JP6972090B2 - Heat dissipation device - Google Patents

Heat dissipation device Download PDF

Info

Publication number
JP6972090B2
JP6972090B2 JP2019229362A JP2019229362A JP6972090B2 JP 6972090 B2 JP6972090 B2 JP 6972090B2 JP 2019229362 A JP2019229362 A JP 2019229362A JP 2019229362 A JP2019229362 A JP 2019229362A JP 6972090 B2 JP6972090 B2 JP 6972090B2
Authority
JP
Japan
Prior art keywords
airfoil
fins
flow path
heat radiating
airfoil fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019229362A
Other languages
Japanese (ja)
Other versions
JP2021097190A (en
Inventor
敏広 北崎
直也 赤石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electro Wave Products Co Ltd
Original Assignee
Toshiba Corp
Toshiba Electro Wave Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electro Wave Products Co Ltd filed Critical Toshiba Corp
Priority to JP2019229362A priority Critical patent/JP6972090B2/en
Publication of JP2021097190A publication Critical patent/JP2021097190A/en
Application granted granted Critical
Publication of JP6972090B2 publication Critical patent/JP6972090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、例えば、基板に実装した回路部品などの発熱体を冷やす放熱装置に関する。 The present invention relates to, for example, a heat radiating device for cooling a heating element such as a circuit component mounted on a substrate.

例えば、航空機に搭載される電子機器の回路部品などの発熱体を冷やす放熱装置として、金属材料の積層造形により形成した伝熱板を用いた装置が知られている。特許文献1の装置は、矩形波形状の流路を備えた伝熱板を有し、水などの冷媒を流路内面に衝突させながら流通させることにより、伝熱板に接触した発熱体を冷やす。 For example, as a heat radiating device for cooling a heating element such as a circuit component of an electronic device mounted on an aircraft, a device using a heat transfer plate formed by laminated molding of a metal material is known. The apparatus of Patent Document 1 has a heat transfer plate provided with a square wave-shaped flow path, and cools a heating element in contact with the heat transfer plate by circulating a refrigerant such as water while colliding with the inner surface of the flow path. ..

特開2016-25349号公報Japanese Unexamined Patent Publication No. 2016-25349

特許文献1の伝熱板は、扁平な板状の本体に流路を形成しているため、流路断面積が小さく流路抵抗が大きい。その上、この伝熱板は、冷媒を流路内面に衝突させながら流通させるため、単位時間当たりに流通可能な冷媒の量が少ない。このため、特許文献1の伝熱板は、発熱体を冷やす能力が低く、航空機に搭載する電子機器の回路部品など比較的高温になる発熱体を十分に冷やすことは難しい。 Since the heat transfer plate of Patent Document 1 forms a flow path in a flat plate-shaped main body, the cross-sectional area of the flow path is small and the flow path resistance is large. Moreover, since the heat transfer plate circulates the refrigerant while colliding with the inner surface of the flow path, the amount of the refrigerant that can be circulated per unit time is small. Therefore, the heat transfer plate of Patent Document 1 has a low ability to cool a heating element, and it is difficult to sufficiently cool a heating element having a relatively high temperature such as a circuit component of an electronic device mounted on an aircraft.

よって、発熱量の大きい発熱体を効果的に冷やすことができるとともに小型軽量に形成することができる放熱装置の開発が望まれている。 Therefore, it is desired to develop a heat radiating device that can effectively cool a heating element having a large amount of heat generation and can be formed compact and lightweight.

本発明放熱装置は、発熱体に接触する表面を有するとともに扁平な1つの流路を内部に有する板状の放熱体と、前記放熱体と一体に前記流路内に設けられるとともに、前記流路を通る冷媒の流通方向にそれぞれの長手方向が交差する複数の翼型フィンであって、それぞれの前記長手方向に交差する断面形状が、翼弦線が前記冷媒の前記流通方向に沿う翼形状になる複数の翼型フィンと、を有し、複数の前記翼型フィンは、前記流通方向と交差する第1の方向に前記長手方向が傾斜した第1の翼型フィンと、前記流通方向と交差する前記第1の方向と異なる第2の方向に前記長手方向が傾斜した第2の翼型フィンと、を有し、前記流路では、複数の前記第1の翼型フィン及び複数の前記第2の翼型フィンが、前記流通方向に沿って交互に配置され、前記第1の翼型フィン及び前記第2の翼型フィンがクロスするHeat dissipation device of the present invention, a plate-shaped heat dissipating body having therein a flat one flow path and having a surface in contact with the heating body is provided in an the flow channel together with the radiator, the flow A plurality of airfoil fins whose longitudinal directions intersect in the flow direction of the refrigerant passing through the path, and the cross-sectional shape of each intersecting the longitudinal directions is an airfoil shape in which the chord line is along the flow direction of the refrigerant. possess a plurality of the airfoil fins and comprising a plurality of said airfoil fins first and airfoil fins the longitudinal direction in the first direction is inclined intersecting the flow direction, said flow direction It has a second airfoil fin whose longitudinal direction is inclined in a second direction different from the intersecting first direction, and in the flow path, a plurality of the first airfoil fins and a plurality of the airfoil fins. The second airfoil fins are alternately arranged along the flow direction, and the first airfoil fin and the second airfoil fin cross each other .

本発明放熱装置によると、発熱量の大きい発熱体を効果的に冷やすことができるとともに小型軽量に形成することができる。 According to the heat dissipation device of the present invention may be formed into small size and light weight it is possible to cool the high heat generating element calorific value effectively.

図1は、本発明の実施形態に係る放熱装置を示す概略図である。FIG. 1 is a schematic view showing a heat dissipation device according to an embodiment of the present invention. 図2は、図1の放熱装置の放熱体を示す外観斜視図である。FIG. 2 is an external perspective view showing a heat radiating body of the heat radiating device of FIG. 図3は、図2の放熱体の流路内に設けた複数の翼型フィンの配置の一例を示す部分拡大斜視図である。FIG. 3 is a partially enlarged perspective view showing an example of the arrangement of a plurality of airfoil fins provided in the flow path of the radiator of FIG. 2. 図4は、図2の放熱体の流路内に設けた複数の翼型フィンの配置の他の例を示す部分拡大斜視図である。FIG. 4 is a partially enlarged perspective view showing another example of the arrangement of the plurality of airfoil fins provided in the flow path of the radiator of FIG. 2.

以下、本発明の実施形態について図面を参照して説明する。
図1に示すように、放熱装置1は、基板2に実装した回路部品3に接触して配置される板状の放熱体4を有する。図1では、基板2の構造を見易くするため放熱体4を基板2から離間させて図示したが、放熱装置1の使用時には、放熱体4は、基板2に実装した回路部品3に接触して配置される。この他に、放熱装置1は、放熱体4の内部を貫通して設けた1つの扁平な流路5内に空気を流通させるための吸引装置10を有する。放熱体4の流路5内には、複数の翼型フィン6(6a、6b)(図2、図3)が設けられている。本実施形態の放熱装置1は、例えば、図示しない航空機に搭載する電子機器に組み込まれて使用される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the heat radiating device 1 has a plate-shaped heat radiating body 4 arranged in contact with a circuit component 3 mounted on the substrate 2. In FIG. 1, the heat radiating body 4 is shown separated from the board 2 in order to make the structure of the board 2 easy to see. However, when the heat radiating device 1 is used, the heat radiating body 4 comes into contact with the circuit component 3 mounted on the board 2. Be placed. In addition to this, the heat radiating device 1 has a suction device 10 for circulating air in one flat flow path 5 provided so as to penetrate the inside of the heat radiating body 4. A plurality of airfoil fins 6 (6a, 6b) (FIGS. 2 and 3) are provided in the flow path 5 of the radiator body 4. The heat radiating device 1 of the present embodiment is used by being incorporated in, for example, an electronic device mounted on an aircraft (not shown).

