JP6971734B2 - Ship - Google Patents

Ship Download PDF

Info

Publication number
JP6971734B2
JP6971734B2 JP2017176714A JP2017176714A JP6971734B2 JP 6971734 B2 JP6971734 B2 JP 6971734B2 JP 2017176714 A JP2017176714 A JP 2017176714A JP 2017176714 A JP2017176714 A JP 2017176714A JP 6971734 B2 JP6971734 B2 JP 6971734B2
Authority
JP
Japan
Prior art keywords
fuel oil
path
tank
consumption
hfo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017176714A
Other languages
Japanese (ja)
Other versions
JP2019051798A (en
Inventor
勇人 角田
貴章 溝越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Marine and Engineering Co Ltd
Original Assignee
Sumitomo Heavy Industries Marine and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Marine and Engineering Co Ltd filed Critical Sumitomo Heavy Industries Marine and Engineering Co Ltd
Priority to JP2017176714A priority Critical patent/JP6971734B2/en
Priority to CN201810705674.XA priority patent/CN109501996A/en
Priority to KR1020180101176A priority patent/KR102517593B1/en
Publication of JP2019051798A publication Critical patent/JP2019051798A/en
Priority to JP2021179316A priority patent/JP7339991B2/en
Application granted granted Critical
Publication of JP6971734B2 publication Critical patent/JP6971734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • B63B17/0027Tanks for fuel or the like ; Accessories therefor, e.g. tank filler caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F9/00Measuring volume flow relative to another variable, e.g. of liquid fuel for an engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は、船舶に関し、特に燃料の種類に応じた消費量を算出するものに関する。 The present invention relates to a ship, in particular, to calculate a consumption amount according to a type of fuel.

船舶において燃料タンクから供給される燃料油の消費量を計測する方法として、従来から燃料タンクに設けられる液面計を用いた方法が用いられている。一方、特許文献1では、液面計を用いずに燃料油の消費量を計測する自動車用の燃料残量計測装置が示されている。 As a method for measuring the consumption of fuel oil supplied from a fuel tank in a ship, a method using a liquid level gauge provided in the fuel tank has been conventionally used. On the other hand, Patent Document 1 discloses a fuel remaining amount measuring device for an automobile that measures the consumption of fuel oil without using a liquid level gauge.

特開平11−148851号公報Japanese Unexamined Patent Publication No. 11-148851

近年、海運業界において燃費報告に関する法整備等が進められ、燃料油の種類毎に燃料の消費量を高い精度で計測して報告することが求められるようになってきた。しかしながら、従来の船舶では燃料油の消費量を種類毎に高い精度で計測することは求められていなかった。 In recent years, legislation regarding fuel consumption reporting has been promoted in the shipping industry, and it has become required to measure and report fuel consumption with high accuracy for each type of fuel oil. However, in conventional ships, it has not been required to measure the consumption of fuel oil for each type with high accuracy.

本発明は上記を鑑みてなされたものであり、燃料油の種類毎に消費量を精度良く測定することが可能な船舶を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a ship capable of accurately measuring the consumption amount for each type of fuel oil.

上記目的を達成するため、本発明の一形態に係る船舶は、第1燃料油を貯留する第1燃料油タンクと、前記第1燃料油とは異なる第2燃料油を貯留する第2燃料油タンクと、前記第1燃料油タンクから前記第1燃料油を排出する第1燃料油経路と、前記第2燃料油タンクから前記第2燃料油を排出する第2燃料油経路と、前記第1燃料油経路及び前記第2燃料油経路の後段に設けられて、前記第1燃料油経路及び前記第2燃料油経路からの燃料油を合流させる合流経路と、前記合流経路からの燃料油を導入して燃焼させる燃焼機関と、前記合流経路よりも前段において、前記第1燃料油の消費量を測定する第1燃料油消費量測定部と、前記合流経路よりも前段において、前記第2燃料油の消費量を測定する第2燃料油消費量測定部と、を有する。 In order to achieve the above object, the ship according to one embodiment of the present invention has a first fuel oil tank for storing a first fuel oil and a second fuel oil for storing a second fuel oil different from the first fuel oil. The tank, the first fuel oil path for discharging the first fuel oil from the first fuel oil tank, the second fuel oil path for discharging the second fuel oil from the second fuel oil tank, and the first fuel oil path. A merging path provided after the fuel oil path and the second fuel oil path to merge the fuel oils from the first fuel oil path and the second fuel oil path, and the fuel oil from the merging path are introduced. The combustion engine for burning, the first fuel oil consumption measuring unit for measuring the consumption of the first fuel oil in the stage before the merging path, and the second fuel oil in the stage before the merging path. It has a second fuel oil consumption measuring unit for measuring the consumption of the fuel oil.

上記の船舶によれば、互いに異なる2種類の燃料油が合流経路を経て燃焼機関に対して供給される場合に、合流経路よりも前段に第1燃料油消費量測定部が設けられると共に、合流経路よりも前段に第2燃料油消費量測定部が設けられる。したがって、燃料油の種類毎に、その消費量を精度良く測定することが可能となる。 According to the above-mentioned vessel, when two types of fuel oils different from each other are supplied to the combustion engine via the merging path, the first fuel oil consumption measuring unit is provided before the merging path and the merging is performed. A second fuel oil consumption measuring unit is provided in front of the route. Therefore, it is possible to accurately measure the consumption amount of each type of fuel oil.

ここで、前記第1燃料油消費量測定部及び前記第2燃料油消費量測定部の一方は、前記合流経路よりも前段の経路上に設けられた、前記合流経路へ流れる燃料油の量を測定する流量計である態様とすることができる。 Here, one of the first fuel oil consumption measuring unit and the second fuel oil consumption measuring unit measures the amount of fuel oil flowing to the merging path provided on the path prior to the merging path. It can be an embodiment that is a flow meter to measure.

上記のように、第1燃料油消費量測定部及び第2燃料油消費量測定部の一方が合流経路へ流れる燃料油の量を測定する流量計であることで、流量計により燃料油の移動量を直接測定することができ、流量計が設けられている経路での燃料油の消費量を精度良く測定することが可能となる。 As described above, one of the first fuel oil consumption measuring unit and the second fuel oil consumption measuring unit is a flow meter that measures the amount of fuel oil flowing to the confluence path, so that the fuel oil can be moved by the flow meter. The amount can be measured directly, and the amount of fuel oil consumed in the route provided with the flow meter can be measured with high accuracy.

また、前記第1燃料油経路上に、前記第1燃料油を貯留する中間タンクをさらに有し、前記第1燃料油消費量測定部は、前記第1燃料油タンクからの前記第1燃料油の排出量を測定する流量計と、前記中間タンクでの前記第1燃料油の貯留量を測定する貯留量測定部と、を有する態様とすることができる。 Further, an intermediate tank for storing the first fuel oil is further provided on the first fuel oil path, and the first fuel oil consumption measuring unit is the first fuel oil from the first fuel oil tank. The mode may include a flow meter for measuring the amount of the first fuel oil stored in the intermediate tank and a storage amount measuring unit for measuring the amount of the first fuel oil stored in the intermediate tank.

上記のように、第1燃料油経路上に中間タンクが設けられている場合、第1燃料油タンクからの排出量を測定する流量計と、中間タンクでの第1燃料油の貯留量を測定する貯留量測定部と、を組み合わせることで、中間タンクでの第1燃料油の消費量を精度良く測定することが可能となる。 As described above, when the intermediate tank is provided on the first fuel oil path, the flow meter that measures the amount of discharge from the first fuel oil tank and the amount of the first fuel oil stored in the intermediate tank are measured. By combining with the storage amount measuring unit, it is possible to accurately measure the consumption amount of the first fuel oil in the intermediate tank.

前記流量計は、質量流量計である態様とすることができる。また、前記流量計は、体積流量計と温度または密度測定部とである態様とすることができる。流量計を上記の構成とすることで、流量計が設けられている経路での燃料油の消費量を精度良く測定することが可能となる。 The flow meter may be in the form of a mass flow meter. Further, the flow meter can be in the form of a volume flow meter and a temperature or density measuring unit. By adopting the above configuration of the flow meter, it is possible to accurately measure the consumption of fuel oil in the path provided with the flow meter.

また、前記貯留量測定部は、前記中間タンク内での前記第1燃料油の液面を測定する液面計と、温度または密度測定部とである態様とすることができる。 Further, the storage amount measuring unit may be an embodiment of a liquid level gauge for measuring the liquid level of the first fuel oil in the intermediate tank and a temperature or density measuring unit.

