JP6969611B2 - 情報処理システム、制御方法、及びプログラム - Google Patents
情報処理システム、制御方法、及びプログラム Download PDFInfo
- Publication number
- JP6969611B2 JP6969611B2 JP2019545446A JP2019545446A JP6969611B2 JP 6969611 B2 JP6969611 B2 JP 6969611B2 JP 2019545446 A JP2019545446 A JP 2019545446A JP 2019545446 A JP2019545446 A JP 2019545446A JP 6969611 B2 JP6969611 B2 JP 6969611B2
- Authority
- JP
- Japan
- Prior art keywords
- target person
- height
- state
- person
- upright
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010365 information processing Effects 0.000 title claims description 107
- 238000000034 method Methods 0.000 title claims description 96
- 238000001514 detection method Methods 0.000 claims description 62
- 230000033001 locomotion Effects 0.000 claims description 49
- 230000008569 process Effects 0.000 claims description 32
- 238000012545 processing Methods 0.000 claims description 25
- 230000008859 change Effects 0.000 description 19
- 230000006870 function Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 238000003384 imaging method Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007476 Maximum Likelihood Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001144 postural effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/022—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0608—Height gauges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/292—Multi-camera tracking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/462—Salient features, e.g. scale invariant feature transforms [SIFT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/103—Static body considered as a whole, e.g. static pedestrian or occupant recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30196—Human being; Person
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Human Computer Interaction (AREA)
- Geometry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Psychiatry (AREA)
- Social Psychology (AREA)
- Image Analysis (AREA)
Description
<概要>
図1は、実施形態1の情報処理装置(後述する図3における後述する情報処理装置2000)の動作の概要を説明するための図である。以下で説明する情報処理装置2000の動作は、情報処理装置2000の理解を容易にするための例示であり、情報処理装置2000の動作は以下の例に限定されるわけではない。情報処理装置2000の動作の詳細やバリエーションについては後述する。
図2に示したように、対象人物が含まれる動画フレーム14の中には、身長の推定に適さない状態の対象人物が含まれるものもある。このような動画フレーム14を利用して対象人物の身長を推定すると、対象人物の身長を精度良く推定することができない。
図3は、実施形態1の情報処理装置2000の構成を例示する図である。情報処理装置2000は、例えば、検出部2020、状態推定部2040、及び身長推定部2080を有する。検出部2020は、動画フレーム14から人物20を検出する。状態推定部2040は、検出された人物20の状態を推定する。身長推定部2080は、推定された状態が所定条件を満たす場合、上記動画フレーム14における人物20の高さに基づいて、その人物20の身長を推定する。