近年、航空機に搭載する電子機器は、回路基板の高密度化が進んでおり、基板に実装する回路部品の発熱量も増大する傾向にある。一方、航空機に搭載する電子機器には、小型軽量化が求められている。例えば、回路基板を収容配置するスロットの幅は、20mmに規格化されている。このため、小型軽量で且つより放熱性能の高い放熱装置の開発が望まれている。 In recent years, the density of circuit boards in electronic devices mounted on aircraft has been increasing, and the amount of heat generated by circuit components mounted on the boards has also tended to increase. On the other hand, electronic devices mounted on aircraft are required to be smaller and lighter. For example, the width of the slot for accommodating and arranging the circuit board is standardized to 20 mm. Therefore, it is desired to develop a heat radiating device that is compact and lightweight and has higher heat radiating performance.

図1および図2に示すように、本実施形態の放熱装置1の放熱体4は、矩形板状に形成されている。放熱体4は、金属材料の積層造形により形成されている。積層造形による金属材料の積層方向は、放熱体4の厚み方向である。放熱体4は、基板2に実装した回路部品3に接触可能な表面4aを有する。放熱体4は、4つの端面のうち互いに対向する2つの端面4b、4cを連絡して放熱体4を貫通して設けた扁平な矩形の流路5を有する。 As shown in FIGS. 1 and 2, the heat radiating body 4 of the heat radiating device 1 of the present embodiment is formed in the shape of a rectangular plate. The heat radiating body 4 is formed by laminating modeling of a metal material. The laminating direction of the metal material by the laminating molding is the thickness direction of the heat radiating body 4. The heat radiating body 4 has a surface 4a that can come into contact with the circuit component 3 mounted on the substrate 2. The heat radiating body 4 has a flat rectangular flow path 5 provided by connecting two end faces 4b and 4c of the four end faces facing each other and penetrating the heat radiating body 4.

放熱体4は、上述したスロット内に基板2とともに収容配置するため、例えば9mmの厚みを有する。これ以上の厚みにすると、規格化されたスロットの幅に収まらなくなる。また、この場合、放熱体4の流路5の厚みは5mm程度であり、流路5の幅は例えば150mmである。 The heat radiating body 4 has a thickness of, for example, 9 mm because it is housed and arranged together with the substrate 2 in the slot described above. If the thickness is larger than this, it will not fit in the standardized slot width. Further, in this case, the thickness of the flow path 5 of the heat radiating body 4 is about 5 mm, and the width of the flow path 5 is, for example, 150 mm.

放熱体4は、流路5内に複数の翼型フィン6を有する。複数の翼型フィン6は、積層造形により、放熱体4と一体に形成される。複数の翼型フィン6は、流路5を通る空気の流通方向に沿う姿勢で設けられる。翼型フィン6の構造および配置の例については後に詳述する。 The heat radiating body 4 has a plurality of airfoil fins 6 in the flow path 5. The plurality of airfoil fins 6 are integrally formed with the heat radiating body 4 by laminated molding. The plurality of airfoil fins 6 are provided in a posture along the flow direction of air passing through the flow path 5. An example of the structure and arrangement of the airfoil fin 6 will be described in detail later.

図1に示すように、吸引装置10は、流路5の一端が開放した放熱体4の端面4cに対向して配置されている。吸引装置10は、端面4cに対向した吸引開口11aを有する吸引カップ11、および吸引カップ11の内部空間を吸引するためのポンプ12(またはファン)を有する。吸引カップ11の内部空間は、吸引管13を介してポンプ12に接続されている。 As shown in FIG. 1, the suction device 10 is arranged so as to face the end surface 4c of the radiator body 4 in which one end of the flow path 5 is open. The suction device 10 has a suction cup 11 having a suction opening 11a facing the end surface 4c, and a pump 12 (or a fan) for sucking the internal space of the suction cup 11. The internal space of the suction cup 11 is connected to the pump 12 via the suction pipe 13.

吸引装置10のポンプ12を作動させて流路5の一端側から空気を吸引して流路5内に空気を流通させると、空気が複数の翼型フィン6に接触して放熱体4から熱を奪い、高温になった空気が吸引装置10によって吸引される。これにより、放熱体4に接触した回路部品3から熱が奪われて回路部品3が冷やされる。 When the pump 12 of the suction device 10 is operated to suck air from one end side of the flow path 5 and allow air to flow through the flow path 5, the air comes into contact with the plurality of blade-shaped fins 6 and heats from the radiator 4. The hot air is sucked by the suction device 10. As a result, heat is taken from the circuit component 3 in contact with the radiator body 4, and the circuit component 3 is cooled.

(実施例1)
以下、図3を参照して放熱体4の複数の翼型フィン6の形状および配置の一例について説明する。
複数の翼型フィン6は、略同じ形状に形成されており、放熱体4の流路5を流れる空気の流通方向(図中矢印S方向)に沿う姿勢で放熱体4と一体に設けられている。複数の翼型フィン6は、その長手方向が流通方向Sと交差する姿勢で設けられている。翼型フィン6は、航空機の翼と同様の断面形状を有する。翼型フィン6は、その全長にわたって同じ断面形状の柱状に形成されている。本実施形態の翼型フィン6は、例えば、NACA0009翼型の断面形状を有し、翼弦線と中心線が一致する対称翼型に形成されている。
(Example 1)
Hereinafter, an example of the shape and arrangement of the plurality of airfoil fins 6 of the radiator 4 will be described with reference to FIG.
The plurality of airfoil fins 6 are formed in substantially the same shape, and are provided integrally with the radiator 4 in a posture along the flow direction of air flowing through the flow path 5 of the radiator 4 (direction of arrow S in the figure). There is. The plurality of airfoil fins 6 are provided in such a posture that their longitudinal directions intersect with the distribution direction S. The airfoil fin 6 has a cross-sectional shape similar to that of an aircraft wing. The airfoil fin 6 is formed in a columnar shape having the same cross-sectional shape over its entire length. The airfoil fin 6 of the present embodiment has, for example, a NACA0009 airfoil cross-sectional shape, and is formed into a symmetrical airfoil in which the chord line and the center line coincide with each other.

