JP2011190129A - Apparatus for manufacturing silicon carbide single crystal - Google Patents

Apparatus for manufacturing silicon carbide single crystal Download PDF

Info

Publication number
JP2011190129A
JP2011190129A JP2010055930A JP2010055930A JP2011190129A JP 2011190129 A JP2011190129 A JP 2011190129A JP 2010055930 A JP2010055930 A JP 2010055930A JP 2010055930 A JP2010055930 A JP 2010055930A JP 2011190129 A JP2011190129 A JP 2011190129A
Authority
JP
Japan
Prior art keywords
seed crystal
peripheral side
thermal conductivity
lid
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010055930A
Other languages
Japanese (ja)
Inventor
Daisuke Kondo
大輔 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010055930A priority Critical patent/JP2011190129A/en
Publication of JP2011190129A publication Critical patent/JP2011190129A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing a silicon carbide single crystal, which can provide a good-quality, large-diameter single crystal by reducing the temperature difference between the central portion and the peripheral portion of a growing crystal while maintaining the temperature gradient in the growing crystal being equal to or more than a predetermined value during the crystal growth. <P>SOLUTION: The manufacturing apparatus 1 of silicon carbide comprises a crucible 9 having a crucible body 5 accommodating a raw material 15 for sublimation, and a lid body 3 installed with a seed crystal attaching section 21 where a seed crystal is attached at a position opposing to the raw material 15 for sublimation, and is heated from the outer periphery of the crucible 9, wherein with respect to the seed crystal attaching section 21 of the lid body 3, a central portion 31 arranged on the inner peripheral side has a higher heat conductivity than an outer portion 32 arranged on the outer peripheral side. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭化ケイ素単結晶の製造装置に関する。 The present invention relates to an apparatus for producing a silicon carbide single crystal.

従来から、半導体デバイス用基板として、単結晶からなる単結晶ウエハが広く用いられており、この単結晶を作製する方法として昇華法が知られている。この昇華法では、結晶の形状を下に凸の湾曲形状を保持したまま成長させることで良質な単結晶が得られることが知られている(例えば、特許文献1参照)。   Conventionally, a single crystal wafer made of a single crystal has been widely used as a substrate for a semiconductor device, and a sublimation method is known as a method for producing this single crystal. In this sublimation method, it is known that a high-quality single crystal can be obtained by growing the crystal while keeping the convex curved shape downward (see, for example, Patent Document 1).

特開2002−308699号公報JP 2002-308699 A

しかしながら、前記特許文献1に記載された製造方法では、口径が大きな単結晶の場合には、成長結晶の中心部と外周部との温度差が大きくなる(例えば、20℃以上の温度差)ため、成長結晶内部の引っ張り応力が大きくなったり、成長結晶の成長初期段階において種結晶の外周端縁が熱によって消失したりすることにより、良質な単結晶を成長させることができないという問題がある。   However, in the manufacturing method described in Patent Document 1, in the case of a single crystal having a large diameter, the temperature difference between the central portion and the outer peripheral portion of the grown crystal is large (for example, a temperature difference of 20 ° C. or more). There is a problem that a high-quality single crystal cannot be grown because the tensile stress inside the grown crystal becomes large or the outer peripheral edge of the seed crystal disappears due to heat in the initial stage of growth of the grown crystal.

一方、成長結晶の中心部と外周部との温度差を低減するために、温度勾配を小さくすると、成長結晶の外周端縁において下に凸の湾曲形状を維持することができないという問題がある。従って、温度勾配を所定値(例えば、1℃/cm)以上にする必要もある。   On the other hand, if the temperature gradient is made small in order to reduce the temperature difference between the central portion and the outer peripheral portion of the grown crystal, there is a problem that the downward curved shape cannot be maintained at the outer peripheral edge of the grown crystal. Therefore, it is necessary to set the temperature gradient to a predetermined value (for example, 1 ° C./cm) or more.

そこで、本発明の目的は、成長結晶中における所定値以上の温度勾配を維持しつつ成長結晶の中心部と外周部との温度差を小さくして、良質で大口径の単結晶を得ることができる炭化ケイ素単結晶の製造装置を提供することにある。   Accordingly, an object of the present invention is to obtain a high-quality and large-diameter single crystal by reducing the temperature difference between the central portion and the outer peripheral portion of the grown crystal while maintaining a temperature gradient higher than a predetermined value in the grown crystal. An object of the present invention is to provide an apparatus for producing a silicon carbide single crystal.

前述した課題を解決するため、本発明は次のような特徴を有している。本発明の第1の特徴は、昇華用原料(昇華用原料15)を収容するるつぼ本体(るつぼ本体5)と、前記昇華用原料に対向した位置に種結晶(種結晶43)を取り付ける種結晶取付部(種結晶取付部21)が設けられた蓋体(蓋体3)とを有する坩堝(坩堝9)を備え、該坩堝の外周側から加熱される炭化ケイ素単結晶の製造装置(炭化ケイ素単結晶の製造装置1)であって、前記蓋体について、内周側の熱伝導率を外周側の熱伝導率よりも大きく設定していることを要旨とする。   In order to solve the above-described problems, the present invention has the following features. The first feature of the present invention is that a crucible body (crucible body 5) containing a sublimation raw material (sublimation raw material 15) and a seed crystal in which a seed crystal (seed crystal 43) is attached at a position facing the sublimation raw material. An apparatus (silicon carbide) for producing a silicon carbide single crystal comprising a crucible (crucible 9) having a lid (lid 3) provided with a mounting part (seed crystal mounting part 21) and heated from the outer peripheral side of the crucible It is the manufacturing apparatus 1) of a single crystal, and the gist of the lid is that the thermal conductivity on the inner peripheral side is set larger than the thermal conductivity on the outer peripheral side.