情報処理装置2000の各機能構成部は、各機能構成部を実現するハードウエア(例:ハードワイヤードされた電子回路など)で実現されてもよいし、ハードウエアとソフトウエアとの組み合わせ(例:電子回路とそれを制御するプログラムの組み合わせなど)で実現されてもよい。以下、情報処理装置2000の各機能構成部がハードウエアとソフトウエアとの組み合わせで実現される場合について、さらに説明する。
カメラ10は、繰り返し撮像を行って時系列の動画フレーム14を生成することにより、動画データ12を生成する任意のカメラである。例えばカメラ10は、特定の施設や道路などを監視するために設けられている監視カメラである。
図5は、実施形態1の情報処理装置2000によって実行される処理の流れを例示する第1のフローチャートである。ループ処理Aは、所定の終了条件が満たされるまで繰り返し実行されるループ処理である。検出部2020は、最新の動画フレーム14を取得する(S104)。検出部2020は、取得した動画フレーム14から人物20を検出する(S106)。ループ処理Bは、検出された各人物20について実行される処理である。ここで、ループ処理Bにおける処理対象の人物20を、人物iと呼ぶ。人物iが、前述した対象人物となる。
情報処理装置2000は、処理対象とする1つ以上の動画フレーム14を取得する。情報処理装置2000が動画フレーム14を取得する方法は様々である。例えば情報処理装置2000は、カメラ10から送信される動画フレーム14を受信する。また例えば、情報処理装置2000は、カメラ10にアクセスし、カメラ10に記憶されている動画フレーム14を取得する。
検出部2020は、動画フレーム14から人物20を検出する(S102)。動画フレーム14から人物20を検出する技術には、既知の種々の技術を利用することができる。例えば検出部2020は、人物の画像特徴を学習させた検出器を含む。検出器は、動画フレーム14から、学習済みの画像特徴にマッチする画像領域を、人物20を表す領域(以下、人物領域)として検出する。検出器には、例えば、HOG(Histograms of Oriented Gradients)特徴に基づいて検出を行うものや、CNN(Convolutional Neural Network)を用いるものが利用できる。なお、検出器は、人物20全体の領域を検出するように学習させたものであってもよいし、人物20の一部の領域を検出するように学習させたものであってもよい。例えば頭部や足元を学習させた検出器を用い、頭部位置と足元位置が検出できれば、人物領域を特定できる。その他にも例えば、背景差分によって求まるシルエット情報(背景モデルと差分がある領域の情報)と頭部検出情報を組み合わせることにより、人物領域を求めるように構成されていてもよい。
なお、図6に示すフローの場合には、検出部2020は、さらに人物の追跡処理も行う。追跡処理は、現時点で入力された動画フレームから検知された人物と、過去のフレームで検知されて追跡中である人物とを対応付ける処理である。複数の動画フレーム14にわたって同一の人物を追跡する技術には、例えば、後述する実施形態3において説明する技術を利用することができる。また、その他の既存の技術を利用することもできる。
情報処理装置2000は、動画フレーム14から検出される人物20の内の少なくとも1つを、身長を推定する処理の対象(すなわち対象人物)とする。ここで、動画フレーム14から複数の人物20が検出される場合に、どの人物20を対象人物として扱うかを決める方法は任意である。例えば図5のフローチャートに示す処理では、動画フレーム14から検出された全ての人物20を対象人物として扱っている。
状態推定部2040は対象人物の状態を推定する(S110)。状態推定部2040によって推定される状態には、少なくとも、対象人物の姿勢に関する情報(例えば、直立と非直立のどちらであるかを示す情報)が含まれる。対象人物の状態を推定する方法には、様々な方法を採用することができる。以下、その方法の具体例をいくつか説明する。
まず、動画フレーム14の中の1枚の画像のみから身長を求める場合(図5の処理フローの場合)について述べる。この場合、例えば状態推定部2040は、学習によって状態を分別する識別器(以下、状態識別器)を有し、この識別器を利用して状態判別を行う。例えば、「直立」と「非直立」それぞれの状態(人物姿勢)に該当する画像の学習データを準備し、学習データの画像と人物検出結果を入力としたときに、正解の状態が得られるように、状態識別器を学習させる。この学習には、SVM(Support Vector Machine)やニューラルネットワーク等、様々な識別器を用いることができる。
次に、複数の動画フレーム14を用いた追跡処理を含む場合(図6のフローの場合)について述べる。なお、方法2は、状態推定部2040において、画像による姿勢判定を行わずに追跡情報に含まれる時系列の人物矩形情報を用いて状態を判定する方法である。方法1のように画像による姿勢判定を行う場合については、方法3として後述する。
前述したように、対象人物がとりうる状態は、直立移動状態、非直立移動状態、及び直立静止状態であってもよい。このためには、移動の有無を判定する必要がある。以下では、移動の有無を判定し、直立移動状態、非直立移動状態、及び直立静止状態のいずれに該当するかを判定する方法について述べる。