複数の翼型フィン6は、キャンバーの前縁が空気の流通方向Sの上流側に配置され且つキャンバーの後縁が流通方向Sの下流側に配置される向きで、且つ翼弦線が空気の流通方向Sと略一致する姿勢で流路5内に配置される。言い換えると、複数の翼型フィン6は、空気の流れをできるだけ妨げることのない姿勢、すなわち流路抵抗が最も小さくなる姿勢で流路5内に配置されている。複数の翼型フィン6の長手方向の両端は、放熱体4の流路5の内面に一体に接続している。 The plurality of airfoil fins 6 have a direction in which the leading edge of the camber is arranged on the upstream side of the air flow direction S and the trailing edge of the camber is arranged on the downstream side of the flow direction S, and the chord line is of air. It is arranged in the flow path 5 in a posture that substantially coincides with the flow direction S. In other words, the plurality of airfoil fins 6 are arranged in the flow path 5 in a posture that does not obstruct the air flow as much as possible, that is, in a posture that minimizes the flow path resistance. Both ends of the plurality of airfoil fins 6 in the longitudinal direction are integrally connected to the inner surface of the flow path 5 of the radiator body 4.

複数の翼型フィン6は、その長手方向が空気の流通方向Sと交差する第1の方向(図3に矢印D1で示す方向)に傾斜した複数の第1の翼型フィン6a、およびその長手方向が空気の流通方向Sと交差し且つ第1の方向とは異なる第2の方向(図3に矢印D2で示す方向)に傾斜した複数の第2の翼型フィン6bを有する。言い換えると、複数の翼型フィン6は、第1の方向D1または第2の方向D2のいずれかの方向に傾斜して設けられている。本実施形態では、第1の方向D1と第2の方向D2は直交しており、それぞれ放熱体4が回路部品3に接触する表面4aに対して45°傾斜して設けられている。言い換えると、複数の第1の翼型フィン6aは同じ方向(第1の方向D1)に傾斜して互いに平行に配置されており、複数の第2の翼型フィン6bも同じ方向(第2の方向D2)に傾斜して互いに平行に配置されている。 The plurality of airfoil fins 6 are the plurality of first airfoil fins 6a whose longitudinal direction is inclined in the first direction (direction indicated by the arrow D1 in FIG. 3) where the air flow direction S intersects, and the longitudinal thereof. It has a plurality of second airfoil fins 6b whose direction intersects the air flow direction S and is inclined in a second direction (direction indicated by an arrow D2 in FIG. 3) different from the first direction. In other words, the plurality of airfoil fins 6 are provided so as to be inclined in either the first direction D1 or the second direction D2. In the present embodiment, the first direction D1 and the second direction D2 are orthogonal to each other, and the heat radiating body 4 is provided at an angle of 45 ° with respect to the surface 4a in contact with the circuit component 3, respectively. In other words, the plurality of first airfoil fins 6a are inclined in the same direction (first direction D1) and arranged in parallel with each other, and the plurality of second airfoil fins 6b are also arranged in the same direction (second direction D1). They are inclined in the direction D2) and arranged parallel to each other.

複数の翼型フィン6の流通方向Sに沿った配置に着目すると、複数の第1の翼型フィン6aと複数の第2の翼型フィン6bは、放熱体4の流路5の全長にわたって、空気の流通方向Sに沿って交互に配置されている。空気の流通方向Sの最も上流側の1段目の複数の第1の翼型フィン6aは、その前縁が流通方向Sと直交する架空の面に面一に配置されて、流路5の幅方向に所定ピッチで離間して、所定角度で傾斜して互いに平行に配置されている。そして、2段目の複数の第2の翼型フィン6bは、その前縁が流通方向Sと直交する架空の面に面一に配置され、流路5の幅方向に所定ピッチで離間して、所定角度で傾斜して互いに平行に配置され、且つ1段目の複数の第1の翼型フィン6aの後縁側に部分的に入れ子状に重なるように配置されている。さらに、3段目の複数の第1の翼型フィン6aは、その前縁が流通方向Sと直交する架空の面に面一に配置され、1段目の第1の翼型フィン6aと同じピッチで離間して同じ角度で傾斜して互いに平行に配置され、且つ2段目の複数の第2の翼型フィン6bの後縁側に部分的に入れ子状に重なるように配置されている。以下同様に、複数段の翼型フィン6a、6bが流通方向Sに沿って交互にクロスするように配置されている。 Focusing on the arrangement of the plurality of airfoil fins 6 along the flow direction S, the plurality of first airfoil fins 6a and the plurality of second airfoil fins 6b cover the entire length of the flow path 5 of the radiator 4. They are arranged alternately along the air flow direction S. The plurality of first airfoil fins 6a in the first stage on the most upstream side of the air flow direction S are arranged flush with each other on an imaginary surface whose leading edge is orthogonal to the flow direction S, and are arranged in a plane of the flow path 5. They are spaced apart at a predetermined pitch in the width direction, inclined at a predetermined angle, and arranged parallel to each other. The plurality of second airfoil fins 6b in the second stage are arranged flush with each other on an imaginary surface whose leading edge is orthogonal to the flow direction S, and are separated at a predetermined pitch in the width direction of the flow path 5. , Are inclined at a predetermined angle and arranged parallel to each other, and are arranged so as to partially overlap each other on the trailing edge side of the plurality of first airfoil fins 6a in the first stage. Further, the plurality of first airfoil fins 6a in the third stage are arranged flush with each other on an imaginary surface whose leading edge is orthogonal to the flow direction S, and are the same as the first airfoil fins 6a in the first stage. They are spaced apart at a pitch, tilted at the same angle, and arranged parallel to each other, and are arranged so as to partially overlap each other on the trailing edge side of the plurality of second airfoil fins 6b in the second stage. Similarly, a plurality of stages of airfoil fins 6a and 6b are arranged so as to alternately cross along the distribution direction S.

つまり、空気の流通方向Sに沿って複数の第1の翼型フィン6aと複数の第2の翼型フィン6bを交互に配置し、且つ流通方向Sに隣接する各段の複数の第1の翼型フィン6aおよび複数の第2の翼型フィン6bを入れ子状に重ねて配置してある。本実施形態では、各段の複数の第1の翼型フィン6aと複数の第2の翼型フィン6bを翼弦長の半分よりわずかに短い幅だけ重ねて配置した。このため、例えば、1段目の複数の第1の翼型フィン6aの後縁と3段目の複数の第1の翼型フィン6aの前縁が流通方向Sに沿って僅かに離間して近接している。また、同様に、2段目の複数の第2の翼型フィン6bの後縁と4段目の複数の第2の翼型フィン6bの前縁が流通方向Sに沿って僅かに離間して近接している。 That is, a plurality of first airfoil fins 6a and a plurality of second airfoil fins 6b are alternately arranged along the air flow direction S, and a plurality of first stages of each stage adjacent to the air flow direction S. The airfoil fins 6a and the plurality of second airfoil fins 6b are arranged in a nested manner. In the present embodiment, the plurality of first airfoil fins 6a and the plurality of second airfoil fins 6b of each stage are arranged so as to be overlapped by a width slightly shorter than half of the chord length. Therefore, for example, the trailing edge of the plurality of first airfoil fins 6a in the first stage and the leading edge of the plurality of first airfoil fins 6a in the third stage are slightly separated from each other along the distribution direction S. Close to each other. Similarly, the trailing edges of the plurality of second airfoil fins 6b in the second stage and the leading edges of the plurality of second airfoil fins 6b in the fourth stage are slightly separated from each other along the distribution direction S. Close to each other.

また、1段目の複数の第1の翼型フィン6aと3段目の複数の第1の翼型フィン6aは、それぞれ、空気の流通方向Sに一対一で並んで配置されており、2段目の複数の第2の翼型フィン6bと4段目の複数の第2の翼型フィン6bも、流通方向Sに一対一で並んで配置されている。つまり、本実施形態では、複数の第1の翼型フィン6aと複数の第2の翼型フィン6bを空気の流通方向Sに一対一で重ねて整列配置しているため、流路抵抗が小さくされており、十分な流量で空気を流路5に流通させることができる。翼型フィン6単体で見ても、表面形状が空気抵抗の少ない形状を有するため、流路抵抗を低く抑えることができる。 Further, the plurality of first airfoil fins 6a in the first stage and the plurality of first airfoil fins 6a in the third stage are arranged side by side one-to-one in the air flow direction S, respectively. The plurality of second airfoil fins 6b in the stage and the plurality of second airfoil fins 6b in the fourth stage are also arranged one-to-one in the flow direction S. That is, in the present embodiment, since the plurality of first airfoil fins 6a and the plurality of second airfoil fins 6b are arranged one-to-one in the air flow direction S in a one-to-one manner, the flow path resistance is small. This allows air to flow through the flow path 5 at a sufficient flow rate. Even when the airfoil fin 6 alone is viewed, the surface shape has a shape with low air resistance, so that the flow path resistance can be suppressed to a low level.

上記構造の放熱装置1の放熱体4の表面4aを回路部品3に接触させて配置して、ポンプ12を作動させると、放熱体4の一端側から空気が吸引されて、放熱体4の他端4bから一端4cに向けて流路5内に空気が流通される。このとき、流路5内の限られた空間を通して空気を流通させるため、単位時間当たりに流路5を流れる空気の量を十分な量にすることができ、多くの空気を複数の翼型フィン6に効率よく接触させることができる。また、翼型フィン6a、6bを互いにクロスさせて傾斜させているとともに、流通方向Sに沿って一対一で重ねて配置しているため、複数の翼型フィン6a、6bを流路5内に高い密度で配置したにも拘わらず流路抵抗を低く抑えることができ、十分な量の空気を流通させることができる。 When the surface 4a of the heat radiating body 4 of the heat radiating device 1 having the above structure is placed in contact with the circuit component 3 and the pump 12 is operated, air is sucked from one end side of the heat radiating body 4 and other than the heat radiating body 4. Air is circulated in the flow path 5 from the end 4b toward the end 4c. At this time, since air is circulated through the limited space in the flow path 5, the amount of air flowing through the flow path 5 can be made sufficient per unit time, and a large amount of air can be supplied to a plurality of airfoil fins. 6 can be efficiently contacted. Further, since the airfoil fins 6a and 6b are crossed and inclined with each other and are arranged one-to-one in a one-to-one manner along the distribution direction S, a plurality of airfoil fins 6a and 6b are arranged in the flow path 5. Despite being arranged at a high density, the flow path resistance can be suppressed to a low level, and a sufficient amount of air can be circulated.

回路部品3からの熱は、経時的に、放熱体4を介して複数の翼型フィン6に伝熱される。上述したようにポンプ12が作動されて放熱体4の流路5内を空気が流通されると、複数の翼型フィン6の表面に空気が接触し、翼型フィン6からの熱により空気が温められる。流路5を通過して複数の翼型フィン6の表面に接触した空気は、比較的高温に加熱されて流路5から排出される。以上のように、回路部品3の熱が放熱装置1によって奪われて、回路部品3が冷やされる。 The heat from the circuit component 3 is transferred to the plurality of airfoil fins 6 via the radiator 4 over time. As described above, when the pump 12 is operated and air flows through the flow path 5 of the radiator body 4, the air comes into contact with the surfaces of the plurality of airfoil fins 6, and the air is generated by the heat from the airfoil fins 6. Be warmed up. The air that has passed through the flow path 5 and has come into contact with the surfaces of the plurality of airfoil fins 6 is heated to a relatively high temperature and discharged from the flow path 5. As described above, the heat of the circuit component 3 is taken away by the heat radiating device 1, and the circuit component 3 is cooled.

以上のように、本実施形態では、放熱体4の流路5内に流路抵抗の小さい翼型フィン6を配置したため、翼型フィン6の表面に接触して流れる空気の翼型フィン6の表面との間の境界層剥離を軽減させることができる。このため、放熱体4の流路5における流路抵抗に基づく圧力損失を低減させることができ、放熱体4を薄くして軽量小型化したにも拘わらず、十分な量の空気を流路5内で流通させることができ、放熱装置1の放熱性能を向上させることができる。 As described above, in the present embodiment, since the airfoil fin 6 having a small flow path resistance is arranged in the airfoil 5 of the radiator body 4, the airfoil fin 6 of the air flowing in contact with the surface of the airfoil fin 6 is provided. It is possible to reduce the peeling of the boundary layer between the surface and the surface. Therefore, the pressure loss based on the flow path resistance in the flow path 5 of the heat radiating body 4 can be reduced, and a sufficient amount of air can be passed through the flow path 5 even though the heat radiating body 4 is made thinner and lighter and smaller. It can be distributed within, and the heat dissipation performance of the heat dissipation device 1 can be improved.

ところで、実施例1の放熱体4は、複数の翼型フィン6a、6bを交差させた複雑な構造を有するため、上述したように、金属材料の積層造形により形成される。積層造形は、造形物の形状によって、サポート材が必要になる場合がある。積層造形では、一般に、材料を重力方向の下方から徐々に積層して固めることにより造形物を形成する。このため、積層する材料を下から支える物体が無い場合(オーバーハングした形状の場合)には、材料をそのまま積層していくことができない。よって、このような場合には、サポート材を用いて新たに積層する材料を下から支える必要がある。なお、使用したサポート材は、通常、造形物を形成した後、造形物から取り除いて破棄する必要がある。 By the way, since the heat radiating body 4 of the first embodiment has a complicated structure in which a plurality of airfoil fins 6a and 6b are crossed, it is formed by laminated molding of a metal material as described above. Laminated modeling may require a support material depending on the shape of the modeled object. In laminated modeling, generally, a model is formed by gradually laminating and solidifying materials from below in the direction of gravity. Therefore, if there is no object that supports the material to be laminated from below (in the case of an overhanging shape), the material cannot be laminated as it is. Therefore, in such a case, it is necessary to support the newly laminated material from below by using the support material. In addition, it is usually necessary to remove the used support material from the modeled object and discard it after forming the modeled object.

このため、実施例1の放熱体4は、サポート材を用いない積層造形を可能にすべく、その形状を工夫した。実施例1の放熱体4は、その厚み方向(図3の矢印Z方向)に金属材料を積層して造形する。この場合、放熱体4の図示上方の板状体41を最後に積層する際に、翼型フィン6a、6bによる支えの無いオーバーハングした部分の積層造形が問題となる。このため、実施例1の放熱体4は、複数の翼型フィン6a、6bのピッチを2mm程度の狭ピッチに設計した上で、翼型フィン6aが板状体41を支える部位と翼型フィン6bが板状体41を支える部位が空気の流通方向Sに沿って一直線に並ぶように、翼型フィン6a、6bの配置位置を工夫した。そして、流路5の幅方向に隣接する翼型フィン6a(6b)による板状体41の支え位置の間で流路5の内面(板状体41の内面)を上方に凸となるアーチ状の湾曲面42に形成した。 Therefore, the shape of the heat radiating body 4 of the first embodiment has been devised so as to enable laminated modeling without using a support material. The heat radiating body 4 of the first embodiment is formed by laminating a metal material in the thickness direction (arrow Z direction in FIG. 3). In this case, when the plate-shaped body 41 on the upper side of the drawing of the heat radiating body 4 is finally laminated, there is a problem in laminating the overhanging portion without support by the airfoil fins 6a and 6b. Therefore, in the radiator 4 of the first embodiment, the pitch of the plurality of airfoil fins 6a and 6b is designed to be a narrow pitch of about 2 mm, and then the portion where the airfoil fins 6a support the plate-shaped body 41 and the airfoil fins. The arrangement positions of the airfoil fins 6a and 6b were devised so that the portions of 6b supporting the plate-shaped body 41 were aligned in a straight line along the air flow direction S. Then, an arch shape in which the inner surface of the flow path 5 (inner surface of the plate-shaped body 41) is convex upward between the support positions of the plate-shaped body 41 by the blade-shaped fins 6a (6b) adjacent in the width direction of the flow path 5. It was formed on the curved surface 42 of.

一般に、積層造形では、鉛直方向に対する傾斜角度が45度程度の構造物まではサポート材を用いない造形が可能とされている。このため、翼型フィン6a、6bは、サポート材を用いない積層造形が可能である。しかし、鉛直方向と直交する方向(水平方向)に延びた板状体41は、そのままでは積層造形をすることができない。これに対し、実施例1の放熱体4は、2mmピッチで設けた複数の翼型フィン6a、6bによって板状体41を下から支えている。その上、流路5の幅方向に隣接する翼型フィン6a(6b)の間で流路5の内面を湾曲面42に形成している。このため、サポート材を用いない積層造形が可能となっている。 Generally, in laminated modeling, it is possible to perform modeling without using a support material up to a structure having an inclination angle of about 45 degrees in the vertical direction. Therefore, the airfoil fins 6a and 6b can be laminated without using a support material. However, the plate-shaped body 41 extending in the direction orthogonal to the vertical direction (horizontal direction) cannot be laminated as it is. On the other hand, the heat radiating body 4 of the first embodiment supports the plate-shaped body 41 from below by a plurality of blade-shaped fins 6a and 6b provided at a pitch of 2 mm. Moreover, the inner surface of the flow path 5 is formed on the curved surface 42 between the airfoil fins 6a (6b) adjacent to each other in the width direction of the flow path 5. Therefore, laminated modeling without using a support material is possible.

以上のように、実施例1の放熱体4は、サポート材を用いない積層造形により形成可能であるため、放熱体4を製造した後、サポート材を除去する必要がなく、所望する形状を実現することができる。また、実施例1の放熱体4は、サポート材を用いない積層造形が可能であるため、サポート材の施工にかかる作業が不要となり、その分、製造コストを低減することができる。 As described above, since the heat radiating body 4 of the first embodiment can be formed by laminated molding without using a support material, it is not necessary to remove the support material after manufacturing the heat radiating body 4, and a desired shape is realized. can do. Further, since the heat radiating body 4 of the first embodiment can be laminated without using a support material, the work required for the construction of the support material becomes unnecessary, and the manufacturing cost can be reduced accordingly.

(実施例2)
図4は、放熱体4’の翼型フィン6a、6bの配置を変更した他の例を示す部分拡大斜視図である。実施例2の放熱体4’は、翼型フィン6a、6bの配置が異なる以外、上述した実施例1の放熱体4と略同じ構造を有する。よって、ここでは、上述した実施例1の放熱体4と同様に機能する構成要素には同一符号を付してその詳細な説明を省略する。
(Example 2)
FIG. 4 is a partially enlarged perspective view showing another example in which the arrangement of the airfoil fins 6a and 6b of the radiator body 4'is changed. The heat radiating body 4'of the second embodiment has substantially the same structure as the heat radiating body 4 of the first embodiment described above, except that the arrangement of the airfoil fins 6a and 6b is different. Therefore, here, the components having the same function as the radiator 4 of the first embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted.

実施例2の放熱体4’は、空気の流通方向Sに沿って、複数の第1の翼型フィン6aと複数の第2の翼型フィン6bを交互に配置した構造を有する。実施例2の放熱体4’も、厚み5mmの流路5内に複数の翼型フィン6a、6bを配置した。流通方向Sの上流側の1段目の複数の第1の翼型フィン6aの後縁と2段目の複数の第2の翼型フィン6bの前縁との間は、流通方向Sに沿って離間している。複数の第1の翼型フィン6aと複数の第2の翼型フィン6bは、実施例1と同様に交差して設けられている。 The heat radiating body 4'of the second embodiment has a structure in which a plurality of first airfoil fins 6a and a plurality of second airfoil fins 6b are alternately arranged along the air flow direction S. Also in the heat radiating body 4'of Example 2, a plurality of airfoil fins 6a and 6b are arranged in the flow path 5 having a thickness of 5 mm. The trailing edge of the plurality of first airfoil fins 6a on the upstream side of the flow direction S and the leading edge of the plurality of second airfoil fins 6b of the second stage are along the flow direction S. Are separated. The plurality of first airfoil fins 6a and the plurality of second airfoil fins 6b are provided so as to intersect each other as in the first embodiment.

実施例2の放熱体4’を用いた場合においても、上述した実施例1の放熱体4を用いた場合と同様に、放熱体4’の流路5を通る空気の流路抵抗を小さくすることができ、複数の翼型フィン6a、6bの表面積を大きくすることができ、放熱性能を向上させることができる。 Even when the heat radiating body 4'of the second embodiment is used, the flow path resistance of the air passing through the flow path 5 of the heat radiating body 4'is reduced as in the case of using the heat radiating body 4 of the first embodiment described above. Therefore, the surface area of the plurality of airfoil fins 6a and 6b can be increased, and the heat dissipation performance can be improved.

実施例2の放熱体4’は、複数の第1の翼型フィン6aと複数の第2の翼型フィン6bが空気の流通方向Sに沿って離間しており、流路5を流れる空気が各翼型フィン6a、6bの前縁の全体に接触する。これに対し、実施例1の放熱体4では、複数の第1の翼型フィン6aと複数の第2の翼型フィン6bが流通方向Sに沿って部分的に重なっているため、流路5を流れる空気が各翼型フィン6a、6bの前縁の全体には接触しない。このため、実施例1の放熱体4と比較して、実施例2の放熱体4’の熱抵抗が僅かに低い。反面、実施例1の放熱体4と比較して、実施例2の放熱体4’の圧力損失が僅かに大きい。 In the radiator 4'of the second embodiment, the plurality of first airfoil fins 6a and the plurality of second airfoil fins 6b are separated from each other along the air flow direction S, and the air flowing through the flow path 5 flows. It contacts the entire leading edge of each airfoil fin 6a, 6b. On the other hand, in the radiator 4 of the first embodiment, since the plurality of first airfoil fins 6a and the plurality of second airfoil fins 6b partially overlap along the flow direction S, the flow path 5 The air flowing through the airfoil does not come into contact with the entire leading edge of each airfoil fin 6a, 6b. Therefore, the thermal resistance of the heat radiating body 4'of Example 2 is slightly lower than that of the heat radiating body 4 of Example 1. On the other hand, the pressure loss of the heat radiating body 4'of the second embodiment is slightly larger than that of the heat radiating body 4 of the first embodiment.

なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 The present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof. In addition, each embodiment may be carried out in combination as appropriate, in which case the combined effect can be obtained. Further, the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent elements are deleted can be extracted as an invention.

例えば、上述した実施形態では、複数の翼型フィン6a、6bを備えた放熱体4、4’について説明したが、これに限らず、流路抵抗の少ない形状で且つ流通する空気に触れる表面積が十分に大きい形状あれば他の形状を採用することもできる。 For example, in the above-described embodiment, the radiators 4 and 4'provided with a plurality of airfoil fins 6a and 6b have been described, but the present invention is not limited to this, and the shape has a low flow path resistance and the surface area in contact with the circulating air is large. Other shapes can be adopted as long as they are large enough.

また、例えば、上述した実施形態では、複数の翼型フィン6a、6bを放熱体4、4’の流路5内に整列配置した場合について説明したが、これに限らず、複数の翼型フィン6を空気の流通方向に沿う姿勢で配置すればよく、その配置位置はランダムであってもよい。 Further, for example, in the above-described embodiment, the case where the plurality of airfoil fins 6a and 6b are aligned and arranged in the flow path 5 of the radiator bodies 4 and 4'has been described, but the present invention is not limited to this, and the plurality of airfoil fins are not limited to this. 6 may be arranged in a posture along the air flow direction, and the arrangement position may be random.

また、上述した実施形態では、複数の第1の翼型フィン6aと複数の第2の翼型フィン6bを直交する方向に傾斜させて配置した場合について説明したが、これに限らず、第1の翼型フィン6aと第2の翼型フィン6bは少なくとも異なる方向に傾斜していればよい。冷却効率を向上させるためには、流路5内に配置される翼型フィン6の長さをできるだけ長くして表面積を大きくすることが有効である。 Further, in the above-described embodiment, the case where the plurality of first airfoil fins 6a and the plurality of second airfoil fins 6b are arranged so as to be inclined in the orthogonal direction has been described, but the present invention is not limited to the first. The airfoil fin 6a and the second airfoil fin 6b may be inclined at least in different directions. In order to improve the cooling efficiency, it is effective to increase the surface area by making the length of the airfoil fins 6 arranged in the flow path 5 as long as possible.

また、上述した実施例1では、複数の第1の翼型フィン6aと複数の第2の翼型フィン6bを空気の流通方向に略1/2ピッチ分重ねて配置した場合について説明したが、これに限らず、翼型フィン6a、6bを流通方向に重ねる長さは任意に設定可能であり、必ずしも重ねる必要もない。複数の第1の翼型フィン6aと複数の第2の翼型フィン6bを流通方向に重ねて配置することにより、限られた長さの流路5内に配置する翼型フィン6a、6bの数を多くすることができ、空気が触れる翼型フィン6a、6bの表面積を大きくすることができる。 Further, in the above-described first embodiment, the case where the plurality of first airfoil fins 6a and the plurality of second airfoil fins 6b are arranged so as to be overlapped by approximately 1/2 pitch in the air flow direction has been described. Not limited to this, the length of overlapping the airfoil fins 6a and 6b in the distribution direction can be arbitrarily set, and it is not always necessary to overlap them. By arranging the plurality of first airfoil fins 6a and the plurality of second airfoil fins 6b so as to overlap each other in the flow direction, the airfoil fins 6a and 6b arranged in the flow path 5 having a limited length. The number can be increased, and the surface area of the airfoil fins 6a and 6b that the air contacts can be increased.

また、上述した実施形態では、放熱体4の流路5の幅方向に隣接した翼型フィン6a(6b)の間で流路5の内面に湾曲面42を設けた場合について説明したが、これに限らず、流路5の内面形状は、積層造形が可能であればいかなる形状であってもよい。
本発明の第1の態様に係る放熱装置は、発熱体に接触する表面を有するとともに扁平な1つの流路を内部に有する板状の放熱体と、流路を通る冷媒の流通方向に沿う姿勢で放熱体と一体に流路内に設けた複数の翼型フィンと、を有する。
本発明の第2の態様に係る放熱装置によると、複数の翼型フィンは、流通方向と交差する第1の方向に傾斜した第1の翼型フィンと、流通方向と交差する第1の方向と異なる第2の方向に傾斜した第2の翼型フィンと、を有する。
本発明の第3の態様に係る放熱装置によると、複数の翼型フィンは、流通方向と交差する第1の方向に傾斜した複数の第1の翼型フィンと、流通方向と交差する第1の方向と異なる第2の方向に傾斜して流通方向に沿って複数の第1の翼型フィンの下流に配置した複数の第2の翼型フィンと、を有する。
本発明の第4の態様に係る放熱装置によると、複数の第1の翼型フィンと複数の第2の翼型フィンは、流通方向に部分的に重なって配置されている。
本発明の第5の態様に係る放熱装置によると、流路の内面は、隣接する2つの翼型フィンの間でアーチ状に湾曲した湾曲面を含む。
本発明の第6の態様に係る放熱装置によると、放熱体の流路の一端に対向して配置され、流路内の空気を吸引する吸引装置をさらに有する。
本発明の第1の態様に係る放熱装置によると、扁平な1つの流路内に複数の翼型フィンを設けたため、放熱体を薄くすることができ、小型軽量にすることができる。その上、翼型フィンを放熱体と一体に流路内に設けたため、流路抵抗を小さくすることができる。よって、この放熱装置によると、小型軽量に構成することができ、その上、発熱量の大きい発熱体を効果的に冷やすことができる。
本発明の第2の態様に係る放熱装置によると、第1の方向に傾斜した第1の翼型フィンと第2の方向に傾斜した第2の翼型フィンを有するため、第1および第2の翼型フィンに冷媒を効率よく接触させることができ、発熱体を効果的に冷やすことができる。
本発明の第3の態様に係る放熱装置によると、第1の方向に傾斜した複数の第1の翼型フィンの下流側に第2の方向に傾斜した複数の第2の翼型フィンを配置したため、複数の第1の翼型フィンおよび複数の第2の翼型フィンのそれぞれに冷媒を効率よく接触させることができ、発熱体を効果的に冷やすことができる。
本発明の第4の態様に係る放熱装置によると、冷媒の流通方向に沿ってより多くの翼型フィンをコンパクトに配置することができ、その分、放熱性能を高めることができ、発熱体を効果的に冷やすことができる。
本発明の第5の態様に係る放熱装置によると、板状の放熱体を厚み方向に積層造形により形成する場合に、サポート材が不要となり、サポート材を除去する必要がなく、装置の製造工程を簡略化することができ、装置の製造コストを低減することができる。
本発明の第6の態様に係る放熱装置によると、放熱体の流路内の空気を吸引するため、限られた空間における冷媒の流通量を多くすることができ、放熱性能を高めることができ、発熱体を効果的に冷やすことができる。
以下に、本願の当初の特許請求の範囲に記載された事項を付記する。
[1]発熱体に接触する表面を有するとともに扁平な1つの流路を内部に有する板状の放熱体と、
前記流路を通る冷媒の流通方向に沿う姿勢で前記放熱体と一体に前記流路内に設けた複数の翼型フィンと、
を有する放熱装置。
[2]前記複数の翼型フィンは、
前記流通方向と交差する第1の方向に傾斜した第1の翼型フィンと、
前記流通方向と交差する前記第1の方向と異なる第2の方向に傾斜した第2の翼型フィンと、
を有する[1]の放熱装置。
[3]前記複数の翼型フィンは、
前記流通方向と交差する第1の方向に傾斜した複数の第1の翼型フィンと、
前記流通方向と交差する前記第1の方向と異なる第2の方向に傾斜して前記流通方向に沿って前記複数の第1の翼型フィンの下流に配置した複数の第2の翼型フィンと、
を有する[1]の放熱装置。
[4]前記複数の第1の翼型フィンと前記複数の第2の翼型フィンは、前記流通方向に部分的に重なって配置されている、
[3]の放熱装置。
[5]前記流路の内面は、隣接する2つの翼型フィンの間でアーチ状に湾曲した湾曲面を含む、
[1]の放熱装置。
[6]前記放熱体の前記流路の一端に対向して配置され、前記流路内の空気を吸引する吸引装置をさらに有する、
[1]乃至[5]のうちいずれか1項の放熱装置。
Further, in the above-described embodiment, the case where the curved surface 42 is provided on the inner surface of the flow path 5 between the airfoil fins 6a (6b) adjacent to each other in the width direction of the flow path 5 of the radiator body 4 has been described. The shape of the inner surface of the flow path 5 is not limited to the above, and may be any shape as long as laminated modeling is possible.
The heat radiating device according to the first aspect of the present invention has a plate-shaped heat radiating body having a surface in contact with the heating element and having one flat flow path inside, and an attitude along the flow direction of the refrigerant passing through the flow path. It has a plurality of wing-shaped fins provided in the flow path integrally with the radiator.
According to the heat dissipation device according to the second aspect of the present invention, the plurality of airfoil fins have a first airfoil fin inclined in a first direction intersecting the flow direction and a first direction intersecting the flow direction. It has a second airfoil fin, which is inclined in a second direction different from the above.
According to the heat dissipation device according to the third aspect of the present invention, the plurality of airfoil fins have a plurality of first airfoil fins inclined in the first direction intersecting the flow direction and a first airfoil fin intersecting the flow direction. It has a plurality of second airfoil fins inclined in a second direction different from the direction of the above and arranged downstream of the plurality of first airfoil fins along the flow direction.
According to the heat dissipation device according to the fourth aspect of the present invention, the plurality of first airfoil fins and the plurality of second airfoil fins are arranged so as to partially overlap each other in the distribution direction.
According to the heat dissipation device according to the fifth aspect of the present invention, the inner surface of the flow path includes a curved surface curved in an arch shape between two adjacent airfoil fins.
According to the heat radiating device according to the sixth aspect of the present invention, the heat radiating device is further provided so as to face one end of the flow path of the radiating body and to suck the air in the flow path.
According to the heat radiating device according to the first aspect of the present invention, since a plurality of airfoil fins are provided in one flat flow path, the heat radiating body can be made thinner, and the size and weight can be reduced. Moreover, since the airfoil fins are provided in the flow path integrally with the radiator, the flow path resistance can be reduced. Therefore, according to this heat radiating device, it can be configured to be compact and lightweight, and moreover, it is possible to effectively cool a heating element having a large amount of heat generation.
According to the heat dissipation device according to the second aspect of the present invention, since it has a first airfoil fin inclined in the first direction and a second airfoil fin inclined in the second direction, the first and second airfoil fins are provided. The refrigerant can be efficiently brought into contact with the airfoil fins of the airfoil, and the heating element can be effectively cooled.
According to the heat dissipation device according to the third aspect of the present invention, the plurality of second airfoil fins inclined in the second direction are arranged on the downstream side of the plurality of first airfoil fins inclined in the first direction. Therefore, the refrigerant can be efficiently brought into contact with each of the plurality of first airfoil fins and the plurality of second airfoil fins, and the heating element can be effectively cooled.
According to the heat dissipation device according to the fourth aspect of the present invention, more airfoil fins can be compactly arranged along the flow direction of the refrigerant, and the heat dissipation performance can be improved by that amount, and the heating element can be formed. Can be cooled effectively.
According to the heat radiating device according to the fifth aspect of the present invention, when the plate-shaped heat radiating body is formed by laminated molding in the thickness direction, the support material is not required, the support material does not need to be removed, and the manufacturing process of the device is not required. Can be simplified and the manufacturing cost of the device can be reduced.
According to the heat radiating device according to the sixth aspect of the present invention, since the air in the flow path of the radiating element is sucked, the amount of the refrigerant flowing in the limited space can be increased and the heat radiating performance can be improved. , The heating element can be cooled effectively.
The matters described in the original claims of the present application are added below.
[1] A plate-shaped radiator having a surface in contact with a heating element and having one flat flow path inside.
A plurality of airfoil fins provided in the flow path integrally with the heat radiating body in a posture along the flow direction of the refrigerant passing through the flow path.
Heat dissipation device with.
[2] The plurality of airfoil fins are
A first airfoil fin inclined in the first direction intersecting the distribution direction,
A second airfoil fin inclined in a second direction different from the first direction intersecting the flow direction,
The heat dissipation device of [1].
[3] The plurality of airfoil fins are
A plurality of first airfoil fins inclined in the first direction intersecting the distribution direction, and
With a plurality of second airfoil fins inclined in a second direction different from the first direction intersecting the flow direction and arranged downstream of the plurality of first airfoil fins along the flow direction. ,
The heat dissipation device of [1].
[4] The plurality of first airfoil fins and the plurality of second airfoil fins are arranged so as to partially overlap each other in the distribution direction.
[3] Heat dissipation device.
[5] The inner surface of the flow path includes a curved surface curved in an arch shape between two adjacent airfoil fins.
[1] Heat dissipation device.
[6] Further having a suction device arranged so as to face one end of the flow path of the heat radiating body and sucking air in the flow path.
The heat radiating device according to any one of [1] to [5].