蓋体について、内周側の熱伝導率を外周側の熱伝導率よりも大きく設定しており、坩堝の外周側から加熱されるため、内周側から外周側に向かう温度勾配は、内周側が緩やかで、外周側が急になる。従って、蓋体における径方向中心と外周端縁との温度差を低減することができるため、単結晶中の周方向引っ張り応力が小さくなると共に、成長初期における種結晶の外周端縁の熱消失がなくなる。一方、成長結晶の外周端縁における温度勾配を所定値(例えば、1℃/cm)以上に維持することができる。ここで、成長結晶は、外周側に向かうにつれて下に凸の湾曲形状を維持しにくくなり、外周端縁では、最も凹面形状になりやすいという問題がある。従って、成長結晶の外周端縁における温度勾配を所定値以上に維持することによって、成長結晶全体の形状を下に凸の湾曲形状にすることができる。   For the lid, the thermal conductivity on the inner peripheral side is set larger than the thermal conductivity on the outer peripheral side, and since it is heated from the outer peripheral side of the crucible, the temperature gradient from the inner peripheral side to the outer peripheral side is The side is gradual and the outer periphery is steep. Accordingly, since the temperature difference between the radial center and the outer peripheral edge of the lid can be reduced, the circumferential tensile stress in the single crystal is reduced, and the heat loss of the outer peripheral edge of the seed crystal in the initial stage of growth is reduced. Disappear. On the other hand, the temperature gradient at the outer peripheral edge of the grown crystal can be maintained at a predetermined value (for example, 1 ° C./cm) or more. Here, the growth crystal has a problem that it tends to be difficult to maintain a downwardly convex curved shape toward the outer peripheral side, and is most likely to have a concave shape at the outer peripheral edge. Accordingly, by maintaining the temperature gradient at the outer peripheral edge of the grown crystal at a predetermined value or higher, the shape of the entire grown crystal can be made to be a curved convex shape.

なお、蓋体における径方向中心と外周端縁との温度差は、所定値(例えば、20℃以下)に設定する必要がある。   In addition, it is necessary to set the temperature difference between the radial center and the outer peripheral edge of the lid to a predetermined value (for example, 20 ° C. or less).

以上より、大きい口径の単結晶を作製する場合においても、蓋体における径方向中心と外周端縁との温度差を低減し、温度勾配を所定値以上に設定できるため、良質な単結晶を製造することができる。   From the above, even when producing a single crystal with a large diameter, the temperature difference between the radial center of the lid and the outer peripheral edge can be reduced, and the temperature gradient can be set to a predetermined value or more. can do.

本発明の第2の特徴は、前記蓋体(蓋体3)の種結晶取付部(種結晶取付部21)について、内周側の熱伝導率を外周側の熱伝導率よりも大きく設定したことを要旨とする。   The second feature of the present invention is that the thermal conductivity on the inner peripheral side is set larger than the thermal conductivity on the outer peripheral side for the seed crystal mounting portion (seed crystal mounting portion 21) of the lid (lid 3). This is the gist.

本発明の第3の特徴は、前記蓋体(蓋体3)の種結晶取付部(種結晶取付部21)を径方向に沿って同心円状の複数の環状部(中央部31、外側部32)に画成し、これら複数の環状部のうち、内周側の環状部(中央部31)における熱伝導率は、外周側の環状部(外側部32)における熱伝導率よりも大きく設定されていることを要旨とする。   The third feature of the present invention is that the seed crystal attachment portion (seed crystal attachment portion 21) of the lid (lid 3) is concentrically circular along the radial direction (center portion 31, outer portion 32). Among the plurality of annular portions, the thermal conductivity in the inner circumferential side annular portion (center portion 31) is set larger than the thermal conductivity in the outer circumferential side annular portion (outer portion 32). It is a summary.

本発明の第4の特徴は、前記内周側の環状部(中央部31)は、前記蓋体(蓋体3)の厚さ方向の全体に亘って形成されていることを要旨とする。   The gist of the fourth feature of the present invention is that the annular portion (center portion 31) on the inner peripheral side is formed over the entire thickness direction of the lid body (lid body 3).

本発明の第5の特徴は、前記種結晶取付部(種結晶取付部21)は、内周側に配置された円柱状の中央部(中央部31)と、外周側に配置された円筒状の外側部(外側部32)とから構成され、前記中央部の熱伝導率は、前記外側部の熱伝導率に対して、1.2倍以上であることを要旨とする。   According to a fifth feature of the present invention, the seed crystal mounting portion (seed crystal mounting portion 21) includes a columnar central portion (center portion 31) disposed on the inner peripheral side and a cylindrical shape disposed on the outer peripheral side. The outer portion (outer portion 32) of the outer portion and the thermal conductivity of the central portion is 1.2 times or more than the thermal conductivity of the outer portion.

本発明に係る炭化ケイ素単結晶の製造装置によれば、成長結晶中における所定値以上の温度勾配を維持しつつ成長結晶の中心部と外周部との温度差を小さくして、良質で大口径の単結晶を得ることができる。   According to the apparatus for producing a silicon carbide single crystal according to the present invention, the temperature difference between the central portion and the outer peripheral portion of the grown crystal is reduced while maintaining a temperature gradient of a predetermined value or more in the grown crystal, and the high-quality and large-diameter Can be obtained.

本発明の実施形態に係る炭化ケイ素単結晶の製造装置を示す断面図である。It is sectional drawing which shows the manufacturing apparatus of the silicon carbide single crystal which concerns on embodiment of this invention. 図1の蓋体を示す斜視図である。It is a perspective view which shows the cover body of FIG. 一般的な炭化ケイ素単結晶の製造装置を示す断面図である。It is sectional drawing which shows the manufacturing apparatus of a general silicon carbide single crystal. 種結晶取付部の近傍における等温線を示す概略図である。It is the schematic which shows the isotherm in the vicinity of a seed crystal attachment part. 熱伝導率が中である種結晶取付部における等温線を示す概略図である。It is the schematic which shows the isotherm in the seed-crystal attachment part where heat conductivity is medium. 熱伝導率が小である種結晶取付部における等温線を示す概略図である。It is the schematic which shows the isotherm in the seed crystal attachment part with small heat conductivity. 熱伝導率が大である種結晶取付部における等温線を示す概略図である。It is the schematic which shows the isotherm in the seed crystal attachment part with large heat conductivity. 図5〜図7の種結晶取付部における径方向中心からの距離と温度との関係を示すグラフである。It is a graph which shows the relationship between the distance from the radial center in the seed crystal attaching part of FIGS. 5-7, and temperature. 本発明の実施形態に係る種結晶取付部における等温線を示す概略図である。It is the schematic which shows the isotherm in the seed crystal attachment part which concerns on embodiment of this invention. 従来例と本発明例に係る種結晶取付部における径方向中心からの距離と温度との関係を示すグラフである。It is a graph which shows the relationship between the distance from the radial center, and temperature in the seed crystal attaching part which concerns on a prior art example and this invention example.