<<方法3>>
次に、複数の動画フレーム14を用いた追跡処理を含む場合(図6のフローの場合)で、かつ、状態推定部2040において、画像による姿勢判定を行う場合について述べる。この場合、人物の姿勢を画像によって判定可能なため、直立、非直立を直接的に分類することができる。これと、方法2で述べた移動情報と組み合わせることで、「直立移動」、「直立静止」、「非直立静止」の3状態を区別できるようになる。
図5のフローの場合、身長推定部2080は、動画フレーム14を用いて推定された対象人物の状態が所定条件を満たすときに、その動画フレーム14における対象人物の高さに基づいて、対象人物の身長を推定する(S114)。所定条件は、「対象人物の状態が、直立状態又はこれに近い状態であること」を表す条件である。
図6のフローの場合も、身長推定部2080は、動画フレーム14を用いて推定された対象人物の状態が所定条件を満たす場合、その動画フレーム14における対象人物の高さに基づいて、対象人物の身長を推定する(S134)。所定条件は、「対象人物の状態が、直立状態又はこれに近い状態であること」を表す条件である。すなわち、状態が直立静止状態か、あるいは直立移動状態のときとなる。その他にも例えば、状態推定部2040が対象人物に関し、複数の状態それぞれについて尤度を算出する場合、所定条件は、「対象人物の状態が直立状態である尤度が閾値以上である」という条件である。
図8は、実施形態2の情報処理装置2000の機能構成を例示する図である。下記で説明する事項を除き、実施形態2の情報処理装置2000は、実施形態1の情報処理装置2000と同様の機能を有する。
図9は、実施形態2の情報処理装置2000によって実行される処理の流れを例示する第1のフローチャートである。図9のフローチャートは、図5のフローチャートに比べ、身長推定(S114)の後に、対象人物の一時的な高さを算出する処理(S202)が実行される点が異なる。それ以外は、図5のフローチャートと同様である。
図9のフローの場合には、例えば一時的高さ推定部2100は、対象人物の状態が前述した所定条件を満たさない動画フレーム14も含むすべてのフレームにおける対象人物の観測値を、その動画フレーム14が生成された時点における対象人物の一時的な高さとする。
追跡処理が含まれる場合(図10のフローの場合には)には、その他にも例えば、一時的高さ推定部2100は、過去複数の動画フレーム14から得られる情報も利用して、対象人物の一時的な高さを算出してもよい。対象人物の一時的な高さは、時間的に連続的に変化する特性、及び推定身長以下になるという特性を有する。よって、障害物等によって対象人物の足元が見えない場合など、1つの動画フレーム14から算出される観測値の信頼度が低いと考えられる場合には、連続性を考慮して時間方向に補完(内挿や外挿)することにより、対象人物の一時的な高さを算出することが好適である。なお、補完の方法は、既存の任意の方式を用いることができる。
実施形態2の情報処理装置2000を実現する計算機のハードウエア構成は、実施形態1と同様に、例えば図4によって表される。ただし、本実施形態の情報処理装置2000を実現する計算機1000のストレージデバイス1080には、本実施形態の情報処理装置2000の機能を実現するプログラムモジュールがさらに記憶される。
本実施形態の情報処理装置2000によれば、人物20の状態に基づいて、人物20の推定身長と、人物20の一時的な高さ(人物20が直立していないケースにおける高さ)とが、区別して算出される。よって、人物20の推定身長を正確に算出しつつ、その時々における人物20の一時的な高さも精度良く求めることができる。
図11は、実施形態3の情報処理装置2000の機能構成を例示するブロック図である。情報処理装置2000は、位置推定部2120及び更新部2140を有する。下記で説明する事項を除き、実施形態3の情報処理装置2000は、実施形態2の情報処理装置2000と同様の機能を有する。
位置推定部2120は、追跡情報を用いて、第1時点における各追跡対象人物の位置を推定する(S310)。追跡情報に示されている追跡対象人物の位置は、過去の位置(例えば1つ前の動画フレーム14における位置)である。そこで位置推定部2120は、追跡対象人物の過去の位置から、第1時点における追跡対象人物の位置を推定する。
更新部2140は、第1時点の動画フレーム14から検出された人物20と、追跡対象人物との対応付けを行う。この対応付けは、第1時点の動画フレーム14から検出された各人物20が、どの追跡対象人物に相当するのかを特定する処理である。図13は、第1時点の動画フレーム14から検出された人物20と、追跡対象人物との対応付けを例示する図である。図13において、互いに両矢印で結ばれている人物20と追跡対象人物が、互いに対応付けられた人物20と追跡対象人物である。
更新部2140は、上記対応付けの結果に基づいて、追跡情報に示される追跡対象人物の情報を更新する。具体的には、第1時点における各追跡対象人物に関する情報が、追跡情報に追加される。
実施形態3の情報処理装置2000を実現する計算機のハードウエア構成は、実施形態1と同様に、例えば図4によって表される。ただし、本実施形態の情報処理装置2000を実現する計算機1000のストレージデバイス1080には、本実施形態の情報処理装置2000の機能を実現するプログラムモジュールがさらに記憶される。
