JP6969532B2 - 非水電解液二次電池の充電制御装置 - Google Patents
非水電解液二次電池の充電制御装置 Download PDFInfo
- Publication number
- JP6969532B2 JP6969532B2 JP2018198345A JP2018198345A JP6969532B2 JP 6969532 B2 JP6969532 B2 JP 6969532B2 JP 2018198345 A JP2018198345 A JP 2018198345A JP 2018198345 A JP2018198345 A JP 2018198345A JP 6969532 B2 JP6969532 B2 JP 6969532B2
- Authority
- JP
- Japan
- Prior art keywords
- charging
- secondary battery
- soc
- charging current
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Description
本開示は、非水電解液二次電池の充電制御装置に関する。
非水電解液二次電池であるリチウムイオン電池の耐久性を確保しつつ充電時間を短縮できる充電方法として、特許文献1には、リチウムイオン電池の定格容量よりも大きな電流で充電を開始し、その後、段階的に充電電流を低減することが開示されている。
非水電解液二次電池、特に、リチウムイオン電池において、大きな電流値で充放電が行われると、二次電池の性能低下が起きる。これは、経年劣化と区別して「ハイレート劣化」とも称される。上記特許文献1に記載の充電方法では、ハイレート劣化について言及されておらず、充電開始時の大きな電流による充電により、ハイレート劣化を招く可能性がある。
本開示は、ハイレート劣化を抑止しつつ短時間で充電することが可能な、非水電解液二次電池の充電制御装置を提供することを目的とする。
本開示に係る非水電解液二次電池の充電制御装置は、ケース内に電極体を収納した電池セルを少なくともひとつ備える非水電解液二次電池の充電制御装置であって、「二次電池のSOCを取得するSOC取得手段」と、「二次電池を充放電した際にケースに加わる荷重の変動量に基づいて、SOC取得手段で取得したSOCに応じた充電電力を設定する充電電力設定手段」と、「充電電力設定手段で設定した充電電力で二次電池の充電を実行する充電手段」と、を備え、「充電電力は、荷重の変動量が大きいほど小さく設定されている」ことを特徴とする。
非水電解液二次電池では、充放電に伴い負極が膨張収縮する。充放電に伴う負極の膨張収縮量は、二次電池のSOC(State Of Charge)によって異なり、膨張収縮の変化量が大きいSOC領域では、負極から電解液が押し出され、ハイレート劣化が発生し易くなる。
負極の膨張収縮によって、電極体を収容するケースに加わる荷重が変化する。この荷重の変動量は、負極の膨張収縮の変化量に比例する。したがって、ケースに加わる荷重の変動量が大きいSOC領域で大きな電流で充電を行うとハイレート劣化が発生し易い。
そこで、本開示に係る非水電解液二次電池の充電制御装置では、充電電力設定手段において、二次電池を充放電した際にケースに加わる荷重の変動量に基づいて、SOC取得手段で取得したSOCに応じた充電電力が設定される。充電電力設定手段で設定される充電電力は、ケースに加わる荷重の変動量が大きいほど小さく設定されている。そして、充電手段は、ケースに加わる荷重の変動量が大きいほど小さく設定された充電電力で、二次電池の充電を実行する。
ケースに加わる荷重変動が大きいSOC領域、すなわち、ハイレート劣化が発生し易いSOC領域では、充電電力は小さく設定される。これにより、ハイレート劣化の発生を抑止しつつ充電を行うことができる。荷重変動が小さいSOC領域では、充電電力が大きく設定される。このため、ハイレート劣化を抑止しつつ短時間で充電を完了することが可能となる。
本開示に係る非水電解液二次電池の充電制御装置によれば、ハイレート劣化を抑止しつつ短時間で充電することが可能となる。
本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