以下、本発明の実施の形態に係る炭化ケイ素単結晶の製造装置の詳細を図面に基づいて説明する。具体的には、(1)炭化ケイ素単結晶の製造装置の全体構成、(2)蓋体の構成、(3)坩堝内の熱の流れ、(4)蓋体の温度分布、(5)作用効果、(6)その他の実施形態について説明する。図面は模式的なものであり、各材料層の厚みやその比率などは現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。   Hereinafter, details of an apparatus for producing a silicon carbide single crystal according to an embodiment of the present invention will be described with reference to the drawings. Specifically, (1) the overall configuration of the silicon carbide single crystal manufacturing apparatus, (2) the configuration of the lid, (3) the heat flow in the crucible, (4) the temperature distribution of the lid, (5) the action Effects, (6) Other embodiments will be described. It should be noted that the drawings are schematic, and the thicknesses and ratios of the material layers are different from actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Also included in the drawings are portions having different dimensional relationships and ratios.

(1)炭化ケイ素単結晶の製造装置の全体構成
まず、本発明の実施形態に係る炭化ケイ素単結晶の製造装置1の全体構成について図1を用いて説明する。図1は、本発明の実施形態に係る炭化ケイ素単結晶の製造装置1を示す断面図である。
(1) Overall Configuration of Silicon Carbide Single Crystal Manufacturing Apparatus First, the overall configuration of a silicon carbide single crystal manufacturing apparatus 1 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view showing a silicon carbide single crystal manufacturing apparatus 1 according to an embodiment of the present invention.

この製造装置1は、蓋体3、坩堝本体5、およびガイド部材7を有する坩堝9と、該坩堝9の外周を覆う断熱材11と、を備えている。なお、断熱材11の外周側には、後述する図3に示すように誘導加熱コイルが巻回されるが、図1では省略している。   The manufacturing apparatus 1 includes a crucible 9 having a lid 3, a crucible body 5, and a guide member 7, and a heat insulating material 11 that covers the outer periphery of the crucible 9. In addition, although the induction heating coil is wound around the outer peripheral side of the heat insulating material 11 as shown in FIG. 3 described later, it is omitted in FIG.

前記坩堝本体5は、上端部が開口されて、この開口が蓋体3によって塞がれており、材質は黒鉛から形成されている。底部には、炭化ケイ素の粉体からなる昇華用原料15が収容されている。なお、昇華用原料15が加熱されると、昇華ガスが発生し、ガイド部材7によって種結晶43(図5参照)に導かれる。   The crucible body 5 has an upper end opened, and the opening is closed by the lid 3 and is made of graphite. A sublimation raw material 15 made of silicon carbide powder is accommodated in the bottom. When the sublimation raw material 15 is heated, sublimation gas is generated and guided to the seed crystal 43 (see FIG. 5) by the guide member 7.

前記蓋体3は、坩堝本体5の上端部の開口を封鎖するように、坩堝本体5の上端部のねじ部に螺合されており、材質は黒鉛から形成されている。蓋体3の下面19の中央部には、下方に突出する円柱状の種結晶取付部21が形成されている。この種結晶取付部21の下面に、炭化ケイ素からなる円盤状の種結晶43が取り付けられる。   The lid body 3 is screwed into a screw portion at the upper end portion of the crucible body 5 so as to seal the opening at the upper end portion of the crucible body 5, and is made of graphite. A cylindrical seed crystal attachment portion 21 that protrudes downward is formed at the center of the lower surface 19 of the lid 3. A disc-shaped seed crystal 43 made of silicon carbide is attached to the lower surface of the seed crystal attachment portion 21.

前記断熱材11は、前記坩堝9を覆うように配設されており、断熱材11の上面および下件の径方向中央部には、温度計測用穴23,25が形成されている。   The heat insulating material 11 is disposed so as to cover the crucible 9, and temperature measurement holes 23 and 25 are formed in the upper surface of the heat insulating material 11 and the radial center of the subordinate.

(2)蓋体3の構成
次いで、蓋体3の構成について図1,2を用いて説明する。図2は、図1の蓋体3を示す斜視図である。
(2) Configuration of Lid 3 Next, the configuration of the lid 3 will be described with reference to FIGS. FIG. 2 is a perspective view showing the lid 3 of FIG.

蓋体3の下面19に設けられた種結晶取付部21は、下方に凸の円柱状に形成されており、内周側に配置された円柱状の中央部31と、該中央部31の外周側に配置された円筒状の外側部32とから構成されている。また、前記外側部32は、蓋体3の蓋体本体部33と一体に形成されている。なお、本実施形態では、前記種結晶取付部21における中央部31は、蓋体3の厚さ方向全体に亘って一体に設けられている。そして、これら環状部に形成された中央部31および外側部32について、中央部31における熱伝導率は、外側部32および蓋体本体部33における熱伝導率よりも大きく設定されている。具体的には、中央部31における熱伝導率は、外側部32および本体部33における熱伝導率の1.2倍以上に設定することが好ましい。なお、黒鉛からなる蓋体3および種結晶取付部21の熱伝導率は、黒鉛材の密度に応じて変化する。   The seed crystal attachment portion 21 provided on the lower surface 19 of the lid 3 is formed in a downwardly protruding cylindrical shape, and has a cylindrical central portion 31 disposed on the inner peripheral side, and an outer periphery of the central portion 31. It is comprised from the cylindrical outer side part 32 arrange | positioned at the side. The outer portion 32 is formed integrally with the lid body portion 33 of the lid body 3. In the present embodiment, the central portion 31 of the seed crystal attachment portion 21 is integrally provided over the entire thickness direction of the lid 3. And about the center part 31 and the outer side part 32 formed in these cyclic | annular parts, the heat conductivity in the center part 31 is set larger than the heat conductivity in the outer side part 32 and the lid body part 33. FIG. Specifically, the thermal conductivity in the central portion 31 is preferably set to 1.2 times or more of the thermal conductivity in the outer portion 32 and the main body portion 33. Note that the thermal conductivity of the lid 3 made of graphite and the seed crystal attachment portion 21 varies depending on the density of the graphite material.