本実施形態の情報処理装置2000によれば、追跡対象人物の推定位置の算出や、追跡対象人物と動画フレーム14から検出された人物20との対応付けにおいて、人物の状態が考慮され、人物の推定身長と一時的な高さのうち、いずれか適切な方が用いられる。こうすることで、人物の追跡をより高精度に行えるようになる。
実施形態4の情報処理装置2000は、実施形態3の情報処理装置2000と同様に、例えば図11で表される。以下で説明する事項を除き、実施形態4の情報処理装置2000は、実施形態3の情報処理装置2000と同様の機能を有する。
検出部2020は、検出された各人物20がどのカメラ10によって撮像されたものであるかを特定できるように、検出情報を生成する。具体的には、検出情報に、どのカメラ10によって生成された動画フレーム14から検出された情報であるかを示す識別子(カメラ識別子)を設ける。例えば検出部2020は、複数のカメラ10それぞれについて個別の検出情報を生成し、各検出情報にカメラ識別子を対応づける。その他にも例えば、検出部2020は、複数のカメラ10から検出される人物20を全て示した一つの検出情報を生成し、各レコードにどのカメラ10から検出した人物であるかを示すようにしてもよい。
複数のカメラ10それぞれから得た動画フレーム14を得ると、動画フレーム14ごとに、検出される人物20が異なるといえる。ただし、カメラ10の撮像範囲が一部重なっていれば、複数の動画フレーム14から同一の人物20が検出されることもある。
カメラ10が複数ある場合、カメラによって人物の状態判定のしやすさが異なることがある。実施形態4の状態推定部2040は、この点を考慮して人物の状態を推定する。例えば、人物がカメラに近い方が、動画フレーム14上での人物領域の大きさ(解像度)が大きくなり、人物の動き等が判定しやすくなる。また、人物の動きを判定する際、カメラの光軸方向の動きに比べ、光軸と垂直な方向に対する動きの方が判定しやすい。このように、カメラと人物の位置関係等によって、人物の状態判定のしやすさ、確からしさが変化する。
対象人物が複数のカメラ10によって撮像される場合、身長推定部2080は、同一時刻について複数のカメラ10がそれぞれ生成する動画フレーム14を利用して(すなわち、それぞれ異なるカメラ10によって生成される複数の動画フレーム14を利用して)、推定身長の精度を高める。人物の推定身長が実際の身長と異なる場合、その推定身長を用いて実空間上での人物位置を推定しようとすると、カメラの奥行き方向にずれた位置に射影される。例えば、実際の身長よりも推定身長が小さい場合には、カメラパラメータを用いて画像上の座標から実空間上の座標に変換すると、実際の位置よりもカメラから遠くにいるように変換されてしまう。逆に、推定身長の方が大きければ、実際の位置よりも近くにいるように変換される。よって、推定身長と実際の身長にずれがあると、同じ時刻に複数のカメラでそれぞれ位置を求めた場合に、同一人物であるにもかかわらず、カメラごとに異なった位置に人物が投影される。逆に言えば、このように位置がずれている場合に、位置が合うように推定身長を補正することで、推定身長を正しい値に近づけることができる。
実施形態4の情報処理装置2000を実現する計算機のハードウエア構成は、実施形態1と同様に、例えば図4によって表される。ただし、本実施形態の情報処理装置2000を実現する計算機1000のストレージデバイス1080には、本実施形態の情報処理装置2000の機能を実現するプログラムモジュールがさらに記憶される。
本実施形態の情報処理装置2000によれば、複数のカメラ10から得られる動画フレーム14を利用して、追跡情報の更新や推定身長の算出などが行われる。よって、人物の追跡や身長の推定などを、より高精度に行うことができる。
Claims (10)
- 動画フレームから人物を検出する検出手段と、
前記検出の結果を用いて、対象人物の状態を推定する状態推定手段と、
前記対象人物の状態が所定条件を満たす場合、前記動画フレームにおける前記対象人物の高さに基づいて、前記対象人物の身長を推定し、前記対象人物の状態が前記所定条件を満たさない場合、前記動画フレームにおける前記対象人物の高さに基づいた前記対象人物の身長の推定を実行しない身長推定手段と、
を有し、
前記身長推定手段は、
前記推定された状態が所定条件を満たす複数の動画フレームそれぞれから、前記対象人物の実世界上の高さを算出し、算出された複数の高さを統計処理することで、前記対象人物の推定身長を算出し、
複数の動画フレームそれぞれから算出した前記対象人物の実世界上の高さに対し、前記対象人物と前記動画フレームを生成するカメラの向きによって定まる俯角、及び前記対象人物の前記動画フレーム上の解像度に基づく重みを付与して、前記統計処理を行う、情報処理システム。 - 動画フレームから人物を検出する検出手段と、
前記検出の結果を用いて、対象人物の状態を推定する状態推定手段と、
前記対象人物の状態が所定条件を満たす場合、前記動画フレームにおける前記対象人物の高さに基づいて、前記対象人物の身長を推定し、前記対象人物の状態が前記所定条件を満たさない場合、前記動画フレームにおける前記対象人物の高さに基づいた前記対象人物の身長の推定を実行しない身長推定手段と、
を有し、
前記身長推定手段は、前記推定された状態が所定条件を満たす複数の動画フレームそれぞれから、前記対象人物の実世界上の高さを算出し、算出された複数の高さを統計処理することで、前記対象人物の推定身長を算出し、
