JP6971144B2 - Pedestal, SiC single crystal manufacturing equipment and manufacturing method - Google Patents

Pedestal, SiC single crystal manufacturing equipment and manufacturing method Download PDF

Info

Publication number
JP6971144B2
JP6971144B2 JP2017248453A JP2017248453A JP6971144B2 JP 6971144 B2 JP6971144 B2 JP 6971144B2 JP 2017248453 A JP2017248453 A JP 2017248453A JP 2017248453 A JP2017248453 A JP 2017248453A JP 6971144 B2 JP6971144 B2 JP 6971144B2
Authority
JP
Japan
Prior art keywords
pedestal
seed
members
overlapping
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017248453A
Other languages
Japanese (ja)
Other versions
JP2019112274A (en
Inventor
佑 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2017248453A priority Critical patent/JP6971144B2/en
Publication of JP2019112274A publication Critical patent/JP2019112274A/en
Application granted granted Critical
Publication of JP6971144B2 publication Critical patent/JP6971144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、結晶成長時にシード(種結晶)を取り付ける台座と、それを用いたSiC単結晶の製造装置および製造方法に関する。 The present invention relates to a pedestal to which a seed (seed crystal) is attached during crystal growth, and an apparatus and method for producing a SiC single crystal using the pedestal.

半導体材料である炭化珪素(SiC)は、現在広くデバイス用基板として使用されているSi(珪素)に比べてバンドギャップが広く、耐圧性、熱伝導性に優れていることが知られている。そのため、炭化珪素は、パワーデバイス、高周波デバイス、高温動作デバイス等への応用が期待されている。 It is known that silicon carbide (SiC), which is a semiconductor material, has a wider bandgap than Si (silicon), which is widely used as a substrate for devices at present, and is excellent in pressure resistance and thermal conductivity. Therefore, silicon carbide is expected to be applied to power devices, high frequency devices, high temperature operation devices and the like.

炭化珪素を利用した半導体デバイスには、SiCウェハ上にエピタキシャル膜を形成したSiCエピタキシャルウェハが用いられる。SiCウェハ上に化学的気相成長法(Chemical Vapor Deposition:CVD)によって設けられたエピタキシャル膜が、SiC半導体デバイスの活性領域となる。エピタキシャルウェハの活性層は、SiCウェハの結晶欠陥をそのまま引き継いだり、別の結晶欠陥に変換して引き継いだりすることにより、SiCウェハの品質の影響を受ける。そのため、欠陥の少ない、高品質なSiCウェハが求められている。 As a semiconductor device using silicon carbide, a SiC epitaxial wafer having an epitaxial film formed on the SiC wafer is used. An epitaxial film provided on a SiC wafer by a chemical vapor deposition (CVD) method becomes an active region of a SiC semiconductor device. The active layer of the epitaxial wafer is affected by the quality of the SiC wafer by taking over the crystal defects of the SiC wafer as they are or converting them into other crystal defects and taking over. Therefore, there is a demand for high-quality SiC wafers with few defects.

例えば、特許文献1には、ウェハの反り量及び結晶方位のズレ量を所定の範囲内とすることで、SiCウェハ上に形成されるエピタキシャル膜が良好となることが記載されている。また、特許文献2には、ウェハ面内の成長面方位のずれを所定の範囲内とすることで、良質なエピタキシャル薄膜が得られることが記載されている。 For example, Patent Document 1 describes that the epitaxial film formed on a SiC wafer is improved by keeping the amount of warpage of the wafer and the amount of deviation of the crystal orientation within a predetermined range. Further, Patent Document 2 describes that a high-quality epitaxial thin film can be obtained by keeping the deviation of the growth plane orientation in the wafer plane within a predetermined range.

特開2011−219296号公報Japanese Unexamined Patent Publication No. 2011-219296 特開2011−16721号公報Japanese Unexamined Patent Publication No. 2011-16721

しかしながら、特許文献1、2に記載されているように所定の方向における格子ズレの程度を制御したのみでは、基底面転位(BPD)の発生を十分に抑制することができない場合がある。基底面転位は、SiCウェハで発生するキラー欠陥の一つであり、基底面における結晶格子のすべり(転位)が、その発生原因の一つであると考えられている。 However, it may not be possible to sufficiently suppress the occurrence of basal plane dislocations (BPD) only by controlling the degree of lattice shift in a predetermined direction as described in Patent Documents 1 and 2. The basal plane dislocation is one of the killer defects generated in the SiC wafer, and the slip (dislocation) of the crystal lattice on the basal plane is considered to be one of the causes.

本発明者の鋭意検討の結果、単結晶成長時の基底面転位の発生数は、成長する単結晶膜を構成する結晶の格子面の形状が、凸部と凹部が共存する鞍型である場合に増加し、凸部または凹部の一方のみが存在するドーム型である場合に減少することが見出されている。さらに、凸形状の格子面の湾曲の量が小さい方が、基底面転位の発生数は抑制されるということもわかってきている。単結晶膜の結晶格子面の形状は、単結晶の成長時、すなわち加熱状態のシードの結晶格子面形状に依存している。シードは、片面が台座に接着された状態で加熱されるので、加熱時には剛体として変形する。その為、シードの結晶格子面は、シードの形状の変化に従って変形する。したがって、この加熱時のシードの形状を制御することにより、加熱時のシードの格子面形状を制御し、ひいては形成されるSiC単結晶の結晶格子面の形状を、適切な湾曲量の範囲内のドーム型とすることが可能であると考えられる。 As a result of diligent studies by the present inventor, the number of basal plane dislocations generated during single crystal growth is when the shape of the lattice surface of the crystal constituting the growing single crystal film is a saddle shape in which convex portions and concave portions coexist. It has been found to increase in and decrease in the case of a dome shape with only one of the protrusions or recesses. Further, it has been found that the smaller the amount of curvature of the convex lattice surface, the more the number of basal plane dislocations is suppressed. The shape of the crystal lattice plane of the single crystal film depends on the crystal lattice surface shape of the seed during the growth of the single crystal, that is, in the heated state. Since the seed is heated with one side adhered to the pedestal, it deforms as a rigid body when heated. Therefore, the crystal lattice plane of the seed is deformed according to the change in the shape of the seed. Therefore, by controlling the shape of the seed at the time of heating, the lattice surface shape of the seed at the time of heating is controlled, and the shape of the crystal lattice surface of the SiC single crystal formed is within the range of an appropriate amount of curvature. It is considered possible to make it dome-shaped.

従来、シードの形状については、結晶成長中の成長表面を凸形状に保つことにより異形の発生を防止するなどの観点から、その表面形状について考慮されることはあった。しかし、シードの表面形状は、成長表面近傍の温度分布などの影響を受けて、成長前のシードの昇華やごく初期の成長時に変わってしまうものである。一方、シードの格子面形状のほうは、成長前のシードの昇華やごく初期の成長時に変わることは無く、その後の成長に影響を与える。今回、シードの表面形状ではなく、シードの格子面形状の制御という点からシードの形状を制御する方法に注目した。 Conventionally, regarding the shape of the seed, the surface shape has been considered from the viewpoint of preventing the occurrence of irregular shape by keeping the growth surface during crystal growth in a convex shape. However, the surface shape of the seed is affected by the temperature distribution near the growth surface and the like, and changes during the sublimation of the seed before growth and the very early growth. On the other hand, the lattice surface shape of the seed does not change during the sublimation of the seed before growth or the very early growth, and affects the subsequent growth. This time, we focused on the method of controlling the seed shape from the viewpoint of controlling the grid surface shape of the seed, not the surface shape of the seed.