(3)坩堝9内の熱の流れ
次に、坩堝9の内部における熱の流れを図3〜図8を用いて説明する。図3は一般的な炭化ケイ素単結晶の製造装置を示す断面図、図4は種結晶取付部の近傍における等温線を示す概略図である。
(3) Heat Flow in Crucible 9 Next, the heat flow in the crucible 9 will be described with reference to FIGS. FIG. 3 is a cross-sectional view showing a general silicon carbide single crystal manufacturing apparatus, and FIG. 4 is a schematic view showing an isotherm in the vicinity of the seed crystal attachment portion.

図3においては、図1と同一構成の部位には同一符号を付してその説明を省略する。蓋体103の下面には、下方に凸形状の種結晶取付部121が蓋体103に一体形成されている。そして、断熱材11の外周側には、螺旋状に巻回された誘導加熱コイル141が設けられている。   3, parts having the same configuration as in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. On the lower surface of the lid 103, a seed crystal mounting portion 121 having a convex shape is formed integrally with the lid 103. And the induction heating coil 141 wound helically is provided in the outer peripheral side of the heat insulating material 11. FIG.

まず、誘導加熱コイル141に電流を流すと、坩堝本体5および蓋体103の外周面が誘導加熱h0によって加熱され、下部に下側高温部H(L)が形成され、上部に上側高温部H(U)が形成される。   First, when a current is passed through the induction heating coil 141, the outer peripheral surfaces of the crucible body 5 and the lid 103 are heated by the induction heating h0, the lower high temperature portion H (L) is formed at the lower portion, and the upper high temperature portion H at the upper portion. (U) is formed.

断熱材11の上面の中央部には、温度計測用穴23が形成されているため、上側高温部H(U)からの熱は蓋体103を介して温度計測用穴23から外方に向けて排出される。従って、図4の矢印に示すように、種結晶取付部121には、外周側から内周側に向かう熱h1の流れが形成される。   Since the temperature measurement hole 23 is formed in the center of the upper surface of the heat insulating material 11, the heat from the upper high temperature portion H (U) is directed outward from the temperature measurement hole 23 through the lid 103. Discharged. Therefore, as shown by the arrow in FIG. 4, a flow of heat h <b> 1 from the outer peripheral side toward the inner peripheral side is formed in the seed crystal attachment portion 121.

一方、昇華用原料15に対する加熱量は種結晶に対する加熱量よりも大きく設定されるため、下側高温部H(L)における温度は上側高温部H(U)における温度よりも高くなる。従って、図4の矢印に示すように、種結晶取付部121には、下側から上側に向かう熱h2の流れが形成される。これらのh1,h2が合成されることにより、種結晶取付部121には斜め上方に向かう熱h3の流れが形成される。この熱h3の流れの方向は、等温線tに対して法線方向に向かうため、種結晶取付部121近傍の等温線tは図4のように下方に凸の湾曲形状に形成される。   On the other hand, since the heating amount for the sublimation raw material 15 is set larger than the heating amount for the seed crystal, the temperature in the lower high temperature portion H (L) is higher than the temperature in the upper high temperature portion H (U). Therefore, as shown by the arrow in FIG. 4, a flow of heat h <b> 2 from the lower side to the upper side is formed in the seed crystal attachment portion 121. By synthesizing these h1 and h2, a flow of heat h3 is formed in the seed crystal mounting portion 121 obliquely upward. Since the flow direction of the heat h3 is in the normal direction with respect to the isotherm t, the isotherm t in the vicinity of the seed crystal attachment portion 121 is formed in a downward curved shape as shown in FIG.

(4)蓋体の温度分布
次いで、蓋体における温度分布を図5〜図8を用いて説明する。図5は熱伝導率が中である種結晶取付部における等温線を示す概略図、図6は熱伝導率が小である種結晶取付部における等温線を示す概略図である。図7は熱伝導率が大である種結晶取付部における等温線を示す概略図、図8は図5〜図7の種結晶取付部における径方向中心からの距離と温度との関係を示すグラフである。
(4) Temperature distribution of the lid Next, the temperature distribution in the lid will be described with reference to FIGS. FIG. 5 is a schematic diagram showing an isotherm in a seed crystal attachment part having a medium thermal conductivity, and FIG. 6 is a schematic diagram showing an isotherm in a seed crystal attachment part having a low thermal conductivity. FIG. 7 is a schematic diagram showing an isotherm in the seed crystal mounting portion having a large thermal conductivity, and FIG. 8 is a graph showing the relationship between the distance from the radial center and the temperature in the seed crystal mounting portion in FIGS. It is.

図5に示すように、熱伝導率が中である種結晶取付部221の下に種結晶43が取り付けられている。種結晶取付部221の外周端縁には上側高温部H(U)が形成され、断熱材11には温度計測用穴23が形成されている。従って、上側高温部H(U)から種結晶取付部221の内周側に向かい温度計測用穴23から外方に抜ける熱の流れh1が形成される。ここで、種結晶取付部221の熱伝導率は中であるため、等温線T1の間隔も中程度になる。また、種結晶取付部221の中心から外周に向かう温度勾配は、図8の実線に示すようになる。なお、図8のグラフは、図3における種結晶取付部121の下面の矢印y方向に沿った温度勾配を示す。   As shown in FIG. 5, a seed crystal 43 is attached under the seed crystal attachment portion 221 having a medium thermal conductivity. An upper high temperature portion H (U) is formed at the outer peripheral edge of the seed crystal mounting portion 221, and a temperature measurement hole 23 is formed in the heat insulating material 11. Accordingly, a heat flow h1 is formed from the upper high temperature portion H (U) toward the inner peripheral side of the seed crystal attachment portion 221 and through the temperature measurement hole 23 to the outside. Here, since the thermal conductivity of the seed crystal attachment portion 221 is medium, the interval between the isotherms T1 is also medium. Further, the temperature gradient from the center of the seed crystal attachment portion 221 toward the outer periphery is as shown by a solid line in FIG. The graph of FIG. 8 shows the temperature gradient along the arrow y direction on the lower surface of the seed crystal attachment portion 121 in FIG.

一方、図6に示すように、熱伝導率が小である種結晶取付部321の場合は、上側高温部H(U)の熱がなかなか内周側に移動しないため、等温線T2の間隔が小さくなり、温度勾配も図8の破線に示すように急になる。   On the other hand, as shown in FIG. 6, in the case of the seed crystal attachment portion 321 having a low thermal conductivity, the heat of the upper high temperature portion H (U) does not readily move to the inner peripheral side, so the interval between the isotherms T2 is The temperature gradient becomes steep as shown by the broken line in FIG.

また、図7に示すように、熱伝導率が大である種結晶取付部421の場合は、上側高温部H(U)の熱がスムーズに内周側に移動するため、等温線T3の間隔が大きくなり、温度勾配も図8の一点鎖線に示すように緩やかになる。   Further, as shown in FIG. 7, in the case of the seed crystal attachment portion 421 having a large thermal conductivity, the heat of the upper high temperature portion H (U) moves smoothly to the inner peripheral side, so that the interval between the isotherms T3 Becomes larger and the temperature gradient becomes gentler as shown by the one-dot chain line in FIG.

次に、本実施形態に係る種結晶取付部521の温度分布を説明する。図9は本発明の実施形態に係る種結晶取付部521における等温線を示す概略図、図10は従来例と本発明例に係る種結晶取付部における径方向中心からの距離と温度との関係を示すグラフである。   Next, the temperature distribution of the seed crystal attachment part 521 according to this embodiment will be described. FIG. 9 is a schematic diagram showing an isotherm in the seed crystal mounting portion 521 according to the embodiment of the present invention, and FIG. 10 is a relationship between the distance from the radial center and the temperature in the seed crystal mounting portion according to the conventional example and the present invention example. It is a graph which shows.

図9に概略的に示すように、本実施形態に係る種結晶取付部521は、内周側に熱伝導率が大である種結晶取付部421を配置し、外周側に熱伝導率が小である種結晶取付部321を配置したものである。即ち、種結晶取付部321と種結晶取付部421との組合せである。   As schematically shown in FIG. 9, the seed crystal mounting portion 521 according to the present embodiment includes a seed crystal mounting portion 421 having a large thermal conductivity on the inner peripheral side and a low thermal conductivity on the outer peripheral side. The seed crystal attachment part 321 which is is arrange | positioned. That is, the seed crystal mounting portion 321 and the seed crystal mounting portion 421 are combined.

従って、図10の実線50に示すように、本実施形態に係る種結晶取付部521は、内周側の温度勾配が小さい部分と外周側の温度勾配が大きい部分とが組み合わされている。   Therefore, as shown by the solid line 50 in FIG. 10, in the seed crystal mounting portion 521 according to this embodiment, a portion having a small temperature gradient on the inner peripheral side and a portion having a large temperature gradient on the outer peripheral side are combined.

図10においては、横軸の半径(r)がゼロになる部位が種結晶取付部521の径方向中心であり、半径が大きくなるにつれて種結晶取付部521の外周側に向かう。一点鎖線51で示す曲線は図8における熱伝導率が中の曲線に対応する。一方、本実施形態に係る実線50は、内周側の部分が図8の熱伝導率が大となる部分であり、外周側の部分が図8の熱伝導率が小となる部分である。なお、図10におけるdT/drは、曲線50,51の接線の傾きであり温度勾配の大きさを示している。   In FIG. 10, the portion where the radius (r) of the horizontal axis becomes zero is the center in the radial direction of the seed crystal attachment portion 521, and goes toward the outer peripheral side of the seed crystal attachment portion 521 as the radius increases. The curve indicated by the alternate long and short dash line 51 corresponds to the curve having the medium thermal conductivity in FIG. On the other hand, in the solid line 50 according to the present embodiment, the inner peripheral portion is a portion where the thermal conductivity of FIG. 8 is large, and the outer peripheral portion is a portion where the thermal conductivity of FIG. 8 is small. Note that dT / dr in FIG. 10 is the tangential slope of the curves 50 and 51 and indicates the magnitude of the temperature gradient.

(5)作用効果
次いで、本実施形態による作用効果を説明する。
(5) Operational Effects Next, operational effects according to the present embodiment will be described.

(5−1)本実施形態に係る炭化ケイ素単結晶の製造装置1は、昇華用原料15を収容するるつぼ本体5と、前記昇華用原料15に対向した位置に種結晶43を取り付ける種結晶取付部21が設けられた蓋体3とを有する坩堝9を備え、該坩堝9の外周側から加熱される炭化ケイ素単結晶の製造装置1であって、前記蓋体3の種結晶取付部21について、内周側の熱伝導率を外周側の熱伝導率よりも大きく設定している。 (5-1) The silicon carbide single crystal manufacturing apparatus 1 according to this embodiment includes a crucible body 5 that houses a sublimation raw material 15 and a seed crystal attachment that attaches a seed crystal 43 to a position facing the sublimation raw material 15. The silicon carbide single crystal manufacturing apparatus 1 includes a crucible 9 having a lid 3 provided with a portion 21, and is heated from the outer peripheral side of the crucible 9, and includes a seed crystal attachment portion 21 of the lid 3. The thermal conductivity on the inner peripheral side is set larger than the thermal conductivity on the outer peripheral side.

種結晶取付部21について、内周側の熱伝導率を外周側の熱伝導率よりも大きく設定しており、坩堝9の外周側から加熱されるため、内周側から外周側に向かう温度勾配は、内周側が緩やかで、外周側が急になる。従って、種結晶取付部21における径方向中心と外周端縁との温度差を低減することができるため、単結晶中の周方向引っ張り応力が小さくなると共に、成長初期における種結晶43の外周端縁の熱消失がなくなる。一方、成長結晶の外周端縁における温度勾配を所定値(例えば、1℃/cm)以上に維持することができる。ここで、成長結晶は、外周側に向かうにつれて下に凸の湾曲形状を維持しにくくなり、外周端縁では、最も凹面形状になりやすいという問題がある。従って、成長結晶の外周端縁における温度勾配を所定値以上に維持することによって、成長結晶全体の形状を下に凸の湾曲形状にすることができる。なお、種結晶取付部21における径方向中心と外周端縁との温度差は、所定値(例えば、20℃以下)に設定する必要がある。   About the seed crystal attachment part 21, since the heat conductivity of the inner peripheral side is set larger than the heat conductivity of the outer peripheral side and is heated from the outer peripheral side of the crucible 9, the temperature gradient from the inner peripheral side toward the outer peripheral side The inner peripheral side is gentle and the outer peripheral side is steep. Therefore, since the temperature difference between the radial center and the outer peripheral edge in the seed crystal attachment portion 21 can be reduced, the circumferential tensile stress in the single crystal is reduced and the outer peripheral edge of the seed crystal 43 in the initial stage of growth. The loss of heat disappears. On the other hand, the temperature gradient at the outer peripheral edge of the grown crystal can be maintained at a predetermined value (for example, 1 ° C./cm) or more. Here, the growth crystal has a problem that it tends to be difficult to maintain a downwardly convex curved shape toward the outer peripheral side, and is most likely to have a concave shape at the outer peripheral edge. Accordingly, by maintaining the temperature gradient at the outer peripheral edge of the grown crystal at a predetermined value or higher, the shape of the entire grown crystal can be made to be a curved convex shape. Note that the temperature difference between the radial center and the outer peripheral edge of the seed crystal attachment portion 21 needs to be set to a predetermined value (for example, 20 ° C. or less).

以上より、大きい口径の単結晶を作製する場合においても、種結晶取付部21における径方向中心と外周端縁との温度差を低減し、温度勾配を所定値以上に設定できるため、良質な単結晶を製造することができる。   As described above, even when producing a single crystal having a large diameter, the temperature difference between the radial center and the outer peripheral edge of the seed crystal mounting portion 21 can be reduced and the temperature gradient can be set to a predetermined value or more, so that a high quality single crystal Crystals can be produced.

(5−2)前記蓋体3の種結晶取付部21を径方向に沿って同心円状の複数の環状部である中央部31と外側部32とに画成し、これらの中央部31と外側部32のうち、内周側の中央部31における熱伝導率は、外周側の外側部32における熱伝導率よりも大きく設定されている。このため、大きい口径の単結晶を作製する場合においても、種結晶取付部21における径方向中心と外周端縁との温度差を低減し、温度勾配を所定値以上に設定できるため、下に凸形状で良質な単結晶を製造することができる。 (5-2) The seed crystal mounting portion 21 of the lid 3 is defined by a central portion 31 and an outer portion 32 that are a plurality of concentric annular portions along the radial direction. Among the portions 32, the thermal conductivity in the inner peripheral side central portion 31 is set to be larger than the thermal conductivity in the outer peripheral side outer portion 32. For this reason, even when producing a single crystal having a large diameter, the temperature difference between the radial center and the outer peripheral edge of the seed crystal mounting portion 21 can be reduced and the temperature gradient can be set to a predetermined value or more, so A single crystal having a good shape can be manufactured.

(5−3)前記内周側の中央部31は、前記蓋体3の厚さ方向の全体に亘って形成されている。従って、種結晶取付部21のみについて、内周側と外周側との熱伝導率を変えるよりも温度勾配を小さく抑えることができ、温度勾配を所定値以上に維持しつつ種結晶取付部21における径方向中心と外周端縁との温度差を小さくすることができる。このため、更に、下に凸の湾曲形状で良質な単結晶を製造することができる。 (5-3) The central portion 31 on the inner peripheral side is formed over the entire thickness direction of the lid 3. Therefore, only the seed crystal attachment portion 21 can suppress the temperature gradient smaller than changing the thermal conductivity between the inner peripheral side and the outer peripheral side, and in the seed crystal attachment portion 21 while maintaining the temperature gradient at a predetermined value or more. The temperature difference between the radial center and the outer peripheral edge can be reduced. For this reason, it is possible to manufacture a high-quality single crystal having a downwardly convex curved shape.

(5−4)前記種結晶取付部21は、内周側に配置された円柱状の中央部31と、外周側に配置された円筒状の外側部32とから構成され、前記中央部31の熱伝導率は、前記外側部32の熱伝導率に対して、1.2倍以上である。 (5-4) The seed crystal mounting portion 21 is composed of a columnar central portion 31 disposed on the inner peripheral side and a cylindrical outer portion 32 disposed on the outer peripheral side. The thermal conductivity is 1.2 times or more that of the outer portion 32.

このように、中央部31と外側部32との熱伝導率の比率を具体的に設定することにより、温度勾配を所定値以上に維持すること、および、種結晶取付部21における径方向中心と外周端縁との温度差を小さくすることが確実にできる。   Thus, by setting the ratio of the thermal conductivity between the central portion 31 and the outer portion 32 specifically, maintaining the temperature gradient at a predetermined value or more, and the radial center in the seed crystal attachment portion 21 The temperature difference from the outer peripheral edge can be reliably reduced.

(6)その他の実施形態
なお、前述した実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
(6) Other Embodiments It should not be understood that the description and drawings that constitute part of the disclosure of the above-described embodiments limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

本実施形態では、蓋体3の下面19の中央部に下方に突出する円柱状の種結晶取付部21を形成し、該種結晶取付部21における内周側と外周側との熱伝導率を変えた。しかし、本発明はこれに限定されず、蓋体3の下面19を面一状に形成し、この下面19の中央部を、種結晶を取り付ける種結晶取付部にすると共に、蓋体3の全体について、蓋体3の内周側と外周側との熱伝導率を変えても良い。例えば、蓋体3の部位のうち、種結晶が取り付けられる内周側の部位の熱伝導率を小さくする一方、種結晶が取り付けられない外周側の部位の熱伝導率を大きくしても良い。   In the present embodiment, a columnar seed crystal mounting portion 21 that protrudes downward is formed at the center of the lower surface 19 of the lid 3, and the thermal conductivity between the inner peripheral side and the outer peripheral side of the seed crystal mounting portion 21 is determined. changed. However, the present invention is not limited to this, and the lower surface 19 of the lid 3 is formed to be flush with the center portion of the lower surface 19 as a seed crystal mounting portion to which a seed crystal is attached, and the entire lid 3 is formed. About, you may change the heat conductivity of the inner peripheral side of the cover body 3, and an outer peripheral side. For example, among the parts of the lid 3, the thermal conductivity of the inner peripheral part to which the seed crystal is attached may be reduced, while the thermal conductivity of the outer peripheral part to which the seed crystal is not attached may be increased.

本実施形態においては、蓋体3の厚さ方向全体に亘って中央部31を設けた場合を説明したが、これに限定されず、種結晶取付部21の厚さ分のみの熱伝導率を変えても良い。   In this embodiment, although the case where the center part 31 was provided over the whole thickness direction of the cover body 3 was demonstrated, it is not limited to this, The thermal conductivity only for the thickness of the seed crystal attachment part 21 is shown. You can change it.

また、本実施形態では、図1,2で説明したように、種結晶取付部21を蓋体3の下面19から下方に突出するように形成したが、これに限定されず、蓋体3を面一状に形成し、種結晶43が当接する部位を種結晶取付部としても良い。この場合は、種結晶43が当接する部位の蓋体3における内周側の熱伝導率を大きくし、外周側の熱伝導率を小さくする。   In the present embodiment, as described with reference to FIGS. 1 and 2, the seed crystal attachment portion 21 is formed so as to protrude downward from the lower surface 19 of the lid body 3. It is good also considering the part which forms in the shape of a plane and the seed crystal 43 contacts as a seed crystal attachment part. In this case, the thermal conductivity on the inner peripheral side of the lid 3 at the portion where the seed crystal 43 abuts is increased, and the thermal conductivity on the outer peripheral side is decreased.

さらに、本実施形態では、種結晶取付部21を中央部31と外側部32との2つに分けたが、これに限定されず、種結晶取付部21を同心円状に3以上の環状部に画成しても良い。   Further, in the present embodiment, the seed crystal attachment portion 21 is divided into two parts, that is, the central portion 31 and the outer portion 32, but is not limited thereto, and the seed crystal attachment portion 21 is concentrically formed into three or more annular portions. It may be defined.

このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、前述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments that are not described herein. Therefore, the technical scope of the present invention is determined only by the invention specifying matters according to the scope of claims reasonable from the above description.

1 炭化ケイ素単結晶の製造装置
3 蓋体
5 るつぼ本体
9 坩堝
15 昇華用原料
21 種結晶取付部
31 中央部
32 外側部
43 種結晶
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of silicon carbide single crystal 3 Lid body 5 Crucible body 9 Crucible 15 Raw material for sublimation 21 Seed crystal attachment part 31 Center part 32 Outer part 43 Seed crystal

Claims (5)

昇華用原料を収容するるつぼ本体と、前記昇華用原料に対向した位置に種結晶を取り付ける種結晶取付部が設けられた蓋体とを有する坩堝を備え、該坩堝の外周側から加熱される炭化ケイ素単結晶の製造装置であって、
前記蓋体について、内周側の熱伝導率を外周側の熱伝導率よりも大きく設定した炭化ケイ素単結晶の製造装置。
Carbonized with a crucible having a crucible body containing a sublimation raw material and a lid provided with a seed crystal attachment portion for attaching a seed crystal at a position facing the sublimation raw material, and heated from the outer peripheral side of the crucible An apparatus for producing a silicon single crystal,
An apparatus for producing a silicon carbide single crystal in which the thermal conductivity on the inner peripheral side of the lid is set larger than the thermal conductivity on the outer peripheral side.
前記蓋体の種結晶取付部について、内周側の熱伝導率を外周側の熱伝導率よりも大きく設定した請求項1に記載の炭化ケイ素単結晶の製造装置。   2. The silicon carbide single crystal manufacturing apparatus according to claim 1, wherein a thermal conductivity on an inner peripheral side of the seed crystal attachment portion of the lid is set to be larger than a thermal conductivity on an outer peripheral side. 前記蓋体の前記種結晶取付部を同心円状の複数の環状部に画成し、これらの環状部のうち、内周側の環状部における熱伝導率は、外周側の環状部における熱伝導率よりも大きく設定された請求項2に記載の炭化ケイ素単結晶の製造装置。   The seed crystal mounting portion of the lid is defined as a plurality of concentric annular portions, and among these annular portions, the thermal conductivity in the inner circumferential side annular portion is the thermal conductivity in the outer circumferential side annular portion. The apparatus for producing a silicon carbide single crystal according to claim 2, which is set to be larger than that. 前記内周側の環状部は、前記蓋体の厚さ方向の全体に亘って形成されている請求項3に記載の炭化ケイ素単結晶の製造装置。   The silicon carbide single crystal manufacturing apparatus according to claim 3, wherein the annular portion on the inner peripheral side is formed over the entire thickness direction of the lid. 前記種結晶取付部は、内周側に配置された円柱状の中央部と、外周側に配置された円筒状の外側部とから構成され、
前記中央部の熱伝導率は、前記外側部の熱伝導率に対して、1.2倍以上である請求項3または4に記載の炭化ケイ素単結晶の製造装置。
The seed crystal mounting part is composed of a columnar central part arranged on the inner peripheral side and a cylindrical outer part arranged on the outer peripheral side,
5. The apparatus for producing a silicon carbide single crystal according to claim 3, wherein the thermal conductivity of the central portion is 1.2 times or more of the thermal conductivity of the outer portion.
JP2010055930A 2010-03-12 2010-03-12 Apparatus for manufacturing silicon carbide single crystal Pending JP2011190129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055930A JP2011190129A (en) 2010-03-12 2010-03-12 Apparatus for manufacturing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055930A JP2011190129A (en) 2010-03-12 2010-03-12 Apparatus for manufacturing silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JP2011190129A true JP2011190129A (en) 2011-09-29

Family

ID=44795442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055930A Pending JP2011190129A (en) 2010-03-12 2010-03-12 Apparatus for manufacturing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP2011190129A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130074713A (en) * 2011-12-26 2013-07-04 엘지이노텍 주식회사 Apparatus for fabricating ingot
WO2016006442A1 (en) * 2014-07-07 2016-01-14 住友電気工業株式会社 Production method for silicon carbide single crystal, and silicon carbide substrate
KR101744287B1 (en) * 2015-12-17 2017-06-08 재단법인 포항산업과학연구원 Growth device for silicon carbide single crystal
KR20180074847A (en) * 2016-12-23 2018-07-04 주식회사 포스코 Device for growing large diameter single crystal
JP2019112274A (en) * 2017-12-25 2019-07-11 昭和電工株式会社 PEDESTAL AND MANUFACTURING APPARATUS OF SiC SINGLE CRYSTAL AND MANUFACTURING METHOD
WO2020087724A1 (en) * 2018-11-02 2020-05-07 山东天岳先进材料科技有限公司 Method for preparing high quality silicon carbide and device therefor
KR102122668B1 (en) * 2018-12-12 2020-06-12 에스케이씨 주식회사 Apparatus for ingot and preparation method of silicon carbide ingot with the same
CN111910246A (en) * 2019-05-07 2020-11-10 广州南砂晶圆半导体技术有限公司 Seed crystal support and silicon carbide single crystal growth method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130074713A (en) * 2011-12-26 2013-07-04 엘지이노텍 주식회사 Apparatus for fabricating ingot
KR101882318B1 (en) 2011-12-26 2018-07-27 엘지이노텍 주식회사 Apparatus for fabricating ingot
WO2016006442A1 (en) * 2014-07-07 2016-01-14 住友電気工業株式会社 Production method for silicon carbide single crystal, and silicon carbide substrate
KR101744287B1 (en) * 2015-12-17 2017-06-08 재단법인 포항산업과학연구원 Growth device for silicon carbide single crystal
KR20180074847A (en) * 2016-12-23 2018-07-04 주식회사 포스코 Device for growing large diameter single crystal
KR101908043B1 (en) 2016-12-23 2018-10-16 주식회사 포스코 Device for growing large diameter single crystal
JP2019112274A (en) * 2017-12-25 2019-07-11 昭和電工株式会社 PEDESTAL AND MANUFACTURING APPARATUS OF SiC SINGLE CRYSTAL AND MANUFACTURING METHOD
WO2020087724A1 (en) * 2018-11-02 2020-05-07 山东天岳先进材料科技有限公司 Method for preparing high quality silicon carbide and device therefor
KR102122668B1 (en) * 2018-12-12 2020-06-12 에스케이씨 주식회사 Apparatus for ingot and preparation method of silicon carbide ingot with the same
US11078599B2 (en) 2018-12-12 2021-08-03 Skc Co., Ltd. Apparatus for producing an ingot comprising a crucible body with a lid assembly having a movable core member and method for producing silicon carbide ingot using the apparatus
CN111910246A (en) * 2019-05-07 2020-11-10 广州南砂晶圆半导体技术有限公司 Seed crystal support and silicon carbide single crystal growth method

Similar Documents

Publication Publication Date Title
JP2011190129A (en) Apparatus for manufacturing silicon carbide single crystal
JP5346821B2 (en) Silicon carbide single crystal manufacturing equipment
JP5403671B2 (en) Silicon carbide single crystal manufacturing equipment
JP5432573B2 (en) Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method
WO2009139447A1 (en) Single crystal manufacturing device and manufacturing method
JP2002060297A (en) Apparatus and method for growing single crystal
JP5240100B2 (en) Silicon carbide single crystal manufacturing equipment
JP2011184208A (en) Apparatus and method for producing silicon carbide single crystal
JP5012655B2 (en) Single crystal growth equipment
US20140216348A1 (en) Apparatus for fabricating ingot
JP5603990B2 (en) Silicon carbide single crystal manufacturing equipment
JP2007320794A (en) Method and apparatus for producing silicon carbide single crystal
JP2015040146A (en) Single crystal production device and single crystal production method using the same
JP2012036035A (en) Method for manufacturing silicon carbide single crystal
JP5516167B2 (en) Silicon carbide single crystal manufacturing equipment
JP5397503B2 (en) Single crystal growth equipment
JP5602093B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP2011251884A (en) Apparatus for producing silicon carbide single crystal
JP2016117624A (en) crucible
JP5831339B2 (en) Method for producing silicon carbide single crystal
JP2011105570A (en) Apparatus for producing silicon carbide single crystal
JP5536501B2 (en) Silicon carbide single crystal manufacturing equipment
JP2010180117A (en) Apparatus for manufacturing silicon carbide single crystal
JP2010248029A (en) Production apparatus for silicon carbide single crystal
JP2010248028A (en) Apparatus for manufacturing silicon carbide single crystal