前記対象人物がとりうる状態は、直立かつ移動の状態、直立かつ静止の状態、及び非直立かつ静止の状態を含み、
前記状態推定手段は、前記対象人物の股の開き具合か、又は前記対象人物の向きか少なくとも一方をさらに推定し、
前記統計処理において、前記対象人物の状態が前記直立かつ移動の状態である場合、前記対象人物の股の開き具合が小さいほど、前記対象人物の実世界上の高さに対して大きい重みが付与されるか、又は前記対象人物の向きが前記動画フレームを撮像するカメラの向きと異なる度合が大きいほど、前記対象人物の実世界上の高さに対して大きい重みが付与される、情報処理システム。 - 前記状態推定手段は、
前記対象人物が含まれる複数の動画フレームそれぞれから、前記対象人物の実世界上における高さを算出し、前記算出された高さに基づいて、人物が直立しているか否かを判定する閾値を決定し、
その後に生成される前記動画フレームについては、前記対象人物について実世界上の高さを算出し、その高さと前記閾値とを比較することで、その動画フレームにおいて前記対象人物が直立しているか否かを判定し、
前記対象人物が直立している場合に前記所定条件が満たされる、請求項1又は2に記載の情報処理システム。 - 動画フレームから人物を検出する検出手段と、
前記検出の結果を用いて、対象人物の状態を推定する状態推定手段と、
前記対象人物の状態が所定条件を満たす場合、前記動画フレームにおける前記対象人物の高さに基づいて、前記対象人物の身長を推定し、前記対象人物の状態が前記所定条件を満たさない場合、前記動画フレームにおける前記対象人物の高さに基づいた前記対象人物の身長の推定を実行しない身長推定手段と、
を有し、
前記身長推定手段は、前記推定された状態が所定条件を満たす複数の動画フレームそれぞれから、前記対象人物の実世界上の高さを算出し、算出された複数の高さを統計処理することで、前記対象人物の推定身長を算出し、
前記対象人物がとりうる状態は、直立かつ移動の状態、直立かつ静止の状態、及び非直立かつ静止の状態を含み、
前記身長推定手段は、前記対象人物の状態を考慮して重みづけを行って身長を推定し、直立移動状態の時を基準にして身長の概算値を算出し、直立移動状態の前後で身長の概算値に近い値で安定している観測値の重みを高くして身長を推定する、情報処理システム。 - 前記対象人物がとりうる状態は、直立かつ移動の状態、直立かつ静止の状態、及び非直立かつ静止の状態を含み、
前記対象人物の状態が前記直立かつ移動の状態又は前記直立かつ静止の状態である場合に前記所定条件が満たされる、請求項1乃至4いずれか一項に記載の情報処理システム。 - 前記動画フレームにおける前記対象人物の高さに基づいて、前記対象人物の一時的な高さを推定する一時的高さ推定手段を有する、請求項1乃至5いずれか一項に記載の情報処理システム。
- コンピュータによって実行される制御方法であって、
動画フレームから人物を検出する検出ステップと、
前記検出の結果を用いて、対象人物の状態を推定する状態推定ステップと、
前記対象人物の状態が所定条件を満たす場合、前記動画フレームにおける前記対象人物の高さに基づいて、前記対象人物の身長を推定し、前記対象人物の状態が前記所定条件を満たさない場合、前記動画フレームにおける前記対象人物の高さに基づいた前記対象人物の身長の推定を実行しない身長推定ステップと、
を有し、
前記身長推定ステップでは、
前記推定された状態が所定条件を満たす複数の動画フレームそれぞれから、前記対象人物の実世界上の高さを算出し、算出された複数の高さを統計処理することで、前記対象人物の推定身長を算出し、
複数の動画フレームそれぞれから算出した前記対象人物の実世界上の高さに対し、前記対象人物と前記動画フレームを生成するカメラの向きによって定まる俯角、及び前記対象人物の前記動画フレーム上の解像度に基づく重みを付与して、前記統計処理を行う、制御方法。 - コンピュータによって実行される制御方法であって、
動画フレームから人物を検出する検出ステップと、
前記検出の結果を用いて、対象人物の状態を推定する状態推定ステップと、
前記対象人物の状態が所定条件を満たす場合、前記動画フレームにおける前記対象人物の高さに基づいて、前記対象人物の身長を推定し、前記対象人物の状態が前記所定条件を満たさない場合、前記動画フレームにおける前記対象人物の高さに基づいた前記対象人物の身長の推定を実行しない身長推定ステップと、
を有し、
前記身長推定ステップでは、前記推定された状態が所定条件を満たす複数の動画フレームそれぞれから、前記対象人物の実世界上の高さを算出し、算出された複数の高さを統計処理することで、前記対象人物の推定身長を算出し、
前記対象人物がとりうる状態は、直立かつ移動の状態、直立かつ静止の状態、及び非直立かつ静止の状態を含み、
前記状態推定ステップでは、前記対象人物の股の開き具合か、又は前記対象人物の向きか少なくとも一方をさらに推定し、
前記統計処理において、前記対象人物の状態が前記直立かつ移動の状態である場合、前記対象人物の股の開き具合が小さいほど、前記対象人物の実世界上の高さに対して大きい重みが付与されるか、又は前記対象人物の向きが前記動画フレームを撮像するカメラの向きと異なる度合が大きいほど、前記対象人物の実世界上の高さに対して大きい重みが付与される、制御方法。 - コンピュータによって実行される制御方法であって、
動画フレームから人物を検出する検出ステップと、