本発明は、かかる事情に鑑みてなされたものであり、基底面転位の発生が抑制されたSiC単結晶を結晶成長させるために、結晶成長中のシードの形状を制御することを可能とする、シード用の台座を提供することを目的とする。 The present invention has been made in view of such circumstances, and makes it possible to control the shape of the seed during crystal growth in order to grow a SiC single crystal in which the occurrence of basal dislocations is suppressed. The purpose is to provide a pedestal for seeds.

上記課題を解決するため、本発明は以下の手段を採用している。 In order to solve the above problems, the present invention employs the following means.

(1)本発明の一態様に係る台座は、結晶成長中のシードの台座であって、一方の側からの平面視において、所定の位置から複数の方向に熱膨張係数の異なる複数の第一部材が重なった部分を有し、重なり方向において前記所定の位置から遠ざかるにつれて、前記第一部材の熱膨張係数が単調に変化している。 (1) The pedestal according to one aspect of the present invention is a pedestal of a seed during crystal growth, and a plurality of first pedestals having different coefficients of thermal expansion in a plurality of directions from a predetermined position in a plan view from one side. The members have overlapping portions, and the coefficient of thermal expansion of the first member changes monotonically as the members move away from the predetermined position in the overlapping direction.

(2)前記(1)に記載の台座において、複数の前記第一部材が、前記所定の位置から互いに反対の二方向に重なった部分を有していてもよい。 (2) In the pedestal according to the above (1), a plurality of the first members may have a portion overlapping in two directions opposite to each other from the predetermined position.

(3)前記(1)または(2)のいずれかに記載の台座において、複数の前記第一部材が、前記所定の位置から放射状に広がる複数の方向に重なった部分を有していてもよい。 (3) In the pedestal according to any one of (1) or (2), the plurality of first members may have a portion overlapping in a plurality of directions radially extending from the predetermined position. ..

(4)前記(1)〜(3)のいずれか一つに記載の台座において、重なる前記第一部材の数が、重なる方向によらず一定であってもよい。 (4) In the pedestal according to any one of (1) to (3), the number of overlapping first members may be constant regardless of the overlapping direction.

(5)前記(1)〜(3)のいずれか一つに記載の台座において、重なる前記第一部材の数が、重なる一部の方向において他の方向と異なっていてもよい。 (5) In the pedestal according to any one of (1) to (3), the number of overlapping first members may be different from the other directions in a part of the overlapping directions.

(6)前記(3)または(4)のいずれかに記載の台座において、複数の前記第一部材が、前記一方の側からの平面視において、いずれも前記所定の位置を囲む円形状を有していてもよい。 (6) In the pedestal according to any one of (3) or (4), the plurality of first members all have a circular shape surrounding the predetermined position in a plan view from one side. You may be doing it.

(7)前記(1)〜(6)のいずれか一つに記載の台座において、前記重なり方向において、前記所定の位置から遠ざかるにつれて、前記第一部材の熱膨張係数が単調に増加していてもよい。 (7) In the pedestal according to any one of (1) to (6), the coefficient of thermal expansion of the first member monotonically increases as the distance from the predetermined position increases in the overlapping direction. May be good.

(8)前記(1)〜(6)のいずれか一つに記載の台座において、前記重なり方向において、前記所定の位置から遠ざかるにつれて、前記第一部材の熱膨張係数が単調に減少していてもよい。 (8) In the pedestal according to any one of (1) to (6), the coefficient of thermal expansion of the first member monotonically decreases as the distance from the predetermined position increases in the overlapping direction. May be good.

(9)前記(1)〜(8)のいずれか一つに記載の台座において、前記複数の第一部材の一方の側が、第二部材で覆われていてもよい。 (9) In the pedestal according to any one of (1) to (8), one side of the plurality of first members may be covered with the second member.

(10)前記(9)に記載の台座において、前記重なり方向と垂直な方向において、前記第二部材の厚さが、前記第一部材の厚さの1倍以下であることが好ましい。 (10) In the pedestal according to (9), the thickness of the second member is preferably 1 times or less the thickness of the first member in the direction perpendicular to the overlapping direction.

(11)前記(1)〜(10)のいずれか一つに記載の台座において、前記複数の第一部材の前記一方の側と反対に位置する側が、第三部材で覆われていてもよい。 (11) In the pedestal according to any one of (1) to (10), the side of the plurality of first members located opposite to the one side may be covered with the third member. ..

(12)前記(11)に記載の台座において、前記重なり方向と垂直な方向において、前記第三部材の厚さが、前記第一部材の厚さの1倍以下であることが好ましい。 (12) In the pedestal according to (11), the thickness of the third member is preferably 1 times or less the thickness of the first member in the direction perpendicular to the overlapping direction.

(13)本発明の一態様に係るSiC単結晶の製造装置は、前記(1)〜(12)のいずれか一つに記載の台座を、前記一方の側が、シード成長面側となるように備えている。 (13) In the SiC single crystal manufacturing apparatus according to one aspect of the present invention, the pedestal according to any one of (1) to (12) is provided so that one side thereof is the seed growth surface side. I have.

(14)本発明の一態様に係るSiC単結晶の製造方法は、前記(13)に記載のSiC単結晶の製造装置を用いて、SiC単結晶を製造する。 (14) The method for producing a SiC single crystal according to one aspect of the present invention is to produce a SiC single crystal using the SiC single crystal manufacturing apparatus according to (13) above.

本発明の台座では、複数の第一部材を、その重なり方向において中央から外側に向かって、熱膨張係数が単調に増加するように重ねた場合、外側の第一部材ほど、加熱時に大きく膨張することになる。そのため、本発明の台座において、第一部材の重なり方向に平行な面は、中央に比べて外側が反り上がった形状となり、そこに搭載されるシードの形状も、これに追従し、中央に比べて外側が反り上がった形状となる。シードの格子面形状は、シードの形状と同様に変形する。そして、シード上に成長するSiC単結晶は、そのシードの、結晶格子面の形状を引き継いで成長する。その為、シードの元の格子面の反りに対し、適切な台座を用いることにより、成長するSiC結晶の格子面の形状を、ドーム状で湾曲の少ない方向に矯正することができ、ひいては、基底面転位の発生数を抑制することができる。 In the pedestal of the present invention, when a plurality of first members are stacked so that the coefficient of thermal expansion monotonically increases from the center to the outside in the overlapping direction, the outer first member expands more during heating. It will be. Therefore, in the pedestal of the present invention, the surface parallel to the overlapping direction of the first member has a shape in which the outer side is warped as compared with the center, and the shape of the seed mounted therein follows this and is compared with the center. The outside is curved. The grid surface shape of the seed is deformed in the same manner as the shape of the seed. Then, the SiC single crystal that grows on the seed inherits the shape of the crystal lattice plane of the seed and grows. Therefore, by using an appropriate pedestal for the warp of the original lattice surface of the seed, the shape of the lattice surface of the growing SiC crystal can be corrected in the direction of dome shape and less curvature, and eventually the base. The number of surface dislocations can be suppressed.