図1は、本開示の実施の形態に係る非水電解液二次電池の充電制御装置を電動車両に適用した概略構成図である。電動車両1は、二次電池10と、電力制御ユニット(以下「PCU(Power Control Unit)」と称する。)20と、モータジェネレータ(以下「MG」と称する。)30と、ディファレンシャルギヤ40と、駆動輪50と、EUC(Electronic Control Unit)60とを備える。
二次電池10は、リチウムイオン電池からなる非水電解液二次電池である。PCU20は、二次電池10に蓄えられた電力を交流電力に変換し、三相交流電電動機であるMG30を駆動する。MG30から出力された駆動力は、ディファレンシャルギヤ40を介して駆動輪50に伝達され、電動車両1が駆動される。また、PCU20は、電動車両1の減速時等にMG30で発電された交流の回生電力を直流電力に変換して二次電池10を充電する。ECU60は、PCU20を制御するものであり、演算装置(CPU(Central Processing Unit))、記憶装置、入出力ポート等(図示せず)を備え、記憶装置に格納されたプログラムをCPUが実行することで、各種制御が実行される。
充電制御装置2は充電−EUC210と、充電装置220とを備える。充電−ECU210は、ECU60と実質的に同一な構成であり、CPU、記憶装置、入出力ポート等(図示せず)を備え、記憶装置に格納されたプログラムをCPUが実行することより、充電制御を実行する。充電装置220は、充電リレー(図示せず)を含み、充電−ECU210によって制御され、給電装置3から供給される直流電流の電圧を二次電池10の充電電圧に変換し、二次電池10を充電する。
充電インレット213は、電動車両1の車体に設けられており、電力線211を介して充電装置220と接続されている。また、充電インレット213には、通信線212が設けられており、この通信線212は、充電装置220を介して、充電−EUC210からの信号を通信可能とされている。
給電装置3は、制御部310と給電部320を備える。給電装置3は、単相交流200V、あるいは、三相交流200Vの商用電源を直流電流に変換し、充電装置220に供給するものである。制御部310は、EUC60と実質的に同様な構成であり、記憶装置に格納されたプログラムをCPUが実行することより、給電部320を制御する。給電部320は、制御部310によって制御されて、給電ケーブル311および充電コネクタ314を介して、電流値および電圧値を制御しながら、充電装置220に直流電力を供給する。
充電コネクタ314は、給電ケーブル311と、通信線313を備える。充電コネクタ314が、充電インレット213に挿入されることにより、給電ケーブル311と電力線211が電気的に接続し、通信線313と通信線212の接続が確立する。給電ケーブル311と電力線211が電気的に接続することにより、給電部320から供給された電力が充電装置220を介して二次電池10に供給され、二次電池10が充電される。通信線313と通信線212の通信が確立することにより、充電装置220を介して、制御部310と充電−EUC210の通信が可能になる。
図2は、二次電池10を構成する電池セル110を説明する図である。電池セル110のケース111上面は蓋体112によって封止される。蓋体112には、正極端子113及び負極端子114が設けられる。正極端子113及び負極端子114の各々の一方端は、蓋体112から外部に突出する。ある電池セルの正極端子113と、隣接する電池セルの負極端子114とは、互いに対向するように配置されるとともに、これらの端子間がバスバー(図示せず)により締結されて電気的に接続される。これにより、二次電池10内において複数の電池セル110は互いに直列に接続される。正極端子113及び負極端子114の各々の他方端は、ケース111内部において、内部正極端子及び内部負極端子(いずれも図示せず)にそれぞれ電気的に接続される。
ケース111内部には、電極体115が収容される(ケース111を透視して破線で示す)。電極体115は、セパレータ118を介して積層された正極シート116と負極シート117とが筒状に捲回されることにより形成される。正極シート116は、集電箔の表面に形成された正極活物質層(正極活物質、導電材及びバインダを含む層)を含む。負極シート117は、集電箔の表面に形成された負極活物質層(負極活物質、導電材及びバインダを含む層)を含む。ケース111内部には、電解液が封入され、正極活物質層、負極活物質層及びセパレータ118は、電解液により含浸される。