前記検出の結果を用いて、対象人物の状態を推定する状態推定ステップと、
前記対象人物の状態が所定条件を満たす場合、前記動画フレームにおける前記対象人物の高さに基づいて、前記対象人物の身長を推定し、前記対象人物の状態が前記所定条件を満たさない場合、前記動画フレームにおける前記対象人物の高さに基づいた前記対象人物の身長の推定を実行しない身長推定ステップと、
を有し、
前記身長推定ステップでは、前記推定された状態が所定条件を満たす複数の動画フレームそれぞれから、前記対象人物の実世界上の高さを算出し、算出された複数の高さを統計処理することで、前記対象人物の推定身長を算出し、
前記対象人物がとりうる状態は、直立かつ移動の状態、直立かつ静止の状態、及び非直立かつ静止の状態を含み、
前記身長推定ステップでは、前記対象人物の状態を考慮して重みづけを行って身長を推定し、直立移動状態の時を基準にして身長の概算値を算出し、直立移動状態の前後で身長の概算値に近い値で安定している観測値の重みを高くして身長を推定する、制御方法。 - 請求項7乃至9いずれか一項に記載の制御方法の各ステップをコンピュータに実行させるプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021136281A JP7342919B2 (ja) | 2017-09-27 | 2021-08-24 | 情報処理システム、制御方法、及びプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/034940 WO2019064375A1 (ja) | 2017-09-27 | 2017-09-27 | 情報処理装置、制御方法、及びプログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021136281A Division JP7342919B2 (ja) | 2017-09-27 | 2021-08-24 | 情報処理システム、制御方法、及びプログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019064375A1 JPWO2019064375A1 (ja) | 2020-10-15 |
JP6969611B2 true JP6969611B2 (ja) | 2021-11-24 |
Family
ID=65902431
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019545446A Active JP6969611B2 (ja) | 2017-09-27 | 2017-09-27 | 情報処理システム、制御方法、及びプログラム |
JP2021136281A Active JP7342919B2 (ja) | 2017-09-27 | 2021-08-24 | 情報処理システム、制御方法、及びプログラム |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021136281A Active JP7342919B2 (ja) | 2017-09-27 | 2021-08-24 | 情報処理システム、制御方法、及びプログラム |
Country Status (3)
Country | Link |
---|---|
US (3) | US11308315B2 (ja) |
JP (2) | JP6969611B2 (ja) |
WO (1) | WO2019064375A1 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7003628B2 (ja) * | 2017-12-19 | 2022-01-20 | 富士通株式会社 | 物体追跡プログラム、物体追跡装置、及び物体追跡方法 |
CN109614848B (zh) * | 2018-10-24 | 2021-07-20 | 百度在线网络技术(北京)有限公司 | 人体识别方法、装置、设备及计算机可读存储介质 |
US11188763B2 (en) * | 2019-10-25 | 2021-11-30 | 7-Eleven, Inc. | Topview object tracking using a sensor array |
CN110110787A (zh) * | 2019-05-06 | 2019-08-09 | 腾讯科技(深圳)有限公司 | 目标的位置获取方法、装置、计算机设备及存储介质 |
US20200380252A1 (en) * | 2019-05-29 | 2020-12-03 | Walmart Apollo, Llc | Systems and methods for detecting egress at an entrance of a retail facility |
US20220366716A1 (en) * | 2019-06-26 | 2022-11-17 | Nec Corporation | Person state detection apparatus, person state detection method, and non-transitory computer readable medium storing program |
CN114641794A (zh) | 2019-10-31 | 2022-06-17 | 日本电气株式会社 | 图像处理装置、图像处理方法以及存储图像处理程序的非暂时性计算机可读介质 |
