rise in battery
KR101135314B1 (ko) 2차 전지 승온 제어 장치 및 이를 구비한 차량과, 2차 전지 승온 제어 방법
JP5382238B2 (ja) ハイブリッド車両およびその制御方法
JP6979395B2 (ja) 電動車両
JP6744350B2 (ja) 車両
JP6974234B2 (ja) 車両の電源システム
JP2011223796A (ja) 車両充電装置
JP2013229336A (ja) バッテリ昇温システム
JP2014075297A (ja) 蓄電システム
JP7178892B2 (ja) 車両のバッテリ充電制御装置
JP5704747B2 (ja) 充電制御ユニット
JP2013141337A (ja) 車両の制御装置およびそれを備える車両
JP2019004544A (ja) 制御システム
CN112787510A (zh) 具有尺寸减小的dc-dc转换器的电力推进系统的操作模式优化
JP2010004627A (ja) 充電システム及び充電方法
JP7096046B2 (ja) 車両電源システム
JP5188369B2 (ja) Dc/dcコンバータ装置
JP5741385B2 (ja) バッテリの充電システム
JP2022144986A (ja) 移動体の電源システム
JP5220571B2 (ja) Dc/dcコンバータ装置及びdc/dcコンバータの駆動方法
JP2012249412A (ja) バッテリ昇温システム
JP6495412B1 (ja) 電源システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211104

R150 Certificate of patent or registration of utility model

Ref document number: 6974234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150