正極活物質、負極活物質、および電解液の材料としては、公知の各種材料を用いることができる。一例として、正極活物質は、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)やニッケルコバルトマンガン酸リチウム(たとえば、LiNi1/3Co1/3Mn1/3O2、LiNi0.5Co0.2Mn0.3O2等)であってよく、負極活物質は黒鉛(グラファイト)であってよい。また、電解液は、有機溶媒と、リチウムイオンと、添加剤とを含む、非水電解液である。なお、電極体115を捲回体にすることは必須ではなく電極体115は捲回されていない積層体であってもよい。
図2に示す、非水電解液を封入した電池セル110では、充放電に伴い負極シート117が膨張収縮する。充放電に伴う負極シート17の膨張収縮量は、電池セル110のSOC(State Of Charge;満充電時を100%、完全放電時を0%とする充電状態を表す指標)によって異なり、膨張収縮の変化量が大きいSOC領域では、負極から電解液が押し出され、ハイレート劣化が発生し易くなる。
負極シート117の膨張収縮によって、電極体115を収容するケース111に加わる荷重が変化する。この荷重の変動量は、負極シート117の膨張収縮の変化量に比例する。図3(A)に示す実線1001は、新品(劣化前)の電池セル110におけるケース111の幅広面を拘束し、定電流にて充放電を行いSOCを変化させたときに、ケース111に加わる荷重の変化をロードセルで測定したグラフである。図3(A)において、縦軸はケース111に加わる荷重の大きさを表し、横軸はSOCの大きさを表している。充放電に伴う負極シート17の膨張収縮量は、電池セル110のSOCによって異なるため、図3(A)の実線1001に示すよう、ケース111に加わる荷重の大きさはSOCに対して非線形となる。
図3(B)の実線2001は、図3(A)に示す「荷重−SOC」のグラフを微分(Δ荷重/ΔSOC)した後、移動平均をとってデータを平滑化したものである。図3(B)において、縦軸は荷重変動量(ケース111に加わる荷重の変動量)の大きさであり、横軸はSOCの大きさである。ケース111に加わる荷重の変動量が大きいSOC領域では、負極シート117の膨張収縮の変化量が大きく大きな電流で充電を行うとハイレート劣化が発生し易い。
図3(C)に示す実線3001は、図3(B)に示す実線2001の上下を反転させたものである。そして、図3(C)においては、縦軸を充電電流P−inの大きさとし、横軸はSOCの大きさである。この実線3001に基づいて、電池セル110のSOCに応じた充電電流P−inを求め、求めた充電電流P−inによって電池セル110の充電を行うと、ケース111に加わる荷重変動量が大きいSOC領域、すなわち、負極シート117の膨張収縮の変化量が大きいSOC領域では、充電電流P−inが小さくなる。これにより、二次電池10のハイレート劣化を抑制できる。
また、実線3001に基づいて求めた充電電流P−inよって電池セル110の充電を行うと、ケース111に加わる荷重変動量が小さいSOC領域、すなわち、負極シート117の膨張収縮の変化量が小さいSOC領域では、充電電流P−inが大きくなる。このため、ハイレート劣化の発生を抑制しつつ、大きな電力で充電できるため、短時間で充電を完了することが可能となる。
図3(B)に示す一点鎖線2002は、新品の状態から10%劣化した(満充電時の容量が新品時のときより10%低下した、すなわち、劣化量Rが10%の)電池セル110におけるケース111の幅広面を拘束し、定電流にて充放電を行いSOCを変化させたときに、ケース111に加わる荷重の変化をロードセルで測定した「荷重−SOC」のグラフ(図示せず)を微分(Δ荷重/ΔSOC)した後、移動平均をとってデータを平滑化したものである。このように、電池セル110が劣化すると、ケース111に加わる荷重の変動量が大きいSOC領域が変化する。このため、電池セル110の劣化が進行した場合には、一点鎖線2002の上下を反転させた、図3(C)に示す一点鎖線3002に基づいて充電電流P−inを求めることが好ましい。
本開示に係る実施形態では、予め実験等により、図3(C)に示す「充電電流P−in−SOC」マップを作成しておき、この「充電電流P−in−SOC」マップから充電電流P−inを求め、二次電池10の充電制御を実行する。