JP6935527B2 (ja) * | 2020-02-27 | 2021-09-15 | ソフトバンク株式会社 | 画像処理装置、プログラム、システム及び画像処理方法 |
EP4123554A4 (en) * | 2020-03-17 | 2023-04-19 | Fujitsu Limited | INFORMATION PROCESSING DEVICE, WORK PLAN DETERMINATION METHOD, AND WORK PLAN DETERMINATION PROGRAM |
SG10202002677TA (en) * | 2020-03-23 | 2021-10-28 | Nec Asia Pacific Pte Ltd | A method and an apparatus for estimating an appearance of a first target |
JP7487020B2 (ja) | 2020-06-18 | 2024-05-20 | 清水建設株式会社 | 工事進捗状況管理システム、工事進捗状況管理方法 |
US11625859B2 (en) * | 2020-07-22 | 2023-04-11 | Motorola Solutions, Inc. | Method and system for calibrating a camera and localizing objects within the camera field of view |
CN112001948B (zh) * | 2020-07-30 | 2024-06-11 | 浙江大华技术股份有限公司 | 一种目标跟踪处理方法及装置 |
CN112767438B (zh) * | 2021-01-05 | 2022-08-05 | 北京航空航天大学 | 结合时空运动的多目标跟踪方法 |
CN112862864B (zh) * | 2021-03-05 | 2024-07-02 | 上海有个机器人有限公司 | 多行人追踪方法、装置、电子设备及存储介质 |
JP2024006695A (ja) * | 2022-07-04 | 2024-01-17 | 富士通株式会社 | 照合プログラム、照合方法および情報処理装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001056853A (ja) | 1999-08-19 | 2001-02-27 | Matsushita Electric Ind Co Ltd | 挙動検出装置および種類識別装置、並びに挙動検出方法および挙動検出用プログラムが記録された記録媒体 |
JP2002197463A (ja) | 2000-12-26 | 2002-07-12 | Matsushita Electric Ind Co Ltd | 挙動検出装置および挙動検出システム |
JP4628911B2 (ja) | 2005-09-09 | 2011-02-09 | ティーオーエー株式会社 | 身長測定装置 |
JP4628910B2 (ja) * | 2005-09-09 | 2011-02-09 | ティーオーエー株式会社 | 長さ測定装置および身長測定装置 |
JP2010237872A (ja) * | 2009-03-30 | 2010-10-21 | Sogo Keibi Hosho Co Ltd | 人物領域検出装置、人物領域検出方法、及び人物領域検出プログラム |
JP5756709B2 (ja) | 2011-08-03 | 2015-07-29 | 綜合警備保障株式会社 | 身長推定装置、身長推定方法、及び身長推定プログラム |
JP6428144B2 (ja) * | 2014-10-17 | 2018-11-28 | オムロン株式会社 | エリア情報推定装置、エリア情報推定方法、および空気調和装置 |
JP6735583B2 (ja) * | 2016-03-17 | 2020-08-05 | キヤノン株式会社 | ズーム制御装置、撮像装置及びそれらの制御方法、プログラム並びに記憶媒体 |
-
2017
- 2017-09-27 US US16/650,544 patent/US11308315B2/en active Active
- 2017-09-27 WO PCT/JP2017/034940 patent/WO2019064375A1/ja active Application Filing
- 2017-09-27 JP JP2019545446A patent/JP6969611B2/ja active Active
-
2021
- 2021-08-24 JP JP2021136281A patent/JP7342919B2/ja active Active
-
2022
- 2022-03-09 US US17/690,140 patent/US11715227B2/en active Active
-
2023
- 2023-06-12 US US18/208,632 patent/US12094149B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JPWO2019064375A1 (ja) | 2020-10-15 |
US12094149B2 (en) | 2024-09-17 |