本発明の第一実施形態に係る台座を備えた単結晶膜の製造装置の縦断面図である。It is a vertical sectional view of the single crystal film manufacturing apparatus provided with the pedestal which concerns on 1st Embodiment of this invention. (a)本発明の第一実施形態に係る台座の平面図である。(b)第二部材と第三部材とで挟まれた状態の台座の側面図である。(A) It is a top view of the pedestal which concerns on 1st Embodiment of this invention. (B) It is a side view of the pedestal in the state which is sandwiched between the 2nd member and the 3rd member. (a)、(b)第二部材にシードを載せた台座の加熱前、加熱後の断面図である。(A), (b) is a cross-sectional view before heating and after heating of a pedestal on which a seed is placed on a second member. (a)〜(d)本発明の第二実施形態に係る台座の平面図である。(A)-(d) It is a plan view of the pedestal which concerns on the 2nd Embodiment of this invention. 本発明の第二実施形態の変形例に係る台座の平面図である。It is a top view of the pedestal which concerns on the modification of the 2nd Embodiment of this invention. 本発明の実施例として製造したSiCウェハの反り量について、6方位測定した結果を示すグラフである。It is a graph which shows the result of 6-direction measurement about the warp amount of the SiC wafer manufactured as the Example of this invention. 本発明の実施例として製造したSiCウェハにおける、結晶格子面の形状を示すグラフである。It is a graph which shows the shape of the crystal lattice plane in the SiC wafer manufactured as the Example of this invention.

以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図は、本発明の特徴を分かりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なっていることがある。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings as appropriate. In the figure used in the following description, in order to make the features of the present invention easy to understand, the featured portions may be enlarged for convenience, and the dimensional ratios of each component may differ from the actual ones. There is. Further, the materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and can be appropriately modified and carried out within the range in which the effect of the present invention is exhibited. ..

<第一実施形態>
[SiC単結晶の製造装置と台座の構成]
図1は、本発明の第一実施形態に係る、昇華法による結晶成長中のシードの台座を備えた、SiC単結晶の製造装置100の縦断面図である。SiC単結晶の製造装置100は、少なくとも、坩堝101と、坩堝101内の一端側に配されたシード(種結晶)Sの台座102と、坩堝101の外壁を囲むコイル103とを備え、坩堝101内の他の一端側に、原料Gが収容されるように構成されている。SiC単結晶の製造装置100は、さらに、台座102から原料Gに向けて拡径するテーパーガイド104を備えていてもよい。
<First Embodiment>
[Construction of SiC single crystal manufacturing equipment and pedestal]
FIG. 1 is a vertical sectional view of a SiC single crystal manufacturing apparatus 100 provided with a seed pedestal during crystal growth by a sublimation method according to the first embodiment of the present invention. The SiC single crystal manufacturing apparatus 100 includes at least a crucible 101, a pedestal 102 of a seed (seed crystal) S arranged on one end side of the crucible 101, and a coil 103 surrounding the outer wall of the crucible 101. The raw material G is configured to be accommodated on the other end side of the inside. The SiC single crystal manufacturing apparatus 100 may further include a taper guide 104 that expands in diameter from the pedestal 102 toward the raw material G.

台座102は、シード成長面側となる一方の側からの平面視において、所定の位置から複数の方向に熱膨張係数の異なる複数の第一部材102Aが重なった部分を有する。図2(a)は、図1において原料G側から見た台座102の平面図である。図2(a)では、台座102が、その所定の位置(中央部)から互いに反対の二方向(左右)Dに、板状の複数の第一部材102Aを、それぞれの幅方向(短手方向)を揃えて(側面同士を対向させて)重ねた部分を有する場合について、例示している。別の言い方をすると、シードを貼り付ける面と平行な方向に、熱膨張係数の異なる板状の複数の第一部材102Aが並べられている。以下では、第一部材および他の部材について、第一部材同士の重なり方向Lの大きさを「幅」と呼び、重なり方向Lと垂直な方向の大きさを「厚さ」と呼ぶものとする。 The pedestal 102 has a portion in which a plurality of first members 102A having different coefficients of thermal expansion overlap in a plurality of directions from a predetermined position in a plan view from one side which is the seed growth surface side. FIG. 2A is a plan view of the pedestal 102 as seen from the raw material G side in FIG. In FIG. 2 (a), the pedestal 102, in two directions (right and left) D 1 opposite each other from the predetermined position (central), the plate-like plurality of first members 102A, each of the width direction (shorter An example shows a case where the parts are overlapped (with the sides facing each other) in the same direction (direction). In other words, a plurality of plate-shaped first members 102A having different coefficients of thermal expansion are arranged in a direction parallel to the surface to which the seed is attached. In the following, for the first member and other members, the size of the first member in the overlapping direction L is referred to as "width", and the size in the direction perpendicular to the overlapping direction L is referred to as "thickness". ..

第一部材102Aは、黒鉛を主原料とするカーボン成形材、ポーラスカーボン、グラッシーカーボンあるいはその他の炭素系材料からなる部材である。重なり方向(第一部材102Aの幅方向)Lと略垂直な方向における第一部材102Aの厚さ、すなわち台座102の厚さtは、2mm以上であることが好ましい。 The first member 102A is a member made of a carbon molding material containing graphite as a main raw material, porous carbon, glassy carbon or other carbon-based material. The thickness of the first member 102A in the direction substantially perpendicular to the overlapping direction (width direction of the first member 102A) L, that is, the thickness t 1 of the pedestal 102 is preferably 2 mm or more.

図2(a)では、5つの第一部材102A、102A、102A、102A、102Aが、順に重ねられている場合を例示しているが、重ねられる数については限定されない。また、図2(a)は、台座102が円柱状である場合を想定したものであるが、台座102の形状については、この場合に限定されない。 FIG. 2A illustrates a case where the five first members 102A 1 , 102A 2 , 102A 3 , 102A 4 , and 102A 5 are stacked in this order, but the number of stacking members is not limited. Further, FIG. 2A assumes a case where the pedestal 102 is cylindrical, but the shape of the pedestal 102 is not limited to this case.

重なり方向Lにおける各第一部材の幅は、種結晶の大きさに応じて設定される台座102の大きさと、重ねられる数に応じて適宜決めればよい。図2(a)に示す様に、各第一部材の幅は、重なり方向Lにおいて互いに同じであってもよいし、異なっていてもよい。 The width of each first member in the overlapping direction L may be appropriately determined according to the size of the pedestal 102 set according to the size of the seed crystal and the number of overlapping. As shown in FIG. 2A, the widths of the first members may be the same as or different from each other in the overlapping direction L.

複数の第一部材102Aは、その重なり方向Lにおいて、中央部から遠ざかるにつれて、すなわち中央部から外側に向かって(方向D)、熱膨張係数が単調に変化(増加または減少)している。なお、単調な変化とは、増加し続ける変化または減少し続ける変化を意味する。 In the overlapping direction L of the plurality of first members 102A, the coefficient of thermal expansion monotonically changes (increases or decreases) as the distance from the central portion, that is, from the central portion to the outside (direction D 1). The monotonous change means a change that continues to increase or a change that continues to decrease.

本実施形態の第一部材102Aは、中央部から外側に向かって、熱膨張係数が単調に増加するように重ねられているものとする。すなわち、第一部材102A、第一部材102A、第一部材102Aの順、第一部材102A、第一部材102A、第一部材102Aの順に、それぞれの熱膨張係数が単調に増加しているものとする。 It is assumed that the first member 102A of the present embodiment is stacked so that the coefficient of thermal expansion monotonically increases from the central portion to the outside. That is, the coefficient of thermal expansion of each of the first member 102A 3 , the first member 102A 2 , the first member 102A 1 , the first member 102A 3 , the first member 102A 4 , and the first member 102A 5 becomes monotonous. It is assumed that it is increasing.