貯留量測定部が中間タンク内での第1燃料油の液面を測定する液面計と、温度または密度測定部とであることで、液面計を用いて中間タンク内の第1燃料油の貯留量をより簡単に測定することができる。 Since the storage amount measuring unit is a liquid level gauge that measures the liquid level of the first fuel oil in the intermediate tank and a temperature or density measuring unit, the liquid level gauge is used to measure the liquid level of the first fuel oil in the intermediate tank. The amount of stored oil can be measured more easily.

本発明によれば、燃料油の種類毎に消費量を精度良く測定することが可能な船舶が提供される。 According to the present invention, there is provided a ship capable of accurately measuring the consumption amount for each type of fuel oil.

第1実施形態に係る船舶に含まれる燃料油管理システムの概略構成図である。It is a schematic block diagram of the fuel oil management system included in the ship which concerns on 1st Embodiment. 第2実施形態に係る船舶に含まれる燃料油管理システムの概略構成図である。It is a schematic block diagram of the fuel oil management system included in the ship which concerns on 2nd Embodiment. 第3実施形態に係る船舶に含まれる燃料油管理システムの概略構成図である。It is a schematic block diagram of the fuel oil management system included in the ship which concerns on 3rd Embodiment. 第3実施形態の変形例を示す図である。It is a figure which shows the modification of the 3rd Embodiment.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description will be omitted.

(第1実施形態)
図1は、本発明の第1実施形態に係る船舶1に含まれる燃料油管理システム2の概略構成図である。燃料油管理システム2は、船舶1で使用される燃料油の管理を行うシステムであり、船舶1内に設けられる。図1に示すように、燃料油管理システム2は、第1燃料油タンク11と、第2燃料油タンク12と、第1燃料油消費量測定部13と、第2燃料油消費量測定部14と、燃焼機関15と、を有する。
(First Embodiment)
FIG. 1 is a schematic configuration diagram of a fuel oil management system 2 included in a ship 1 according to the first embodiment of the present invention. The fuel oil management system 2 is a system for managing the fuel oil used in the ship 1, and is provided in the ship 1. As shown in FIG. 1, the fuel oil management system 2 includes a first fuel oil tank 11, a second fuel oil tank 12, a first fuel oil consumption measurement unit 13, and a second fuel oil consumption measurement unit 14. And a combustion engine 15.

燃料油管理システム2では、上記のように少なくとも2種類の燃料油(第1燃料油及び第2燃料油)が個別に貯留される2つの燃料油タンクが設けられている。すなわち、第1燃料油タンク11及び第2燃料油タンク12には、互いに異なる種類の燃料油が貯留される。これらの燃料油タンクから供給される2種類の燃料油は、同一の燃焼機関15に対して供給される。燃焼機関15とは、燃料油を燃焼して消費する機関であり、例えば、主機、発電機、ボイラ等が挙げられる。 As described above, the fuel oil management system 2 is provided with two fuel oil tanks in which at least two types of fuel oil (first fuel oil and second fuel oil) are individually stored. That is, different types of fuel oil are stored in the first fuel oil tank 11 and the second fuel oil tank 12. The two types of fuel oil supplied from these fuel oil tanks are supplied to the same combustion engine 15. The combustion engine 15 is an engine that burns and consumes fuel oil, and examples thereof include a main engine, a generator, and a boiler.

したがって、燃料油管理システム2では、第1燃料油タンク11から供給される第1燃料油が流れる第1燃料油経路L1と、第2燃料油タンク12から供給される第2燃料油が流れる第2燃料油経路L2と、第1燃料油経路L1からの第1燃料油及び第2燃料油経路L2からの第2燃料油の両方が流れる合流経路L3と、を有する。第1燃料油経路L1を流れる第1燃料油は、合流経路L3を経て燃焼機関15へ供給される。また、第2燃料油経路L2を流れる第2燃料油は、合流経路L3を経て燃焼機関15へ供給される。燃焼機関15へ供給する燃料油の種類及びその供給量は、図示しない制御部により制御される。制御部からの指示に基づいて、バルブが開閉されたりポンプが作動したりすることによって、燃焼機関15へ供給する燃料油の種類及び供給量が制御される。 Therefore, in the fuel oil management system 2, the first fuel oil path L1 through which the first fuel oil supplied from the first fuel oil tank 11 flows and the second fuel oil through which the second fuel oil supplied from the second fuel oil tank 12 flows. It has two fuel oil paths L2 and a confluence path L3 through which both the first fuel oil from the first fuel oil path L1 and the second fuel oil from the second fuel oil path L2 flow. The first fuel oil flowing through the first fuel oil path L1 is supplied to the combustion engine 15 via the merging path L3. Further, the second fuel oil flowing through the second fuel oil path L2 is supplied to the combustion engine 15 via the merging path L3. The type of fuel oil supplied to the combustion engine 15 and the amount of fuel oil supplied thereof are controlled by a control unit (not shown). The type and amount of fuel oil supplied to the combustion engine 15 are controlled by opening and closing the valve and operating the pump based on the instruction from the control unit.

第1燃料油消費量測定部13は、第1燃料油経路L1又はそれよりも前段に設けられる。第1燃料油消費量測定部13は、第1燃料油の消費量、すなわち、第1燃料油経路L1を経て燃焼機関15へ供給された第1燃料油の重量を測定する機能を有する。第1燃料油経路L1から燃焼機関15へ供給された第1燃料油の量を測定する方法としては、概略、流量計等を用いて第1燃料油経路L1を流れて燃焼機関15へ供給される第1燃料油の流量(体積)を測定し、当該流量から重量を算出する方法と、液面計等を用いて第1燃料油タンク11に貯留される第1燃料油の体積変化を測定し、当該体積変化から重量を算出する方法と、が挙げられる。燃料油の体積から重量を算出する場合には、燃料油の密度が必要になるが、密度は温度によって変化するため、その補正のために温度に係る情報が必要となる。流量計には、体積流量計と質量流量計とがある。体積流量計は、求めた体積流量を質量流量に変換するための密度を温度補正するための温度センサ(温度測定部)または密度センサ(密度測定部)を適宜設けるが、質量流量計は直接質量を測定できるので温度センサ等は必要ない。液面計は体積しか測定できないので、温度センサ(温度測定部)または密度センサ(密度測定部)等を設ける。ただし、第1燃料油消費量測定部13の装置構成は、適宜変更することができる。また、密度センサは密度を直接計測できるので温度補正をする必要はない。さらに、密度センサは、γ線が物質を透過する際の吸収度合を計測するもの、密度の変化による自由振動数の変化を利用して計測するもの等が市販されている。 The first fuel oil consumption measuring unit 13 is provided at or before the first fuel oil path L1. The first fuel oil consumption measuring unit 13 has a function of measuring the consumption of the first fuel oil, that is, the weight of the first fuel oil supplied to the combustion engine 15 via the first fuel oil path L1. As a method for measuring the amount of the first fuel oil supplied from the first fuel oil path L1 to the combustion engine 15, the method is to flow through the first fuel oil path L1 using a flow meter or the like and be supplied to the combustion engine 15. A method of measuring the flow rate (volume) of the first fuel oil and calculating the weight from the flow rate, and measuring the volume change of the first fuel oil stored in the first fuel oil tank 11 using a liquid level gauge or the like. Then, a method of calculating the weight from the volume change can be mentioned. When calculating the weight from the volume of the fuel oil, the density of the fuel oil is required, but since the density changes depending on the temperature, information on the temperature is required for the correction. The flow meter includes a volume flow meter and a mass flow meter. The volume flow meter is appropriately provided with a temperature sensor (temperature measuring unit) or a density sensor (density measuring unit) for temperature-correcting the density for converting the obtained volume flow meter into a mass flow meter, but the mass flow meter is a direct mass flow meter. No temperature sensor is required because it can measure. Since the liquid level gauge can measure only the volume, a temperature sensor (temperature measuring unit) or a density sensor (density measuring unit) is provided. However, the device configuration of the first fuel oil consumption measuring unit 13 can be changed as appropriate. Moreover, since the density sensor can directly measure the density, it is not necessary to correct the temperature. Further, as the density sensor, one that measures the degree of absorption when γ-rays pass through a substance, one that measures by utilizing a change in free frequency due to a change in density, and the like are commercially available.

第2燃料油消費量測定部14は、第2燃料油経路L2又はそれよりも前段に設けられる。第2燃料油消費量測定部14は、第2燃料油の消費量、すなわち、第2燃料油経路L2を経て燃焼機関15へ供給された第2燃料油の重量を測定する機能を有する。したがって、第1燃料油消費量測定部13と同様に、第2燃料油消費量測定部14は、第2燃料油経路L2での流量計又は第2燃料油タンク12での液面計と、第2燃料油の温度を計測する温度センサと、を含む。ただし、第2燃料油消費量測定部14の装置構成は、適宜変更することができる。 The second fuel oil consumption measuring unit 14 is provided at or before the second fuel oil path L2. The second fuel oil consumption measuring unit 14 has a function of measuring the consumption of the second fuel oil, that is, the weight of the second fuel oil supplied to the combustion engine 15 via the second fuel oil path L2. Therefore, similarly to the first fuel oil consumption measurement unit 13, the second fuel oil consumption measurement unit 14 includes a flow meter in the second fuel oil path L2 or a liquid level meter in the second fuel oil tank 12. Includes a temperature sensor that measures the temperature of the second fuel oil. However, the device configuration of the second fuel oil consumption measuring unit 14 can be changed as appropriate.

上記の燃料油管理システム2を含む船舶では、互いに異なる複数種類(燃料油管理システム2では、2種類)の燃料油が合流経路L3を経て燃焼機関に対して供給される場合に、各燃料油が個別に流れる経路又はそれよりも前段において、燃料油の消費量を測定する燃料油消費量測定部が設けられる。燃料油管理システム2の場合には、第1燃料油経路L1又はその前段(すなわち、合流経路L3よりも前段)に第1燃料油消費量測定部13が設けられ、第2燃料油経路L2又はその前段(すなわち、合流経路L3よりも前段)に第2燃料油消費量測定部14が設けられる。したがって、燃料油の種類毎に、その消費量を精度良く測定することが可能となる。 In a ship including the above fuel oil management system 2, when a plurality of different types of fuel oil (two types in the fuel oil management system 2) are supplied to the combustion engine via the merging path L3, each fuel oil is supplied. A fuel oil consumption measuring unit for measuring the consumption of fuel oil is provided in the path through which the fuel flows individually or in the stage before that. In the case of the fuel oil management system 2, the first fuel oil consumption measuring unit 13 is provided in the first fuel oil path L1 or its predecessor (that is, the stage before the confluence path L3), and the second fuel oil path L2 or A second fuel oil consumption measuring unit 14 is provided in the preceding stage (that is, in the stage before the confluence path L3). Therefore, it is possible to accurately measure the consumption amount of each type of fuel oil.

近年、環境規制の一環としてCO排出量を把握するために燃費報告制度に関する欧州規則(EU−MRV規則)が採択されたように、海運業界において燃料の種類毎にCO発生量が違うため燃料油の種類毎に消費量を精度よく測定することが求められている。しかしながら、従来の船舶では、自船での燃費管理等を目的として燃料油の消費量を測定することは行われていた。しかしながら、上記のEU−MRV規則のように燃料油の種類毎に消費量の管理を高い精度で行うことが法的に求められていなかったため、特に、複数種類の燃料油を燃焼機関で使用する場合に、種類毎の燃料油の消費量の測定を高い精度で行われておらず、種類毎に消費量の測定を行うための装置構成も設けられていなかった。 In recent years, as the European Regulations on Fuel Economy Reporting System (EU-MRV Regulations) have been adopted to understand CO 2 emissions as part of environmental regulations, the amount of CO 2 generated differs depending on the type of fuel in the shipping industry. It is required to measure the consumption amount accurately for each type of fuel oil. However, in conventional ships, the consumption of fuel oil has been measured for the purpose of fuel consumption control on the ship. However, unlike the above EU-MRV regulations, it is not legally required to control the consumption of each type of fuel oil with high accuracy. Therefore, in particular, a plurality of types of fuel oil are used in a combustion engine. In some cases, the fuel oil consumption of each type was not measured with high accuracy, and the device configuration for measuring the consumption of each type was not provided.

これに対して、本実施形態に係る燃料油管理システム2を含む船舶1では、合流経路L3において各燃料油が合流するよりも前段で燃料油の消費量を測定することで、燃料油の消費量をその種類毎に個別に精度良く測定することを実現する。燃焼機関15において燃料油を使用する場合、実際には互いに異なる燃料油の一方を燃焼機関15へ供給する。したがって、合流経路L3において種類毎の燃料油の消費量を測定することも可能ではある。ただし、合流経路L3においては、燃料油の切り替え時等に複数種類の燃料油が混合される可能性もあるため、燃料油の種類毎に消費量を精度良く測定することが難しいと考えられる。これに対して、本実施形態に係る燃料油管理システム2を含む船舶1では、合流経路L3よりも前段に燃料油の消費量を測定する構成とすることで、混合された燃料油の消費量が測定されることを回避することができる。 On the other hand, in the ship 1 including the fuel oil management system 2 according to the present embodiment, the fuel oil consumption is measured by measuring the fuel oil consumption before the fuel oils merge in the merging path L3. It is possible to measure the amount individually and accurately for each type. When fuel oil is used in the combustion engine 15, one of the fuel oils different from each other is actually supplied to the combustion engine 15. Therefore, it is also possible to measure the consumption of fuel oil for each type in the confluence path L3. However, in the merging path L3, since there is a possibility that a plurality of types of fuel oil are mixed when the fuel oil is switched, it is considered difficult to accurately measure the consumption amount for each type of fuel oil. On the other hand, in the ship 1 including the fuel oil management system 2 according to the present embodiment, the consumption amount of the mixed fuel oil is measured by measuring the consumption amount of the fuel oil before the confluence path L3. Can be avoided from being measured.

また、第1燃料油消費量測定部13又は第2燃料油消費量測定部14として、燃料油経路に設けられた流量計を含む場合、燃焼機関15へ供給される燃料油の流量を直接的に測定することもできるため、燃料油の消費量を精度良く測定することが可能となる。 Further, when the first fuel oil consumption measuring unit 13 or the second fuel oil consumption measuring unit 14 includes a flow meter provided in the fuel oil path, the flow rate of the fuel oil supplied to the combustion engine 15 is directly measured. It is also possible to measure the fuel oil consumption with high accuracy.

一方、第1燃料油消費量測定部13又は第2燃料油消費量測定部14として、燃料油タンクに設けられた液面計を含む場合、燃料油タンクにおける燃料油の液面の変動から燃料油の消費量を測定することができると共に、燃料油経路側には新たな測定計等を設けることが不要となるため、経路の取り回し等を自由に行うことができる。ただし、液面計によるタンク内での燃料油の液面変動の測定に基づく燃料油の消費量の算出には誤差が含まれる場合がある。例えば、タンク底面積が大きい場合には、燃料油の僅かな消費は液面変動から正確に測定できない場合がある。したがって、タンク内での液面計を用いた燃料油の消費量の算出は、タンクの底面積がある程度小さい場合に好適に用いられる。 On the other hand, when the first fuel oil consumption measuring unit 13 or the second fuel oil consumption measuring unit 14 includes a liquid level gauge provided in the fuel oil tank, the fuel is fueled from the fluctuation of the liquid level of the fuel oil in the fuel oil tank. Since it is possible to measure the amount of oil consumed and it is not necessary to provide a new measuring meter or the like on the fuel oil path side, the route can be freely routed. However, there may be an error in the calculation of the fuel oil consumption based on the measurement of the fuel oil level fluctuation in the tank by the liquid level gauge. For example, when the tank bottom area is large, the slight consumption of fuel oil may not be accurately measured due to the fluctuation of the liquid level. Therefore, the calculation of the fuel oil consumption using the liquid level gauge in the tank is preferably used when the bottom area of the tank is small to some extent.