1…放熱装置、2…基板、3…回路部品、4、4’…放熱体、4a…表面、5…流路、6…翼型フィン、6a…第1の翼型フィン、6b…第2の翼型フィン、10…吸引装置、41…板状体、42…湾曲面、D1…第1の方向、D2…第2の方向、S…流通方向。 1 ... radiator device, 2 ... substrate, 3 ... circuit parts, 4, 4'... radiator, 4a ... surface, 5 ... flow path, 6 ... airfoil fin, 6a ... first airfoil fin, 6b ... second Airfoil fins, 10 ... suction device, 41 ... plate-like body, 42 ... curved surface, D1 ... first direction, D2 ... second direction, S ... distribution direction.

Claims (4)

発熱体に接触する表面を有するとともに扁平な1つの流路を内部に有する板状の放熱体と、
前記放熱体と一体に前記流路内に設けられるとともに、前記流路を通る冷媒の流通方向にそれぞれの長手方向が交差する複数の翼型フィンであって、それぞれの前記長手方向に交差する断面形状が、翼弦線が前記冷媒の前記流通方向に沿う翼形状になる複数の翼型フィンと
を有し、
複数の前記翼型フィンは、
前記流通方向と交差する第1の方向に前記長手方向が傾斜した第1の翼型フィンと、
前記流通方向と交差する前記第1の方向と異なる第2の方向に前記長手方向が傾斜した第2の翼型フィンと、
を有し、
前記流路では、複数の前記第1の翼型フィン及び複数の前記第2の翼型フィンが、前記流通方向に沿って交互に配置され、前記第1の翼型フィン及び前記第2の翼型フィンがクロスする、
放熱装置。
A plate-shaped radiator that has a surface that comes into contact with the heating element and has one flat flow path inside.
A plurality of airfoil fins provided in the flow path integrally with the radiator and having their respective longitudinal directions intersecting in the flow direction of the refrigerant passing through the flow path, and cross sections intersecting the respective longitudinal directions. A plurality of airfoil-shaped fins having a shape in which the chord wire has a blade shape along the flow direction of the refrigerant, and
Have a,
The plurality of airfoil fins
The first airfoil fin whose longitudinal direction is inclined in the first direction intersecting the distribution direction,
A second airfoil fin whose longitudinal direction is inclined in a second direction different from the first direction which intersects the flow direction,
Have,
In the flow path, the plurality of the first airfoil fins and the plurality of the second airfoil fins are alternately arranged along the flow direction, and the first airfoil fins and the second airfoil fins are arranged alternately. The mold fins cross,
Heat dissipation device.
複数の前記第1の翼型フィンのそれぞれは、前記流通方向に隣接する前記第2の翼型フィンと、部分的に重なって配置されている、
請求項1の放熱装置。
Each of the plurality of first airfoil fins is arranged so as to partially overlap with the second airfoil fins adjacent to the flow direction.
The heat radiating device of claim 1.
前記流路の内面は、前記流通方向に交差する前記流路の幅方向に隣接する2つの前記翼型フィンの間でアーチ状に湾曲した湾曲面を含む、
請求項1又は2の放熱装置。
The inner surface of the flow path includes a curved surface curved in an arch shape between two airfoil fins adjacent in the width direction of the flow path intersecting the flow direction.
The heat radiating device according to claim 1 or 2.
前記放熱体の前記流路の一端に対向して配置され、前記流路内の空気を吸引する吸引装置をさらに有する、
請求項1乃至3のうちいずれか1項の放熱装置。
Further having a suction device which is arranged to face one end of the flow path of the heat radiating body and sucks air in the flow path.
The heat radiating device according to any one of claims 1 to 3.
JP2019229362A 2019-12-19 2019-12-19 Heat dissipation device Active JP6972090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019229362A JP6972090B2 (en) 2019-12-19 2019-12-19 Heat dissipation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019229362A JP6972090B2 (en) 2019-12-19 2019-12-19 Heat dissipation device

Publications (2)

Publication Number Publication Date
JP2021097190A JP2021097190A (en) 2021-06-24
JP6972090B2 true JP6972090B2 (en) 2021-11-24

Family

ID=76431609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019229362A Active JP6972090B2 (en) 2019-12-19 2019-12-19 Heat dissipation device

Country Status (1)

Country Link
JP (1) JP6972090B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170086A (en) * 1994-11-07 1995-07-04 Hitachi Ltd Mounting structure of semiconductor device
JP3740665B2 (en) * 1995-04-28 2006-02-01 株式会社アルファ Manufacturing method and manufacturing apparatus for heat exchange parts
JP3405900B2 (en) * 1997-02-26 2003-05-12 株式会社ピーエフユー Heat sink device
JP2000332177A (en) * 1999-05-18 2000-11-30 Toshiba Home Technology Corp Cooler for heat generating element
US6343016B1 (en) * 2000-12-20 2002-01-29 Enlight Corporation Heat sink
JP2003324173A (en) * 2002-05-02 2003-11-14 Nissan Motor Co Ltd Cooling device for semiconductor element
JP4742965B2 (en) * 2006-04-18 2011-08-10 パナソニック株式会社 Heat transfer device and liquid cooling system using it
US20080066888A1 (en) * 2006-09-08 2008-03-20 Danaher Motion Stockholm Ab Heat sink
US20090145581A1 (en) * 2007-12-11 2009-06-11 Paul Hoffman Non-linear fin heat sink
US20110056669A1 (en) * 2009-09-04 2011-03-10 Raytheon Company Heat Transfer Device
US10703490B2 (en) * 2016-10-27 2020-07-07 Ge Aviation Systems Llc Method and apparatus for heat-dissipation in electronics
JP2019047028A (en) * 2017-09-05 2019-03-22 キヤノン株式会社 Cooling device and electronic device

Also Published As

Publication number Publication date
JP2021097190A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
US6942025B2 (en) Uniform heat dissipating and cooling heat sink
JPH0629683A (en) Heat pipe type heat dissipation unit for electronic apparatus
JP2012521657A (en) Grid heat sink
TWI619430B (en) Heat sink
US20210125898A1 (en) Vapor chamber
EP3510635B1 (en) Heatsink
JP6972090B2 (en) Heat dissipation device
JP6054423B2 (en) Channel member, heat exchanger using the same, and semiconductor device
TWI334529B (en) Heat dissipation device
JPH07243782A (en) Heat pipe type radiator
JP2007080989A (en) Heat sink
US20070137849A1 (en) Heatsink with offset fins
US20210247151A1 (en) Fluid-based cooling device for cooling at least two distinct first heat-generating elements of a heat source assembly
JP2012059741A (en) Cooling device for electronic components
CN211509631U (en) Radiator and PCB radiating assembly and server with same
JPH10270616A (en) Apparatus for radiating heat of electronic components
TWI305574B (en) Fin assembly and heat dissipation device with such fin assembly
WO2016148065A1 (en) Heat transfer device for cooling
JP2004047789A (en) Heat sink
TWM311240U (en) Heat sink module
JPH0412559A (en) Cooling structure of electronic device
KR102427626B1 (en) Heat radiating apparatus and method with pyrolytic graphite sheet
JP2011171686A (en) Metal-based printed board with heat radiation part
JP3100713U (en) Heat dissipation fin module
JP2010267664A (en) Heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211102

R150 Certificate of patent or registration of utility model

Ref document number: 6972090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150