図2(b)は、図2(a)の台座102を、第二部材105と第三部材106とで挟んだ場合の側面図である。この場合、台座102は、第一部材102A同士の重なり方向Lが、単結晶膜製造装置100の天井、床面と略平行になるように設置される。 FIG. 2B is a side view when the pedestal 102 of FIG. 2A is sandwiched between the second member 105 and the third member 106. In this case, the pedestal 102 is installed so that the overlapping direction L of the first members 102A is substantially parallel to the ceiling and floor surface of the single crystal film manufacturing apparatus 100.

図2(b)に示すように、台座102の原料G側(一方の側)の表面(シード形成面)は、黒鉛を主原料とするカーボン成形材、ポーラスカーボン、グラッシーカーボン、あるいはその他の炭素系材料からなる第二部材105で覆われていることが好ましい。この場合、シードLは一体の第二部材105上に形成されることになり、複数の第一部材102Aに跨って載る場合に比べて、台座102に対するシードLの密着性を向上させることができる。重なり方向Lと垂直な方向(図2(b)では上下方向)において、第二部材の厚さtは、第一部材の厚さtの1倍以下であることが好ましく、0.5倍以下であることがより好ましい。 As shown in FIG. 2B, the surface (seed forming surface) of the raw material G side (one side) of the pedestal 102 is a carbon molding material mainly made of graphite, porous carbon, glassy carbon, or other carbon. It is preferably covered with a second member 105 made of a system material. In this case, the seed L is formed on the integrated second member 105, and the adhesion of the seed L to the pedestal 102 can be improved as compared with the case where the seed L is mounted over the plurality of first members 102A. .. In the direction perpendicular to the overlapping direction L (vertical direction in FIG. 2B), the thickness t 2 of the second member is preferably 1 times or less of the thickness t 1 of the first member, and is 0.5. It is more preferable that it is double or less.

また、図2(b)に示すように、台座102の原料Gと反対側(一方の側と反対に位置する側)の表面(坩堝101への取付け面)も、黒鉛を主原料とするカーボン成形材、ポーラスカーボン、グラッシーカーボン、あるいはその他の炭素系材料からなる第三部材106で覆われていることが好ましい。この場合、台座102は、第三部材106を介して坩堝101に取付けられることになり、坩堝101に対する台座102の密着性を向上させることができる。重なり方向Lと垂直な方向において、第三部材の厚さtは、第一部材の厚さtの1倍以下であることが好ましく、0.5倍以下であることがより好ましい。また、第二部材105を有する場合、第三部材106の厚さは、第二部材105の厚さを上回っていてもよい。 Further, as shown in FIG. 2B, the surface (attachment surface to the crucible 101) on the side opposite to the raw material G of the pedestal 102 (the side located opposite to one side) is also carbon using graphite as the main raw material. It is preferably covered with a third member 106 made of a molding material, porous carbon, glassy carbon, or other carbon-based material. In this case, the pedestal 102 will be attached to the crucible 101 via the third member 106, and the adhesion of the pedestal 102 to the crucible 101 can be improved. In the direction perpendicular to the overlapping direction L, the thickness t 3 of the third member is preferably 1 times or less, more preferably 0.5 times or less the thickness t 1 of the first member. Further, when the second member 105 is provided, the thickness of the third member 106 may exceed the thickness of the second member 105.

図3(a)、(b)は、それぞれ加熱前、加熱後の台座102の段面図である。台座102は、第一部材102A同士の重なり方向Lが、単結晶膜製造装置100の内壁101aと略平行になるように設置されている。 3A and 3B are step views of the pedestal 102 before and after heating, respectively. The pedestal 102 is installed so that the overlapping direction L of the first members 102A is substantially parallel to the inner wall 101a of the single crystal film manufacturing apparatus 100.

加熱前の台座102の厚さtは、図3(a)に示すように一様に揃っているが、加熱を行うことによって、台座102を構成する複数の第一部材102Aが、それぞれの熱膨張係数に応じて膨張するため、台座102は、図3(b)に示すように変形する。 The thickness t 1 of the pedestal 102 before heating is uniformly uniform as shown in FIG. 3A, but by heating, the plurality of first members 102A constituting the pedestal 102 are respectively. Since it expands according to the coefficient of thermal expansion, the pedestal 102 is deformed as shown in FIG. 3 (b).

本実施形態の第一部材102Aは、外側に位置するものほど熱膨張係数が大きいため、中央部から外側に向かって大きさが増してゆくことになる。その結果として、原料G側の台座の表面102aは、中央が窪んだ湾曲形状となり、この表面102aを覆う第二部材105も、これに追従した形状となる。したがって、台座102に対して、直接または第二部材105を介して形成されるシードSも、台座102と同様の湾曲形状となる。ただし、台座102は、シード形成部分の反対側の面が、第三部材106を介して内壁101aに固定されているため、この面の方向への膨張は抑えられる。 Since the first member 102A of the present embodiment has a larger coefficient of thermal expansion as it is located on the outer side, the size increases from the central portion to the outer side. As a result, the surface 102a of the pedestal on the raw material G side has a curved shape with a recess in the center, and the second member 105 covering the surface 102a also has a shape following this. Therefore, the seed S formed directly with respect to the pedestal 102 or via the second member 105 also has the same curved shape as the pedestal 102. However, since the surface of the pedestal 102 on the opposite side of the seed forming portion is fixed to the inner wall 101a via the third member 106, expansion in the direction of this surface is suppressed.

加熱時のシード形成部分に滑らかな湾曲面を形成する観点から、隣接する第一部材102A同士の熱膨張係数差は、3×10−6−1以下であることが好ましい。 From the viewpoint of forming a smooth curved surface in the seed forming portion during heating, the difference in thermal expansion coefficient between adjacent first members 102A is preferably 3 × 10 -6 K- 1 or less.

なお、台座102として、中央部から外側に向かって、第一部材102Aの熱膨張係数が単調に減少するように重ねられているものを用いた場合には、加熱時に中央部が外側より大きく膨張して突出するため、シードSの外側を台座102側に反らせることができる。したがって、例えば、シードSの外側部分が、予め台座102と反対側に反り過ぎた格子面を有している場合に、このような台座を用いれば、シードSの外側部分を台座102側に引っ張ることになり、反りの程度を緩和することができる。 When the pedestal 102 is stacked so that the coefficient of thermal expansion of the first member 102A decreases monotonically from the central portion to the outside, the central portion expands more than the outside during heating. Therefore, the outside of the seed S can be bent toward the pedestal 102 side. Therefore, for example, when the outer portion of the seed S has a lattice surface that is excessively warped on the opposite side to the pedestal 102, if such a pedestal is used, the outer portion of the seed S is pulled toward the pedestal 102 side. Therefore, the degree of warpage can be alleviated.

上記の図2の様な台座は、第一部材を重ねた方向にシードを反らせ、それに直交する方法には変形させないため、格子面が一方向で凸、直交する方向で凹となっているような鞍型(ポテトチップス型)の格子面を有するシードをドーム型に変形させる場合や、ドーム型になっていて方位による反りの量の違いが大きいシードを、反りの小さなドーム型に変形させるような場合に、特に有効である。 In the pedestal as shown in FIG. 2 above, the seed is warped in the direction in which the first member is overlapped and is not deformed in a method orthogonal to it, so that the lattice plane is convex in one direction and concave in the orthogonal direction. When transforming a seed with a saddle-shaped (potato chips) lattice surface into a dome shape, or when transforming a seed that is dome-shaped and has a large difference in the amount of warpage depending on the orientation, it should be transformed into a dome shape with a small warp. This is especially effective in such cases.

[SiC単結晶の製造方法]
本実施形態の台座102を用いたSiC単結晶の製造方法について説明する。
[Manufacturing method of SiC single crystal]
A method for producing a SiC single crystal using the pedestal 102 of the present embodiment will be described.

始めに、予め、シードとなるSiC単結晶の格子面の形状を測定する。格子面とはSiC単結晶の原子配列面であり、X線回折(XRD)により測定することができる。XRD測定に用いる回折面としては、例えば(0004)面等を選択することができる。格子面の形状は、原子配列面の湾曲に応じてX線の回折方向が変わるため、測定する方向に沿って位置を変えながらX線回折のピークに対応するω角の位置の変動を測定し、その結果から計算することができる。測定方向は、直交する2方向としてもよいし、対称な6方向としてもよい。4H−SiCは六方晶であり、c面は6回対称を有する為、6方向の測定が好ましい。 First, the shape of the lattice plane of the SiC single crystal to be the seed is measured in advance. The lattice plane is an atomic arrangement plane of a SiC single crystal and can be measured by X-ray diffraction (XRD). As the diffraction plane used for the XRD measurement, for example, the (0004) plane can be selected. Since the X-ray diffraction direction of the lattice surface changes according to the curvature of the atomic arrangement surface, the change in the position of the ω angle corresponding to the peak of X-ray diffraction is measured while changing the position along the measurement direction. , Can be calculated from the result. The measurement directions may be two orthogonal directions or six symmetrical directions. Since 4H-SiC is a hexagonal crystal and the c-plane has 6-fold symmetry, measurement in 6 directions is preferable.

次に、XRDによって求めた格子面の形状により、格子面の形状を矯正する為に適切な台座を選択し、適切な方向に種結晶を貼り付ける。例えば、一方向に格子面の大きい場合は、そりの大きい方向と、板状の複数の第一部材が重ねられた方向を合わせる様に貼り付ければよい。尚、シードを同じ単結晶から切り出した場合、格子面は同様の反りを有しているので、すべてのシードを測定する必要はなく、既知の他の測定結果を利用すればよい。 Next, an appropriate pedestal is selected in order to correct the shape of the lattice surface based on the shape of the lattice surface obtained by XRD, and the seed crystal is attached in an appropriate direction. For example, when the lattice surface is large in one direction, it may be attached so that the direction in which the warp is large and the direction in which the plurality of plate-shaped first members are overlapped are aligned. When the seeds are cut out from the same single crystal, the lattice plane has the same warp, so that it is not necessary to measure all the seeds, and other known measurement results may be used.

台座にシードを貼り付けた状態で坩堝の中に配置し、図1に示すSiC単結晶膜の製造装置100において、コイル103に交流電流を印加して坩堝101を加熱する。これにより、原料Gから原料ガスが発生し、この原料ガスが、テーパーガイド104に沿って台座102に設置されたシードSに供給される。シードSに原料ガスが供給されることで、シードSの主面にSiC単結晶のインゴットBが結晶成長する。シードSの結晶成長面は、カーボン面、または、カーボン面から10°以下のオフ角を設けた面とすることが好ましい。 The seed is placed in the crucible with the seed attached to the pedestal, and in the SiC single crystal film manufacturing apparatus 100 shown in FIG. 1, an alternating current is applied to the coil 103 to heat the crucible 101. As a result, the raw material gas is generated from the raw material G, and the raw material gas is supplied to the seed S installed on the pedestal 102 along the taper guide 104. By supplying the raw material gas to the seed S, the SiC single crystal ingot B crystal grows on the main surface of the seed S. The crystal growth surface of the seed S is preferably a carbon surface or a surface provided with an off angle of 10 ° or less from the carbon surface.

得られたSiCインゴットBをスライスして、SiCウェハを作製する。<0001>に垂直または0〜10°のオフ角をつけた方向にスライスし、c面に平行、またはc面から0〜10°オフ角をつけた面を有するウェハを作製する。オフ角は、任意の方向に設けてもよい。例えば<11−20>方向に設けた場合には、主面と<11−20>方向とのなす角が、オフセット角となる。ウェハの表面加工は、(0001)面側すなわちSi面側に鏡面加工を施してもよい。Si面は、通常エピタキシャル成長を行う面である。 The obtained SiC ingot B is sliced to prepare a SiC wafer. Slices perpendicular to <0001> or in a direction with an off angle of 0 to 10 ° to prepare a wafer having a plane parallel to the c-plane or having a plane with an off-angle of 0 to 10 ° from the c-plane. The off angle may be provided in any direction. For example, when it is provided in the <11-20> direction, the angle formed by the main surface and the <11-20> direction is the offset angle. The surface of the wafer may be mirror-treated on the (0001) surface side, that is, the Si surface side. The Si surface is a surface that normally undergoes epitaxial growth.

以上のように、本実施形態に係る台座102では、複数の第一部材102Aを、その重なり方向Lにおいて中央から外側に向かって、熱膨張係数が単調に増加するように重ねた場合、外側の第一部材102Aほど、加熱時に大きく膨張することになる。そのため、本発明の台座102において、第一部材の重なり方向Lに平行な面は、中央に比べて外側が反り上がった形状となり、そこに搭載されるシードSの形状も、これに追従し、中央に比べて外側が反り上がった形状となる。結晶成長中のシードの格子面は、この反りによって格子面の形状が適切になる様に取り付けられているため、湾曲が小さいドーム型とすることができ、形成される単結晶成長は、シードの結晶格子面の形状を引き継いで適切な形状となり、基底面転位の発生数が抑制された単結晶を得ることができる。 As described above, in the pedestal 102 according to the present embodiment, when a plurality of first members 102A are stacked so that the coefficient of thermal expansion monotonically increases from the center to the outside in the overlapping direction L, the outer side The first member 102A expands significantly when heated. Therefore, in the pedestal 102 of the present invention, the surface parallel to the overlapping direction L of the first member has a shape in which the outer side is warped as compared with the center, and the shape of the seed S mounted therein follows this shape. The shape is such that the outside is warped compared to the center. Since the lattice surface of the seed during crystal growth is attached so that the shape of the lattice surface becomes appropriate due to this warp, it is possible to form a dome shape with a small curvature, and the single crystal growth formed is that of the seed. It is possible to obtain a single crystal in which the shape of the crystal lattice plane is inherited to an appropriate shape and the number of dislocations on the basal plane is suppressed.

<第二実施形態>
図4(a)〜(d)は、それぞれ、本発明の第二実施形態に係る台座112、122、132、142の平面図である。
<Second embodiment>
4 (a) to 4 (d) are plan views of the pedestals 112, 122, 132, 142 according to the second embodiment of the present invention, respectively.

本実施形態の台座112、122、132、142は、一方の側からの平面視において、所定の位置(中央部)から放射状に広がる複数の方向Dに、板状の複数の第一部材を、それぞれの幅方向(短手方向)を揃えて(側面同士を対向させて)重なった部分を有する。すなわち、本実施形態の各台座を構成する第一部材112A、122A、132A、142Aは、互いに反対の二方向に限らず、中央部から延びる任意の方向において重なった部分を有している。台座112、122、132、142のその他の構成については、第一実施形態の台座102と同様である。ここで、中央部から延びる任意の方向に重なるとは、第一部材が重なった方向と垂直な方向、すなわちシードを貼り付ける面の側からの平面視において、中心から外側に向かう任意の方向に、複数の第一部材が配置されていることを意味している。図4(a)や(c)の様に中心に対して回転対称に配置されてもよいし、図4(b)や(d)の様に6回対称に配置されていてもよい。中心に対して対称性を有していなくてもよい。 Pedestal 112, 122, 132, and 142 of the present embodiment, in a plan view from one side, in a plurality of directions D 2 extending radially from a predetermined position (central), the plate-like plurality of first member , Each has an overlapping portion in which the width direction (short direction) is aligned (the sides face each other). That is, the first members 112A, 122A, 132A, 142A constituting each pedestal of the present embodiment have overlapping portions in any direction extending from the central portion, not limited to the two directions opposite to each other. Other configurations of the pedestals 112, 122, 132, 142 are the same as those of the pedestal 102 of the first embodiment. Here, overlapping in an arbitrary direction extending from the central portion means a direction perpendicular to the direction in which the first member overlaps, that is, in a plan view from the side of the surface to which the seed is attached, in an arbitrary direction from the center to the outside. , Means that a plurality of first members are arranged. It may be arranged rotationally symmetrically with respect to the center as shown in FIGS. 4A and 4C, or may be arranged six times symmetrically as shown in FIGS. 4B and 4D. It does not have to have symmetry with respect to the center.

重ねる第一部材の形状は、図4(a)の台座112のように、全て中央部に対して等方的な円形状であってもよいし、図4(b)の台座122のように、一部だけが六角形等の別の形状であってもよい。また、重ねる第一部材は、図4(a)の台座112のように、全てが同じ厚さであってもよいし、図4(c)、(d)の台座132、142のように、一部が異なる厚さであってもよい。 The shape of the first member to be overlapped may be a circular shape all isotropic with respect to the central portion as in the pedestal 112 of FIG. 4 (a), or as in the pedestal 122 of FIG. 4 (b). , Only a part may have another shape such as a hexagon. Further, the first members to be stacked may all have the same thickness as in the pedestal 112 of FIG. 4 (a), or may be the pedestals 132 and 142 of FIGS. 4 (c) and 4 (d). Some may have different thicknesses.

これらの構成によれば、熱膨張係数の傾斜がシード形成面の全方向にわたって発生することになる。台座のシード形成される側の面は、中央に比べて全周囲が反り上がった形状となり、そこに成長するシードの形状も、これに追従し、中央に比べて全周囲が反り上がった形状となる。したがって、熱方向の傾斜を一方向のみに発生させた場合に比べて、形成されるエピタキシャル膜は、結晶格子面の形状が略等方的なドーム型となり、基底面転位の発生数がさらに抑制されたものとなる。 According to these configurations, the inclination of the coefficient of thermal expansion occurs in all directions of the seed forming surface. The surface of the pedestal on the side where the seed is formed has a shape in which the entire circumference is warped compared to the center, and the shape of the seed that grows there also follows this, and the shape is such that the entire circumference is warped compared to the center. Become. Therefore, compared to the case where the inclination in the thermal direction is generated in only one direction, the formed epitaxial film has a substantially isotropic dome shape of the crystal lattice plane, and the number of dislocations on the basal plane is further suppressed. It will be the one that was done.

特に、図4(a)では、複数の第一部材が、重なり方向Lと垂直な方向における一方の側からの平面視において、いずれも中央部を囲む円形状を有している。この場合には、熱膨張係数の傾斜がシード形成面の全方向にわたって、同じ角度で発生することになるため、形成されるエピタキシャル膜は、結晶格子面の形状がより等方的なドーム型となり、基底面転位の発生数がさらに抑制されたものとなる。 In particular, in FIG. 4A, the plurality of first members all have a circular shape surrounding the central portion in a plan view from one side in the direction perpendicular to the overlapping direction L. In this case, since the slope of the coefficient of thermal expansion occurs at the same angle in all directions of the seed forming surface, the formed epitaxial film has a more isotropic dome shape of the crystal lattice surface. , The number of basal plane dislocations is further suppressed.

この平面視で第一部材が中央部から延びる全方向に重ねられているタイプの場合、上述の様に全方向に等しく変形させやすい為、湾曲の大きい凸の格子面を有する種結晶に対し、その湾曲を小さくすることに好適に用いられる。 In the case of the type in which the first member is overlapped in all directions extending from the central portion in this plan view, it is easily deformed equally in all directions as described above. It is preferably used to reduce the curvature.

(変形例)
図5は、第二実施形態の変形例に係る台座152の平面図である。図4(a)〜(d)では、重なる第一部材の数が、重なる方向によらず一定となっている例を示しているが、図5では、重なる第一部材の数152Aの数が、重なる一部の方向において、他の方向と異なっている。このように、第一部材152Aは、重なり方向Lと垂直な方向における一方の側からの平面視において、中央部に対して非対称な形状であってもよい。第一部材152Aが非対称に配置された台座は、格子面の変形が非対称である場合に、それを矯正する為に有効である。
(Modification example)
FIG. 5 is a plan view of the pedestal 152 according to the modified example of the second embodiment. 4 (a) to 4 (d) show an example in which the number of overlapping first members is constant regardless of the overlapping direction, but in FIG. 5, the number of overlapping first members 152A is large. , In some overlapping directions, it is different from other directions. As described above, the first member 152A may have an asymmetrical shape with respect to the central portion in a plan view from one side in the direction perpendicular to the overlapping direction L. The pedestal in which the first member 152A is arranged asymmetrically is effective for correcting the deformation of the lattice surface when it is asymmetrical.

以下、実施例により、本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。 Hereinafter, the effects of the present invention will be further clarified by examples. The present invention is not limited to the following examples, and can be appropriately modified and implemented without changing the gist thereof.

(実施例)
第一実施形態の台座102を用い、昇華法によってSiC単結晶を製造した。種結晶は直径150mmのものを用いた。その為、台座は直径150mmの円柱状とした。台座102としては、厚さtが2mmの黒鉛板(第一部材)を重なりの方向Lに3枚重ね(A1〜A3)、それぞれ接着したものを用いた。黒鉛板の幅は、重なり方向Lで同じ幅とした。中央の第一部材A2の黒鉛は、熱膨張率が、両外側の第一部材A1とA3の黒鉛の熱膨張率よりも小さい材質のものを使用した。使用した黒鉛材料としては、室温の線膨張率の差で1×10−6/Kのものを選択した。第一部材102Aの重なり方向Lと垂直な方向における一方の側、他方の側に、それぞれ厚さ2mmの黒鉛板(第二部材、第三部材)を接着した。シードを台座に張り付ける際、第一部材の重なりの方向は、シードの状態でマイナス方向の反りの大きかった<1−100>方向に合わせた。
(Example)
Using the pedestal 102 of the first embodiment, a SiC single crystal was produced by a sublimation method. A seed crystal having a diameter of 150 mm was used. Therefore, the pedestal is a cylinder with a diameter of 150 mm. As the pedestal 102 , three graphite plates (first member) having a thickness t 1 of 2 mm were stacked (A1 to A3) in the overlapping direction L and bonded to each other. The width of the graphite plate was the same in the overlapping direction L. As the graphite of the first member A2 in the center, a material having a coefficient of thermal expansion smaller than the coefficient of thermal expansion of the graphites of the first members A1 and A3 on both outer sides was used. As the graphite material used, one having a difference in linear expansion coefficient at room temperature of 1 × 10 -6 / K was selected. A graphite plate (second member, third member) having a thickness of 2 mm was adhered to one side and the other side in the direction perpendicular to the overlapping direction L of the first member 102A, respectively. When the seed was attached to the pedestal, the overlapping direction of the first member was adjusted to the <1-100> direction in which the warp in the negative direction was large in the state of the seed.

この台座とシードを用いて、SiC単結晶成長を実施し、得られた単結晶のシード近傍からウェハを切り出した。結晶成長前のシードの格子面形状と、結晶成長させて得られたSiC単結晶におけるシード近傍の格子面形状を、<11−20>方向、<1−100>方向、<1−210>方向、<01−10>方向、<10−10>方向、<−2110>方向の6方向についてXRD測定し、それぞれ反り量d、d、d、d、d、dを得た。本実験の結果、結晶成長前のシードにおける反り量は、それぞれd=77.8μm、d=−16.7μm、d=30.9μm、d=72.5μm、d=44.4μm、d=−7.6μmとなった。結晶成長させて得られたSiC単結晶における反り量は、それぞれd=87.5μm、d=24.6μm、d=42.5μm、d=60.5μm、d=80.1μm、d=43.3μmとなった。6つの反り量のうち、最大値をdmax、最小値をdminとすると結晶成長前のシードにおけるdmaxはd、dminはdとなった。また、結晶成長させて得られたSiC単結晶におけるdmaxはd、dminはdとなった。それぞれの方向に対する曲率半径と、湾曲量|dmax−dmin|を算出した。その結果を表1に示す。結晶成長により、結晶成長後のシード近傍(成長後結晶部)におけるSiC単結晶の格子面の湾曲が小さくなり、格子面の形状が矯正されたことが分かる。 Using this pedestal and seed, SiC single crystal growth was carried out, and a wafer was cut out from the vicinity of the seed of the obtained single crystal. The lattice plane shape of the seed before crystal growth and the lattice plane shape near the seed in the SiC single crystal obtained by crystal growth are shown in the <11-20> direction, the <1-100> direction, and the <1-210> direction. , <01-10> direction, <10-10> direction, and <-2110> direction, XRD measurement was performed, and the warpage amounts d 1 , d 2 , d 3 , d 4 , d 5 , and d 6 were obtained, respectively. rice field. As a result of this experiment, the amount of warpage in the seed before crystal growth was d 1 = 77.8 μm, d 2 = -16.7 μm, d 3 = 30.9 μm, d 4 = 72.5 μm, d 5 = 44. It was 4 μm and d 6 = -7.6 μm. The amount of warpage in the SiC single crystal obtained by crystal growth was d 1 = 87.5 μm, d 2 = 24.6 μm, d 3 = 42.5 μm, d 4 = 60.5 μm, and d 5 = 80.1 μm, respectively. , D 6 = 43.3 μm. Of the six warpage amounts, when the maximum value was d max and the minimum value was d min , the d max in the seed before crystal growth was d 1 and the d min was d 2 . Further, in the SiC single crystal obtained by crystal growth, the d max was d 1 and the d min was d 2 . The radius of curvature in each direction and the amount of curvature | d max −d min | were calculated. The results are shown in Table 1. It can be seen that the crystal growth reduces the curvature of the lattice plane of the SiC single crystal in the vicinity of the seed after crystal growth (the crystal portion after growth), and the shape of the lattice plane is corrected.

Figure 0006971144
Figure 0006971144

また、結晶成長後のシード近傍のSiC単結晶を、6方位の原子配列面の形状をX線回折(XRD)で確認した結果について、図6のグラフに示す。図6のグラフにおいて、横軸は重なり方向における中央部からの距離(mm)を示し、縦軸は反り量(湾曲量相対値)(μm)を示している。このグラフから、6方位とも、中央部に対して外側が反り上がった形状であり、得られた単結晶膜が同一方向に湾曲していて、格子面がドーム型になっていることが分かる。 Further, the graph of FIG. 6 shows the result of confirming the shape of the atomic arrangement plane in six directions by X-ray diffraction (XRD) on the SiC single crystal in the vicinity of the seed after crystal growth. In the graph of FIG. 6, the horizontal axis shows the distance (mm) from the central portion in the overlapping direction, and the vertical axis shows the warp amount (curvature amount relative value) (μm). From this graph, it can be seen that in all six directions, the outer side is curved with respect to the central portion, the obtained single crystal film is curved in the same direction, and the lattice surface is dome-shaped.

また、結晶成長前のシード、および結晶成長後のシード近傍のSiC単結晶における、<11−20>方向を0°としたときの各方向の角度(回転角)と反り量との関係についてまとめた結果を、図7のグラフに示す。図7のグラフにおいて、横軸は<11−20>方向を0°としたときの各方向の角度(°)を示し、縦軸は反り量(μm)を示している。 In addition, the relationship between the angle (angle of rotation) and the amount of warpage in each direction when the <11-20> direction is 0 ° in the seed before crystal growth and the SiC single crystal near the seed after crystal growth is summarized. The results are shown in the graph of FIG. In the graph of FIG. 7, the horizontal axis shows the angle (°) in each direction when the <11-20> direction is 0 °, and the vertical axis shows the amount of warpage (μm).

単結晶成長前の反りの分布は、シードの一部の曲率半径がマイナス(湾曲の方向が逆)の値であるのに対し、成長後のSiC単結晶のシード近傍では、いずれの方位においても、曲率半径がプラスの値に変化している。この結果から、鞍型に反ったシードの格子面が、ドーム型に矯正されたことにより、得られた単結晶膜が同一方向に湾曲していることが分かる。 In the distribution of warpage before single crystal growth, the radius of curvature of a part of the seed is a negative value (the direction of curvature is opposite), whereas in the vicinity of the seed of the SiC single crystal after growth, in any direction. , The radius of curvature has changed to a positive value. From this result, it can be seen that the obtained single crystal film is curved in the same direction because the lattice plane of the seed warped in the saddle shape is corrected to the dome shape.

100・・・SiC単結晶の製造装置
101・・・坩堝
102、112、122、132、142、152・・・台座
102A、102A、102A、102A、102A、102A・・・第一部材
112A、122A、132A、142A、152A・・・第一部材
102a・・・台座の表面
103・・・コイル
104・・・テーパーガイド
105・・・第二部材
106・・・第三部材
B・・・インゴット
、D・・・熱膨張係数の傾斜方向
G・・・原料
L・・・重なり方向
S・・・シード
・・・第一部材の厚さ
・・・第二部材の厚さ
・・・第三部材の厚さ
100 ... SiC single crystal manufacturing equipment 101 ... Crucible 102, 112, 122, 132, 142, 152 ... Pedestal 102A, 102A 1 , 102A 2 , 102A 3 , 102A 4 , 102A 5 ... One member 112A, 122A, 132A, 142A, 152A ... First member 102a ... Pedestal surface 103 ... Coil 104 ... Tapered guide 105 ... Second member 106 ... Third member B ... Ingot D 1 , D 2 ... Inclined direction of coefficient of thermal expansion G ... Raw material L ... Overlapping direction S ... Seed t 1 ... Thickness of first member t 2 ... Thickness of the second member t 3 ... Thickness of the third member

Claims (13)

結晶成長中のシードの台座であって、
一方の側からの平面視において、
所定の位置から複数の方向に熱膨張係数の異なる複数の第一部材が重なった部分を有し、重なり方向において前記所定の位置から遠ざかるにつれて、前記第一部材の熱膨張係数が単調に変化しており、
前記複数の第一部材の前記一方の側が、第二部材で覆われていることを特徴とする台座。
The pedestal of the seed during crystal growth,
In plan view from one side
A plurality of first members having different thermal expansion coefficients are overlapped from a predetermined position in a plurality of directions, and the thermal expansion coefficient of the first member changes monotonically as the distance from the predetermined position is increased in the overlapping direction. and,
A pedestal characterized in that one side of the plurality of first members is covered with a second member.
複数の前記第一部材が、前記所定の位置から互いに反対の二方向に重なった部分を有することを特徴とする請求項1に記載の台座。 The pedestal according to claim 1, wherein the plurality of first members have portions that overlap each other in two directions opposite to each other from the predetermined position. 複数の前記第一部材が、前記所定の位置から放射状に広がる複数の方向に重なった部分を有することを特徴とする請求項1に記載の台座。 The pedestal according to claim 1, wherein the plurality of first members have portions overlapping in a plurality of directions radially extending from the predetermined position. 重なる前記第一部材の数が、重なる方向によらず一定であることを特徴とする請求項1〜3のいずれか一項に記載の台座。 The pedestal according to any one of claims 1 to 3, wherein the number of overlapping first members is constant regardless of the overlapping direction. 重なる前記第一部材の数が、重なる一部の方向において他の方向と異なることを特徴とする請求項1〜3のいずれか一項に記載の台座。 The pedestal according to any one of claims 1 to 3, wherein the number of overlapping first members differs from the other directions in a part of the overlapping directions. 複数の前記第一部材が、前記一方の側からの平面視において、いずれも前記所定の位置を囲む円形状を有していることを特徴とする請求項3または4のいずれかに記載の台座。 The pedestal according to claim 3 or 4, wherein the plurality of first members all have a circular shape surrounding the predetermined position in a plan view from one side. .. 前記重なり方向において、前記所定の位置から遠ざかるにつれて、前記第一部材の熱膨張係数が単調に増加していることを特徴とする請求項1〜6のいずれか一項に記載の台座。 The pedestal according to any one of claims 1 to 6, wherein the coefficient of thermal expansion of the first member monotonically increases as the distance from the predetermined position increases in the overlapping direction. 前記重なり方向において、前記所定の位置から遠ざかるにつれて、前記第一部材の熱膨張係数が単調に減少していることを特徴とする請求項1〜6のいずれか一項に記載の台座。 The pedestal according to any one of claims 1 to 6, wherein the coefficient of thermal expansion of the first member monotonically decreases as the distance from the predetermined position increases in the overlapping direction. 前記重なり方向と垂直な方向において、前記第二部材の厚さが、前記第一部材の厚さの1倍以下であることを特徴とする請求項1〜8のいずれか一項に記載の台座。 The pedestal according to any one of claims 1 to 8, wherein the thickness of the second member is one or less times the thickness of the first member in the direction perpendicular to the overlapping direction. .. 前記複数の第一部材の前記一方の側と反対に位置する側が、第三部材で覆われていることを特徴とする請求項1〜のいずれか一項に記載の台座。 The pedestal according to any one of claims 1 to 9 , wherein the side of the plurality of first members located opposite to the one side is covered with the third member. 前記重なり方向と垂直な方向において、前記第三部材の厚さが、前記第一部材の厚さの1倍以下であることを特徴とする請求項10に記載の台座。 The pedestal according to claim 10 , wherein the thickness of the third member is one or less times the thickness of the first member in the direction perpendicular to the overlapping direction. 請求項1〜11のいずれか一項に記載の台座を、前記一方の側がシード成長面側となるように備えていることを特徴とするSiC単結晶の製造装置。 An apparatus for producing a SiC single crystal, wherein the pedestal according to any one of claims 1 to 11 is provided so that one side thereof is the seed growth surface side. 請求項12に記載のSiC単結晶の製造装置を用いて、SiC単結晶を製造することを特徴とするSiC単結晶の製造方法。 A method for producing a SiC single crystal, which comprises producing a SiC single crystal using the SiC single crystal manufacturing apparatus according to claim 12.
JP2017248453A 2017-12-25 2017-12-25 Pedestal, SiC single crystal manufacturing equipment and manufacturing method Active JP6971144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017248453A JP6971144B2 (en) 2017-12-25 2017-12-25 Pedestal, SiC single crystal manufacturing equipment and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017248453A JP6971144B2 (en) 2017-12-25 2017-12-25 Pedestal, SiC single crystal manufacturing equipment and manufacturing method

Publications (2)

Publication Number Publication Date
JP2019112274A JP2019112274A (en) 2019-07-11
JP6971144B2 true JP6971144B2 (en) 2021-11-24

Family

ID=67221232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017248453A Active JP6971144B2 (en) 2017-12-25 2017-12-25 Pedestal, SiC single crystal manufacturing equipment and manufacturing method

Country Status (1)

Country Link
JP (1) JP6971144B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408262B (en) * 2007-09-12 2013-09-11 Showa Denko Kk Epitaxial sic single crystal substrate and method for manufacturing epitaxial sic single crystal substrate
JP4937967B2 (en) * 2008-06-09 2012-05-23 新日本製鐵株式会社 Method for manufacturing silicon carbide epitaxial wafer
JP2011190129A (en) * 2010-03-12 2011-09-29 Bridgestone Corp Apparatus for manufacturing silicon carbide single crystal
JP2015098411A (en) * 2013-11-19 2015-05-28 古河機械金属株式会社 Method and apparatus for manufacturing nitride semiconductor substrate

Also Published As

Publication number Publication date
JP2019112274A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
JP7002932B2 (en) Manufacturing method of SiC ingot
US11905621B2 (en) SiC single crystal, method of manufacturing SiC ingot, and method of manufacturing SiC wafer
US10865499B2 (en) Susceptor for holding a semiconductor wafer, method for depositing an epitaxial layer on a front side of a semiconductor wafer, and semiconductor wafer with epitaxial layer
JP6120742B2 (en) Method for manufacturing single crystal ingot, method for manufacturing single crystal substrate, and method for manufacturing semiconductor device
JP2018108916A (en) Method for manufacturing silicon carbide epitaxial substrate
WO2019244580A1 (en) Device for growing silicon carbide single crystal and method for producing silicon carbide single crystal
JP6562546B2 (en) Wafer support, wafer support, chemical vapor deposition equipment
JP6971144B2 (en) Pedestal, SiC single crystal manufacturing equipment and manufacturing method
CN108026662B (en) Silicon carbide substrate
CN109957840B (en) SiC ingot and method for producing SiC ingot
WO2016171168A1 (en) Sic single crystal seed, sic ingot, sic single crystal seed production method, and sic single crystal ingot production method
WO2020036170A1 (en) Sic single crystal, method for producing sic ingot and method for producing sic wafer
US11041257B2 (en) Shielding member including a plurality of shielding plates arranged without gaps therebetween in plan view and apparatus for growing single crystals
CN109957839B (en) Method for processing SiC single crystal and method for producing SiC ingot
WO2020036167A1 (en) Method for bonding sic single crystal, method for producing sic ingot, and mount for use in growth of sic single crystal
JP7005122B2 (en) SiC seeds and SiC ingots
WO2020036168A1 (en) Method for processing sic single crystal, method for producing sic ingot and sic single crystal
JP6768492B2 (en) Manufacturing method of SiC ingot
JP7463699B2 (en) Method for producing SiC seed and SiC single crystal ingot
JP7038756B2 (en) Manufacturing method for SiC wafers and semiconductor devices
JP2020026359A (en) Manufacturing method of silicon carbide single crystal
JP7268299B2 (en) Shielding member and single crystal growth apparatus
KR20060095268A (en) Growing method of high-quality sic single crystal with low defects
JP2021004166A (en) METHOD FOR MANUFACTURING SiC INGOT AND SiC INGOT
CN117822118A (en) Silicon carbide single crystal ingot, silicon carbide wafer, and method for producing silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6971144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350