(第2実施形態)
第1実施形態では、2種類の燃料油(第1燃料油及び第2燃料油)が、それぞれの燃料油タンクから1つの燃焼機関15に対して供給される場合について説明した。しかしながら、実際には、燃料油を貯留するタンクと燃焼機関との間に清浄機(Purifier)等が設けられるため、その後段に清浄後の燃料油を貯留するためのタンク(中間タンク)が設けられる場合がある。また、船舶は、燃焼機関を複数有し、複数の燃焼機関に対して、同一の燃料油タンクから燃料油を供給することがある。第2実施形態では、2種類の燃料油を複数の燃焼機関に対して供給し、且つ、各燃料油の経路上に中間タンクが設けられる場合について説明する。
(Second Embodiment)
In the first embodiment, a case where two types of fuel oils (first fuel oil and second fuel oil) are supplied from each fuel oil tank to one combustion engine 15 has been described. However, in reality, since a purifier or the like is provided between the tank for storing fuel oil and the combustion engine, a tank (intermediate tank) for storing the cleaned fuel oil is provided in the subsequent stage. May be done. In addition, a ship may have a plurality of combustion engines and supply fuel oil to the plurality of combustion engines from the same fuel oil tank. In the second embodiment, a case where two types of fuel oil are supplied to a plurality of combustion engines and an intermediate tank is provided on the path of each fuel oil will be described.

図2は、第2実施形態に係る燃料油管理システム3を含む船舶1Aについて説明する図である。図2では、第1燃料油に対応する燃料油がディーゼル油(Diesel Oil:D.O.)であり、第2燃料油に対応する燃料油が重質燃料油(Heavy Fuel Oil:HFO)である場合について説明する。また、図2では、燃焼機関15として、発電機15A(G/E)、主機15B(M/E)、及び、ボイラ15C(BLR)の3つの燃焼機関が設けられている。以下、ディーゼル油をDOと記載し、重質燃料油をHFOと記載する場合がある。 FIG. 2 is a diagram illustrating a ship 1A including the fuel oil management system 3 according to the second embodiment. In FIG. 2, the fuel oil corresponding to the first fuel oil is diesel oil (DO), and the fuel oil corresponding to the second fuel oil is heavy fuel oil (HFO). A case will be described. Further, in FIG. 2, as the combustion engine 15, three combustion engines of a generator 15A (G / E), a main engine 15B (M / E), and a boiler 15C (BLR) are provided. Hereinafter, diesel oil may be described as DO, and heavy fuel oil may be described as HFO.

図2に示す船舶1Aの燃料油管理システム3のうち、まず、ディーゼル油(DO)側の流路について説明する。まず、第1燃料油タンクに相当するタンクとして、DO貯留タンク11A(D.O. Storage Tank)が設けられる。このDO貯留タンク11AからのDOは、経路L11を経て清浄機21(Purif.)へ導入される。また、清浄機21による清浄後のDOは、経路L12を経て中間タンクであるDOサービスタンク22(D.O. Service Tank)へ導入される。また、DOサービスタンク22からDO貯留タンク11Aに対して、DOサービスタンク22においてDOがオーバーフローした場合の返送経路L13が設けられる。このように、DO側では、DO貯留タンク11A、清浄機21、及びDOサービスタンク22を含む循環経路が形成される。 Of the fuel oil management system 3 of the ship 1A shown in FIG. 2, first, the flow path on the diesel oil (DO) side will be described. First, a DO storage tank 11A (D.O. Storage Tank) is provided as a tank corresponding to the first fuel oil tank. The DO from the DO storage tank 11A is introduced into the purifier 21 (Purif.) Through the path L11. Further, the DO after cleaning by the purifier 21 is introduced into the DO service tank 22 (D.O. Service Tank) which is an intermediate tank via the path L12. Further, a return path L13 is provided for the DO service tank 22 to the DO storage tank 11A when the DO overflows in the DO service tank 22. As described above, on the DO side, a circulation path including the DO storage tank 11A, the purifier 21, and the DO service tank 22 is formed.

DOサービスタンク22から分岐した一部のDOが、発電機15A及び主機15Bに対して燃料油を供給する合流経路L31に対して経路L14を経て供給される。また、経路L11から分岐した一部のDOが、ボイラ15Cに対して燃料油を供給する合流経路L32に対して経路L15を経て供給される。 A part of the DO branched from the DO service tank 22 is supplied to the merging path L31 for supplying fuel oil to the generator 15A and the main engine 15B via the path L14. Further, a part of DO branched from the path L11 is supplied to the confluence path L32 for supplying fuel oil to the boiler 15C via the path L15.

上記のDO側の経路のうち、経路L11〜L15がDOのみが流れる経路であり、第1燃料油経路に相当する。これらの経路のうち、DOのみが流れて合流経路L31に対して接続する経路が経路L14となる。また、DOのみが流れて合流経路L32に対して接続する経路が経路L15となる。したがって、図2に示すように、経路L14及び経路L15上に、それぞれ流量計131及び流量計132を設けることで、DO側の循環経路から分岐して燃焼機関15(発電機15A、主機15B、及び、ボイラ15C)に接続する合流経路L31,L32に流れるDOの流量、すなわち、DOの消費量を測定することができる。このように、流量計131,132がDO(第1燃料油)側の燃料油消費量測定部(第1燃料油消費量測定部)として機能する。なお、DOの消費量(重量)を算出するために、DOの温度を測定するための温度計が別途設けられていても良い。 Of the above DO-side routes, routes L11 to L15 are routes through which only DO flows, and correspond to the first fuel oil route. Of these routes, the route through which only DO flows and connects to the merging route L31 is the route L14. Further, the path through which only DO flows and is connected to the confluence path L32 is the path L15. Therefore, as shown in FIG. 2, by providing the flow meter 131 and the flow meter 132 on the path L14 and the path L15, respectively, the combustion engine 15 (generator 15A, main engine 15B, branching from the circulation path on the DO side, is provided. In addition, the flow rate of DO flowing through the confluence paths L31 and L32 connected to the boiler 15C), that is, the amount of DO consumption can be measured. In this way, the flow meters 131 and 132 function as the fuel oil consumption measurement unit (first fuel oil consumption measurement unit) on the DO (first fuel oil) side. In addition, in order to calculate the amount (weight) of DO, a thermometer for measuring the temperature of DO may be separately provided.

DO側の経路に設けられる流量計131,132による測定の結果(及び、必要に応じて温度計による測定の結果)は、図2に示す演算・記録部40に対して送られ、演算・記録部40によりこれらの測定結果を取りまとめて、DOの消費量を算出する構成とすることができる。この場合、演算・記録部40もDO(第1燃料油)側の燃料油消費量測定部(第1燃料油消費量測定部)として機能する。 The measurement results by the flowmeters 131 and 132 provided in the path on the DO side (and the measurement results by the thermometer if necessary) are sent to the calculation / recording unit 40 shown in FIG. 2 for calculation / recording. The measurement results can be collected by the unit 40 to calculate the DO consumption amount. In this case, the calculation / recording unit 40 also functions as a fuel oil consumption measurement unit (first fuel oil consumption measurement unit) on the DO (first fuel oil) side.

次に、重質燃料油(HFO)側の流路について説明する。まず、第2燃料油タンクに相当するタンクとして、HFO貯留タンク12A(HFO Storage Tank)が設けられる。このHFO貯留タンク12AからのHFOは、経路L21を経て中間タンクであるHFO静置タンク(HFO Settling Tank)31へ導入される。また、HFO静置タンク31からのHFOは、経路L22を経て清浄機32(Purif.)へ導入される。また、清浄機32による清浄後のHFOは、経路L23を経て中間タンクであるHFOサービスタンク33(HFO Service Tank)へ導入される。また、HFOサービスタンク33からHFO静置タンク31に対して、HFOサービスタンク33においてHFOがオーバーフローした場合の返送経路L24が設けられる。このように、HFO側では、HFO貯留タンク12Aよりも後段において、HFO静置タンク31、清浄機32、及びHFOサービスタンク33を含む循環経路が形成される。 Next, the flow path on the heavy fuel oil (HFO) side will be described. First, an HFO storage tank 12A (HFO Storage Tank) is provided as a tank corresponding to the second fuel oil tank. The HFO from the HFO storage tank 12A is introduced into the HFO static tank (HFO Settling Tank) 31, which is an intermediate tank, via the path L21. Further, the HFO from the HFO stationary tank 31 is introduced into the purifier 32 (Purif.) Through the path L22. Further, the HFO after cleaning by the purifier 32 is introduced into the HFO service tank 33 (HFO Service Tank), which is an intermediate tank, via the path L23. Further, a return path L24 is provided for the HFO service tank 33 to the HFO stationary tank 31 when the HFO overflows in the HFO service tank 33. As described above, on the HFO side, a circulation path including the HFO stationary tank 31, the purifier 32, and the HFO service tank 33 is formed in the stage after the HFO storage tank 12A.

HFOサービスタンク33から分岐した一部のHFOが、発電機15A及び主機15Bに対して燃料油を供給する合流経路L31に対して経路L25を経て供給される。また、HFO静置タンク31から分岐した一部のHFOが、ボイラ15Cに対して燃料油を供給する合流経路L32に対して経路L26を経て供給される。 A part of the HFO branched from the HFO service tank 33 is supplied to the merging path L31 for supplying fuel oil to the generator 15A and the main engine 15B via the path L25. Further, a part of the HFO branched from the HFO stationary tank 31 is supplied to the confluence path L32 for supplying fuel oil to the boiler 15C via the path L26.

上記のHFO側の経路のうち、経路L21〜L26がHFOのみが流れる経路であり、第2燃料油経路に相当する。これらの経路のうち、HFOのみが流れて合流経路L31に対して接続する経路が経路L25となる。また、HFOのみが流れて合流経路L32に対して接続する経路が経路L26となる。したがって、図2に示すように、経路L25及び経路L26上に、それぞれ流量計141及び流量計142を設けることで、HFO側の循環経路から分岐して燃焼機関15(発電機15A、主機15B、及び、ボイラ15C)に接続する合流経路L31,L32に流れるHFOの流量、すなわち、HFOの消費量を測定することができる。このように、流量計141,142がHFO(第2燃料油)側の燃料油消費量測定部(第2燃料油消費量測定部)として機能する。なお、HFOの消費量(重量)を算出するために、HFOの温度を測定するための温度計が別途設けられていても良い。 Of the above-mentioned routes on the HFO side, routes L21 to L26 are routes through which only HFO flows, and correspond to a second fuel oil route. Of these routes, the route in which only the HFO flows and is connected to the merging route L31 is the route L25. Further, the path through which only the HFO flows and is connected to the merging path L32 is the path L26. Therefore, as shown in FIG. 2, by providing the flow meter 141 and the flow meter 142 on the path L25 and the path L26, respectively, the combustion engine 15 (generator 15A, main engine 15B, branching from the circulation path on the HFO side) is provided. Further, the flow rate of the HFO flowing through the confluence paths L31 and L32 connected to the boiler 15C), that is, the consumption amount of the HFO can be measured. In this way, the flow meters 141 and 142 function as the fuel oil consumption measurement unit (second fuel oil consumption measurement unit) on the HFO (second fuel oil) side. In addition, in order to calculate the consumption amount (weight) of HFO, a thermometer for measuring the temperature of HFO may be separately provided.

HFO側の経路に設けられる流量計141,142による測定の結果(及び、必要に応じて温度計による測定の結果)は、図2に示す演算・記録部40に対して送られ、演算・記録部40によりこれらの測定結果を取りまとめて、HFOの消費量を算出する構成とすることができる。この場合、演算・記録部40もHFO(第2燃料油)側の燃料油消費量測定部(第2燃料油消費量測定部)として機能する。 The measurement results by the flowmeters 141 and 142 provided in the path on the HFO side (and the measurement results by the thermometer if necessary) are sent to the calculation / recording unit 40 shown in FIG. 2, and the calculation / recording is performed. The unit 40 can be configured to collect these measurement results and calculate the amount of HFO consumed. In this case, the calculation / recording unit 40 also functions as a fuel oil consumption measurement unit (second fuel oil consumption measurement unit) on the HFO (second fuel oil) side.

また、201,202,203はポンプであり、それぞれ燃料油の供給のために作動する。 Further, 201, 202, and 203 are pumps, each of which operates for supplying fuel oil.

図2に示す例では、DO及びHFOのいずれにおいても、合流経路L31,L32に対して接続する経路上に流量計を設けて、この流量計を利用して、燃料油の消費量を測定している。このように、燃料油の消費量を測定するための燃料油消費量測定部として流量計を用いた構成とすることで、DO及びHFOそれぞれの消費量を精度良く測定することができる。 In the example shown in FIG. 2, in both DO and HFO, a flow meter is provided on the path connected to the confluence paths L31 and L32, and the fuel oil consumption is measured by using this flow meter. ing. As described above, by using the flow meter as the fuel oil consumption measuring unit for measuring the fuel oil consumption, it is possible to accurately measure the consumption of each of DO and HFO.

(第3実施形態)
図3は、第3実施形態に係る燃料油管理システム4を含む船舶1Bについて説明する図である。燃料油管理システム4は、第2実施形態に係る燃料油管理システム3と比較して、HFO側の燃料油消費量測定部の構成が異なるが、その他の構成は燃料油管理システム3と同じである。したがって、構成が同じ部分については説明を省略し、相違点についてのみ説明する。
(Third Embodiment)
FIG. 3 is a diagram illustrating a ship 1B including a fuel oil management system 4 according to a third embodiment. The fuel oil management system 4 has a different configuration of the fuel oil consumption measurement unit on the HFO side as compared with the fuel oil management system 3 according to the second embodiment, but the other configurations are the same as those of the fuel oil management system 3. be. Therefore, the description of the parts having the same configuration will be omitted, and only the differences will be described.

重質燃料油(HFO)側の流路についても、燃料油管理システム3と同じである。すなわち、HFO側では、HFO貯留タンク12Aよりも後段において、HFO静置タンク31、清浄機32、及びHFOサービスタンク33を含む循環経路が形成される。また、HFOサービスタンク33から分岐した一部のHFOが、発電機15A及び主機15Bに対して燃料油を供給する合流経路L31に対して経路L25を経て供給される。また、HFO静置タンク31から分岐した一部のHFOが、ボイラ15Cに対して燃料油を供給する合流経路L32に対して経路L26を経て供給される。 The flow path on the heavy fuel oil (HFO) side is the same as that of the fuel oil management system 3. That is, on the HFO side, a circulation path including the HFO stationary tank 31, the purifier 32, and the HFO service tank 33 is formed in the stage after the HFO storage tank 12A. Further, a part of the HFO branched from the HFO service tank 33 is supplied to the merging path L31 for supplying fuel oil to the generator 15A and the main engine 15B via the path L25. Further, a part of the HFO branched from the HFO stationary tank 31 is supplied to the confluence path L32 for supplying fuel oil to the boiler 15C via the path L26.

ここで、第3実施形態に係る燃料油管理システム4では、流量計と液面計とを組み合わせてHFOの消費量を測定する。まず、経路L21上に流量計を設けることで、HFO貯留タンク12Aから排出されるHFOの量を測定する。一方、HFO貯留タンク12Aの後段の中間タンクであるHFO静置タンク31及びHFOサービスタンク33については、それぞれ液面計144,145を設けることで、液面の高さを利用して各タンクに貯留されるHFOの量を測定する。これらの結果から、HFO貯留タンク12Aから排出されるHFOの量から、HFO静置タンク31及びHFOサービスタンク33に貯留されるHFOの増加量を差し引いた量が、燃焼機関である発電機15A、主機15B及びボイラ15CにおけるHFOの消費量になる。この測定結果に基づくHFOの消費量の算出は、第2実施形態と同様に演算・記録部40で行う構成とすることができる。 Here, in the fuel oil management system 4 according to the third embodiment, the consumption amount of HFO is measured by combining the flow meter and the liquid level meter. First, by providing a flow meter on the path L21, the amount of HFO discharged from the HFO storage tank 12A is measured. On the other hand, for the HFO stationary tank 31 and the HFO service tank 33, which are intermediate tanks in the latter stage of the HFO storage tank 12A, liquid level totals 144 and 145 are provided in each tank, so that the height of the liquid level can be utilized in each tank. Measure the amount of HFO stored. From these results, the amount obtained by subtracting the increase amount of HFO stored in the HFO stationary tank 31 and the HFO service tank 33 from the amount of HFO discharged from the HFO storage tank 12A is the amount obtained by subtracting the increase amount of HFO stored in the HFO static tank 31 and the HFO service tank 33. This is the amount of HFO consumed in the main engine 15B and the boiler 15C. The calculation of the HFO consumption amount based on the measurement result can be performed by the calculation / recording unit 40 as in the second embodiment.

このように、流量計143と、液面計144,145を組み合わせて、燃料油の消費量を測定する構成としてもよい。この場合、流量計143は、HFO貯留タンク(燃料油タンク)からの燃料油の排出量を測定する流量計として機能することになる。また、液面計144,145は、中間タンクでの燃料油の貯留量を測定する貯留量測定部として機能することになる。なお、上述のように液面計のみでは体積しか測定できないため、液面計と温度センサ(温度測定部)または密度センサ(密度測定部)とを組み合わせて設けられる。 In this way, the flow meter 143 and the liquid level gauges 144 and 145 may be combined to measure the consumption of fuel oil. In this case, the flow meter 143 functions as a flow meter for measuring the amount of fuel oil discharged from the HFO storage tank (fuel oil tank). Further, the liquid level gauges 144 and 145 will function as a storage amount measuring unit for measuring the storage amount of fuel oil in the intermediate tank. Since only the volume can be measured by the liquid level gauge as described above, the liquid level gauge and the temperature sensor (temperature measuring unit) or the density sensor (density measuring unit) are provided in combination.

第3実施形態に係る燃料油管理システム4では、第2実施形態に係る燃料油管理システム3と比較して以下の効果が得られる。まず、第2実施形態に係る燃料油管理システム3では、流量計141がポンプ202よりも上流側に設けられている。この場合、流量計の配置によっては流量計の圧力損失がポンプ202の吸込性能を満足しない場合がある。そのため、システム全体としての動作が困難となる場合がある。これに対して、第3実施形態に係る燃料油管理システム4では、ポンプ202とHFOサービスタンク33との間に流量計を配置する必要がなくなるため、上記のような問題を回避することができる。また、第3実施形態に係る燃料油管理システム4では、第2実施形態に係る燃料油管理システム3と比較して、流量計を1つ減らすことができ、流量計の設置及び管理に係るコストを減らすことができる。 The fuel oil management system 4 according to the third embodiment has the following effects as compared with the fuel oil management system 3 according to the second embodiment. First, in the fuel oil management system 3 according to the second embodiment, the flow meter 141 is provided on the upstream side of the pump 202. In this case, depending on the arrangement of the flow meter, the pressure loss of the flow meter may not satisfy the suction performance of the pump 202. Therefore, it may be difficult to operate the system as a whole. On the other hand, in the fuel oil management system 4 according to the third embodiment, it is not necessary to dispose a flow meter between the pump 202 and the HFO service tank 33, so that the above-mentioned problem can be avoided. .. Further, in the fuel oil management system 4 according to the third embodiment, the number of flow meters can be reduced by one as compared with the fuel oil management system 3 according to the second embodiment, and the cost related to the installation and management of the flow meters can be reduced. Can be reduced.

なお、第3実施形態では、HFO静置タンク31及びHFOサービスタンク33については液面計144,145でタンク内のHFOの貯留量(体積)を測定しているが、HFO貯留タンク12Aについては、流量計143を用いてタンクから排出されるHFOの量を測定している。この構成に代えて、HFO貯留タンク12Aについても、液面計を用いてタンクから排出されるHFOの量を測定する構成としてもよい。ただし、上述のように、タンクの容量が大きい場合には、液面計による体積の測定には誤差が含まれる可能性がある。したがって、タンクの容量等に基づいて、液面計及び流量計の何れを用いるかを選択することで、消費量の測定をより高い精度で行うことが可能となる。第3実施形態で示す構成では、HFO貯留タンク12Aに対して、HFO静置タンク31及びHFOサービスタンク33は容量が比較的小さくなる場合が多いため、上記で説明したようにHFO静置タンク31及びHFOサービスタンク33について液面計を用いてタンク内のHFOの量を測定する構成としても、測定精度を十分高く保つことができると考えられる。 In the third embodiment, the HFO storage amount (volume) in the HFO static tank 31 and the HFO service tank 33 is measured by the liquid level gauges 144 and 145, but the HFO storage tank 12A is measured. , The amount of HFO discharged from the tank is measured using a flow meter 143. Instead of this configuration, the HFO storage tank 12A may also be configured to measure the amount of HFO discharged from the tank using a liquid level gauge. However, as described above, when the capacity of the tank is large, the measurement of the volume by the liquid level gauge may include an error. Therefore, by selecting whether to use a liquid level gauge or a flow meter based on the capacity of the tank or the like, it is possible to measure the consumption amount with higher accuracy. In the configuration shown in the third embodiment, the capacity of the HFO stationary tank 31 and the HFO service tank 33 is often relatively smaller than that of the HFO storage tank 12A. Therefore, as described above, the HFO stationary tank 31 It is considered that the measurement accuracy can be sufficiently maintained even if the HFO service tank 33 is configured to measure the amount of HFO in the tank using a liquid level gauge.

なお、第3実施形態では、第2燃料油側となるHFO側において、中間タンクでの燃料油の貯留量を測定する場合について説明したが、当然ながら第1燃料油側、すなわち、DO側において同様の構成を採用してもよい。また、両方の燃料油側において中間タンクでの燃料油の貯留量を測定する構成としてもよい。ただし、図2及び図3に示す例では、DO貯留タンク11Aに対してオーバーフローしたDOを返送する返送経路L13が設けられている。このような構成の場合、流量計143のように、DO貯留タンク11Aからの経路L11上に流量計を設けるだけでは、DO貯留タンク11Aから排出されるDOを正確に測定することができない。そのため、流量計等の配置を適宜変更する必要がある。その点について、次の変形例で説明する。 In the third embodiment, the case where the amount of fuel oil stored in the intermediate tank is measured on the HFO side, which is the second fuel oil side, has been described, but of course, on the first fuel oil side, that is, on the DO side. A similar configuration may be adopted. Further, the fuel oil may be configured to measure the amount of fuel oil stored in the intermediate tank on both fuel oil sides. However, in the examples shown in FIGS. 2 and 3, a return route L13 for returning the overflowed DO to the DO storage tank 11A is provided. In such a configuration, it is not possible to accurately measure the DO discharged from the DO storage tank 11A only by providing the flow meter on the path L11 from the DO storage tank 11A like the flow meter 143. Therefore, it is necessary to change the arrangement of the flow meter and the like as appropriate. This point will be described in the next modification.

(変形例)
図4は、第3実施形態に係る燃料油管理システム4の変形例として、燃料油管理システム4におけるHFO側の経路を一部変更した例を示した図である。図4では、図3に示した燃料油管理システム3におけるHFOの経路と比較して、中間タンクが1つ追加されていると共に、そのタンクと他のタンク等の間に経路が追加されている。また、この経路の変更に対応して、HFO側の燃料油消費量測定部の構成が異なっている。
(Modification example)
FIG. 4 is a diagram showing an example in which the route on the HFO side in the fuel oil management system 4 is partially changed as a modification of the fuel oil management system 4 according to the third embodiment. In FIG. 4, one intermediate tank is added and a route is added between the tank and another tank, etc., as compared with the HFO route in the fuel oil management system 3 shown in FIG. .. Further, the configuration of the fuel oil consumption measurement unit on the HFO side is different in response to this change in the route.

図4に示す変形例では、燃料油管理システム4と同様に、HFO貯留タンク12Aよりも後段において、HFO静置タンク31、清浄機32、及びHFOサービスタンク33を含む循環経路が形成される(清浄機32は、図4では記載を省略している)。また、HFOサービスタンク33から分岐した一部のHFOが、発電機15A及び主機15Bに対して燃料油を供給する合流経路L31に対して経路L25を経て供給される。また、HFO静置タンク31から分岐した一部のHFOが、ボイラ15Cに対して燃料油を供給する合流経路L32に対して経路L26を経て供給される。 In the modified example shown in FIG. 4, a circulation path including the HFO stationary tank 31, the purifier 32, and the HFO service tank 33 is formed after the HFO storage tank 12A, as in the fuel oil management system 4. The purifier 32 is omitted in FIG. 4). Further, a part of the HFO branched from the HFO service tank 33 is supplied to the merging path L31 for supplying fuel oil to the generator 15A and the main engine 15B via the path L25. Further, a part of the HFO branched from the HFO stationary tank 31 is supplied to the confluence path L32 for supplying fuel oil to the boiler 15C via the path L26.

一方、図4に示す変形例においては、HFO静置タンク31がオーバーフローした場合に、HFO静置タンク31及びHFOサービスタンク33から一部のHFOを導入するサブタンク34が設けられている。HFO静置タンク31及びHFOサービスタンク33とサブタンク34との間には、経路L27が設けられる。また、サブタンク34のHFOは、経路L28を経てHFO貯留タンク12A、又は、経路L21上であって且つ流量計143よりも前段に返送される(図4では、経路L21に返送する例を示している)。 On the other hand, in the modified example shown in FIG. 4, a sub tank 34 for introducing a part of HFO from the HFO static tank 31 and the HFO service tank 33 is provided when the HFO static tank 31 overflows. A path L27 is provided between the HFO stationary tank 31, the HFO service tank 33, and the sub tank 34. Further, the HFO of the sub tank 34 is returned to the HFO storage tank 12A or the path L21 via the path L28 and before the flow meter 143 (FIG. 4 shows an example of returning to the path L21). Yes).

このような構成とした場合、図3に示す構成と比較すると、中間タンクとしてのサブタンク34が増えている。そのため、液面計146を設けることで、液面の高さを利用して、サブタンク34に貯留されるHFOの量(体積)を測定することで、サブタンク34に貯留されるHFOを考慮してHFOの消費量を算出することができる。 With such a configuration, the number of sub tanks 34 as intermediate tanks is increased as compared with the configuration shown in FIG. Therefore, by providing a liquid level gauge 146 and measuring the amount (volume) of HFO stored in the sub tank 34 by utilizing the height of the liquid level, the HFO stored in the sub tank 34 is taken into consideration. The amount of HFO consumed can be calculated.

一方、流量計143では、HFO貯留タンク12Aから排出されるHFOの量が測定されるが、この測定結果には、サブタンク34を経て返送されたHFOの量が含まれる。したがって、流量計143による測定結果と、液面計144,145,146で測定される中間タンクに貯留されるHFOの量と、からHFOの消費量を算出した場合、サブタンク34を経て返送されたHFOの量の分だけ誤差が含まれることになる。 On the other hand, the flow meter 143 measures the amount of HFO discharged from the HFO storage tank 12A, and the measurement result includes the amount of HFO returned via the sub tank 34. Therefore, when the HFO consumption was calculated from the measurement result by the flow meter 143 and the amount of HFO stored in the intermediate tank measured by the liquid level gauge 144, 145, 146, it was returned via the sub tank 34. An error will be included by the amount of HFO.

そこで、図4に示す変形例の構成では、サブタンク34から流量計143の前段に返送されるHFOの量を測定するための流量計147を経路L28上に設ける。そして、流量計143による測定結果から流量計147による測定結果を差し引くことで、HFO貯留タンク12Aに当初から貯留されていたHFOのうち、後段に排出されたHFOの量を求めることができる。したがって、この流量計143による測定結果から流量計147による測定結果を差し引いた結果から、液面計144,145,146で測定される中間タンクに貯留されるHFOの増加量を差し引くと、燃焼機関である発電機15A、主機15B及びボイラ15CにおけるHFOの消費量が得られる。 Therefore, in the configuration of the modified example shown in FIG. 4, a flow meter 147 for measuring the amount of HFO returned from the sub tank 34 to the front stage of the flow meter 143 is provided on the path L28. Then, by subtracting the measurement result by the flow meter 147 from the measurement result by the flow meter 143, the amount of HFO discharged to the subsequent stage can be obtained from the HFO stored in the HFO storage tank 12A from the beginning. Therefore, if the increase in HFO stored in the intermediate tank measured by the liquid level gauge 144, 145, 146 is subtracted from the result obtained by subtracting the measurement result by the flow meter 147 from the measurement result by the flow meter 143, the combustion engine The consumption amount of HFO in the generator 15A, the main engine 15B and the boiler 15C is obtained.

なお、サブタンク34からのHFOが流量計143よりも後段の経路L21等に返送される場合には、流量計147による測定結果を用いなくてもよくなるので、流量計147を省略することができる。 When the HFO from the sub tank 34 is returned to the path L21 or the like at a stage after the flow meter 143, the measurement result by the flow meter 147 does not have to be used, so that the flow meter 147 can be omitted.

このように、燃料油を貯留するタンク(ここでは、HFO貯留タンク12A)と燃焼機関との間に中間タンクが設けられる場合や、貯留タンクと燃焼機関との間の経路が複雑になる場合には、経路の設定に応じて、流量計の設置場所を変更することで、燃料油の消費量を正確に測定することが可能となる。 In this way, when an intermediate tank is provided between the tank for storing fuel oil (here, the HFO storage tank 12A) and the combustion engine, or when the route between the storage tank and the combustion engine becomes complicated. By changing the installation location of the flow meter according to the route setting, it is possible to accurately measure the consumption of fuel oil.

以上、本発明に係る実施形態について説明したが、本発明は上記実施形態に限られない。例えば、上記実施形態では、互いに異なる2種類の燃料油を、合流経路を介して燃焼機関に供給する構成について説明したが、燃焼機関に供給する燃料油の種類は3種類以上であってもよい。その場合でも、2種類以上の燃料油が合流する合流経路よりも前段において、燃料油の種類毎に燃料油消費量測定部を設けることで、各燃料油に関して消費量を精度良く測定することが可能となる。 Although the embodiment according to the present invention has been described above, the present invention is not limited to the above embodiment. For example, in the above embodiment, the configuration in which two types of fuel oils different from each other are supplied to the combustion engine via the merging path has been described, but the types of fuel oils supplied to the combustion engine may be three or more. .. Even in that case, by providing a fuel oil consumption measurement unit for each type of fuel oil in the stage before the confluence route where two or more types of fuel oils merge, it is possible to accurately measure the consumption amount of each fuel oil. It will be possible.

1,1A,1B…船舶、2,3,4…燃料油管理システム、11…第1燃料油タンク、12…第2燃料油タンク、13…第1燃料油消費量測定部、14…第2燃料油消費量測定部、15…燃焼機関。 1,1A, 1B ... Ship, 2,3,4 ... Fuel oil management system, 11 ... 1st fuel oil tank, 12 ... 2nd fuel oil tank, 13 ... 1st fuel oil consumption measuring unit, 14 ... 2nd Fuel oil consumption measurement unit, 15 ... Combustion engine.

Claims (6)

第1燃料油を貯留する第1燃料油タンクと、
前記第1燃料油とは異なる第2燃料油を貯留する第2燃料油タンクと、
前記第1燃料油タンクから前記第1燃料油を排出する第1燃料油経路と、
前記第2燃料油タンクから前記第2燃料油を排出する第2燃料油経路と、
前記第1燃料油経路及び前記第2燃料油経路の後段に設けられて、前記第1燃料油経路及び前記第2燃料油経路からの燃料油を合流させる合流経路と、
前記合流経路からの燃料油を導入して燃焼させる燃焼機関と、
前記第1燃料油経路又は前記第2燃料油経路上に設けられ、上流のタンクから流れる燃料油を貯留する中間タンクと、
前記中間タンクがオーバーフローした場合に前記燃料油を前段へ返送する返送経路と、
前記合流経路よりも前段において、前記第1燃料油の消費量を測定する第1燃料油消費量測定部と、
前記合流経路よりも前段において、前記第2燃料油の消費量を測定する第2燃料油消費量測定部と、
を有し、
前記第1燃料油消費量測定部及び前記第2燃料油消費量測定部のうち、前記中間タンクが設けられる経路を流れる燃料油の消費量を測定する燃料油消費量測定部は、前記中間タンクよりも後段で燃料油の消費量を測定する、船舶。
The first fuel oil tank for storing the first fuel oil and
A second fuel oil tank for storing a second fuel oil different from the first fuel oil,
A first fuel oil path for discharging the first fuel oil from the first fuel oil tank,
A second fuel oil path for discharging the second fuel oil from the second fuel oil tank,
A merging path provided after the first fuel oil path and the second fuel oil path to join the fuel oils from the first fuel oil path and the second fuel oil path.
A combustion engine that introduces and burns fuel oil from the confluence path,
An intermediate tank provided on the first fuel oil path or the second fuel oil path to store fuel oil flowing from an upstream tank, and an intermediate tank.
A return route for returning the fuel oil to the previous stage when the intermediate tank overflows,
A first fuel oil consumption measuring unit for measuring the consumption of the first fuel oil and a first fuel oil consumption measuring unit in a stage prior to the merging path.
A second fuel oil consumption measuring unit for measuring the consumption of the second fuel oil in a stage prior to the merging path, and a second fuel oil consumption measuring unit.
Have a,
Of the first fuel oil consumption measuring unit and the second fuel oil consumption measuring unit, the fuel oil consumption measuring unit for measuring the consumption of fuel oil flowing through the path provided with the intermediate tank is the intermediate tank. A ship that measures fuel oil consumption later than.
前記第1燃料油消費量測定部及び前記第2燃料油消費量測定部の一方は、前記合流経路よりも前段の経路上に設けられた、前記合流経路へ流れる燃料油の量を測定する流量計である、請求項1に記載の船舶。 One of the first fuel oil consumption measuring unit and the second fuel oil consumption measuring unit is provided on a path prior to the merging path and measures the amount of fuel oil flowing to the merging path. The vessel according to claim 1, which is a total. 前記第1燃料油消費量測定部及び前記第2燃料油消費量測定部のうち、前記中間タンクが貯留する燃料油の消費量を測定する燃料油消費量測定部は、記燃料油タンクからの前記燃料油の排出量を測定する流量計と、前記中間タンクでの前記燃料油の貯留量を測定する貯留量測定部と、を有する、請求項1に記載の船舶。 The first fuel consumption amount measuring unit and of the second fuel oil consumption measurement unit, wherein the fuel oil consumption measurement unit for measuring the consumption of fuel oil intermediate tank for storing the pre Ki燃fuel oil tank with a flow meter for measuring the emissions before Ki燃fuel oil, and a storage amount measuring unit for measuring a storage amount of pre Ki燃fuel oil in the intermediate tank from watercraft according to claim 1. 前記流量計は、質量流量計である、請求項2または3に記載の船舶。 The ship according to claim 2 or 3, wherein the flow meter is a mass flow meter. 前記流量計は、体積流量計と、温度または密度測定部とである、請求項2または3に記載の船舶。 The ship according to claim 2 or 3, wherein the flow meter is a volume flow meter and a temperature or density measuring unit. 前記貯留量測定部は、前記中間タンク内での前記燃料油の液面を測定する液面計と、温度または密度測定部を含む、請求項3に記載の船舶。 The storing amount measuring unit includes a liquid level meter for measuring the liquid level of the previous Ki燃fuel oil in said intermediate tank, and a temperature or density measuring section, vessel according to claim 3.
JP2017176714A 2017-09-14 2017-09-14 Ship Active JP6971734B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017176714A JP6971734B2 (en) 2017-09-14 2017-09-14 Ship
CN201810705674.XA CN109501996A (en) 2017-09-14 2018-07-02 Ship
KR1020180101176A KR102517593B1 (en) 2017-09-14 2018-08-28 Ship
JP2021179316A JP7339991B2 (en) 2017-09-14 2021-11-02 vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017176714A JP6971734B2 (en) 2017-09-14 2017-09-14 Ship

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021179316A Division JP7339991B2 (en) 2017-09-14 2021-11-02 vessel

Publications (2)

Publication Number Publication Date
JP2019051798A JP2019051798A (en) 2019-04-04
JP6971734B2 true JP6971734B2 (en) 2021-11-24

Family

ID=65745573

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017176714A Active JP6971734B2 (en) 2017-09-14 2017-09-14 Ship
JP2021179316A Active JP7339991B2 (en) 2017-09-14 2021-11-02 vessel

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021179316A Active JP7339991B2 (en) 2017-09-14 2021-11-02 vessel

Country Status (3)

Country Link
JP (2) JP6971734B2 (en)
KR (1) KR102517593B1 (en)
CN (1) CN109501996A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115680952B (en) * 2022-09-23 2024-10-15 广州泽尔测试技术有限公司 Liquid consumption measuring device
CN116001978B (en) * 2023-01-06 2023-11-10 福建国安船业有限公司 Daily oil and power oil transition method, system device and medium for ferry

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148851A (en) 1997-05-12 1999-06-02 Denso Corp Fuel gange, remaining fuel gange, and evaporated fuel processing device
JPH11200973A (en) * 1998-01-08 1999-07-27 Ishikawajima Harima Heavy Ind Co Ltd Fuel oil cleaning system of diesel engine
CN2351748Y (en) * 1998-05-21 1999-12-01 中国一拖集团有限公司 Whole-sealing universal weight fuel consumption metering device for diesel oil and gasoline
JP2007331670A (en) * 2006-06-16 2007-12-27 Oshima Shipbuilding Co Ltd Fuel supply device for ship
JP2009241903A (en) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd Marine fuel oil supply device
CN101423114A (en) * 2008-11-28 2009-05-06 大连船舶重工集团有限公司 Double-purpose ship based on interconversion of low-sulfur heavy fuel oil and general fuel oil
JP5363954B2 (en) * 2009-11-24 2013-12-11 川崎重工業株式会社 Fuel oil quality analysis method and fuel oil quality analysis apparatus
CN201828296U (en) * 2010-09-20 2011-05-11 陈剑辉 Diesel consumption meter of diesel engine
DE102012025021A1 (en) * 2012-12-20 2014-06-26 Man Diesel & Turbo Se Fuel system plant for marine diesel combustion engine of ship, has control valve controlled based on measuring signal such that constant amount of fuel is conveyed into mixing tank irrespective of actual fuel consumption of engine
DK178889B1 (en) * 2015-06-25 2017-05-01 A P Møller - Mærsk As METHOD AND FUEL MANAGEMENT SYSTEM FOR A MARINE SHIP
CN204944569U (en) * 2015-09-24 2016-01-06 中国北车集团大连机车车辆有限公司 Diesel generator set weight oil consumption supervising device
CN105715423A (en) * 2016-01-27 2016-06-29 郭一凡 Marine ship fuel management system
CN205532897U (en) * 2016-02-02 2016-08-31 武汉理工大学 Quick switched systems of weight oil steady voltage
JP6197089B1 (en) * 2016-10-25 2017-09-13 ナブテスコ株式会社 Apparatus and program for confirming reliability of data indicating amount of fuel oil consumed in ship
CN206325502U (en) * 2016-11-26 2017-07-14 中国石油化工股份有限公司 Heavy bunker fuel oil attemperation apparatus

Also Published As

Publication number Publication date
CN109501996A (en) 2019-03-22
JP2019051798A (en) 2019-04-04
KR20190030599A (en) 2019-03-22
JP2022019743A (en) 2022-01-27
JP7339991B2 (en) 2023-09-06
KR102517593B1 (en) 2023-04-03

Similar Documents

Publication Publication Date Title
JP7339991B2 (en) vessel
Basurko et al. Condition-based maintenance for medium speed diesel engines used in vessels in operation
CN100516785C (en) Method and device for determining fuel consumption of internal combustion engine
Doudnikoff et al. Effect of a speed reduction of containerships in response to higher energy costs in Sulphur Emission Control Areas
CN102549397B (en) Meter electronics and fluid quantification method for a fluid being transferred
KR101941377B1 (en) Program recorded on a recording medium and apparatus for checking the reliability of data showing the amount of fuel oil consumed in a ship
US7484407B2 (en) Method and device for diagnosis of an exhaust gas cleaning system
CA2588654A1 (en) Apparatus and method for fuel measurement and accountability
US7346448B2 (en) Measuring arrangement and method to determine at intervals the usability potential of at least one operational fluid in an engine
CN106372806B (en) For marine diesel engine CO2The measurement method and device of gas discharge
BR112013026172A2 (en) method and device for determining the remaining volume of reducing agent in a container belonging to a scr system
GB2513995A (en) Fuel System for a vehicle
JP5472191B2 (en) Fuel supply system for internal combustion engine
JP2011111916A (en) Control device for internal combustion engine
JP5405524B2 (en) LNG pump control system
Godet et al. Operational cycles for maritime transportation: Consolidated methodology and assessments
WO2024122139A1 (en) In-tank liquefied gas composition inferring method
JP2005069128A (en) Injection quantity measuring device and injection quantity measuring method
US20080041148A1 (en) Measuring device for recording a gas mass flow
KR102415524B1 (en) Apparatus for supplying fuel
RU32269U1 (en) Primary transducer of an ultrasonic liquid or gas flow meter
JP2024080937A (en) Method for predicting state of liquefied gas in tank, and system for predicting state of liquefied gas in tank
CN113008489A (en) Method and system for detecting oil leakage of oil tank in flight process of unmanned aerial vehicle
JP2022182650A (en) Fuel consumption amount prediction method and prediction device of emergency power generator drive engine, and operation time prediction method and prediction device of emergency power generator drive engine
JP2023105950A (en) Vessel and display device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211102

R150 Certificate of patent or registration of utility model

Ref document number: 6971734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150