US11715227B2 (en) | 2023-08-01 |
US20220198817A1 (en) | 2022-06-23 |
WO2019064375A1 (ja) | 2019-04-04 |
US11308315B2 (en) | 2022-04-19 |
US20230326063A1 (en) | 2023-10-12 |
JP2021182448A (ja) | 2021-11-25 |
US20200285845A1 (en) | 2020-09-10 |
JP7342919B2 (ja) | 2023-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6969611B2 (ja) | 情報処理システム、制御方法、及びプログラム | |
US11360571B2 (en) | Information processing device and method, program and recording medium for identifying a gesture of a person from captured image data | |
US9251400B2 (en) | Learning apparatus, method for controlling learning apparatus, detection apparatus, method for controlling detection apparatus and storage medium | |
JP2017041022A (ja) | 情報処理装置、情報処理方法及びプログラム | |
JP2011100175A (ja) | 人物行動判定装置及びそのプログラム | |
US12087037B2 (en) | Information processing device, information processing method, and program recording medium | |
JP2016206795A (ja) | 実空間情報によって学習する識別器を用いて物体を追跡する装置、プログラム及び方法 | |
JP7409499B2 (ja) | 画像処理装置、画像処理方法、及びプログラム | |
US20240282147A1 (en) | Action recognition method, action recognition device, and non-transitory computer readable recording medium | |
US11182636B2 (en) | Method and computing device for adjusting region of interest | |
JP6851246B2 (ja) | 物体検出装置 | |
JP6893812B2 (ja) | 物体検出装置 | |
US20220138458A1 (en) | Estimation device, estimation system, estimation method and program | |
JP7422572B2 (ja) | 移動物体追跡装置、移動物体追跡方法及び移動物体追跡プログラム | |
JP7435781B2 (ja) | 画像選択装置、画像選択方法、及びプログラム | |
JPH09322153A (ja) | 自動監視装置 | |
KR20230099369A (ko) | 객체의 위치 추정을 위한 가려짐 판별과 객체 좌표 보정 | |
JP7302741B2 (ja) | 画像選択装置、画像選択方法、およびプログラム | |
JP7485040B2 (ja) | 画像処理装置、画像処理方法、及びプログラム | |
WO2022249331A1 (ja) | 画像処理装置、画像処理方法、およびプログラム | |
JP7435754B2 (ja) | 画像選択装置、画像選択方法、及びプログラム | |
WO2022249278A1 (ja) | 画像処理装置、画像処理方法、およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200309 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210323 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210514 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210824 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20210824 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210902 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210928 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211011 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6969611 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |