WO2024122139A1 - In-tank liquefied gas composition inferring method - Google Patents

In-tank liquefied gas composition inferring method Download PDF

Info

Publication number
WO2024122139A1
WO2024122139A1 PCT/JP2023/032512 JP2023032512W WO2024122139A1 WO 2024122139 A1 WO2024122139 A1 WO 2024122139A1 JP 2023032512 W JP2023032512 W JP 2023032512W WO 2024122139 A1 WO2024122139 A1 WO 2024122139A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquefied gas
time point
composition
tank
information
Prior art date
Application number
PCT/JP2023/032512
Other languages
French (fr)
Japanese (ja)
Inventor
祐二 藤原
雅之 加藤
Original Assignee
三菱造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱造船株式会社 filed Critical 三菱造船株式会社
Publication of WO2024122139A1 publication Critical patent/WO2024122139A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives

Definitions

  • the present disclosure relates to a method for estimating the composition of liquefied gas in a tank.
  • Patent Literature 1 discloses a tank state estimation method that acquires information on the state inside a tank at the start point of a target section on a route, and calculates the state inside the tank at the end point of the section, assuming that the heat input to the tank in the section is used to vaporize the liquefied gas in the tank. In this tank state estimation method, the amount of heat inside the tank is estimated as the state inside the tank.
  • a tank is not provided with a device for re-liquefying the boil-off gas, it may be necessary to discharge the gas in the tank to the outside of the tank and consume it as fuel for the main engine or incinerate it in order to suppress an increase in tank pressure.
  • the liquefied gas is composed of multiple components, the components with lower boiling points among these multiple components will evaporate before the components with higher boiling points to become boil-off gas, so discharging the gas in the tank to the outside of the tank will change the composition of the liquid in the tank. In other words, when the gas or liquid in the tank is supplied to the outside of the tank, the composition of these gases and liquids will change over time.
  • Patent Document 1 does not allow the composition of the liquefied gas in the tank to be known, and therefore requires sampling the liquefied gas in the tank and analyzing the composition. Sampling the liquefied gas and analyzing the composition are time-consuming and laborious.
  • the present disclosure has been made to solve the above problems, and aims to provide a method for estimating the composition of liquefied gas in a tank that can easily grasp the composition of the liquefied gas stored in the tank.
  • the method for estimating the composition of liquefied gas in a tank is a method for estimating the composition of the liquefied gas in a tank that stores liquefied gas containing multiple components.
  • the method for estimating the composition of the liquefied gas in the tank includes a step of acquiring reference information, a step of setting first time point composition information, a step of acquiring information regarding the outflow amount of the liquefied gas in the tank, and a step of estimating second time point composition information.
  • the step of acquiring reference information acquires reference information for estimating the composition of the liquefied gas in the tank at a first time point.
  • the step of setting first time point composition information sets first time point composition information regarding the composition of the liquefied gas at the first time point based on the reference information acquired in the step of acquiring reference information.
  • the step of acquiring information regarding the outflow amount of the liquefied gas in the tank acquires information regarding the outflow amount of the liquefied gas in the tank between a second time point different from the first time point and the first time point.
  • second time point composition information regarding the composition of the liquefied gas at the second time point is estimated based on the first time point composition information set in the step of setting the first time point composition information and the outflow amount of the liquefied gas acquired in the step of acquiring information regarding the outflow amount of the liquefied gas in the tank.
  • the method for estimating the composition of liquefied gas in a tank is a method for estimating the composition of the liquefied gas in a tank that stores liquefied gas containing multiple components.
  • the method for estimating the composition of the liquefied gas in the tank includes a step of acquiring first reference time composition information, a step of acquiring outflow amount information, and a step of estimating third time composition information.
  • first reference time composition information regarding the composition of the liquefied gas set at a past first reference time is acquired.
  • step of acquiring the outflow amount information outflow amount information regarding the outflow amount of the liquefied gas in the tank between a third time point different from the first reference time point and the first reference time is acquired.
  • step of estimating the third time composition information third time composition information regarding the composition of the liquefied gas at the third time point is estimated based on the first reference time composition information acquired in the step of acquiring the first reference time composition information and the outflow amount information acquired in the step of acquiring outflow amount information regarding the outflow amount of the liquefied gas in the tank between the third time point and the first reference time.
  • the method for estimating the composition of liquefied gas in a tank is a method for estimating the composition of the liquefied gas in a tank storing liquefied gas containing multiple components.
  • the method for estimating the composition of the liquefied gas in the tank includes a step of acquiring second reference time composition information, a step of acquiring inflow volume information and outflow volume information, a step of acquiring inflow liquefied gas composition information, and a step of estimating fourth time composition information.
  • second reference time composition information regarding the composition of the liquefied gas set at a past second reference time is acquired.
  • inflow volume information regarding the inflow volume of the liquefied gas into the tank and outflow volume information regarding the outflow volume between a fourth time point different from the second reference time point and the second reference time point are acquired.
  • inflow liquefied gas composition information inflow liquefied gas composition information regarding the composition of the liquefied gas that has flowed into the tank is acquired.
  • the fourth time point composition information regarding the composition of the liquefied gas at the fourth time point is estimated based on the second reference time point composition information acquired in the step of acquiring the second reference time point composition information, the inflow volume information and the outflow volume information acquired in the step of acquiring inflow volume information regarding the inflow volume of liquefied gas into the tank and outflow volume information regarding the outflow volume between the fourth time point and the second reference time point, and the inflow liquefied gas composition information acquired in the step of acquiring the inflow liquefied gas composition information.
  • the disclosed method for estimating the composition of liquefied gas in a tank makes it easy to determine the composition of the liquefied gas stored in the tank.
  • FIG. 1 is a side view of a float equipped with a method for estimating the composition of a liquefied gas in a tank according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a hardware configuration of a liquefied gas composition estimation device according to an embodiment of the present disclosure.
  • FIG. 1 is a functional block diagram of a liquefied gas composition estimation device according to an embodiment of the present disclosure.
  • FIG. 1 is a chart showing different uses of methods for estimating the composition of liquefied gas in a tank according to embodiments of the present disclosure.
  • 1 is a flowchart showing the steps of a first liquefied gas composition estimation method as a method for estimating the composition of liquefied gas in a tank according to an embodiment of the present disclosure.
  • 1 is a flowchart showing the steps of a second liquefied gas composition estimation method as a method for estimating the composition of liquefied gas in a tank according to an embodiment of the present disclosure.
  • 13 is a flowchart showing the steps of a third liquefied gas composition estimation method as a method for estimating the composition of liquefied gas in a tank according to an embodiment of the present disclosure.
  • FIG. 1 (Overall configuration of the vessel)
  • the method for estimating the composition of liquefied gas in a tank according to this embodiment is carried out on a ship equipped with a combustion device that burns or incinerates boil-off gas as fuel.
  • the ship 1 of this embodiment includes at least a hull 2, a superstructure 4, a combustion device 9, a tank 10, and a liquefied gas composition estimation device 60 that estimates the composition of the liquefied gas in the tank 10.
  • the ship 1 of this embodiment will be described as an example of a ship that can navigate using a main engine or the like.
  • the type of the ship 1 is not limited to a specific type of ship. Examples of the type of the ship 1 include a liquefied gas carrier, a ferry, a RORO ship, a car carrier, a passenger ship, and the like.
  • the hull 2 has a pair of side panels 5A, 5B and a bottom 6 that form its outer hull.
  • the side panels 5A, 5B each have a pair of side panel shells that form the starboard and port sides, respectively.
  • the bottom 6 has a bottom panel shell that connects the side panels 5A, 5B.
  • the pair of side panels 5A, 5B and the bottom 6 give the outer hull 2 a U-shape in cross section perpendicular to the bow-stern direction FA.
  • the hull 2 further comprises an upper deck 7, which is a full-length deck located at the topmost level.
  • the superstructure 4 is formed on this upper deck 7. Accommodation areas and the like are provided within the superstructure 4.
  • a cargo carrying area (hold) 8 is formed closer to the bow 2a in the bow-stern direction FA than the superstructure 4.
  • the combustion device 9 is a device that generates thermal energy by burning fuel, and is provided inside the hull 2.
  • Examples of the combustion device 9 include an internal combustion engine used in the main engine for propelling the ship 1, an internal combustion engine used in the power generation equipment that supplies electricity to the ship, and a boiler that generates steam as a working fluid.
  • the tanks 10 are arranged in the hull 2.
  • the tanks 10 are cylindrical and extend horizontally, and a plurality of tanks 10 are arranged side by side in the bow-stern direction FA within the cargo carrying area 8.
  • the tanks 10 can be arranged on the exposed deck.
  • the tanks 10 may be spherical, rectangular, etc.
  • the tank 10 stores therein a liquefied gas containing multiple components.
  • liquefied gas containing multiple components include LNG (Liquefied Natural Gas) and LPG (Liquefied Petroleum Gas), which are liquefied gases liquefied at low temperatures.
  • LNG will be used as an example of a liquefied gas containing multiple components.
  • the liquefied gas in the tank 10 evaporates due to heat input from the outside, becoming boil-off gas.
  • the liquid of the liquefied gas in the tank 10 and the boil-off gas generated in the tank 10 are supplied to the combustion device 9 as fuel in the combustion device 9, or sent to an incineration device (not shown) for incineration.
  • FIG. 2 is a diagram illustrating a hardware configuration of a liquefied gas composition estimation device according to an embodiment of the present disclosure.
  • the liquefied gas composition estimation device 60 is a computer including a central processing unit (CPU) 61, a read only memory (ROM) 62, a random access memory (RAM) 63, a storage 64, and a signal transmission/reception module 65.
  • the signal transmission/reception module 65 receives detection signals from, for example, a pressure sensor that detects the pressure inside the tank 10, a temperature sensor that detects the temperature inside the tank 10, etc. (neither of which are shown).
  • FIG. 3 is a functional block diagram of a liquefied gas composition estimation device according to an embodiment of the present disclosure.
  • a CPU 61 of a liquefied gas composition estimation device 60 executes a program stored in advance in a storage device such as a ROM 62 or a storage 64 to realize each of the components of an information acquisition unit 71, an in-tank change amount acquisition unit 72, a composition estimation unit 73, and an information storage unit 74.
  • the information acquisition unit 71 acquires tank composition information regarding the composition of the liquefied gas in the tank 10 at each point in time.
  • the information acquisition unit 71 acquires detection data, for example, from a pressure sensor that detects the pressure inside the tank 10 and a temperature sensor that detects the temperature inside the tank 10, based on the detection signal received by the signal transmission/reception module 65.
  • the tank internal change amount acquisition unit 72 acquires the amount of change in the liquefied gas in the tank 10 between multiple points in time.
  • the composition estimation unit 73 estimates composition information regarding the composition of the liquefied gas in the tank 10 based on the composition information in the tank at multiple points in time acquired by the information acquisition unit 71 and the amount of change in the liquefied gas in the tank 10 acquired by the tank change amount acquisition unit 72.
  • the information storage unit 74 stores various pieces of information required when the liquefied gas composition estimation device 60 executes the process of estimating the composition of the liquefied gas in the tank 10.
  • the information storage unit 74 stores, for example, information such as the number, volume, heat retention performance, and amount of heat input from the outside of the tank 10 as specification information of the tank 10.
  • the information storage unit 74 also stores various estimation results obtained by repeatedly executing the process of estimating the composition of the liquefied gas in the tank 10.
  • FIG. 4 is a chart showing how to use different methods for estimating the composition of a liquefied gas in a tank according to an embodiment of the present disclosure.
  • the method S10 for estimating the composition of a liquefied gas in a tank in this embodiment includes a first method S10A for estimating the composition of a liquefied gas, a second method S10B for estimating the composition of a liquefied gas, and a third method S10C for estimating the composition of a liquefied gas.
  • the first liquefied gas composition estimation method S10A is executed in a state A1 in which the composition of the liquefied gas in the tank 10 is unknown.
  • the first liquefied gas composition estimation method S10A is also executed in a state in which no liquefied gas flows into the tank 10 from the outside, for example, while the ship 1 is sailing.
  • an example of the state A1 in which the composition of the liquefied gas in the tank 10 is unknown is a state after new liquefied gas is injected into the tank 10 from a state in which no liquefied gas is stored in the tank 10 (for example, a state in which all the liquefied gas has been discharged, etc.).
  • the second liquefied gas composition estimation method S10B is executed in state A2 where the composition of the liquefied gas in the tank 10 is estimated and known. For example, after the composition of the liquefied gas stored in the tank 10 is estimated by the first liquefied gas composition estimation method S10A, the second liquefied gas composition estimation method S10B estimates the composition of the liquefied gas based on the estimation result. In addition, the second liquefied gas composition estimation method S10B is executed in a state where no liquefied gas flows into the tank 10 from the outside, for example, while the ship 1 is sailing.
  • the third liquefied gas composition estimation method S10C is executed when the composition of the liquefied gas in the tank 10 is known and when liquefied gas is being supplied from the outside into the tank 10 or immediately after the supply. For example, in the case of a ship 1 fueled by liquefied gas, the method is executed in a state A3 during refueling with liquefied gas, that is, during so-called bunkering.
  • FIG. 5 is a flowchart showing the steps of a first liquefied gas composition estimation method as a method for estimating the composition of liquefied gas in a tank according to an embodiment of the present disclosure.
  • the first liquefied gas composition estimation method S10A of this embodiment includes a step S11 of acquiring reference information, a step S12 of setting first point-in-time composition information, a step S13 of acquiring outflow volume information regarding the outflow volume of liquefied gas in the tank, a step S14 of estimating second point-in-time composition information, a step S15 of acquiring a state quantity of the liquefied gas in the tank at the second point in time, a step S16 of estimating the state quantity of the liquefied gas in the tank from the second point-in-time composition information, and a step S17 of determining an error of the estimated value.
  • step S11 of acquiring reference information reference information is acquired for estimating the composition of the liquefied gas in the tank 10 at a first point in time T1 (see FIG. 4).
  • the first point in time T1 is an arbitrary point in time during state A1 in which the composition of the liquefied gas in the tank 10 is unknown.
  • the first point in time T1 is a point in time that has passed a certain amount of time since the start of use of the tank 10 at point T0, and is a point in time when liquefied gas is stored in the tank 10.
  • An example of reference information for estimating the composition of the liquefied gas in the tank 10 is the state quantity of the tank 10 at the first time point T1.
  • the state quantity of the tank 10 is, for example, at least one of the pressure, temperature, density, etc., inside the tank 10.
  • the pressure and temperature inside the tank 10 are used as the reference information acquired in step S11.
  • the pressure and temperature inside the tank 10 are acquired, for example, from a pressure sensor, a temperature sensor, etc. installed in the tank 10.
  • step S12 of setting the first time point composition information the first time point composition information regarding the composition of the liquefied gas at the first time point T1 is set based on the reference information acquired in step S11 of acquiring the reference information.
  • step S12 the liquid composition of the liquefied gas in the tank 10 at the first time T1 is assumed.
  • the liquid composition of the liquefied gas in the tank 10 at the first time T1 may be assumed by using, for example, the amount of boil-off gas (the ratio to the liquefied gas that is liquid) generated in the tank 10 from the liquefied gas supplied to the tank 10 after the start of use time T0 to the first time T1 as a variable, or the liquid composition of a random set of numerical values may be assumed by using random numbers.
  • the liquefied gas stored in the tank 10 can be supplied from a land-based liquefied gas supply facility, a tanker truck, a bunker ship, etc.
  • the supply side such as a land-based liquefied gas supply facility, analyzes the liquefied gas to be supplied to the tank 10 in advance, etc., to determine the liquid composition of the liquefied gas.
  • step S12 when it is determined that the error is not within the set range by step S17 for determining the error of the estimated value, which will be described later, the liquid composition of the liquefied gas in the tank 10 at the first time point T1 is again assumed to be a different set of values. Note that multiple liquid compositions of the liquefied gas in the tank 10 at the first time point T1 may be assumed.
  • step S12 the assumed values of the state quantities of the liquefied gas at the assumed liquid composition of the liquefied gas are calculated.
  • the liquid density of the liquefied gas can be calculated from the assumed values of the pressure and temperature of the liquefied gas as the state quantity of the liquefied gas at the assumed liquid composition of the liquefied gas.
  • step S12 the first time composition information is set based on the calculated assumed value of the state quantity of the liquefied gas in the tank 10 at the first time T1 and the actual measured value of the state quantity of the liquefied gas in the tank 10 at the first time T1 obtained in step S11.
  • detection data of the pressure and temperature of the liquefied gas is obtained as the state quantity of the liquefied gas in the tank 10 at the first time T1. Therefore, in this step S12, the density of the liquefied gas in the tank 10 at the first time T1 is calculated based on the detection data of the pressure and temperature of the liquefied gas in the tank 10 at the first time T1 obtained in step S11.
  • the calculated assumed value of the density of the liquefied gas in the tank 10 at the first time T1 is compared with the density of the liquefied gas based on the actual measured value of the liquefied gas in the tank 10 at the first time T1.
  • a liquid composition of the liquefied gas is further searched for and estimated by an appropriate optimization method such that the error between the assumed value of the state quantity of the liquefied gas in the tank 10 at the first time T1 calculated and the state quantity of the liquefied gas based on the actual measurement value of the liquefied gas in the tank 10 at the first time T1 is sufficiently small or zero.
  • the assumed value may be set as the first time composition information.
  • the assumed value with the smallest error from the actual measurement value of the state quantity of the liquefied gas in the tank 10 at the first time T1 among these multiple assumed values may be set as the first time composition information.
  • step S13 of acquiring outflow amount information regarding the outflow amount of liquefied gas in the tank outflow amount information regarding the outflow amount of liquefied gas in the tank 10 between the first point in time T1 and a second point in time T2 different from the first point in time T1 is acquired.
  • the second point in time T2 different from the first point in time T1 may be after the first point in time T1 or may be before the first point in time T1.
  • the second point in time T2 is, for example, the start point in time T0 of use, which is before the first point in time T1.
  • the outflow of liquefied gas in the tank 10 between the second point in time T2 and the first point in time T1 occurs, for example, by supplying the liquefied gas liquid in the tank 10 to the combustion device 9 as fuel.
  • the outflow of liquefied gas in the tank 10 between the second point in time T2 and the first point in time T1 also occurs, for example, by discharging boil-off gas generated by the evaporation of the liquefied gas in the tank 10 to the outside of the tank 10.
  • the amount of liquefied gas flowing out of the tank 10 between the second point in time T2 and the first point in time T1 may be calculated based on specification information about the tank 10 pre-stored in the information storage unit 74, or measurement data may be used.
  • specification information about the tank 10 include the number of tanks 10, the volume of the tank 10, the thermal insulation performance of the tank 10, and the amount of heat input from the outside to the tank 10.
  • the amount of heat input from the outside to the tank 10 can be obtained based on, for example, the thermal insulation performance of the tank 10 and data such as the air temperature.
  • the outflow volume information regarding the outflow volume of liquefied gas in the tank obtained in step S13 may be, for example, the outflow volume of liquefied gas in the tank 10 itself between the first point in time T1 and a second point in time T2 different from the first point in time T1, or other information (e.g., heat quantity) that correlates with the outflow volume of liquefied gas may be obtained and the outflow volume may be calculated from this information.
  • the outflow volume information regarding the outflow volume of liquefied gas in the tank obtained in step S13 may be, for example, the consumption volume in a combustion device 9 that consumes the liquefied gas flowing out from within the tank 10, which may be obtained from a data logger or the like installed on the ship 1.
  • step S14 of estimating second time composition information second time composition information regarding the composition of the liquefied gas at the second time T2 is estimated based on the first time composition information set in step S12 and the outflow amount information regarding the outflow amount of the liquefied gas acquired in step S13.
  • step S14 the amount of change in the composition ratio of the multiple components constituting the liquefied gas between the second time T2 and the first time T1 is calculated based on the first time composition information at the first time T1 set in step S12 and the outflow amount of the liquefied gas in the tank 10 between the second time T2 and the first time T1 acquired in step S13.
  • step S14 for example, the liquid composition of the liquefied gas in the tank 10 at the second time T2 is estimated based on the first time composition information at the first time T1 set in step S12 and the calculated amount of change in the composition ratio of the multiple components constituting the liquefied gas between the second time T2 and the first time T1.
  • step S15 of acquiring the state quantity of the liquefied gas in the tank at the second time point the state quantity of the liquefied gas in the tank 10 at the second time point T2 is acquired.
  • the actual measured values of the pressure and temperature of the liquefied gas acquired from a pressure sensor, a temperature sensor, etc. installed in the tank 10 are acquired as the state quantity of the liquefied gas in the tank 10 at the second time point T2.
  • step S16 of estimating the state quantity of the liquefied gas in the tank from the second time point composition information the state quantity of the liquefied gas in the tank 10 at the second time point T2 is estimated from the second time point composition information estimated in step S14. Specifically, estimates of other state quantities of the liquefied gas at the second time point T2 are calculated based on the second time point composition information estimated in step S14 and the actual measured value of the state quantity of the liquefied gas in the tank 10 at the second time point T2 acquired in step S15.
  • the density of the liquefied gas at the second time point T2 is calculated as an estimate of the state quantity of the liquefied gas at the second time point T2 based on the liquid composition of the liquefied gas at the second time point T2 estimated in step S14 and the pressure and temperature of the liquefied gas in the tank 10 at the second time point T2.
  • step S17 it is determined whether or not an error between the estimated value of the state quantity (e.g., density) of the liquefied gas at the second time T2 calculated in step S16 and another state quantity of the liquefied gas in the tank 10 at the second time T2 calculated from the actual measurement value of the state quantity of the liquefied gas in the tank 10 at the second time T2 acquired in step S15 is within a preset range.
  • the state quantity e.g., density
  • step S17 If the error between the estimated value of the state quantity of the liquefied gas in the tank 10 at the second time T2 calculated from the actual measurement value of the state quantity of the liquefied gas in the tank 10 at the second time T2 acquired in step S15 is within the preset range (Yes in step S17), the composition of the liquefied gas in the tank 10 at the first time T1 based on the first time point composition information set in step S12 is adopted as an estimation result of the composition of the liquefied gas in the tank 10 in the first liquefied gas composition estimation method S10A in this embodiment.
  • step S15 if the result of the above judgment is that the error between the estimated value of the state quantity of the liquefied gas in the tank 10 at the second point in time T2 calculated and the actual measured value of the state quantity of the liquefied gas in the tank 10 at the second point in time T2 obtained in step S15 is not within the set range (No in step S17), return to step S12 and repeat the processing from step S13 onwards by further changing the assumption of the liquid composition of the liquefied gas in the tank 10 at the first point in time T1.
  • FIG. 6 is a flowchart showing the steps of a second liquefied gas composition estimation method as a method for estimating the composition of liquefied gas in a tank according to an embodiment of the present disclosure.
  • the second liquefied gas composition estimation method S10B of this embodiment includes a step S21 of acquiring outflow volume information regarding the outflow volume of liquefied gas in the tank between the third point in time T3 and the first reference point in time Ts1, and a step S22 of estimating the third point in time composition information.
  • the second liquefied gas composition estimation method S10B is performed in state A2 (see FIG. 4) where the composition of the liquefied gas in the tank 10 is known by executing the first liquefied gas composition estimation method S10A, or by measuring the composition of the liquefied gas in the tank 10 by sampling.
  • the composition of the liquefied gas in the tank 10 at the first time point T1 based on the first time point composition information set in step S12 is adopted as the estimated result of the composition of the liquefied gas in the tank 10.
  • step S21 which acquires outflow volume information regarding the outflow volume of liquefied gas in the tank
  • the outflow volume of liquefied gas in the tank 10 between a third point in time T3, which is different from the first point in time T1 and the second point in time T2, and a first reference point in time Ts1 is acquired.
  • the third point in time T3 is a point in time after the first reference point in time Ts1.
  • the first reference point in time Ts1 is set to the first point in time T1 at which the most recent estimated result of the liquid composition of the liquefied gas is adopted.
  • the outflow of liquefied gas in the tank 10 between the third time point T3 and the first reference time point Ts1 occurs, for example, by supplying the liquefied gas liquid in the tank 10 to the combustion device 9 as fuel.
  • the outflow of liquefied gas in the tank 10 between the third time point T3 and the first reference time point Ts1 also occurs, for example, by discharging boil-off gas generated by the evaporation of the liquefied gas in the tank 10 to the outside of the tank 10.
  • the amount of liquefied gas flowing out of the tank 10 between the third point in time T3 and the first reference point in time Ts1 may be calculated, for example, based on specification information about the tank 10 pre-stored in the information storage unit 74, or measurement data may be used.
  • specification information about the tank 10 include the quantity of the tanks 10, the volume of the tanks 10, the thermal insulation performance of the tanks 10, and the amount of heat input from the outside to the tank 10.
  • the amount of heat input from the outside to the tank 10 can be obtained, for example, based on data such as the thermal insulation performance of the tank 10 and the air temperature outside the tank 10.
  • the outflow amount information regarding the outflow amount of liquefied gas in the tank obtained in step S21 may be, for example, the outflow amount of liquefied gas in the tank 10 itself between the third time point T3 and the first reference time point Ts1, or other information (e.g., heat amount) that correlates with the outflow amount of liquefied gas may be obtained and the outflow amount may be calculated from this information.
  • the outflow amount information regarding the outflow amount of liquefied gas in the tank 10 obtained in step S21 may be, for example, the amount of liquefied gas consumed in the combustion device 9 or the like that consumes the liquefied gas outflowing from the tank 10, obtained from a data logger or the like installed on the ship 1.
  • step S22 of estimating the third time point composition information the third time point composition information relating to the composition of the liquefied gas at the third time point T3 is estimated based on the first time point composition information (first reference time point composition information) at the first time point T1, which is the first reference time point Ts1, and the outflow amount information relating to the outflow amount of the liquefied gas between the third time point T3 and the first reference time point Ts1 obtained in step S21.
  • step S22 the amount of change in the composition ratio of the multiple components that make up the liquefied gas between the third time point T3 and the first reference time point Ts1 is calculated based on the first time point composition information at the first time point T1, which is the first reference time point Ts1, and the outflow amount of the liquefied gas in the tank 10 between the third time point T3 and the first reference time point Ts1 obtained in step S21.
  • step S22 the liquid composition of the liquefied gas in the tank 10 at the third time T3, for example, is estimated based on the first time point composition information at the first time point T1, which is the first reference time point Ts1, and the calculated change in the composition ratio of the multiple components that make up the liquefied gas between the third time point T3 and the first reference time point Ts1.
  • the liquid composition of the liquefied gas in the tank 10 at the third time point T3 estimated in step S22 is used as the estimation result in the second liquefied gas composition estimation method S10B in this embodiment.
  • FIG. 7 is a flowchart showing the steps of a third liquefied gas composition estimation method as a method for estimating the composition of liquefied gas in a tank according to an embodiment of the present disclosure.
  • the third liquefied gas composition estimation method S10C of this embodiment includes a step S31 of acquiring inflow volume information regarding the inflow volume of liquefied gas in the tank between the fourth point in time T4 and the second reference point in time Ts2 and outflow volume information regarding the outflow volume of liquefied gas in the tank, a step S32 of acquiring inflow liquefied gas composition information, and a step S33 of estimating the fourth point in time composition information.
  • step S31 inflow information on the inflow amount of the liquefied gas in the tank 10 and outflow information on the outflow amount of the liquefied gas in the tank are acquired.
  • Inflow information on the inflow amount of the liquefied gas in the tank 10 and outflow information on the outflow amount of the liquefied gas in the tank 10 between a fourth time point T4, which is different from the first time point T1, the second time point T2, and the third time point T3, and the second reference time point Ts2 are acquired.
  • the fourth time point T4 is a time point during so-called bunkering, or immediately after bunkering, in which liquefied gas is supplied from the outside into the tank 10 after the second reference time point Ts2.
  • the fourth time point T4 is a time point after the first reference time point Ts1.
  • the second reference time point Ts2 is set to the third time point T3, which employs the most recent estimated result of the liquid composition of the liquefied gas.
  • the second reference time point Ts2 is not limited to the third time point T3, and may be another time point such as the first time point T1 or the second time point T2.
  • the inflow amount of liquefied gas in the tank 10 between the fourth time point T4 and the second reference time point Ts2 can be obtained, for example, based on measurement data of the flow rate of the liquefied gas supplied to the tank 10.
  • the outflow amount of liquefied gas in the tank 10 between the fourth time point T4 and the second reference time point Ts2 may be calculated, for example, based on specification information regarding the tank 10 pre-stored in the information storage unit 74, or may use the measurement data.
  • step S32 of acquiring inflow liquefied gas composition information inflow liquefied gas composition information is acquired regarding the composition of the liquefied gas that has flowed into the tank 10 between the fourth time point T4 and the second reference time point Ts2 (third time point T3).
  • This inflow liquefied gas composition information may be information on the liquid composition of the liquefied gas supplied to the tank 10 provided by a liquefied gas supply facility, for example. Note that the inflow liquefied gas composition information may be estimated by reusing past actual values.
  • step S33 of estimating the fourth time point composition information the fourth time point composition information regarding the composition of the liquefied gas at the fourth time point T4 is estimated based on the third time point composition information (second reference time point composition information) at the third time point T3, which is the second reference time point Ts2, the inflow volume information regarding the inflow volume of liquefied gas and the outflow volume information regarding the outflow volume of liquefied gas in the tank 10 between the fourth time point T4 and the second reference time point Ts2 acquired in step S31, and the inflow liquefied gas composition information acquired in step S32.
  • second reference time point composition information the third time point composition information at the third time point T3, which is the second reference time point Ts2
  • the inflow volume information regarding the inflow volume of liquefied gas and the outflow volume information regarding the outflow volume of liquefied gas in the tank 10 between the fourth time point T4 and the second reference time point Ts2 acquired in step S31 the inflow liquefied gas composition information acquired in step S32.
  • step S33 of estimating the fourth time point composition information the amount of change in the multiple components constituting the liquefied gas between the fourth time point T4 and the third time point T3 is calculated based on the third time point composition information at the third time point T3, which is the second reference time point Ts2, the inflow amount of the liquefied gas in the tank 10 between the fourth time point T4 and the second reference time point Ts2 (third time point T3) acquired in step S31 and the outflow amount of the liquefied gas in the tank 10 between the fourth time point T4 and the second reference time point Ts2 (third time point T3), and the inflow liquefied gas composition information acquired in step S32.
  • step S33 of estimating the fourth time point composition information for example, the liquid composition of the liquefied gas in the tank 10 at the fourth time point T4 is estimated based on the third time point composition information at the third time point T3 and the calculated amount of change in the multiple components constituting the liquefied gas between the fourth time point T4 and the third time point T3.
  • the liquid composition of the liquefied gas in the tank 10 at the fourth time point T4 estimated in step S33 is adopted as the estimated result in the third liquefied gas composition estimation method S10C in this embodiment.
  • second-point-in-time composition information regarding the composition of the liquefied gas at the second point-in-time T2 is estimated based on first-point-in-time composition information of the liquefied gas obtained at the first point-in-time T1 and the amount of liquefied gas flowing out of the tank 10 between the second point-in-time T2 and the first point-in-time T1. Therefore, the composition of the liquefied gas stored in the tank 10 can be easily grasped without measuring the composition of the liquefied gas in the tank 10.
  • the liquid composition of the liquefied gas in the tank 10 at the first point in time T1 is assumed, and first point in time composition information regarding the liquid composition of the liquefied gas at the first point in time T1 can be set based on an assumed value of the state quantity of the liquefied gas calculated from the assumed liquid composition of the liquefied gas and the actual state quantity of the liquefied gas in the tank 10 at the first point in time T1.
  • the liquid composition of the liquefied gas in the tank 10 at the first time point T1 is assumed, and among the assumed values of the state quantities in the assumed liquid composition of the liquefied gas, the difference between the assumed value of the state quantity and the state quantity of the liquefied gas in the tank 10 at the first time point T1 is within a preset range and is set as the first time point composition information.
  • This makes it possible to select from the assumed liquid compositions of the liquefied gas one that is close to the composition of the liquefied gas in the tank 10 at the first time point T1, thereby improving the estimation accuracy of the assumed liquid composition of the liquefied gas.
  • inflow volume information regarding the amount of liquefied gas flowing into the tank 10 and outflow volume information regarding the amount of liquefied gas flowing out of the tank 10 are acquired, and fourth time point composition information regarding the composition of the liquefied gas at the fourth time point T4 can be estimated based on the third time point composition information (second reference time point composition information), the inflow volume information, and the outflow volume information.
  • step S11 and the like the pressure and temperature inside the tank 10 are acquired as the state quantities of the tank 10, and the density of the liquefied gas is calculated from these pressures and temperatures, but this is not limited to the above.
  • the composition of the liquefied gas may be estimated by calculating the temperature of the liquefied gas from the pressure inside the tank 10 and the density of the liquefied gas.
  • information on even more parameters may be acquired as the state quantities of the liquefied gas inside the tank 10, and the composition of the liquefied gas may be estimated from this information.
  • an assumed value to be used in subsequent processing is selected from multiple assumed values of the state quantity (density) of the liquefied gas in the tank 10 at the first time point T1 using an appropriate optimization method, but the specific method may be any method.
  • the second point in time T2 is used as the first reference point in time Ts1, but the first reference point in time Ts1 may be any other point in time, not limited to the second point in time T2, as long as it is prior to the third point in time T3.
  • the third point in time T3 is used as the second reference point in time Ts2, but the second reference point in time Ts2 may be any other point in time, not limited to the third point in time T3, as long as it is prior to the fourth point in time T4.
  • the tank 10 provided on the ship 1 is described as an example, but the tank 10 may also be a tank installed on land.
  • the method S10 for estimating the composition of liquefied gas in a tank described in the embodiment can be understood, for example, as follows.
  • a method S10 for estimating the composition of liquefied gas in a tank according to a first aspect is a method S10 for estimating the composition of liquefied gas in a tank 10 storing liquefied gas containing multiple components, and includes: a step S11 for acquiring reference information for estimating the composition of the liquefied gas in the tank 10 at a first point in time T1; a step S12 for setting first point-in-time composition information regarding the composition of the liquefied gas at the first point in time T1 based on the reference information acquired in the step S11 for acquiring the reference information; a step S13 for acquiring information regarding the outflow amount of liquefied gas in the tank between a second point in time T2 different from the first point in time T1 and the first point in time T1; and a step S14 for estimating second point-in-time composition information regarding the composition of the liquefied gas at the second point in time based on the first point-in-time composition information set in the step S12 for setting first
  • the reference information examples include state quantities such as pressure, temperature, and density of the liquefied gas, and the composition of the liquefied gas.
  • the second point in time T2, which is different from the first point in time T1 may be a point in time before the first point in time T1, or may be a point in time after the first point in time T1.
  • This method S10 for estimating the composition of liquefied gas in a tank estimates second-time point composition information regarding the composition of the liquefied gas at the second time point T2 based on first-time point composition information of the liquefied gas obtained at the first time point T1 and the amount of liquefied gas flowing out of the tank 10 between the second time point T2 and the first time point T1, so that the composition of the liquefied gas stored in the tank 10 can be easily grasped without analyzing the composition of the liquefied gas in the tank 10.
  • a method S10 for estimating the composition of liquefied gas in a tank according to a second aspect is the method S10 for estimating the composition of liquefied gas in a tank of (1), in which in step S11 of acquiring the reference information, a state quantity of the liquefied gas in the tank 10 at the first point in time T1 is acquired as the reference information, and in step S12 of setting the first point in time composition information, a liquid composition of the liquefied gas in the tank 10 at the first point in time T1 is assumed, an assumed value of the state quantity at the assumed liquid composition of the liquefied gas is calculated, and the first point in time composition information is set based on the calculated assumed value of the state quantity and the state quantity of the liquefied gas in the tank 10 at the first point in time T1.
  • the state quantities of a liquefied gas include the pressure, temperature, and density of the liquefied gas.
  • first point in time composition information regarding the liquid composition of the liquefied gas at the first point in time T1 to be set based on an assumed value of the state quantity of the liquefied gas calculated from the assumed liquid composition of the liquefied gas and the actual state quantity of the liquefied gas in the tank 10 at the first point in time T1.
  • the method S10 for estimating the composition of liquefied gas in a tank according to the third aspect is the method S10 for estimating the composition of liquefied gas in a tank according to (2), and in step S12 for setting the first time point composition information, multiple liquid compositions of the liquefied gas in the tank 10 at the first time point T1 are assumed, and among the multiple assumed values of the state quantity for each of the multiple assumed liquid compositions of the liquefied gas, one in which the difference between the assumed value of the state quantity and the state quantity of the liquefied gas in the tank 10 at the first time point T1 is within a preset range is identified, and the liquid composition of the liquefied gas corresponding to the identified assumed value of the state quantity is set as the first time point composition information.
  • the method S10 for estimating the composition of liquefied gas in a tank according to the fourth aspect is any one of the methods S10 for estimating the composition of liquefied gas in a tank according to (1) to (3), and further includes a step S15 for acquiring the state quantity of the liquefied gas in the tank at the second time point, a step S16 for estimating the state quantity of the liquefied gas in the tank 10 at the second time point T2 based on the second time point composition information estimated in the step S14 for estimating the second time point composition information, and a step S17 for determining an error in the estimated value of the state quantity of the liquefied gas in the tank 10 at the second time point T2 by comparing the estimated value of the state quantity of the liquefied gas in the tank 10 at the second time point T2 estimated in the step S16 for estimating the state quantity of the liquefied gas in the tank 10 at the second time point T2 with the state quantity of the liquefied gas in the tank 10 at the second time point T
  • the state quantity of the liquefied gas in the tank 10 at the second time point T2 to be estimated based on the second time point composition information.
  • the estimated value of the state quantity of the liquefied gas at the second time point T2 estimated in step S16 with the state quantity of the liquefied gas in the tank 10 at the second time point T2 acquired in step S15, it is possible to obtain an estimated value of the state quantity of the liquefied gas at the second time point T2 that falls within a preset error range, and therefore it is possible to obtain a probable estimated composition based on this estimated value of the state quantity, i.e., the probable second time point composition information estimated in step S14 and the first time point composition information set in step S12.
  • the method S10 for estimating the composition of liquefied gas in a tank according to the fifth aspect is any one of the methods S10 for estimating the composition of liquefied gas in a tank according to (1) to (4), and includes a step S12 for acquiring first reference time composition information regarding the composition of the liquefied gas at a past first reference time Ts1, a step S21 for acquiring outflow volume information regarding the outflow volume of the liquefied gas in the tank 10 between a third time T3 different from the first reference time Ts1 and the first reference time Ts1, and a step S22 for estimating third time composition information regarding the composition of the liquefied gas at the third time T3 based on the first reference time composition information acquired in the step S12 for acquiring the first reference time composition information and the outflow volume information acquired in the step S21 for acquiring outflow volume information regarding the outflow volume of the liquefied gas in the tank 10 between the third time T3 and the first reference time Ts1.
  • the method S10 for estimating the composition of liquefied gas in a tank relating to the sixth aspect is the method S10 for estimating the composition of liquefied gas in a tank according to (5), and includes a step S31 of acquiring second reference time composition information regarding the composition of the liquefied gas set at a past second reference time Ts2, a step S32 of acquiring inflow volume information regarding the inflow volume of liquefied gas into the tank 10 between a fourth time T4 different from the second reference time Ts2 and the second reference time Ts2, and a step S33 of acquiring inflow liquefied gas composition information regarding the composition of the liquefied gas that has flowed into the tank 10.
  • step S33 of estimating fourth time point composition information relating to the composition of the liquefied gas at the fourth time point T4 based on the second reference time point composition information acquired in step S22 of acquiring the second reference time point composition information, the inflow volume information acquired in step S31 of acquiring inflow volume information relating to the inflow volume of the liquefied gas into the tank 10 between the fourth time point T4 and the second reference time point Ts2, and the inflow liquefied gas composition information acquired in step S32 of acquiring the inflow liquefied gas composition information.
  • inflow volume information regarding the inflow volume of liquefied gas into the tank 10 can be obtained, and fourth time point composition information regarding the composition of the liquefied gas at the fourth time point T4 can be estimated based on the second reference time point composition information and the inflow volume information.
  • the method S10 for estimating the composition of liquefied gas in a tank according to the seventh aspect is a method S10 for estimating the composition of liquefied gas in a tank 10 storing liquefied gas containing multiple components, and includes a step S12 for acquiring first reference time composition information regarding the composition of the liquefied gas set at a past first reference time Ts1, a step S21 for acquiring outflow volume information regarding the outflow volume of the liquefied gas in the tank 10 between a third time T3 different from the first reference time Ts1 and the first reference time Ts1, and a step S22 for estimating third time composition information regarding the composition of the liquefied gas at the third time T3 based on the first reference time composition information acquired in the step S12 for acquiring the first reference time composition information and the outflow volume information acquired in the step S21 for acquiring outflow volume information regarding the outflow volume of the liquefied gas in the tank 10 between the third time T3 and the first reference time Ts1.
  • the method S10 for estimating the composition of liquefied gas in a tank relating to the eighth aspect is a method S10 for estimating the composition of liquefied gas in a tank 10 storing liquefied gas containing multiple components, and includes a step S31 of acquiring second reference time composition information regarding the composition of the liquefied gas set at a past second reference time Ts2, a step S32 of acquiring inflow volume information regarding the amount of liquefied gas flowing into the tank 10 and outflow volume information regarding the amount of liquefied gas flowing out of the tank between a fourth time T4 different from the second reference time Ts2 and the second reference time Ts2, and an inflow liquefied gas composition information regarding the composition of the liquefied gas that has flowed into the tank 10.
  • the method includes a step S32 of acquiring information, and a step S33 of estimating fourth time point composition information related to the composition of the liquefied gas at the fourth time point T4 based on the second reference time point composition information acquired in the step S22 of acquiring the second reference time point composition information, the inflow volume information and the outflow volume information acquired in the step S31 of acquiring inflow volume information related to the inflow volume of the liquefied gas into the tank 10 and outflow volume information related to the outflow volume of the liquefied gas in the tank between the fourth time point T4 and the second reference time point Ts2, and the inflow liquefied gas composition information acquired in the step S32 of acquiring the inflow liquefied gas composition information.
  • inflow and outflow of liquefied gas occurs into and from the tank 10 between the fourth point in time T4 and the previous second reference point in time Ts2
  • inflow volume information regarding the inflow volume of liquefied gas in the tank 10 and outflow volume information regarding the outflow volume can be obtained
  • fourth point in time composition information regarding the composition of the liquefied gas at the fourth point in time T4 can be estimated based on the second reference point in time composition information, the inflow volume information, and the outflow volume information. Therefore, the composition of the liquefied gas stored in the tank 10 can be easily grasped without analyzing the composition of the liquefied gas in the tank 10.
  • the disclosed method for estimating the composition of liquefied gas in a tank makes it easy to determine the composition of the liquefied gas stored in the tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

This in-tank liquefied gas composition inferring method is for inferring the composition of a liquefied gas including a plurality of components in a tank where the liquefied gas is stored. The in-tank liquefied gas composition inferring method comprises: a step for acquiring reference information for inferring the composition of a liquefied gas in a tank at a first time point; a step for setting first time point composition information regarding the composition of the liquefied gas at the first time point on the basis of the reference information acquired in the step for acquiring the reference information; a step for acquiring information regarding an outflow of the liquefied gas in the tank between the first time point and a second time point different from the first time point; and a step for inferring second time point composition information regarding a composition of the liquefied gas at the second time point on the basis of the first time point composition information set in the step for setting the first time point composition information and the outflow of the liquefied gas acquired in the step for acquiring the information regarding the outflow of the liquefied gas in the tank.

Description

タンク内の液化ガスの組成推定方法Method for estimating the composition of liquefied gas in a tank
 本開示は、タンク内の液化ガスの組成推定方法に関する。
 本願は、2022年12月5日に、日本に出願された特願2022-193891号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a method for estimating the composition of liquefied gas in a tank.
This application claims priority based on Japanese Patent Application No. 2022-193891, filed on December 5, 2022, the contents of which are incorporated herein by reference.
 液化天然ガス、液化石油ガス等の液化ガスを貯蔵するタンクにおいて、外部からの入熱により、液化ガスがタンク内で蒸発して、ボイルオフガスが発生する。タンクが船舶に搭載されている場合、ボイルオフガスは、例えば、船舶に搭載された主機等の燃料として利用されることがある。
 例えば、特許文献1には、航路上の対象の区間の始点におけるタンク内の状態に係る情報を取得し、区間におけるタンクへの入熱がタンク内の液化ガスの気化に用いられたものとして、区間の終点におけるタンク内の状態を計算するタンク状態推定方法が開示されている。このタンク状態推定方法では、タンク内の状態として、タンク内の熱量を推定している。
In a tank that stores liquefied gas such as liquefied natural gas or liquefied petroleum gas, the liquefied gas evaporates in the tank due to heat input from the outside, generating boil-off gas. When the tank is installed on a ship, the boil-off gas may be used, for example, as fuel for the main engine installed on the ship.
For example, Patent Literature 1 discloses a tank state estimation method that acquires information on the state inside a tank at the start point of a target section on a route, and calculates the state inside the tank at the end point of the section, assuming that the heat input to the tank in the section is used to vaporize the liquefied gas in the tank. In this tank state estimation method, the amount of heat inside the tank is estimated as the state inside the tank.
国際公開第2018/189789号International Publication No. 2018/189789
 ところで、タンクのボイルオフガスを再液化する装置を具備していない場合、タンク圧力の上昇を抑えるために、タンク内の気体をタンク外に排出して、主機の燃料として消費したり、焼却処分したりする必要が生じる場合がある。しかし、液化ガスが複数の成分からなる場合、これら複数の成分のうち、沸点の低い成分が、沸点の高い成分よりも先に蒸発してボイルオフガスとなるため、タンク内の気体をタンク外に排出することで、タンク内の液体の組成が変化することになる。つまり、タンク内の気体や液体をタンクの外部に供給する場合、これら気体の組成や液体の組成は、時間の経過と共に変化していく。例えば、タンク内の液体を、船舶に設けられた燃焼装置の燃料として利用する場合、タンクから供給される燃料の組成が変化することで燃焼装置における燃料の燃焼状態に影響を及ぼす可能性も有る。
 しかしながら、特許文献1に開示されたような手法では、タンク内の液化ガスの組成を把握することができないため、タンク内の液化ガスをサンプリングし、その組成を分析する必要がある。液化ガスのサンプリング、組成の分析には手間、及び時間が掛かってしまう。
However, if a tank is not provided with a device for re-liquefying the boil-off gas, it may be necessary to discharge the gas in the tank to the outside of the tank and consume it as fuel for the main engine or incinerate it in order to suppress an increase in tank pressure. However, if the liquefied gas is composed of multiple components, the components with lower boiling points among these multiple components will evaporate before the components with higher boiling points to become boil-off gas, so discharging the gas in the tank to the outside of the tank will change the composition of the liquid in the tank. In other words, when the gas or liquid in the tank is supplied to the outside of the tank, the composition of these gases and liquids will change over time. For example, when the liquid in the tank is used as fuel for a combustion device installed on the ship, a change in the composition of the fuel supplied from the tank may affect the combustion state of the fuel in the combustion device.
However, the method disclosed in Patent Document 1 does not allow the composition of the liquefied gas in the tank to be known, and therefore requires sampling the liquefied gas in the tank and analyzing the composition. Sampling the liquefied gas and analyzing the composition are time-consuming and laborious.
 本開示は、上記課題を解決するためになされたものであって、タンク内に貯留している液化ガスの組成を容易に把握することができるタンク内の液化ガスの組成推定方法を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a method for estimating the composition of liquefied gas in a tank that can easily grasp the composition of the liquefied gas stored in the tank.
 上記課題を解決するために、本開示に係るタンク内の液化ガスの組成推定方法は、複数成分を含む液化ガスを貯留しているタンク内の前記液化ガスの組成推定方法である。前記タンク内の液化ガスの組成推定方法は、基準情報を取得するステップと、第一時点組成情報を設定するステップと、タンク内の液化ガスの流出量に関する情報を取得するステップと、第二時点組成情報を推定するステップと、を含む。前記基準情報を取得するステップは、第一時点において、前記タンク内の前記液化ガスの組成を推定するための基準情報を取得する。前記第一時点組成情報を設定するステップでは、前記基準情報を取得するステップで取得された前記基準情報に基づいて、前記第一時点における前記液化ガスの組成に関する第一時点組成情報を設定する。前記タンク内の液化ガスの流出量に関する情報を取得するステップでは、前記第一時点とは異なる第二時点と、前記第一時点と、の間における前記タンク内の液化ガスの流出量に関する情報を取得する。前記第二時点組成情報を推定するステップでは、第一時点組成情報を設定するステップで設定された前記第一時点組成情報、及び、前記タンク内の液化ガスの流出量に関する情報を取得するステップで取得された前記液化ガスの流出量に基づいて、前記第二時点における前記液化ガスの組成に関する第二時点組成情報を推定する。 In order to solve the above problems, the method for estimating the composition of liquefied gas in a tank according to the present disclosure is a method for estimating the composition of the liquefied gas in a tank that stores liquefied gas containing multiple components. The method for estimating the composition of the liquefied gas in the tank includes a step of acquiring reference information, a step of setting first time point composition information, a step of acquiring information regarding the outflow amount of the liquefied gas in the tank, and a step of estimating second time point composition information. The step of acquiring reference information acquires reference information for estimating the composition of the liquefied gas in the tank at a first time point. The step of setting first time point composition information sets first time point composition information regarding the composition of the liquefied gas at the first time point based on the reference information acquired in the step of acquiring reference information. The step of acquiring information regarding the outflow amount of the liquefied gas in the tank acquires information regarding the outflow amount of the liquefied gas in the tank between a second time point different from the first time point and the first time point. In the step of estimating the second time point composition information, second time point composition information regarding the composition of the liquefied gas at the second time point is estimated based on the first time point composition information set in the step of setting the first time point composition information and the outflow amount of the liquefied gas acquired in the step of acquiring information regarding the outflow amount of the liquefied gas in the tank.
 本開示に係るタンク内の液化ガスの組成推定方法は、複数成分を含む液化ガスを貯留しているタンク内の前記液化ガスの組成推定方法である。前記タンク内の液化ガスの組成推定方法は、第一基準時点組成情報を取得するステップと、流出量情報を取得するステップと、第三時点組成情報を推定するステップと、を含む。前記第一基準時点組成情報を取得するステップでは、過去の第一基準時点において設定された前記液化ガスの組成に関する第一基準時点組成情報を取得する。前記流出量情報を取得するステップでは、前記第一基準時点とは異なる第三時点と、前記第一基準時点と、の間における、前記タンク内の液化ガスの流出量に関する流出量情報を取得する。前記第三時点組成情報を推定するステップでは、前記第一基準時点組成情報を取得するステップで取得された前記第一基準時点組成情報、及び、前記第三時点と前記第一基準時点との間における、前記タンク内の液化ガスの流出量に関する流出量情報を取得するステップで取得された前記流出量情報に基づいて、前記第三時点における前記液化ガスの組成に関する第三時点組成情報を推定する。 The method for estimating the composition of liquefied gas in a tank according to the present disclosure is a method for estimating the composition of the liquefied gas in a tank that stores liquefied gas containing multiple components. The method for estimating the composition of the liquefied gas in the tank includes a step of acquiring first reference time composition information, a step of acquiring outflow amount information, and a step of estimating third time composition information. In the step of acquiring the first reference time composition information, first reference time composition information regarding the composition of the liquefied gas set at a past first reference time is acquired. In the step of acquiring the outflow amount information, outflow amount information regarding the outflow amount of the liquefied gas in the tank between a third time point different from the first reference time point and the first reference time is acquired. In the step of estimating the third time composition information, third time composition information regarding the composition of the liquefied gas at the third time point is estimated based on the first reference time composition information acquired in the step of acquiring the first reference time composition information and the outflow amount information acquired in the step of acquiring outflow amount information regarding the outflow amount of the liquefied gas in the tank between the third time point and the first reference time.
 本開示に係るタンク内の液化ガスの組成推定方法は、複数成分を含む液化ガスを貯留しているタンク内の前記液化ガスの組成推定方法である。前記タンク内の液化ガスの組成推定方法は、第二基準時点組成情報を取得するステップと、流入量情報及び流出量情報を取得するステップと、流入液化ガス組成情報を取得するステップと、第四時点組成情報を推定するステップと、を含む。前記第二基準時点組成情報を取得するステップでは、過去の第二基準時点において設定された前記液化ガスの組成に関する第二基準時点組成情報を取得する。流入量情報及び流出量情報を取得するステップでは、前記第二基準時点とは異なる第四時点と、前記第二基準時点と、の間における、前記タンク内への液化ガスの流入量に関する流入量情報及び流出量に関する流出量情報を取得する。前記流入液化ガス組成情報を取得するステップでは、前記タンク内に流入した前記液化ガスの組成に関する流入液化ガス組成情報を取得する。第四時点組成情報を推定するステップでは、前記第二基準時点組成情報を取得するステップで取得された前記第二基準時点組成情報、前記第四時点と前記第二基準時点との間における、前記タンク内への液化ガスの流入量に関する流入量情報及び流出量に関する流出量情報を取得するステップで取得された前記流入量情報及び前記流出量情報と、前記流入液化ガス組成情報を取得するステップで取得された前記流入液化ガス組成情報と、に基づいて、前記第四時点における前記液化ガスの組成に関する第四時点組成情報を推定する。 The method for estimating the composition of liquefied gas in a tank according to the present disclosure is a method for estimating the composition of the liquefied gas in a tank storing liquefied gas containing multiple components. The method for estimating the composition of the liquefied gas in the tank includes a step of acquiring second reference time composition information, a step of acquiring inflow volume information and outflow volume information, a step of acquiring inflow liquefied gas composition information, and a step of estimating fourth time composition information. In the step of acquiring second reference time composition information, second reference time composition information regarding the composition of the liquefied gas set at a past second reference time is acquired. In the step of acquiring inflow volume information and outflow volume information, inflow volume information regarding the inflow volume of the liquefied gas into the tank and outflow volume information regarding the outflow volume between a fourth time point different from the second reference time point and the second reference time point are acquired. In the step of acquiring inflow liquefied gas composition information, inflow liquefied gas composition information regarding the composition of the liquefied gas that has flowed into the tank is acquired. In the step of estimating the fourth time point composition information, the fourth time point composition information regarding the composition of the liquefied gas at the fourth time point is estimated based on the second reference time point composition information acquired in the step of acquiring the second reference time point composition information, the inflow volume information and the outflow volume information acquired in the step of acquiring inflow volume information regarding the inflow volume of liquefied gas into the tank and outflow volume information regarding the outflow volume between the fourth time point and the second reference time point, and the inflow liquefied gas composition information acquired in the step of acquiring the inflow liquefied gas composition information.
 本開示のタンク内の液化ガスの組成推定方法によれば、タンク内に貯留している液化ガスの組成を容易に把握することができる。 The disclosed method for estimating the composition of liquefied gas in a tank makes it easy to determine the composition of the liquefied gas stored in the tank.
本開示の実施形態に係るタンク内の液化ガスの組成推定方法を備えた浮体の側面図である。FIG. 1 is a side view of a float equipped with a method for estimating the composition of a liquefied gas in a tank according to an embodiment of the present disclosure. 本開示の実施形態に係る液化ガスの組成推定装置のハードウェア構成を示す図である。FIG. 1 is a diagram illustrating a hardware configuration of a liquefied gas composition estimation device according to an embodiment of the present disclosure. 本開示の実施形態に係る液化ガスの組成推定装置の機能ブロック図である。FIG. 1 is a functional block diagram of a liquefied gas composition estimation device according to an embodiment of the present disclosure. 本開示の実施形態に係るタンク内の液化ガスの組成推定方法の使い分けを示すチャート図である。FIG. 1 is a chart showing different uses of methods for estimating the composition of liquefied gas in a tank according to embodiments of the present disclosure. 本開示の実施形態に係るタンク内の液化ガスの組成推定方法としての第一の液化ガスの組成推定方法の手順を示すフローチャートである。1 is a flowchart showing the steps of a first liquefied gas composition estimation method as a method for estimating the composition of liquefied gas in a tank according to an embodiment of the present disclosure. 本開示の実施形態に係るタンク内の液化ガスの組成推定方法としての第二の液化ガスの組成推定方法の手順を示すフローチャートである。1 is a flowchart showing the steps of a second liquefied gas composition estimation method as a method for estimating the composition of liquefied gas in a tank according to an embodiment of the present disclosure. 本開示の実施形態に係るタンク内の液化ガスの組成推定方法としての第三の液化ガスの組成推定方法の手順を示すフローチャートである。13 is a flowchart showing the steps of a third liquefied gas composition estimation method as a method for estimating the composition of liquefied gas in a tank according to an embodiment of the present disclosure.
 以下、本開示の実施形態に係るタンク内の液化ガスの組成推定方法について、図1~図7を参照して説明する。
(船舶の全体構成)
 図1に示すように、この実施形態のタンク内の液化ガスの組成推定方法は、ボイルオフガスを燃料として燃焼させたり、焼却処理したりする燃焼装置を備えた船舶で実行される。
 図1に示すように、本実施形態の船舶1は、船体2と、上部構造4と、燃焼装置9と、タンク10と、タンク10内の液化ガスの組成を推定する液化ガスの組成推定装置60と、を少なくとも備えている。なお、この実施形態の船舶1は、主機等により航行可能な船舶を一例として説明する。船舶1の船種は、特定の船種に限られない。船舶1の船種としては、液化ガス運搬船、フェリー、RORO船、自動車運搬船、客船等を例示できる。
Hereinafter, a method for estimating the composition of liquefied gas in a tank according to an embodiment of the present disclosure will be described with reference to FIGS. 1 to 7. FIG.
(Overall configuration of the vessel)
As shown in FIG. 1, the method for estimating the composition of liquefied gas in a tank according to this embodiment is carried out on a ship equipped with a combustion device that burns or incinerates boil-off gas as fuel.
As shown in Fig. 1, the ship 1 of this embodiment includes at least a hull 2, a superstructure 4, a combustion device 9, a tank 10, and a liquefied gas composition estimation device 60 that estimates the composition of the liquefied gas in the tank 10. Note that the ship 1 of this embodiment will be described as an example of a ship that can navigate using a main engine or the like. The type of the ship 1 is not limited to a specific type of ship. Examples of the type of the ship 1 include a liquefied gas carrier, a ferry, a RORO ship, a car carrier, a passenger ship, and the like.
 船体2は、その外殻をなす一対の舷側5A,5Bと船底6とを有している。舷側5A,5Bは、左右舷側をそれぞれ形成する一対の舷側外板を備える。船底6は、これら舷側5A,5Bを接続する船底外板を備える。これら一対の舷側5A,5B及び船底6により、船体2の外殻は、船首尾方向FAと垂直な断面においてU字状を成している。 The hull 2 has a pair of side panels 5A, 5B and a bottom 6 that form its outer hull. The side panels 5A, 5B each have a pair of side panel shells that form the starboard and port sides, respectively. The bottom 6 has a bottom panel shell that connects the side panels 5A, 5B. The pair of side panels 5A, 5B and the bottom 6 give the outer hull 2 a U-shape in cross section perpendicular to the bow-stern direction FA.
 船体2は、最も上層に配置される全通甲板である上甲板7を更に備えている。上部構造4は、この上甲板7上に形成されている。上部構造4内には、居住区等が設けられている。この実施形態の船舶1では、例えば、上部構造4よりも船首尾方向FAの船首2a側に、貨物搭載区画(ホールド)8が形成されている。 The hull 2 further comprises an upper deck 7, which is a full-length deck located at the topmost level. The superstructure 4 is formed on this upper deck 7. Accommodation areas and the like are provided within the superstructure 4. In the ship 1 of this embodiment, for example, a cargo carrying area (hold) 8 is formed closer to the bow 2a in the bow-stern direction FA than the superstructure 4.
 燃焼装置9は、燃料を燃焼させることで熱エネルギーを発生させる装置であり、上記の船体2内に設けられている。燃焼装置9としては、船舶1を推進させるための主機に用いられる内燃機関、船内に電気を供給する発電設備に用いられる内燃機関、作動流体としての蒸気を発生させるボイラー等を例示できる。 The combustion device 9 is a device that generates thermal energy by burning fuel, and is provided inside the hull 2. Examples of the combustion device 9 include an internal combustion engine used in the main engine for propelling the ship 1, an internal combustion engine used in the power generation equipment that supplies electricity to the ship, and a boiler that generates steam as a working fluid.
 タンク10は、船体2に配置されている。本実施形態では、タンク10が水平方向に延びる円筒状をなし、貨物搭載区画8内の船首尾方向FAに複数が並んで配置されている場合を例示している。しかし、タンク10の形状、数、複数のタンク10の配置については、何ら限定するものではない。例えば、タンク10は、曝露甲板上に配置することもできる。また、例えば、タンク10は、球形、方形等であってもよい。 The tanks 10 are arranged in the hull 2. In this embodiment, the tanks 10 are cylindrical and extend horizontally, and a plurality of tanks 10 are arranged side by side in the bow-stern direction FA within the cargo carrying area 8. However, there are no limitations on the shape, number, or arrangement of the tanks 10. For example, the tanks 10 can be arranged on the exposed deck. Furthermore, for example, the tanks 10 may be spherical, rectangular, etc.
 タンク10は、その内部に、複数成分を含む液化ガスを貯留する。複数成分を含む液化ガスとしては、低温状態で液化された液化ガスである、LNG(Liquefied Natural Gas),LPG(Liquefied Petroleum Gas)等を挙げることができる。本実施形態では、複数成分を含む液化ガスとして、LNGを一例にして説明する。 The tank 10 stores therein a liquefied gas containing multiple components. Examples of liquefied gas containing multiple components include LNG (Liquefied Natural Gas) and LPG (Liquefied Petroleum Gas), which are liquefied gases liquefied at low temperatures. In this embodiment, LNG will be used as an example of a liquefied gas containing multiple components.
 タンク10内の液化ガスは、外部からの入熱により蒸発し、ボイルオフガスとなる。タンク10内の液化ガスの液体、及びタンク10内で生成されたボイルオフガスは、燃焼装置9における燃料として燃焼装置9に供給されたり、焼却装置(図示せず)に送られて焼却処分されたりする。 The liquefied gas in the tank 10 evaporates due to heat input from the outside, becoming boil-off gas. The liquid of the liquefied gas in the tank 10 and the boil-off gas generated in the tank 10 are supplied to the combustion device 9 as fuel in the combustion device 9, or sent to an incineration device (not shown) for incineration.
(ハードウェア構成図)
 図2は、本開示の実施形態に係る液化ガスの組成推定装置のハードウェア構成を示す図である。
 図2に示すように、液化ガスの組成推定装置60は、CPU61(Central Processing Unit)、ROM62(Read Only Memory)、RAM63(Random Access Memory)、ストレージ64、信号送受信モジュール65を備えるコンピュータである。信号送受信モジュール65は、例えば、タンク10内の圧力を検出する圧力センサー、タンク10内の温度を検出する温度センサー等(いずれも図示せず)からの検出信号を受信する。
(Hardware configuration diagram)
FIG. 2 is a diagram illustrating a hardware configuration of a liquefied gas composition estimation device according to an embodiment of the present disclosure.
2, the liquefied gas composition estimation device 60 is a computer including a central processing unit (CPU) 61, a read only memory (ROM) 62, a random access memory (RAM) 63, a storage 64, and a signal transmission/reception module 65. The signal transmission/reception module 65 receives detection signals from, for example, a pressure sensor that detects the pressure inside the tank 10, a temperature sensor that detects the temperature inside the tank 10, etc. (neither of which are shown).
(機能ブロック図)
 図3は、本開示の実施形態に係る液化ガスの組成推定装置の機能ブロック図である。 図3に示すように、液化ガスの組成推定装置60のCPU61は、ROM62やストレージ64等の記憶装置に予め記憶されたプログラムを実行することにより、情報取得部71と、タンク内変化量取得部72と、組成推定部73と、情報記憶部74と、の各構成を実現する。
(Function block diagram)
3 is a functional block diagram of a liquefied gas composition estimation device according to an embodiment of the present disclosure. As shown in Fig. 3, a CPU 61 of a liquefied gas composition estimation device 60 executes a program stored in advance in a storage device such as a ROM 62 or a storage 64 to realize each of the components of an information acquisition unit 71, an in-tank change amount acquisition unit 72, a composition estimation unit 73, and an information storage unit 74.
 情報取得部71は、各々の時点における前記タンク10内の前記液化ガスの組成に関するタンク内組成情報を取得する。情報取得部71は、信号送受信モジュール65で受信した検出信号に基づき、例えば、タンク10内の圧力を検出する圧力センサー、タンク10内の温度を検出する温度センサーからの検出データを取得する。 The information acquisition unit 71 acquires tank composition information regarding the composition of the liquefied gas in the tank 10 at each point in time. The information acquisition unit 71 acquires detection data, for example, from a pressure sensor that detects the pressure inside the tank 10 and a temperature sensor that detects the temperature inside the tank 10, based on the detection signal received by the signal transmission/reception module 65.
 タンク内変化量取得部72は、複数の時点の間における、タンク10内の液化ガスの変化量を取得する。
 組成推定部73は、情報取得部71で取得された、複数の時点におけるタンク内組成情報、及びタンク内変化量取得部72で取得された、タンク10内の液化ガスの変化量に基づいて、タンク10内の液化ガスの組成に関する組成情報を推定する。
The tank internal change amount acquisition unit 72 acquires the amount of change in the liquefied gas in the tank 10 between multiple points in time.
The composition estimation unit 73 estimates composition information regarding the composition of the liquefied gas in the tank 10 based on the composition information in the tank at multiple points in time acquired by the information acquisition unit 71 and the amount of change in the liquefied gas in the tank 10 acquired by the tank change amount acquisition unit 72.
 情報記憶部74は、液化ガスの組成推定装置60で、タンク10内の液化ガスの組成の推定処理を実行する際に必要となる、各種の情報を記憶している。情報記憶部74は、例えば、タンク10の仕様情報として、タンク10の数量、容積、保温性能、外部からの入熱量等の情報を記憶している。また、情報記憶部74は、タンク10内の液化ガスの組成の推定処理を繰り返し行うことで得られる、各種の推定結果等を記憶している。 The information storage unit 74 stores various pieces of information required when the liquefied gas composition estimation device 60 executes the process of estimating the composition of the liquefied gas in the tank 10. The information storage unit 74 stores, for example, information such as the number, volume, heat retention performance, and amount of heat input from the outside of the tank 10 as specification information of the tank 10. The information storage unit 74 also stores various estimation results obtained by repeatedly executing the process of estimating the composition of the liquefied gas in the tank 10.
(タンク内の液化ガスの組成推定方法の手順)
 図4は、本開示の実施形態に係るタンク内の液化ガスの組成推定方法の使い分けを示すチャート図である。
 本実施形態に係るタンク内の液化ガスの組成推定方法S10は、第一の液化ガスの組成推定方法S10Aと、第二の液化ガスの組成推定方法S10Bと、第三の液化ガスの組成推定方法S10Cと、を含んでいる。
(Procedure for estimating the composition of liquefied gas in a tank)
FIG. 4 is a chart showing how to use different methods for estimating the composition of a liquefied gas in a tank according to an embodiment of the present disclosure.
The method S10 for estimating the composition of a liquefied gas in a tank in this embodiment includes a first method S10A for estimating the composition of a liquefied gas, a second method S10B for estimating the composition of a liquefied gas, and a third method S10C for estimating the composition of a liquefied gas.
 第一の液化ガスの組成推定方法S10Aは、タンク10内の液化ガスの組成が未知である状態A1で実行される。また、第一の液化ガスの組成推定方法S10Aは、外部からタンク10内への液化ガスの流入が行われない状態、例えば、船舶1の航海中に実行される。ここで、タンク10内の液化ガスの組成が未知である状態A1としては、例えば、タンク10内に液化ガスが貯留されていない状態(例えば、液化ガスが全て払い出された状態等)から、タンク10内に新たに液化ガスが注入された後の状態を例示できる。 The first liquefied gas composition estimation method S10A is executed in a state A1 in which the composition of the liquefied gas in the tank 10 is unknown. The first liquefied gas composition estimation method S10A is also executed in a state in which no liquefied gas flows into the tank 10 from the outside, for example, while the ship 1 is sailing. Here, an example of the state A1 in which the composition of the liquefied gas in the tank 10 is unknown is a state after new liquefied gas is injected into the tank 10 from a state in which no liquefied gas is stored in the tank 10 (for example, a state in which all the liquefied gas has been discharged, etc.).
 第二の液化ガスの組成推定方法S10Bは、タンク10内の液化ガスの組成が推定され既知となる状態A2で実行される。第二の液化ガスの組成推定方法S10Bは、例えば、第一の液化ガスの組成推定方法S10Aにより、タンク10内に貯留された液化ガスの組成が推定されて以降に、その推定結果に基づいて液化ガスの組成を推定する。また、第二の液化ガスの組成推定方法S10Bは、外部からタンク10内への液化ガスの流入が行われない状態、例えば、船舶1の航海中に実行される。 The second liquefied gas composition estimation method S10B is executed in state A2 where the composition of the liquefied gas in the tank 10 is estimated and known. For example, after the composition of the liquefied gas stored in the tank 10 is estimated by the first liquefied gas composition estimation method S10A, the second liquefied gas composition estimation method S10B estimates the composition of the liquefied gas based on the estimation result. In addition, the second liquefied gas composition estimation method S10B is executed in a state where no liquefied gas flows into the tank 10 from the outside, for example, while the ship 1 is sailing.
 第三の液化ガスの組成推定方法S10Cは、タンク10内の液化ガスの組成が既知であり、外部からタンク10内に液化ガスが供給される間、または供給直後の時点を対象に実行される。例えば、液化ガスを燃料とする船舶1の場合、液化ガスの補給中、いわゆるバンカリング中の状態A3で実行される。 The third liquefied gas composition estimation method S10C is executed when the composition of the liquefied gas in the tank 10 is known and when liquefied gas is being supplied from the outside into the tank 10 or immediately after the supply. For example, in the case of a ship 1 fueled by liquefied gas, the method is executed in a state A3 during refueling with liquefied gas, that is, during so-called bunkering.
 図5は、本開示の実施形態に係るタンク内の液化ガスの組成推定方法としての第一の液化ガスの組成推定方法の手順を示すフローチャートである。
 図5に示すように、本実施形態に係る第一の液化ガスの組成推定方法S10Aは、基準情報を取得するステップS11と、第一時点組成情報を設定するステップS12と、タンク内の液化ガスの流出量に関する流出量情報を取得するステップS13と、第二時点組成情報を推定するステップS14と、第二時点におけるタンク内の液化ガスの状態量を取得するステップS15と、第二時点組成情報からタンク内の液化ガスの状態量を推定するステップS16と、推定値の誤差を判定するステップS17と、を含む。
FIG. 5 is a flowchart showing the steps of a first liquefied gas composition estimation method as a method for estimating the composition of liquefied gas in a tank according to an embodiment of the present disclosure.
As shown in Figure 5, the first liquefied gas composition estimation method S10A of this embodiment includes a step S11 of acquiring reference information, a step S12 of setting first point-in-time composition information, a step S13 of acquiring outflow volume information regarding the outflow volume of liquefied gas in the tank, a step S14 of estimating second point-in-time composition information, a step S15 of acquiring a state quantity of the liquefied gas in the tank at the second point in time, a step S16 of estimating the state quantity of the liquefied gas in the tank from the second point-in-time composition information, and a step S17 of determining an error of the estimated value.
 基準情報を取得するステップS11では、第一時点T1(図4参照)におけるタンク10内の液化ガスの組成、を推定するための基準情報を取得する。ここで、第一時点T1は、タンク10内の液化ガスの組成が未知である状態A1中の、任意の時点である。第一時点T1は、タンク10の使用開始時点T0からある程度時間が経過した時点であり、タンク10内に液化ガスが貯留されている時点である。 In step S11 of acquiring reference information, reference information is acquired for estimating the composition of the liquefied gas in the tank 10 at a first point in time T1 (see FIG. 4). Here, the first point in time T1 is an arbitrary point in time during state A1 in which the composition of the liquefied gas in the tank 10 is unknown. The first point in time T1 is a point in time that has passed a certain amount of time since the start of use of the tank 10 at point T0, and is a point in time when liquefied gas is stored in the tank 10.
 タンク10内の液化ガスの組成を推定するための基準情報としては、第一時点T1における、タンク10の状態量が例示できる。タンク10の状態量は、例えば、タンク10内の圧力、温度、密度等のうちの少なくとも一つである。本実施形態では、ステップS11で取得する基準情報として、タンク10内の圧力、及び温度を用いて説明する。タンク10内の圧力、及び温度は、例えば、タンク10に設置された圧力センサー、温度センサー等から取得される。 An example of reference information for estimating the composition of the liquefied gas in the tank 10 is the state quantity of the tank 10 at the first time point T1. The state quantity of the tank 10 is, for example, at least one of the pressure, temperature, density, etc., inside the tank 10. In this embodiment, the pressure and temperature inside the tank 10 are used as the reference information acquired in step S11. The pressure and temperature inside the tank 10 are acquired, for example, from a pressure sensor, a temperature sensor, etc. installed in the tank 10.
 第一時点組成情報を設定するステップS12では、基準情報を取得するステップS11で取得された基準情報に基づいて、第一時点T1における液化ガスの組成に関する第一時点組成情報を設定する。 In step S12 of setting the first time point composition information, the first time point composition information regarding the composition of the liquefied gas at the first time point T1 is set based on the reference information acquired in step S11 of acquiring the reference information.
 具体的には、ステップS12では、まず、第一時点T1におけるタンク10内の液化ガスの液組成を仮定する。第一時点T1におけるタンク10内の液化ガスの液組成は、例えば、使用開始時点T0以降でタンク10に供給された液化ガスから、第一時点T1までの間に、タンク10内で発生したボイルオフガスの量(液体である液化ガスに対する割合)を変数とし、タンク10内の液化ガスの液組成を仮定してもよいし、乱数によってランダムな数値の組の液組成を仮定してもよい。ここで、タンク10内に貯留される液化ガスは、陸上の液化ガス供給施設、ローリー車、バンカー船等から供給することができる。陸上の液化ガス供給施設等の供給側では、タンク10に供給する液化ガスを事前に分析する等して、液化ガスの液組成を把握している。
 また、このステップS12では、後述する推定値の誤差を判定するステップS17により誤差が設定範囲内では無いと判定された場合に、第一時点T1におけるタンク10内の液化ガスの液組成を再度別の数値の組に仮定する。なお、第一時点T1におけるタンク10内の液化ガスの液組成は複数仮定するようにしてもよい。
Specifically, in step S12, the liquid composition of the liquefied gas in the tank 10 at the first time T1 is assumed. The liquid composition of the liquefied gas in the tank 10 at the first time T1 may be assumed by using, for example, the amount of boil-off gas (the ratio to the liquefied gas that is liquid) generated in the tank 10 from the liquefied gas supplied to the tank 10 after the start of use time T0 to the first time T1 as a variable, or the liquid composition of a random set of numerical values may be assumed by using random numbers. Here, the liquefied gas stored in the tank 10 can be supplied from a land-based liquefied gas supply facility, a tanker truck, a bunker ship, etc. The supply side, such as a land-based liquefied gas supply facility, analyzes the liquefied gas to be supplied to the tank 10 in advance, etc., to determine the liquid composition of the liquefied gas.
In step S12, when it is determined that the error is not within the set range by step S17 for determining the error of the estimated value, which will be described later, the liquid composition of the liquefied gas in the tank 10 at the first time point T1 is again assumed to be a different set of values. Note that multiple liquid compositions of the liquefied gas in the tank 10 at the first time point T1 may be assumed.
 次いで、ステップS12では、仮定された液化ガスの液組成における、液化ガスの状態量の仮定値を算出する。例えば、仮定された液化ガスの液組成における液化ガスの状態量としては、液化ガスの圧力、及び温度の仮定値から、液化ガスの液密度を算出することができる。 Next, in step S12, the assumed values of the state quantities of the liquefied gas at the assumed liquid composition of the liquefied gas are calculated. For example, the liquid density of the liquefied gas can be calculated from the assumed values of the pressure and temperature of the liquefied gas as the state quantity of the liquefied gas at the assumed liquid composition of the liquefied gas.
 ステップS12では、更に、算出された第一時点T1におけるタンク10内の液化ガスの状態量の仮定値と、ステップS11で取得された第一時点T1におけるタンク10内の液化ガスの状態量の実測値と、に基づいて、第一時点組成情報を設定する。ここで、上述したように本実施形態のステップS11では、第一時点T1におけるタンク10内の液化ガスの状態量として、液化ガスの圧力、及び温度の検出データを取得している。そこで、このステップS12では、ステップS11で取得された第一時点T1におけるタンク10内の液化ガスの圧力、及び温度の検出データに基づいて、第一時点T1におけるタンク10内の液化ガスの密度を算出している。そして、このステップS12では、算出された第一時点T1におけるタンク10内の液化ガスの密度の仮定値と、第一時点T1におけるタンク10内の液化ガスの実測値に基づく液化ガスの密度と、を比較している。 In step S12, the first time composition information is set based on the calculated assumed value of the state quantity of the liquefied gas in the tank 10 at the first time T1 and the actual measured value of the state quantity of the liquefied gas in the tank 10 at the first time T1 obtained in step S11. As described above, in step S11 of this embodiment, detection data of the pressure and temperature of the liquefied gas is obtained as the state quantity of the liquefied gas in the tank 10 at the first time T1. Therefore, in this step S12, the density of the liquefied gas in the tank 10 at the first time T1 is calculated based on the detection data of the pressure and temperature of the liquefied gas in the tank 10 at the first time T1 obtained in step S11. Then, in this step S12, the calculated assumed value of the density of the liquefied gas in the tank 10 at the first time T1 is compared with the density of the liquefied gas based on the actual measured value of the liquefied gas in the tank 10 at the first time T1.
 ステップS12では、更に、算出された第一時点T1におけるタンク10内の液化ガスの状態量の仮定値と、第一時点T1におけるタンク10内の液化ガスの実測値に基づく液化ガスの状態量と、の誤差が、十分に小さい、または0となるような液化ガスの液組成を、適宜の最適化手法で探索して推定する。例えば、第一時点T1におけるタンク10内の液化ガスの密度の仮定値と、第一時点T1におけるタンク10内の液化ガスの実測値に基づく液化ガスの密度と、の誤差が、予め設定された許容誤差の範囲内である場合、その仮定値を第一時点組成情報として設定してもよい。また、許容誤差の範囲内に第一時点T1におけるタンク10内の液化ガスの状態量の仮定値が複数有る場合、これら複数の仮定値のうち、第一時点T1におけるタンク10内の液化ガスの状態量の実測値との誤差が最も小さい仮定値を第一時点組成情報として設定するようにしてもよい。 In step S12, a liquid composition of the liquefied gas is further searched for and estimated by an appropriate optimization method such that the error between the assumed value of the state quantity of the liquefied gas in the tank 10 at the first time T1 calculated and the state quantity of the liquefied gas based on the actual measurement value of the liquefied gas in the tank 10 at the first time T1 is sufficiently small or zero. For example, if the error between the assumed value of the density of the liquefied gas in the tank 10 at the first time T1 and the density of the liquefied gas based on the actual measurement value of the liquefied gas in the tank 10 at the first time T1 is within a preset allowable error range, the assumed value may be set as the first time composition information. In addition, if there are multiple assumed values of the state quantity of the liquefied gas in the tank 10 at the first time T1 within the allowable error range, the assumed value with the smallest error from the actual measurement value of the state quantity of the liquefied gas in the tank 10 at the first time T1 among these multiple assumed values may be set as the first time composition information.
 タンク内の液化ガスの流出量に関する流出量情報を取得するステップS13では、第一時点T1とは異なる第二時点T2と、第一時点T1と、の間におけるタンク10内の液化ガスの流出量に関する流出量情報を取得する。ここで、第一時点T1とは異なる第二時点T2は、第一時点T1以降であってもよいし、第一時点T1以前であってもよい。本実施形態では、第二時点T2を、例えば、第一時点T1以前の使用開始時点T0としている。 In step S13 of acquiring outflow amount information regarding the outflow amount of liquefied gas in the tank, outflow amount information regarding the outflow amount of liquefied gas in the tank 10 between the first point in time T1 and a second point in time T2 different from the first point in time T1 is acquired. Here, the second point in time T2 different from the first point in time T1 may be after the first point in time T1 or may be before the first point in time T1. In this embodiment, the second point in time T2 is, for example, the start point in time T0 of use, which is before the first point in time T1.
 第二時点T2と、第一時点T1と、の間におけるタンク10内の液化ガスの流出は、例えば、タンク10内の液化ガスの液を、燃焼装置9に燃料として供給することで生じる。また、第二時点T2と、第一時点T1と、の間におけるタンク10内の液化ガスの流出は、例えば、タンク10内の液化ガスが蒸発することで生成されるボイルオフガスを、タンク10の外部に排出することでも生じる。 The outflow of liquefied gas in the tank 10 between the second point in time T2 and the first point in time T1 occurs, for example, by supplying the liquefied gas liquid in the tank 10 to the combustion device 9 as fuel. In addition, the outflow of liquefied gas in the tank 10 between the second point in time T2 and the first point in time T1 also occurs, for example, by discharging boil-off gas generated by the evaporation of the liquefied gas in the tank 10 to the outside of the tank 10.
 第二時点T2と、第一時点T1と、の間におけるタンク10内の液化ガスの流出量は、例えば、情報記憶部74に予め記憶されているタンク10に関する仕様情報に基づいて算出してもよいし、計測データを用いてもよい。タンク10に関する仕様情報としては、例えば、タンク10の数量、タンク10の容積、タンク10が有する保温性能、タンク10における外部からの入熱量等が例示できる。タンク10における外部からの入熱量は、例えば、タンク10が有する保温性能と、気温等のデータに基づいて取得することができる。 The amount of liquefied gas flowing out of the tank 10 between the second point in time T2 and the first point in time T1 may be calculated based on specification information about the tank 10 pre-stored in the information storage unit 74, or measurement data may be used. Examples of specification information about the tank 10 include the number of tanks 10, the volume of the tank 10, the thermal insulation performance of the tank 10, and the amount of heat input from the outside to the tank 10. The amount of heat input from the outside to the tank 10 can be obtained based on, for example, the thermal insulation performance of the tank 10 and data such as the air temperature.
 ステップS13で取得されるタンク内の液化ガスの流出量に関する流出量情報は、例えば、第一時点T1とは異なる第二時点T2と、第一時点T1と、の間におけるタンク10内の液化ガスの流出量そのものであってもよいし、液化ガスの流出量に相関する他の情報(例えば、熱量)等を取得し、この情報から流出量を計算してもよい。
 また、ステップS13で取得されるタンク内の液化ガスの流出量に関する流出量情報は、例えば、タンク10内から流出する液化ガスを消費する燃焼装置9等における消費量を、船舶1に搭載されたデータロガー等から取得するようにしてもよい。
The outflow volume information regarding the outflow volume of liquefied gas in the tank obtained in step S13 may be, for example, the outflow volume of liquefied gas in the tank 10 itself between the first point in time T1 and a second point in time T2 different from the first point in time T1, or other information (e.g., heat quantity) that correlates with the outflow volume of liquefied gas may be obtained and the outflow volume may be calculated from this information.
In addition, the outflow volume information regarding the outflow volume of liquefied gas in the tank obtained in step S13 may be, for example, the consumption volume in a combustion device 9 that consumes the liquefied gas flowing out from within the tank 10, which may be obtained from a data logger or the like installed on the ship 1.
 第二時点組成情報を推定するステップS14では、ステップS12で設定された第一時点組成情報、及び、ステップS13で取得された液化ガスの流出量に関する流出量情報、に基づいて、第二時点T2における液化ガスの組成に関する第二時点組成情報を推定する。具体的には、ステップS14では、ステップS12で設定された第一時点T1における第一時点組成情報と、ステップS13で取得された第二時点T2と第一時点T1との間におけるタンク10内の液化ガスの流出量と、に基づいて、第二時点T2と第一時点T1との間における液化ガスを構成する複数の成分の構成比率の変化量を算出する。ステップS14では、ステップS12で設定された第一時点T1における第一時点組成情報と、算出された第二時点T2と第一時点T1との間における液化ガスを構成する複数の成分の構成比率の変化量と、に基づいて、例えば、第二時点T2におけるタンク10内の液化ガスの液組成を推定する。 In step S14 of estimating second time composition information, second time composition information regarding the composition of the liquefied gas at the second time T2 is estimated based on the first time composition information set in step S12 and the outflow amount information regarding the outflow amount of the liquefied gas acquired in step S13. Specifically, in step S14, the amount of change in the composition ratio of the multiple components constituting the liquefied gas between the second time T2 and the first time T1 is calculated based on the first time composition information at the first time T1 set in step S12 and the outflow amount of the liquefied gas in the tank 10 between the second time T2 and the first time T1 acquired in step S13. In step S14, for example, the liquid composition of the liquefied gas in the tank 10 at the second time T2 is estimated based on the first time composition information at the first time T1 set in step S12 and the calculated amount of change in the composition ratio of the multiple components constituting the liquefied gas between the second time T2 and the first time T1.
 第二時点におけるタンク内の液化ガスの状態量を取得するステップS15では、第二時点T2におけるタンク10内の液化ガスの状態量を取得する。具体的には、例えば、第二時点T2におけるタンク10内の液化ガスの状態量として、タンク10に設置された圧力センサー、温度センサー等から取得される液化ガスの圧力、及び温度の実測値を取得する。 In step S15 of acquiring the state quantity of the liquefied gas in the tank at the second time point, the state quantity of the liquefied gas in the tank 10 at the second time point T2 is acquired. Specifically, for example, the actual measured values of the pressure and temperature of the liquefied gas acquired from a pressure sensor, a temperature sensor, etc. installed in the tank 10 are acquired as the state quantity of the liquefied gas in the tank 10 at the second time point T2.
 第二時点組成情報からタンク内の液化ガスの状態量を推定するステップS16では、ステップS14で推定された第二時点組成情報から第二時点T2におけるタンク10内の液化ガスの状態量を推定する。具体的には、ステップS14で推定された第二時点組成情報と、ステップS15で取得された第二時点T2におけるタンク10内の液化ガスの状態量の実測値と、に基づいて、第二時点T2における液化ガスの他の状態量の推定値を算出する。本実施形態では、例えば、ステップS14で推定した第二時点T2における液化ガスの液組成と、第二時点T2におけるタンク10内の液化ガスの圧力、及び温度と、に基づいて、第二時点T2における液化ガスの状態量の推定値として第二時点T2における液化ガスの密度を算出する。 In step S16 of estimating the state quantity of the liquefied gas in the tank from the second time point composition information, the state quantity of the liquefied gas in the tank 10 at the second time point T2 is estimated from the second time point composition information estimated in step S14. Specifically, estimates of other state quantities of the liquefied gas at the second time point T2 are calculated based on the second time point composition information estimated in step S14 and the actual measured value of the state quantity of the liquefied gas in the tank 10 at the second time point T2 acquired in step S15. In this embodiment, for example, the density of the liquefied gas at the second time point T2 is calculated as an estimate of the state quantity of the liquefied gas at the second time point T2 based on the liquid composition of the liquefied gas at the second time point T2 estimated in step S14 and the pressure and temperature of the liquefied gas in the tank 10 at the second time point T2.
 ステップS17では、ステップS16で算出された第二時点T2における液化ガスの状態量(例えば密度)の推定値と、ステップS15で取得された第二時点T2におけるタンク10内の液化ガスの状態量の実測値から算出された第二時点T2におけるタンク10内の液化ガスの他の状態量と、の誤差が、予め設定された設定範囲内であるか否かを判定する。この判定の結果、算出された第二時点T2におけるタンク10内の液化ガスの状態量の推定値と、ステップS15で取得された第二時点T2におけるタンク10内の液化ガスの状態量の実測値と、の誤差が設定範囲内であった場合(ステップS17でYes)、ステップS12で設定された第一時点組成情報に基づく第一時点T1におけるタンク10内の液化ガスの組成を、本実施形態における第一の液化ガスの組成推定方法S10Aにおけるタンク10内の液化ガスの組成の推定結果として採用する。
 一方で、上記判定の結果、算出された第二時点T2におけるタンク10内の液化ガスの状態量の推定値と、ステップS15で取得された第二時点T2におけるタンク10内の液化ガスの状態量の実測値と、の誤差が設定範囲内ではなかった場合(ステップS17でNo)、ステップS12に戻り、第一時点T1におけるタンク10内の液化ガスの液組成の仮定を更に異ならせてステップS13以降の処理を繰り返す。
In step S17, it is determined whether or not an error between the estimated value of the state quantity (e.g., density) of the liquefied gas at the second time T2 calculated in step S16 and another state quantity of the liquefied gas in the tank 10 at the second time T2 calculated from the actual measurement value of the state quantity of the liquefied gas in the tank 10 at the second time T2 acquired in step S15 is within a preset range. If the error between the estimated value of the state quantity of the liquefied gas in the tank 10 at the second time T2 calculated from the actual measurement value of the state quantity of the liquefied gas in the tank 10 at the second time T2 acquired in step S15 is within the preset range (Yes in step S17), the composition of the liquefied gas in the tank 10 at the first time T1 based on the first time point composition information set in step S12 is adopted as an estimation result of the composition of the liquefied gas in the tank 10 in the first liquefied gas composition estimation method S10A in this embodiment.
On the other hand, if the result of the above judgment is that the error between the estimated value of the state quantity of the liquefied gas in the tank 10 at the second point in time T2 calculated and the actual measured value of the state quantity of the liquefied gas in the tank 10 at the second point in time T2 obtained in step S15 is not within the set range (No in step S17), return to step S12 and repeat the processing from step S13 onwards by further changing the assumption of the liquid composition of the liquefied gas in the tank 10 at the first point in time T1.
 図6は、本開示の実施形態に係るタンク内の液化ガスの組成推定方法としての第二の液化ガスの組成推定方法の手順を示すフローチャートである。
 図6に示すように、本実施形態に係る第二の液化ガスの組成推定方法S10Bは、第三時点T3と第一基準時点Ts1との間におけるタンク内の液化ガスの流出量に関する流出量情報を取得するステップS21と、第三時点組成情報を推定するステップS22と、を含む。
FIG. 6 is a flowchart showing the steps of a second liquefied gas composition estimation method as a method for estimating the composition of liquefied gas in a tank according to an embodiment of the present disclosure.
As shown in Figure 6, the second liquefied gas composition estimation method S10B of this embodiment includes a step S21 of acquiring outflow volume information regarding the outflow volume of liquefied gas in the tank between the third point in time T3 and the first reference point in time Ts1, and a step S22 of estimating the third point in time composition information.
 第二の液化ガスの組成推定方法S10Bは、第一の液化ガスの組成推定方法S10Aを実行して、またはタンク10内の液化ガスの組成をサンプリングにより計測するなどしてタンク10内の液化ガスの組成が既知である状態A2(図4参照)で実行される。第一の液化ガスの組成推定方法S10Aでは、上述したように、ステップS12で設定された第一時点組成情報に基づく第一時点T1におけるタンク10内の液化ガスの組成が、タンク10内の液化ガスの組成の推定結果として採用されている。 The second liquefied gas composition estimation method S10B is performed in state A2 (see FIG. 4) where the composition of the liquefied gas in the tank 10 is known by executing the first liquefied gas composition estimation method S10A, or by measuring the composition of the liquefied gas in the tank 10 by sampling. In the first liquefied gas composition estimation method S10A, as described above, the composition of the liquefied gas in the tank 10 at the first time point T1 based on the first time point composition information set in step S12 is adopted as the estimated result of the composition of the liquefied gas in the tank 10.
 タンク内の液化ガスの流出量に関する流出量情報を取得するステップS21では、第一時点T1及び第二時点T2とは異なる第三時点T3と、第一基準時点Ts1と、の間におけるタンク10内の液化ガスの流出量を取得する。ここで、第三時点T3は、第一基準時点Ts1以降の時点である。本実施形態では、第一基準時点Ts1を、直近で液化ガスの液組成の推定結果を採用した第一時点T1としている。 In step S21, which acquires outflow volume information regarding the outflow volume of liquefied gas in the tank, the outflow volume of liquefied gas in the tank 10 between a third point in time T3, which is different from the first point in time T1 and the second point in time T2, and a first reference point in time Ts1 is acquired. Here, the third point in time T3 is a point in time after the first reference point in time Ts1. In this embodiment, the first reference point in time Ts1 is set to the first point in time T1 at which the most recent estimated result of the liquid composition of the liquefied gas is adopted.
 第三時点T3と、第一基準時点Ts1(第一時点T1)と、の間におけるタンク10内の液化ガスの流出は、例えば、タンク10内の液化ガスの液を、燃焼装置9に燃料として供給することで生じる。また、第三時点T3と、第一基準時点Ts1と、の間におけるタンク10内の液化ガスの流出は、例えば、タンク10内の液化ガスが蒸発することで生成されるボイルオフガスを、タンク10の外部に排出することでも生じる。 The outflow of liquefied gas in the tank 10 between the third time point T3 and the first reference time point Ts1 (first time point T1) occurs, for example, by supplying the liquefied gas liquid in the tank 10 to the combustion device 9 as fuel. In addition, the outflow of liquefied gas in the tank 10 between the third time point T3 and the first reference time point Ts1 also occurs, for example, by discharging boil-off gas generated by the evaporation of the liquefied gas in the tank 10 to the outside of the tank 10.
 第三時点T3と、第一基準時点Ts1と、の間におけるタンク10内の液化ガスの流出量は、例えば、情報記憶部74に予め記憶されているタンク10に関する仕様情報に基づいて算出してもよいし、計測データを用いてもよい。タンク10に関する仕様情報としては、例えば、タンク10の数量、タンク10の容積、タンク10が有する保温性能、タンク10における外部からの入熱量等が例示できる。タンク10における外部からの入熱量は、例えば、タンク10の保温性能と、タンク10外部の気温等のデータに基づいて取得することができる。 The amount of liquefied gas flowing out of the tank 10 between the third point in time T3 and the first reference point in time Ts1 may be calculated, for example, based on specification information about the tank 10 pre-stored in the information storage unit 74, or measurement data may be used. Examples of specification information about the tank 10 include the quantity of the tanks 10, the volume of the tanks 10, the thermal insulation performance of the tanks 10, and the amount of heat input from the outside to the tank 10. The amount of heat input from the outside to the tank 10 can be obtained, for example, based on data such as the thermal insulation performance of the tank 10 and the air temperature outside the tank 10.
 ステップS21で取得されるタンク内の液化ガスの流出量に関する流出量情報は、例えば、第三時点T3と、第一基準時点Ts1と、の間におけるタンク10内の液化ガスの流出量そのものであってもよいし、液化ガスの流出量に相関する他の情報(例えば、熱量)等を取得し、この情報から流出量を計算してもよい。また、ステップS21で取得されるタンク10内の液化ガスの流出量に関する流出量情報は、例えば、タンク10内から流出する液化ガスを消費する燃焼装置9等における液化ガスの消費量を、船舶1に搭載されたデータロガー等から取得するようにしてもよい。 The outflow amount information regarding the outflow amount of liquefied gas in the tank obtained in step S21 may be, for example, the outflow amount of liquefied gas in the tank 10 itself between the third time point T3 and the first reference time point Ts1, or other information (e.g., heat amount) that correlates with the outflow amount of liquefied gas may be obtained and the outflow amount may be calculated from this information. In addition, the outflow amount information regarding the outflow amount of liquefied gas in the tank 10 obtained in step S21 may be, for example, the amount of liquefied gas consumed in the combustion device 9 or the like that consumes the liquefied gas outflowing from the tank 10, obtained from a data logger or the like installed on the ship 1.
 第三時点組成情報を推定するステップS22では、第一基準時点Ts1である第一時点T1における第一時点組成情報(第一基準時点組成情報)、及び、ステップS21で取得された第三時点T3と第一基準時点Ts1との間における液化ガスの流出量に関する流出量情報、に基づいて、第三時点T3における液化ガスの組成に関する第三時点組成情報を推定する。具体的には、ステップS22では、第一基準時点Ts1である第一時点T1における第一時点組成情報と、ステップS21で取得された第三時点T3と第一基準時点Ts1との間におけるタンク10内の液化ガスの流出量と、に基づいて、第三時点T3と第一基準時点Ts1との間における液化ガスを構成する複数の成分の構成比率の変化量を算出する。ステップS22では、第一基準時点Ts1である第一時点T1における第一時点組成情報と、算出された第三時点T3と第一基準時点Ts1との間における液化ガスを構成する複数の成分の構成比率の変化量と、に基づいて、例えば、第三時点T3におけるタンク10内の液化ガスの液組成を推定する。このようにして、ステップS22で推定された第三時点T3におけるタンク10内の液化ガスの液組成を、本実施形態における第二の液化ガスの組成推定方法S10Bにおける推定結果として採用する。 In step S22 of estimating the third time point composition information, the third time point composition information relating to the composition of the liquefied gas at the third time point T3 is estimated based on the first time point composition information (first reference time point composition information) at the first time point T1, which is the first reference time point Ts1, and the outflow amount information relating to the outflow amount of the liquefied gas between the third time point T3 and the first reference time point Ts1 obtained in step S21. Specifically, in step S22, the amount of change in the composition ratio of the multiple components that make up the liquefied gas between the third time point T3 and the first reference time point Ts1 is calculated based on the first time point composition information at the first time point T1, which is the first reference time point Ts1, and the outflow amount of the liquefied gas in the tank 10 between the third time point T3 and the first reference time point Ts1 obtained in step S21. In step S22, the liquid composition of the liquefied gas in the tank 10 at the third time T3, for example, is estimated based on the first time point composition information at the first time point T1, which is the first reference time point Ts1, and the calculated change in the composition ratio of the multiple components that make up the liquefied gas between the third time point T3 and the first reference time point Ts1. In this way, the liquid composition of the liquefied gas in the tank 10 at the third time point T3 estimated in step S22 is used as the estimation result in the second liquefied gas composition estimation method S10B in this embodiment.
 図7は、本開示の実施形態に係るタンク内の液化ガスの組成推定方法としての第三の液化ガスの組成推定方法の手順を示すフローチャートである。
 図7に示すように、本実施形態に係る第三の液化ガスの組成推定方法S10Cは、第四時点T4と、第二基準時点Ts2と、の間におけるタンク内の液化ガスの流入量に関する流入量情報及びタンク内の液化ガスの流出量に関する流出量情報を取得するステップS31と、流入液化ガス組成情報を取得するステップS32と、第四時点組成情報を推定するステップS33と、を含む。
FIG. 7 is a flowchart showing the steps of a third liquefied gas composition estimation method as a method for estimating the composition of liquefied gas in a tank according to an embodiment of the present disclosure.
As shown in Figure 7, the third liquefied gas composition estimation method S10C of this embodiment includes a step S31 of acquiring inflow volume information regarding the inflow volume of liquefied gas in the tank between the fourth point in time T4 and the second reference point in time Ts2 and outflow volume information regarding the outflow volume of liquefied gas in the tank, a step S32 of acquiring inflow liquefied gas composition information, and a step S33 of estimating the fourth point in time composition information.
 タンク10内の液化ガスの流入量に関する流入量情報及びタンク内の液化ガスの流出量に関する流出量情報を取得するステップS31では、第一時点T1、第二時点T2、及び第三時点T3とは異なる第四時点T4と、第二基準時点Ts2と、の間におけるタンク10内の液化ガスの流入量に関する流入量情報及びタンク10内の液化ガスの流出量に関する流出量情報を取得する。ここで、第四時点T4は、第二基準時点Ts2以降において、外部からタンク10内に液化ガスを供給している、いわゆるバンカリング中、またはバンカリング直後の時点である。第四時点T4は、第一基準時点Ts1以降の時点である。本実施形態では、第二基準時点Ts2を、直近で液化ガスの液組成の推定結果を採用した、第三時点T3とする。なお、第二基準時点Ts2は、第三時点T3に限らず、第一時点T1、第二時点T2等、他の時点としてもよい。
 第四時点T4と、第二基準時点Ts2と、の間におけるタンク10内の液化ガスの流入量は、例えば、タンク10に供給される液化ガスの流量の計測データに基づいて取得できる。第四時点T4と、第二基準時点Ts2と、の間におけるタンク10内の液化ガスの流出量は、例えば、情報記憶部74に予め記憶されているタンク10に関する仕様情報に基づいて算出してもよいし、計測データを用いてもよい。
In step S31, inflow information on the inflow amount of the liquefied gas in the tank 10 and outflow information on the outflow amount of the liquefied gas in the tank are acquired. Inflow information on the inflow amount of the liquefied gas in the tank 10 and outflow information on the outflow amount of the liquefied gas in the tank 10 between a fourth time point T4, which is different from the first time point T1, the second time point T2, and the third time point T3, and the second reference time point Ts2 are acquired. Here, the fourth time point T4 is a time point during so-called bunkering, or immediately after bunkering, in which liquefied gas is supplied from the outside into the tank 10 after the second reference time point Ts2. The fourth time point T4 is a time point after the first reference time point Ts1. In this embodiment, the second reference time point Ts2 is set to the third time point T3, which employs the most recent estimated result of the liquid composition of the liquefied gas. The second reference time point Ts2 is not limited to the third time point T3, and may be another time point such as the first time point T1 or the second time point T2.
The inflow amount of liquefied gas in the tank 10 between the fourth time point T4 and the second reference time point Ts2 can be obtained, for example, based on measurement data of the flow rate of the liquefied gas supplied to the tank 10. The outflow amount of liquefied gas in the tank 10 between the fourth time point T4 and the second reference time point Ts2 may be calculated, for example, based on specification information regarding the tank 10 pre-stored in the information storage unit 74, or may use the measurement data.
 流入液化ガス組成情報を取得するステップS32では、第四時点T4と、第二基準時点Ts2(第三時点T3)と、の間における、タンク10内に流入した液化ガスの組成に関する流入液化ガス組成情報を取得する。この流入液化ガス組成情報は、例えば、液化ガスの供給施設側から提供されるタンク10に供給される液化ガスの液組成の情報を用いることができる。なお、流入液化ガス組成情報は、過去の実績値を流用して推定するなどしてもよい。 In step S32 of acquiring inflow liquefied gas composition information, inflow liquefied gas composition information is acquired regarding the composition of the liquefied gas that has flowed into the tank 10 between the fourth time point T4 and the second reference time point Ts2 (third time point T3). This inflow liquefied gas composition information may be information on the liquid composition of the liquefied gas supplied to the tank 10 provided by a liquefied gas supply facility, for example. Note that the inflow liquefied gas composition information may be estimated by reusing past actual values.
 第四時点組成情報を推定するステップS33では、第二基準時点Ts2である第三時点T3における第三時点組成情報(第二基準時点組成情報)と、ステップS31で取得された第四時点T4と第二基準時点Ts2との間における液化ガスの流入量に関する流入量情報及びタンク10内の液化ガスの流出量に関する流出量情報と、ステップS32で取得された流入液化ガス組成情報と、に基づいて、第四時点T4における液化ガスの組成に関する第四時点組成情報を推定する。 In step S33 of estimating the fourth time point composition information, the fourth time point composition information regarding the composition of the liquefied gas at the fourth time point T4 is estimated based on the third time point composition information (second reference time point composition information) at the third time point T3, which is the second reference time point Ts2, the inflow volume information regarding the inflow volume of liquefied gas and the outflow volume information regarding the outflow volume of liquefied gas in the tank 10 between the fourth time point T4 and the second reference time point Ts2 acquired in step S31, and the inflow liquefied gas composition information acquired in step S32.
 具体的には、この第四時点組成情報を推定するステップS33では、第二基準時点Ts2である第三時点T3における第三時点組成情報と、ステップS31で取得された第四時点T4と第二基準時点Ts2(第三時点T3)との間におけるタンク10内の液化ガスの流入量及び第四時点T4と第二基準時点Ts2(第三時点T3)との間におけるタンク10内の液化ガスの流出量と、ステップS32で取得された流入液化ガス組成情報と、に基づいて、第四時点T4と第三時点T3との間における、液化ガスを構成する複数の成分の変化量を算出する。そして、第四時点組成情報を推定するステップS33では、第三時点T3における第三時点組成情報と、算出された第四時点T4と第三時点T3との間における液化ガスを構成する複数の成分の変化量と、に基づいて、例えば、第四時点T4におけるタンク10内の液化ガスの液組成を推定する。このようにして、ステップS33で推定された第四時点T4におけるタンク10内の液化ガスの液組成を、本実施形態における第三の液化ガスの組成推定方法S10Cにおける推定結果として採用する。 Specifically, in step S33 of estimating the fourth time point composition information, the amount of change in the multiple components constituting the liquefied gas between the fourth time point T4 and the third time point T3 is calculated based on the third time point composition information at the third time point T3, which is the second reference time point Ts2, the inflow amount of the liquefied gas in the tank 10 between the fourth time point T4 and the second reference time point Ts2 (third time point T3) acquired in step S31 and the outflow amount of the liquefied gas in the tank 10 between the fourth time point T4 and the second reference time point Ts2 (third time point T3), and the inflow liquefied gas composition information acquired in step S32. Then, in step S33 of estimating the fourth time point composition information, for example, the liquid composition of the liquefied gas in the tank 10 at the fourth time point T4 is estimated based on the third time point composition information at the third time point T3 and the calculated amount of change in the multiple components constituting the liquefied gas between the fourth time point T4 and the third time point T3. In this way, the liquid composition of the liquefied gas in the tank 10 at the fourth time point T4 estimated in step S33 is adopted as the estimated result in the third liquefied gas composition estimation method S10C in this embodiment.
(作用効果)
 上記実施形態のタンク内の液化ガスの組成推定方法S10では、第一時点T1で取得された液化ガスの第一時点組成情報と、第二時点T2と第一時点T1との間におけるタンク10内の液化ガスの流出量と、に基づいて、第二時点T2における液化ガスの組成に関する第二時点組成情報を推定している。
 したがって、タンク10内の液化ガスの組成を計測することなく、タンク10内に貯留している液化ガスの組成を容易に把握することができる。
(Action and Effect)
In the method S10 for estimating the composition of liquefied gas in a tank in the above embodiment, second-point-in-time composition information regarding the composition of the liquefied gas at the second point-in-time T2 is estimated based on first-point-in-time composition information of the liquefied gas obtained at the first point-in-time T1 and the amount of liquefied gas flowing out of the tank 10 between the second point-in-time T2 and the first point-in-time T1.
Therefore, the composition of the liquefied gas stored in the tank 10 can be easily grasped without measuring the composition of the liquefied gas in the tank 10.
 また、上記実施形態では、第一時点T1におけるタンク10内の液化ガスの液組成を仮定し、仮定された液化ガスの液組成から算出される液化ガスの状態量の仮定値と、実際の第一時点T1におけるタンク10内の液化ガスの状態量と、に基づいて、第一時点T1における液化ガスの液組成に関する第一時点組成情報を設定することができる。 In addition, in the above embodiment, the liquid composition of the liquefied gas in the tank 10 at the first point in time T1 is assumed, and first point in time composition information regarding the liquid composition of the liquefied gas at the first point in time T1 can be set based on an assumed value of the state quantity of the liquefied gas calculated from the assumed liquid composition of the liquefied gas and the actual state quantity of the liquefied gas in the tank 10 at the first point in time T1.
 また、上記実施形態では、第一時点T1におけるタンク10内の液化ガスの液組成を仮定し、仮定された液化ガスの液組成における状態量の仮定値のうち、状態量の仮定値と、第一時点T1におけるタンク10内の液化ガスの状態量との差が、予め設定された範囲内であるものを、第一時点組成情報として設定している。これにより、仮定された液化ガスの液組成の中から、第一時点T1におけるタンク10内の液化ガスの組成に近いものを選ぶことができるため、仮定する液化ガスの液組成の推定精度を高めることができる。 In addition, in the above embodiment, the liquid composition of the liquefied gas in the tank 10 at the first time point T1 is assumed, and among the assumed values of the state quantities in the assumed liquid composition of the liquefied gas, the difference between the assumed value of the state quantity and the state quantity of the liquefied gas in the tank 10 at the first time point T1 is within a preset range and is set as the first time point composition information. This makes it possible to select from the assumed liquid compositions of the liquefied gas one that is close to the composition of the liquefied gas in the tank 10 at the first time point T1, thereby improving the estimation accuracy of the assumed liquid composition of the liquefied gas.
 また、上記実施形態では、第二時点T2における液化ガスの状態量を推定し、推定された第二時点T2における液化ガスの状態量の推定値を、実際の第二時点T2におけるタンク10内の液化ガスの状態量と比較することで、予め設定された誤差の設定範囲内となる第二時点T2における液化ガスの状態量の推定値を得ることができる。そのため、この状態量の推定値に基づいて、確からしい推定組成すなわち、確からしい第二時点組成情報、及び第一時点組成情報を得ることができる。 In addition, in the above embodiment, by estimating the state quantity of the liquefied gas at the second time point T2 and comparing the estimated value of the state quantity of the liquefied gas at the second time point T2 with the actual state quantity of the liquefied gas in the tank 10 at the second time point T2, it is possible to obtain an estimate of the state quantity of the liquefied gas at the second time point T2 that falls within a preset error range. Therefore, based on the estimate of this state quantity, it is possible to obtain a probable estimated composition, i.e., probable second time point composition information and first time point composition information.
 また、上記実施形態では、第三時点T3と第一基準時点Ts1(第二時点T2)との間で、タンク10内の液化ガスの流出が生じた場合、タンク10内の液化ガスの流出量に関する流出量情報を取得することで、第一時点組成情報(第一基準時点組成情報)と、流出量情報と、に基づいて、第三時点T3における液化ガスの組成に関する第三時点組成情報を推定することができる。 In addition, in the above embodiment, if a leakage of liquefied gas occurs in the tank 10 between the third time point T3 and the first reference time point Ts1 (second time point T2), by acquiring leakage amount information regarding the leakage amount of liquefied gas in the tank 10, it is possible to estimate third time point composition information regarding the composition of the liquefied gas at the third time point T3 based on the first time point composition information (first reference time point composition information) and the leakage amount information.
 また、上記実施形態では、第四時点T4と第二基準時点Ts2(第三時点T3)との間で、タンク10内への液化ガスの流入及びタンク10内の液化ガスの流出が生じた場合、タンク10内の液化ガスの流入量に関する流入量情報及びタンク10内の液化ガスの流出量に関する流出量情報を取得することで、第三次点組成情報(第二基準時点組成情報)と、流入量情報及び流出量情報と、に基づいて、第四時点T4における液化ガスの組成に関する第四時点組成情報を推定することができる。 In addition, in the above embodiment, if liquefied gas flows into the tank 10 and flows out of the tank 10 between the fourth time point T4 and the second reference time point Ts2 (third time point T3), inflow volume information regarding the amount of liquefied gas flowing into the tank 10 and outflow volume information regarding the amount of liquefied gas flowing out of the tank 10 are acquired, and fourth time point composition information regarding the composition of the liquefied gas at the fourth time point T4 can be estimated based on the third time point composition information (second reference time point composition information), the inflow volume information, and the outflow volume information.
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 上記実施形態では、ステップS11等において、タンク10の状態量として、タンク10内の圧力及び温度を取得し、これら圧力及び温度から、液化ガスの密度を算出するようにしたが、これに限られない。例えば、タンク10内の圧力、及び液化ガスの密度から、液化ガスの温度を算出することで、液化ガスの組成を推定するようにしてもよい。また、タンク10内の液化ガスの状態量として、さらに多くのパラメータの情報を取得し、それらの情報から、液化ガスの組成を推定するようにしてもよい。
Other Embodiments
Although the embodiments of the present disclosure have been described in detail above with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes and the like that do not deviate from the gist of the present disclosure are also included.
In the above embodiment, in step S11 and the like, the pressure and temperature inside the tank 10 are acquired as the state quantities of the tank 10, and the density of the liquefied gas is calculated from these pressures and temperatures, but this is not limited to the above. For example, the composition of the liquefied gas may be estimated by calculating the temperature of the liquefied gas from the pressure inside the tank 10 and the density of the liquefied gas. Furthermore, information on even more parameters may be acquired as the state quantities of the liquefied gas inside the tank 10, and the composition of the liquefied gas may be estimated from this information.
 また、上記実施形態のステップS12では、第一時点T1におけるタンク10内の液化ガスの状態量(密度)の複数の仮定値の中から、適宜の最適化手法で、その後の処理に用いる仮定値を選択するようにしたが、その具体的手法はいかなるものであってもよい。 In addition, in step S12 of the above embodiment, an assumed value to be used in subsequent processing is selected from multiple assumed values of the state quantity (density) of the liquefied gas in the tank 10 at the first time point T1 using an appropriate optimization method, but the specific method may be any method.
 また、上記実施形態の第二の液化ガスの組成推定方法S10Bでは、第二時点T2を第一基準時点Ts1として用いるようにしたが、第一基準時点Ts1としては、第三時点T3以前であれば、第二時点T2に限らず、他の時点を採用するようにしてもよい。
 同様に、上記実施形態の第三の液化ガスの組成推定方法S10Bでは、第三時点T3を第二基準時点Ts2として用いるようにしたが、第二基準時点Ts2としては、第四時点T4以前であれば、第三時点T3に限らず、他の時点を採用するようにしてもよい。
In addition, in the second liquefied gas composition estimation method S10B of the above embodiment, the second point in time T2 is used as the first reference point in time Ts1, but the first reference point in time Ts1 may be any other point in time, not limited to the second point in time T2, as long as it is prior to the third point in time T3.
Similarly, in the third liquefied gas composition estimation method S10B of the above embodiment, the third point in time T3 is used as the second reference point in time Ts2, but the second reference point in time Ts2 may be any other point in time, not limited to the third point in time T3, as long as it is prior to the fourth point in time T4.
 上記実施形態では、船舶1に設けられたタンク10を一例にして説明したが、タンク10は、陸上に設置されたタンクであってもよい。 In the above embodiment, the tank 10 provided on the ship 1 is described as an example, but the tank 10 may also be a tank installed on land.
<付記>
 実施形態に記載のタンク内の液化ガスの組成推定方法S10は、例えば以下のように把握される。
<Additional Notes>
The method S10 for estimating the composition of liquefied gas in a tank described in the embodiment can be understood, for example, as follows.
(1)第1の態様に係るタンク内の液化ガスの組成推定方法S10は、複数成分を含む液化ガスを貯留しているタンク10内の前記液化ガスの組成推定方法S10であって、第一時点T1における前記タンク10内の前記液化ガスの組成を推定するための基準情報を取得するステップS11と、前記基準情報を取得するステップS11で取得された前記基準情報に基づいて、前記第一時点T1における前記液化ガスの組成に関する第一時点組成情報を設定するステップS12と、前記第一時点T1とは異なる第二時点T2と、前記第一時点T1と、の間における前記タンク内の液化ガスの流出量に関する情報を取得するステップS13と、第一時点組成情報を設定するステップS12で設定された前記第一時点組成情報、及び、前記タンク内の液化ガスの流出量に関する情報を取得するステップS13で取得された前記液化ガスの流出量に基づいて、前記第二時点における前記液化ガスの組成に関する第二時点組成情報を推定するステップS14と、を含む。
 基準情報の例としては、液化ガスの圧力、温度、密度等の状態量、液化ガスの組成が挙げられる。
 第一時点T1と異なる第二時点T2は、第一時点T1以前の時点であってもよいし、第一時点T1以降の時点であってもよい。
(1) A method S10 for estimating the composition of liquefied gas in a tank according to a first aspect is a method S10 for estimating the composition of liquefied gas in a tank 10 storing liquefied gas containing multiple components, and includes: a step S11 for acquiring reference information for estimating the composition of the liquefied gas in the tank 10 at a first point in time T1; a step S12 for setting first point-in-time composition information regarding the composition of the liquefied gas at the first point in time T1 based on the reference information acquired in the step S11 for acquiring the reference information; a step S13 for acquiring information regarding the outflow amount of liquefied gas in the tank between a second point in time T2 different from the first point in time T1 and the first point in time T1; and a step S14 for estimating second point-in-time composition information regarding the composition of the liquefied gas at the second point in time based on the first point-in-time composition information set in the step S12 for setting first point-in-time composition information and the outflow amount of liquefied gas acquired in the step S13 for acquiring information regarding the outflow amount of liquefied gas in the tank.
Examples of the reference information include state quantities such as pressure, temperature, and density of the liquefied gas, and the composition of the liquefied gas.
The second point in time T2, which is different from the first point in time T1, may be a point in time before the first point in time T1, or may be a point in time after the first point in time T1.
 このタンク内の液化ガスの組成推定方法S10によって、第一時点T1で取得された液化ガスの第一時点組成情報と、第二時点T2と第一時点T1との間におけるタンク10内の液化ガスの流出量と、に基づいて、第二時点T2における液化ガスの組成に関する第二時点組成情報を推定しているため、タンク10内の液化ガスの組成を分析することなく、タンク10内に貯留している液化ガスの組成を容易に把握することができる。 This method S10 for estimating the composition of liquefied gas in a tank estimates second-time point composition information regarding the composition of the liquefied gas at the second time point T2 based on first-time point composition information of the liquefied gas obtained at the first time point T1 and the amount of liquefied gas flowing out of the tank 10 between the second time point T2 and the first time point T1, so that the composition of the liquefied gas stored in the tank 10 can be easily grasped without analyzing the composition of the liquefied gas in the tank 10.
(2)第2の態様に係るタンク内の液化ガスの組成推定方法S10は、(1)のタンク内の液化ガスの組成推定方法S10であって、前記基準情報を取得するステップS11では、前記基準情報として、前記第一時点T1における前記タンク10内の前記液化ガスの状態量を取得し、前記第一時点組成情報を設定するステップS12では、前記第一時点T1における前記タンク10内の前記液化ガスの液組成を仮定して、仮定された前記液化ガスの液組成における状態量の仮定値を算出し、算出された前記状態量の仮定値と、前記第一時点T1における前記タンク10内の前記液化ガスの状態量と、に基づいて、前記第一時点組成情報を設定する。
 液化ガスの状態量の例としては、液化ガスの圧力、温度、密度等が挙げられる。
(2) A method S10 for estimating the composition of liquefied gas in a tank according to a second aspect is the method S10 for estimating the composition of liquefied gas in a tank of (1), in which in step S11 of acquiring the reference information, a state quantity of the liquefied gas in the tank 10 at the first point in time T1 is acquired as the reference information, and in step S12 of setting the first point in time composition information, a liquid composition of the liquefied gas in the tank 10 at the first point in time T1 is assumed, an assumed value of the state quantity at the assumed liquid composition of the liquefied gas is calculated, and the first point in time composition information is set based on the calculated assumed value of the state quantity and the state quantity of the liquefied gas in the tank 10 at the first point in time T1.
Examples of the state quantities of a liquefied gas include the pressure, temperature, and density of the liquefied gas.
 これにより、第一時点T1におけるタンク10内の液化ガスの液組成を仮定し、仮定された液化ガスの液組成から算出される液化ガスの状態量の仮定値と、実際の第一時点T1におけるタンク10内の液化ガスの状態量と、に基づいて、第一時点T1における液化ガスの液組成に関する第一時点組成情報を設定することができる。 This allows the liquid composition of the liquefied gas in the tank 10 at the first point in time T1 to be assumed, and first point in time composition information regarding the liquid composition of the liquefied gas at the first point in time T1 to be set based on an assumed value of the state quantity of the liquefied gas calculated from the assumed liquid composition of the liquefied gas and the actual state quantity of the liquefied gas in the tank 10 at the first point in time T1.
(3)第3の態様に係るタンク内の液化ガスの組成推定方法S10は、(2)のタンク内の液化ガスの組成推定方法S10であって、前記第一時点組成情報を設定するステップS12では、前記第一時点T1における前記タンク10内の前記液化ガスの液組成を複数仮定し、複数仮定された前記液化ガスの液組成の各々における状態量の仮定値のうち、前記状態量の仮定値と、前記第一時点T1における前記タンク10内の前記液化ガスの状態量との差が、予め設定された範囲内であるものを特定し、特定された前記状態量の仮定値に対応した前記液化ガスの液組成を、前記第一時点組成情報として設定する。 (3) The method S10 for estimating the composition of liquefied gas in a tank according to the third aspect is the method S10 for estimating the composition of liquefied gas in a tank according to (2), and in step S12 for setting the first time point composition information, multiple liquid compositions of the liquefied gas in the tank 10 at the first time point T1 are assumed, and among the multiple assumed values of the state quantity for each of the multiple assumed liquid compositions of the liquefied gas, one in which the difference between the assumed value of the state quantity and the state quantity of the liquefied gas in the tank 10 at the first time point T1 is within a preset range is identified, and the liquid composition of the liquefied gas corresponding to the identified assumed value of the state quantity is set as the first time point composition information.
 これにより、複数仮定された液化ガスの液組成の中から、第一時点T1におけるタンク10内の液化ガスの組成に近いものを選ぶことで、仮定する液化ガスの液組成の精度を高めることができる。 As a result, by selecting from among multiple assumed liquid compositions of the liquefied gas the one closest to the composition of the liquefied gas in the tank 10 at the first time point T1, the accuracy of the assumed liquid composition of the liquefied gas can be improved.
(4)第4の態様に係るタンク内の液化ガスの組成推定方法S10は、(1)から(3)の何れか一つのタンク内の液化ガスの組成推定方法S10であって、前記第二時点における前記タンク内の前記液化ガスの状態量を取得するステップS15と、前記第二時点組成情報を推定するステップS14で推定された前記第二時点組成情報に基づいて、前記タンク10内の前記第二時点T2における前記液化ガスの状態量を推定するステップS16と、前記第二時点T2における前記タンク10内の前記液化ガスの状態量を推定するステップS16で推定した、前記第二時点T2における前記タンク10内の前記液化ガスの状態量の推定値と、前記第二時点T2における前記タンク10内の前記液化ガスの状態量を取得するステップS15で取得した、前記第二時点T2における前記タンク10内の前記液化ガスの状態量とを比較することで、前記第二時点T2における前記タンク10内の前記液化ガスの状態量の推定値の誤差を判定するステップS17と、をさらに含む。 (4) The method S10 for estimating the composition of liquefied gas in a tank according to the fourth aspect is any one of the methods S10 for estimating the composition of liquefied gas in a tank according to (1) to (3), and further includes a step S15 for acquiring the state quantity of the liquefied gas in the tank at the second time point, a step S16 for estimating the state quantity of the liquefied gas in the tank 10 at the second time point T2 based on the second time point composition information estimated in the step S14 for estimating the second time point composition information, and a step S17 for determining an error in the estimated value of the state quantity of the liquefied gas in the tank 10 at the second time point T2 by comparing the estimated value of the state quantity of the liquefied gas in the tank 10 at the second time point T2 estimated in the step S16 for estimating the state quantity of the liquefied gas in the tank 10 at the second time point T2 with the state quantity of the liquefied gas in the tank 10 at the second time point T2 acquired in the step S15 for acquiring the state quantity of the liquefied gas in the tank 10 at the second time point T2.
 これにより、第二時点組成情報に基づいて、第二時点T2におけるタンク10内の液化ガスの状態量を推定することができる。また、ステップS16で推定された第二時点T2における液化ガスの状態量の推定値を、ステップS15で取得した第二時点T2におけるタンク10内の液化ガスの状態量と比較することで、予め設定された誤差の設定範囲内となる第二時点T2における液化ガスの状態量の推定値を得ることができるため、この状態量の推定値に基づいて、確からしい推定組成すなわち、確からしいステップS14で推定した第二時点組成情報、及びステップS12で設定した第一時点組成情報を得ることができる。 This allows the state quantity of the liquefied gas in the tank 10 at the second time point T2 to be estimated based on the second time point composition information. In addition, by comparing the estimated value of the state quantity of the liquefied gas at the second time point T2 estimated in step S16 with the state quantity of the liquefied gas in the tank 10 at the second time point T2 acquired in step S15, it is possible to obtain an estimated value of the state quantity of the liquefied gas at the second time point T2 that falls within a preset error range, and therefore it is possible to obtain a probable estimated composition based on this estimated value of the state quantity, i.e., the probable second time point composition information estimated in step S14 and the first time point composition information set in step S12.
(5)第5の態様に係るタンク内の液化ガスの組成推定方法S10は、(1)から(4)の何れか一つのタンク内の液化ガスの組成推定方法S10であって、過去の第一基準時点Ts1における前記液化ガスの組成に関する第一基準時点組成情報を取得するステップS12と、前記第一基準時点Ts1とは異なる第三時点T3と、前記第一基準時点Ts1と、の間における、前記タンク10内の液化ガスの流出量に関する流出量情報を取得するステップS21と、前記第一基準時点組成情報を取得するステップS12で取得された前記第一基準時点組成情報、及び、前記第三時点T3と前記第一基準時点Ts1との間における、前記タンク10内の液化ガスの流出量に関する流出量情報を取得するステップS21で取得された前記流出量情報に基づいて、前記第三時点T3における前記液化ガスの組成に関する第三時点組成情報を推定するステップS22と、を含む。 (5) The method S10 for estimating the composition of liquefied gas in a tank according to the fifth aspect is any one of the methods S10 for estimating the composition of liquefied gas in a tank according to (1) to (4), and includes a step S12 for acquiring first reference time composition information regarding the composition of the liquefied gas at a past first reference time Ts1, a step S21 for acquiring outflow volume information regarding the outflow volume of the liquefied gas in the tank 10 between a third time T3 different from the first reference time Ts1 and the first reference time Ts1, and a step S22 for estimating third time composition information regarding the composition of the liquefied gas at the third time T3 based on the first reference time composition information acquired in the step S12 for acquiring the first reference time composition information and the outflow volume information acquired in the step S21 for acquiring outflow volume information regarding the outflow volume of the liquefied gas in the tank 10 between the third time T3 and the first reference time Ts1.
 これにより、第三時点T3と第一基準時点Ts1との間で、タンク10内の液化ガスの流出が生じた場合に、タンク10内の液化ガスの流出量に関する流出量情報を取得することができるため、第一基準時点組成情報と、流出量情報と、に基づいて、第三時点T3における液化ガスの組成に関する第三時点組成情報を推定することができる。 As a result, if a leak of liquefied gas occurs in the tank 10 between the third point in time T3 and the first reference point in time Ts1, it is possible to obtain leak volume information regarding the amount of liquefied gas leaked from the tank 10, and it is therefore possible to estimate third point in time composition information regarding the composition of the liquefied gas at the third point in time T3 based on the first reference point in time composition information and the leak volume information.
(6)第6の態様に係るタンク内の液化ガスの組成推定方法S10は、(5)のタンク内の液化ガスの組成推定方法S10であって、過去の第二基準時点Ts2において設定された前記液化ガスの組成に関する第二基準時点組成情報を取得するステップと、前記第二基準時点Ts2とは異なる第四時点T4と、前記第二基準時点Ts2と、の間における、前記タンク10内への液化ガスの流入量に関する流入量情報を取得するステップS31と、前記タンク10内に流入した前記液化ガスの組成に関する流入液化ガス組成情報を取得するステップS32と、前記第二基準時点組成情報を取得するステップS22で取得された前記第二基準時点組成情報、前記第四時点T4と前記第二基準時点Ts2との間における、前記タンク10内への液化ガスの流入量に関する流入量情報を取得するステップS31で取得された前記流入量情報、及び、前記流入液化ガス組成情報を取得するステップS32で取得された前記流入液化ガス組成情報、に基づいて、前記第四時点T4における前記液化ガスの組成に関する第四時点組成情報を推定するステップS33と、を含む。 (6) The method S10 for estimating the composition of liquefied gas in a tank relating to the sixth aspect is the method S10 for estimating the composition of liquefied gas in a tank according to (5), and includes a step S31 of acquiring second reference time composition information regarding the composition of the liquefied gas set at a past second reference time Ts2, a step S32 of acquiring inflow volume information regarding the inflow volume of liquefied gas into the tank 10 between a fourth time T4 different from the second reference time Ts2 and the second reference time Ts2, and a step S33 of acquiring inflow liquefied gas composition information regarding the composition of the liquefied gas that has flowed into the tank 10. and a step S33 of estimating fourth time point composition information relating to the composition of the liquefied gas at the fourth time point T4 based on the second reference time point composition information acquired in step S22 of acquiring the second reference time point composition information, the inflow volume information acquired in step S31 of acquiring inflow volume information relating to the inflow volume of the liquefied gas into the tank 10 between the fourth time point T4 and the second reference time point Ts2, and the inflow liquefied gas composition information acquired in step S32 of acquiring the inflow liquefied gas composition information.
 これにより、第四時点T4と第二基準時点Ts2との間で、タンク10内への液化ガスの流入が生じた場合に、タンク10内の液化ガスの流入量に関する流入量情報を取得することができるため、第二基準時点組成情報と、流入量情報と、に基づいて、第四時点T4における液化ガスの組成に関する第四時点組成情報を推定することができる。 As a result, if liquefied gas flows into the tank 10 between the fourth time point T4 and the second reference time point Ts2, inflow volume information regarding the inflow volume of liquefied gas into the tank 10 can be obtained, and fourth time point composition information regarding the composition of the liquefied gas at the fourth time point T4 can be estimated based on the second reference time point composition information and the inflow volume information.
(7)第7の態様に係るタンク内の液化ガスの組成推定方法S10は、複数成分を含む液化ガスを貯留しているタンク10内の液化ガスの組成推定方法S10であって、過去の第一基準時点Ts1において設定された前記液化ガスの組成に関する第一基準時点組成情報を取得するステップS12と、前記第一基準時点Ts1とは異なる第三時点T3と、前記第一基準時点Ts1と、の間における、前記タンク10内の液化ガスの流出量に関する流出量情報を取得するステップS21と、前記第一基準時点組成情報を取得するステップS12で取得された前記第一基準時点組成情報、及び、前記第三時点T3と前記第一基準時点Ts1との間における、前記タンク10内の液化ガスの流出量に関する流出量情報を取得するステップS21で取得された前記流出量情報に基づいて、前記第三時点T3における前記液化ガスの組成に関する第三時点組成情報を推定するステップS22と、を含む。 (7) The method S10 for estimating the composition of liquefied gas in a tank according to the seventh aspect is a method S10 for estimating the composition of liquefied gas in a tank 10 storing liquefied gas containing multiple components, and includes a step S12 for acquiring first reference time composition information regarding the composition of the liquefied gas set at a past first reference time Ts1, a step S21 for acquiring outflow volume information regarding the outflow volume of the liquefied gas in the tank 10 between a third time T3 different from the first reference time Ts1 and the first reference time Ts1, and a step S22 for estimating third time composition information regarding the composition of the liquefied gas at the third time T3 based on the first reference time composition information acquired in the step S12 for acquiring the first reference time composition information and the outflow volume information acquired in the step S21 for acquiring outflow volume information regarding the outflow volume of the liquefied gas in the tank 10 between the third time T3 and the first reference time Ts1.
 これにより、第三時点T3と第一基準時点Ts1との間で、タンク10内の液化ガスの流出が生じた場合に、タンク10内の液化ガスの流出量に関する流出量情報を取得することができるため、第一基準時点組成情報と、流出量情報と、に基づいて、第三時点T3における液化ガスの組成に関する第三時点組成情報を推定することができる。したがって、タンク10内の液化ガスの組成を分析することなく、タンク10内に貯留している液化ガスの組成を容易に把握することができる。 As a result, if a leak of liquefied gas occurs in the tank 10 between the third time point T3 and the first reference time point Ts1, it is possible to obtain leak volume information regarding the amount of liquefied gas leaked from the tank 10, and it is therefore possible to estimate third time point composition information regarding the composition of the liquefied gas at the third time point T3 based on the first reference time point composition information and the leak volume information. Therefore, it is possible to easily grasp the composition of the liquefied gas stored in the tank 10 without analyzing the composition of the liquefied gas in the tank 10.
(8)第8の態様に係るタンク内の液化ガスの組成推定方法S10は、複数成分を含む液化ガスを貯留しているタンク10内の液化ガスの組成推定方法S10であって、過去の第二基準時点Ts2において設定された前記液化ガスの組成に関する第二基準時点組成情報を取得するステップと、前記第二基準時点Ts2とは異なる第四時点T4と、前記第二基準時点Ts2と、の間における、前記タンク10内への液化ガスの流入量に関する流入量情報及びタンク内の液化ガスの流出量に関する流出量情報を取得するステップS31と、前記タンク10内に流入した前記液化ガスの組成に関する流入液化ガス組成情報を取得するステップS32と、前記第二基準時点組成情報を取得するステップS22で取得された前記第二基準時点組成情報、前記第四時点T4と前記第二基準時点Ts2との間における、前記タンク10内への液化ガスの流入量に関する流入量情報及びタンク内の液化ガスの流出量に関する流出量情報を取得するステップS31で取得された前記流入量情報及び前記流出量情報と、前記流入液化ガス組成情報を取得するステップS32で取得された前記流入液化ガス組成情報と、に基づいて、前記第四時点T4における前記液化ガスの組成に関する第四時点組成情報を推定するステップS33と、を含む。 (8) The method S10 for estimating the composition of liquefied gas in a tank relating to the eighth aspect is a method S10 for estimating the composition of liquefied gas in a tank 10 storing liquefied gas containing multiple components, and includes a step S31 of acquiring second reference time composition information regarding the composition of the liquefied gas set at a past second reference time Ts2, a step S32 of acquiring inflow volume information regarding the amount of liquefied gas flowing into the tank 10 and outflow volume information regarding the amount of liquefied gas flowing out of the tank between a fourth time T4 different from the second reference time Ts2 and the second reference time Ts2, and an inflow liquefied gas composition information regarding the composition of the liquefied gas that has flowed into the tank 10. The method includes a step S32 of acquiring information, and a step S33 of estimating fourth time point composition information related to the composition of the liquefied gas at the fourth time point T4 based on the second reference time point composition information acquired in the step S22 of acquiring the second reference time point composition information, the inflow volume information and the outflow volume information acquired in the step S31 of acquiring inflow volume information related to the inflow volume of the liquefied gas into the tank 10 and outflow volume information related to the outflow volume of the liquefied gas in the tank between the fourth time point T4 and the second reference time point Ts2, and the inflow liquefied gas composition information acquired in the step S32 of acquiring the inflow liquefied gas composition information.
 これにより、第四時点T4と過去の第二基準時点Ts2との間で、タンク10内への液化ガスの流入及び流出が生じた場合に、タンク10内の液化ガスの流入量に関する流入量情報及び流出量に関する流出量情報を取得することができるため、第二基準時点組成情報と、流入量情報及び流出量情報と、に基づいて、第四時点T4における液化ガスの組成に関する第四時点組成情報を推定することができる。したがって、タンク10内の液化ガスの組成を分析することなく、タンク10内に貯留している液化ガスの組成を容易に把握することができる。 As a result, if inflow and outflow of liquefied gas occurs into and from the tank 10 between the fourth point in time T4 and the previous second reference point in time Ts2, inflow volume information regarding the inflow volume of liquefied gas in the tank 10 and outflow volume information regarding the outflow volume can be obtained, and fourth point in time composition information regarding the composition of the liquefied gas at the fourth point in time T4 can be estimated based on the second reference point in time composition information, the inflow volume information, and the outflow volume information. Therefore, the composition of the liquefied gas stored in the tank 10 can be easily grasped without analyzing the composition of the liquefied gas in the tank 10.
 本開示のタンク内の液化ガスの組成推定方法によれば、タンク内に貯留している液化ガスの組成を容易に把握することができる。 The disclosed method for estimating the composition of liquefied gas in a tank makes it easy to determine the composition of the liquefied gas stored in the tank.
1…船舶
2…船体
2a…船首
4…上部構造
5A,5B…舷側
6…船底
7…上甲板
8…貨物搭載区画
9…燃焼装置
10…タンク
60…組成推定装置
61…CPU
62…ROM
63…RAM
64…ストレージ
65…信号送受信モジュール
71…情報取得部
72…タンク内変化量取得部
73…組成推定部
74…情報記憶部
A1~A3…状態
FA…船首尾方向
S10…タンク内の液化ガスの組成推定方法
S11…基準情報を取得するステップ
S12…第一時点組成情報を設定するステップ
S13…タンク内の液化ガスの流出量に関する流出量情報を取得するステップ
S14…第二時点組成情報を推定するステップ
S15…第二時点におけるタンク内の液化ガスの状態量を取得するステップ
S16…第二時点組成情報からタンク内の液化ガスの状態量を推定するステップ
S17…推定値の誤差を判定するステップ
S21…第三時点と第一基準時点との間におけるタンク内の液化ガスの流出量に関する流出量情報を取得するステップ
S22…第三時点組成情報を推定するステップ
S31…第四時点と第二基準時点との間におけるタンク内の液化ガスの流入量に関する流入量情報を取得するステップ
S32…流入液化ガス組成情報を取得するステップ
S33…第四時点組成情報を推定するステップ
T0…使用開始時点
T1…第一時点
T2…第二時点
T3…第三時点
T4…第四時点
Ts1…第一基準時点
Ts2…第二基準時点
Reference Signs List 1 Ship 2 Hull 2a Bow 4 Superstructure 5A, 5B Ship side 6 Ship bottom 7 Upper deck 8 Cargo carrying compartment 9 Combustion device 10 Tank 60 Composition estimation device 61 CPU
62...ROM
63...RAM
64...Storage 65...Signal transmission/reception module 71...Information acquisition unit 72...In-tank change amount acquisition unit 73...Composition estimation unit 74...Information storage unit A1 to A3...Status FA...Bow-stern direction S10...Method for estimating composition of liquefied gas in tank S11...Step of acquiring reference information S12...Step of setting composition information at first point in time S13...Step of acquiring outflow amount information regarding the outflow amount of liquefied gas in the tank S14...Step of estimating composition information at second point in time S15...Step of acquiring state amount of liquefied gas in the tank at the second point in time S16...Step of estimating state amount of liquefied gas in the tank from composition information at second point in time Step S17: determining an error in the estimated value Step S21: acquiring outflow amount information regarding the outflow amount of liquefied gas in the tank between the third time point and the first reference time Step S22: estimating third time point composition information Step S31: acquiring inflow amount information regarding the inflow amount of liquefied gas in the tank between the fourth time point and the second reference time Step S32: acquiring inflow liquefied gas composition information Step S33: estimating fourth time point composition information T0: start of use time T1: first time point T2: second time point T3: third time point T4: fourth time point Ts1: first reference time point Ts2: second reference time

Claims (8)

  1.  複数成分を含む液化ガスを貯留しているタンク内の前記液化ガスの組成推定方法であって、
     第一時点における前記タンク内の前記液化ガスの組成を推定するための基準情報を取得するステップと、
     前記基準情報を取得するステップで取得された前記基準情報に基づいて、前記第一時点における前記液化ガスの組成に関する第一時点組成情報を設定するステップと、
     前記第一時点とは異なる第二時点と、前記第一時点と、の間における前記タンク内の液化ガスの流出量に関する情報を取得するステップと、
     第一時点組成情報を設定するステップで設定された前記第一時点組成情報、及び、前記タンク内の液化ガスの流出量に関する情報を取得するステップで取得された前記液化ガスの流出量に基づいて、前記第二時点における前記液化ガスの組成に関する第二時点組成情報を推定するステップと、を含む
    タンク内の液化ガスの組成推定方法。
    A method for estimating a composition of a liquefied gas in a tank storing the liquefied gas containing multiple components, comprising the steps of:
    obtaining reference information for estimating a composition of the liquefied gas in the tank at a first time;
    A step of setting first time point composition information regarding a composition of the liquefied gas at the first time point based on the reference information acquired in the step of acquiring the reference information;
    acquiring information about an outflow amount of liquefied gas in the tank between a second time point different from the first time point and the first time point;
    a step of estimating second point-in-time composition information regarding the composition of the liquefied gas at the second point in time based on the first point-in-time composition information set in a step of setting first point-in-time composition information and the outflow amount of the liquefied gas acquired in a step of acquiring information regarding the outflow amount of the liquefied gas in the tank.
  2.  前記基準情報を取得するステップでは、
     前記基準情報として、前記第一時点における前記タンク内の前記液化ガスの状態量を取得し、
     前記第一時点組成情報を設定するステップでは、
     前記第一時点における前記タンク内の前記液化ガスの液組成を仮定して、仮定された前記液化ガスの液組成における状態量の仮定値を算出し、算出された前記状態量の仮定値と、前記第一時点における前記タンク内の前記液化ガスの状態量と、に基づいて、前記第一時点組成情報を設定する
    請求項1に記載のタンク内の液化ガスの組成推定方法。
    In the step of acquiring the reference information,
    As the reference information, a state quantity of the liquefied gas in the tank at the first time point is acquired;
    In the step of setting the first time point composition information,
    A method for estimating the composition of liquefied gas in a tank as described in claim 1, which assumes a liquid composition of the liquefied gas in the tank at the first time point, calculates an assumed value of a state quantity at the assumed liquid composition of the liquefied gas, and sets the first time point composition information based on the calculated assumed value of the state quantity and the state quantity of the liquefied gas in the tank at the first time point.
  3.  前記第一時点組成情報を設定するステップでは、
     前記第一時点における前記タンク内の前記液化ガスの液組成を複数仮定し、
     複数仮定された前記液化ガスの液組成の各々における状態量の仮定値のうち、前記状態量の仮定値と、前記第一時点における前記タンク内の前記液化ガスの状態量との差が、予め設定された範囲内であるものを特定し、
     特定された前記状態量の仮定値に対応した前記液化ガスの液組成を、前記第一時点組成情報として設定する
    請求項2に記載のタンク内の液化ガスの組成推定方法。
    In the step of setting the first time point composition information,
    A plurality of liquid compositions of the liquefied gas in the tank at the first time point are assumed;
    Among the assumed values of the state quantity for each of the multiple assumed liquid compositions of the liquefied gas, a difference between the assumed value of the state quantity and the state quantity of the liquefied gas in the tank at the first time point is identified within a preset range;
    The method for estimating a composition of a liquefied gas in a tank according to claim 2 , further comprising the step of: setting a liquid composition of the liquefied gas corresponding to the identified assumed value of the state quantity as the first time point composition information.
  4.  前記第二時点における前記タンク内の前記液化ガスの状態量を取得するステップと、
     前記第二時点組成情報を推定するステップで推定された前記第二時点組成情報に基づいて、前記第二時点における前記タンク内の前記液化ガスの状態量を推定するステップと、
     前記第二時点における前記タンク内の前記液化ガスの状態量を推定するステップで推定した、前記第二時点における前記タンク内の前記液化ガスの状態量の推定値と、前記第二時点における前記タンク内の前記液化ガスの状態量を取得するステップで取得した、前記第二時点における前記タンク内の前記液化ガスの状態量とを比較することで、前記第二時点における前記タンク内の前記液化ガスの状態量の推定値の誤差を判定するステップと、をさらに含む
    請求項1又は2に記載のタンク内の液化ガスの組成推定方法。
    acquiring a state quantity of the liquefied gas in the tank at the second time point;
    A step of estimating a state quantity of the liquefied gas in the tank at the second time point based on the second time point composition information estimated in the step of estimating the second time point composition information;
    The method for estimating the composition of liquefied gas in a tank as described in claim 1 or 2, further comprising a step of determining an error in the estimated value of the state quantity of the liquefied gas in the tank at the second time point by comparing the estimated value of the state quantity of the liquefied gas in the tank at the second time point estimated in the step of estimating the state quantity of the liquefied gas in the tank at the second time point with the state quantity of the liquefied gas in the tank at the second time point acquired in the step of acquiring the state quantity of the liquefied gas in the tank at the second time point.
  5.  過去の第一基準時点における前記液化ガスの組成に関する第一基準時点組成情報を取得するステップと、
     前記第一基準時点とは異なる第三時点と、前記第一基準時点と、の間における、前記タンク内の液化ガスの流出量に関する流出量情報を取得するステップと、
     前記第一基準時点組成情報を取得するステップで取得された前記第一基準時点組成情報、及び、前記第三時点と前記第一基準時点との間における、前記タンク内の液化ガスの流出量に関する流出量情報を取得するステップで取得された前記流出量情報に基づいて、前記第三時点における前記液化ガスの組成に関する第三時点組成情報を推定するステップと、を含む
    請求項1又は2に記載のタンク内の液化ガスの組成推定方法。
    Obtaining first reference time point composition information regarding a composition of the liquefied gas at a first reference time point in the past;
    Acquiring outflow amount information regarding an outflow amount of the liquefied gas in the tank between a third time point different from the first reference time point and the first reference time point;
    3. The method for estimating the composition of liquefied gas in a tank as described in claim 1 or 2, comprising a step of estimating third time point composition information regarding the composition of the liquefied gas at the third time point based on the first reference time point composition information acquired in the step of acquiring the first reference time point composition information, and the outflow volume information acquired in the step of acquiring outflow volume information regarding the outflow volume of liquefied gas in the tank between the third time point and the first reference time point.
  6.  過去の第二基準時点において設定された前記液化ガスの組成に関する第二基準時点組成情報を取得するステップと、
     前記第二基準時点とは異なる第四時点と、前記第二基準時点と、の間における、前記タンク内への液化ガスの流入量に関する流入量情報を取得するステップと、
     前記タンク内に流入した前記液化ガスの組成に関する流入液化ガス組成情報を取得するステップと、
     前記第二基準時点組成情報を取得するステップで取得された前記第二基準時点組成情報、前記第四時点と前記第二基準時点との間における、前記タンク内への液化ガスの流入量に関する流入量情報を取得するステップで取得された前記流入量情報、及び、前記流入液化ガス組成情報を取得するステップで取得された前記流入液化ガス組成情報、に基づいて、前記第四時点における前記液化ガスの組成に関する第四時点組成情報を推定するステップと、を含む
    請求項5に記載のタンク内の液化ガスの組成推定方法。
    Obtaining second reference time point composition information regarding a composition of the liquefied gas set at a second reference time point in the past;
    Acquiring inflow amount information regarding an inflow amount of liquefied gas into the tank between a fourth time point different from the second reference time point and the second reference time point;
    obtaining inflow liquefied gas composition information relating to a composition of the liquefied gas flowing into the tank;
    a step of estimating fourth time point composition information regarding the composition of the liquefied gas at the fourth time point based on the second reference time point composition information acquired in the step of acquiring the second reference time point composition information, the inflow volume information acquired in the step of acquiring inflow volume information regarding the amount of liquefied gas inflow into the tank between the fourth time point and the second reference time point, and the inflow liquefied gas composition information acquired in the step of acquiring the inflow liquefied gas composition information.
  7.  複数成分を含む液化ガスを貯留しているタンク内の液化ガスの組成推定方法であって、
     過去の第一基準時点において設定された前記液化ガスの組成に関する第一基準時点組成情報を取得するステップと、
     前記第一基準時点とは異なる第三時点と、前記第一基準時点と、の間における、前記タンク内の液化ガスの流出量に関する流出量情報を取得するステップと、
     前記第一基準時点組成情報を取得するステップで取得された前記第一基準時点組成情報、及び、前記第三時点と前記第一基準時点との間における、前記タンク内の液化ガスの流出量に関する流出量情報を取得するステップで取得された前記流出量情報に基づいて、前記第三時点における前記液化ガスの組成に関する第三時点組成情報を推定するステップと、を含む
    タンク内の液化ガスの組成推定方法。
    A method for estimating the composition of a liquefied gas in a tank storing the liquefied gas containing multiple components, comprising:
    Obtaining first reference time point composition information regarding a composition of the liquefied gas set at a first reference time point in the past;
    Acquiring outflow amount information regarding an outflow amount of the liquefied gas in the tank between a third time point different from the first reference time point and the first reference time point;
    a step of estimating third time point composition information regarding the composition of the liquefied gas at the third time point based on the first reference time point composition information acquired in a step of acquiring the first reference time point composition information, and the outflow volume information acquired in a step of acquiring outflow volume information regarding the outflow volume of the liquefied gas in the tank between the third time point and the first reference time point.
  8.  複数成分を含む液化ガスを貯留しているタンク内の液化ガスの組成推定方法であって、
     過去の第二基準時点において設定された前記液化ガスの組成に関する第二基準時点組成情報を取得するステップと、
     前記第二基準時点とは異なる第四時点と、前記第二基準時点と、の間における、前記タンク内への液化ガスの流入量に関する流入量情報及びタンク内の液化ガスの流出量に関する流出量情報を取得するステップと、
     前記タンク内に流入した前記液化ガスの組成に関する流入液化ガス組成情報を取得するステップと、
     前記第二基準時点組成情報を取得するステップで取得された前記第二基準時点組成情報、前記第四時点と前記第二基準時点との間における、前記タンク内への液化ガスの流入量に関する流入量情報及びタンク内の液化ガスの流出量に関する流出量情報を取得するステップで取得された前記流入量情報及び前記流出量情報と、前記流入液化ガス組成情報を取得するステップで取得された前記流入液化ガス組成情報と、に基づいて、前記第四時点における前記液化ガスの組成に関する第四時点組成情報を推定するステップと、を含む
    タンク内の液化ガスの組成推定方法。
    A method for estimating the composition of a liquefied gas in a tank storing the liquefied gas containing multiple components, comprising:
    Obtaining second reference time point composition information regarding a composition of the liquefied gas set at a second reference time point in the past;
    Acquiring inflow amount information regarding the inflow amount of liquefied gas into the tank and outflow amount information regarding the outflow amount of liquefied gas in the tank between a fourth time point different from the second reference time point and the second reference time point;
    obtaining inflow liquefied gas composition information relating to a composition of the liquefied gas flowing into the tank;
    a step of estimating fourth time point composition information regarding the composition of the liquefied gas at the fourth time point based on the second reference time point composition information acquired in the step of acquiring the second reference time point composition information, the inflow volume information and the outflow volume information acquired in the step of acquiring inflow volume information regarding the amount of liquefied gas inflowing into the tank and outflow volume information regarding the amount of liquefied gas outflowing in the tank between the fourth time point and the second reference time point, and the inflow liquefied gas composition information acquired in the step of acquiring the inflow liquefied gas composition information.
PCT/JP2023/032512 2022-12-05 2023-09-06 In-tank liquefied gas composition inferring method WO2024122139A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022193891A JP2024080723A (en) 2022-12-05 2022-12-05 Method for estimating the composition of liquefied gas in a tank
JP2022-193891 2022-12-05

Publications (1)

Publication Number Publication Date
WO2024122139A1 true WO2024122139A1 (en) 2024-06-13

Family

ID=91378693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032512 WO2024122139A1 (en) 2022-12-05 2023-09-06 In-tank liquefied gas composition inferring method

Country Status (2)

Country Link
JP (1) JP2024080723A (en)
WO (1) WO2024122139A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308384A (en) * 2005-04-27 2006-11-09 Kita Kyushu Lng Kk Method for calculating concentration of residual stored quantity of lng in lng storage tank
US20160343092A1 (en) * 2013-11-26 2016-11-24 Gdf Suez Method for estimating a characteristic of a liquefied natural gas load
JP2019043328A (en) * 2017-08-31 2019-03-22 川崎重工業株式会社 Spray gasification rate prediction method and device and operation assistance method and system for liquefied gas transportation vessel
JP2022072361A (en) * 2020-10-29 2022-05-17 横河電機株式会社 Composition estimation device, composition estimation method, and composition estimation program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308384A (en) * 2005-04-27 2006-11-09 Kita Kyushu Lng Kk Method for calculating concentration of residual stored quantity of lng in lng storage tank
US20160343092A1 (en) * 2013-11-26 2016-11-24 Gdf Suez Method for estimating a characteristic of a liquefied natural gas load
JP2019043328A (en) * 2017-08-31 2019-03-22 川崎重工業株式会社 Spray gasification rate prediction method and device and operation assistance method and system for liquefied gas transportation vessel
JP2022072361A (en) * 2020-10-29 2022-05-17 横河電機株式会社 Composition estimation device, composition estimation method, and composition estimation program

Also Published As

Publication number Publication date
JP2024080723A (en) 2024-06-17

Similar Documents

Publication Publication Date Title
EP2833063B1 (en) Marine vessel, fuel-supplying device, and method for supplying liquefied fuel gas to main engine for propulsion
Dobrota et al. Problem of boil-off in LNG supply chain
KR101335610B1 (en) Reliquefaction apparatus of liquified gas fuel using fuel LNG and liquefied gas carrier having the same
KR101319364B1 (en) Apparatus for controlling pressure of liquefied gas tank using fuel LNG and liquefied gas carrier having the same
Głomski et al. Problems with determination of evaporation rate and properties of boil-off gas on board LNG carriers
SA515360144B1 (en) Fuel gas supply system and method of ship
JP2019043318A (en) Determination device and determination method
WO2024122139A1 (en) In-tank liquefied gas composition inferring method
Wang et al. Transient performance study of high pressure fuel gas supply system for LNG fueled ships
US20230098469A1 (en) Method and system for computing a transition parameter of a liquefied gas storage medium
KR100762368B1 (en) The method to initial design of ship
KR102049173B1 (en) operation management system and ship having the same
WO2024122403A1 (en) Method for predicting state of liquefied gas in tank, and system for predicting state of liquefied gas in tank
You et al. Prediction of the efficient speed of an LNGC with design condition from a direct cost evaluation considering the hydrodynamic characteristics and equipment operation
Thiaucourt et al. Impact of natural gas quality on engine performances during a voyage using a thermodynamic fuel system model
JP7234862B2 (en) natural gas engine fuel supply
Gutiérrez et al. An empirical analysis on the operational profile of liquefied natural gas carriers with steam propulsion plants
KR102528510B1 (en) Exhausting system for boil off gas of storage tank in ship
KR102482089B1 (en) operation management system and ship having the same
Hernes Active and passive measures to maintain pressure in LNG fuel systems for ships
Lee et al. Performance characteristics under various load conditions of coastal ship with LNG-powered system
Van Tassel LNG as a vessel and general transportation fuel developing the required supply infrastructure
KR20200002562A (en) liquefied gas tank, fuel gas supply system, and ship having the same
Thiaucourt et al. LNG ageing prediction model
KR102482085B1 (en) operation management system and ship having the same