図4は、充電制御装置2の機能ブロック図である。SOC算出部201は、電圧センサ101と電流センサ102(図1参照)から、二次電池10の電圧VBと、二次電池10に入出力される電流IBを取得する。そして、SOC算出部201は、電圧VBと電流IBに基づき、二次電池10のSOCを算出する。なお、SOCの算出方法は、種々の公知の手法を用いることができる。たとえば、処理の開始時、電圧VBに基づきOCV(開放電圧)を求め、SOC−OCV曲線から処理開始時のSOCを算出し、その後、電流IBによって充放電電力を積算して、現在のSOCを算出するようにしてもよい。
区間容量算出部202は、電圧センサ101で検出した二次電池10の電圧VBと、電流センサ102で検出した電流IBから、二次電池10の充電時における区間容量Q(n)を算出する。劣化量演算部203は、区間容量算出部202で算出された区間容量Q(n)に基づいて、二次電池10の劣化量Rを演算する。劣化量Rは、満充電時容量の低下度合いである。
充電電流演算部204は、SOC算出部201で算出したSOCと劣化量演算部203で演算した劣化量Rに基づき、図3(C)に示す「充電電流P−in−SOC」マップから充電電流P−inを求める。図3(C)に示す「充電電流P−in−SOC」マップは、電池セル110のケース111に加わる荷重の変動量が大きいSOC領域ほど、充電電流P−inが小さくなるよう設定されている。したがって、二次電池10を充放電した際にケース111に加わる荷重の変動量に基づいて、SOC算出部201で取得したSOCに応じた充電電流P−inが設定され、充電電流P−inは荷重の変動量が大きいほど小さく設定されることになる。
充電電流演算部204で求められた充電電流P−inは、充電電流送信部205によって、通信線212および通信線313を介し、給電装置3の制御部310へ送信される。制御部310は、充電電流P−inの大きさに対応した充電電流が、給電ケーブル311および電力線211を介して充電装置220に供給されるよう、給電部320を制御する。給電部320から供給された充電電流P−inの大きさに対応した充電電流が、充電装置220によって二次電池10に供給されることにより、二次電池10の充電が実行される。
図5は、充電制御装置2の充電−EUC210にて実行される充電制御の概略フローチャートである。このフローチャートは、充電コネクタ314が充電インレット213に挿入され、通信線212と通信線312の通信が確立したときに開始され、所定時間毎に繰り返し実行される。また、二次電池10のSOCが所定の値(たとえば、満充電)に達して、二次電池10の充電が終了すると、処理を終了する。
まず、ステップ(以下、単に「S」と表記することもある)500では、電圧VBと電流IBに基づき二次電池10のSOCを算出することにより、二次電池10のSOCを取得する。続いて、S502にて、劣化量Rに基づいて「充電電流P−in−SOC」マップを選択する。たとえば、劣化量Rが0%の場合には、実線3001のマップを選択し、劣化量が10%のときには、一点鎖線3002のマップを選択する。なお、劣化量Rの算出方法は、後述する。
続くS504では、S500で取得したSOCとS502で選択した「充電電流P−in−SOC」マップから充電電流P−inを算出する。ここで、例えば、「充電電流P−in−SOC」マップが、劣化量Rが0%、10%、20%、30%のように、10%間隔で用意されている場合には、劣化量Rが5%であれば、補間計算(補間法)を行うことにより、充電電流P−inを求めてもよい。
S506では、S504で算出し設定された充電電流P−inを、給電装置3の制御部310に送信する。これにより、充電電流P−inを受信した制御部310は、充電電流P−inの大きさに対応した充電電流を、給電ケーブル311および電力線211を介して充電装置220に供給するよう、給電部320を制御する。給電部320から供給された充電電流P−inの大きさに対応した充電電流が、充電装置220によって二次電池10に供給されることにより、二次電池10の充電が実行される。
「充電電流P−in−SOC」マップは、電池セル110のケース111に加わる荷重の変動量が大きいSOC領域ほど、充電電流P−inが小さくなるよう設定されている。したがって、S506が実行されることにより、二次電池10を充放電した際にケース111に加わる荷重の変動量に基づいて、S500で取得したSOCに応じた充電電流P−inが設定され、荷重の変動量が大きいほど小さく設定された充電電流P−inによって、二次電池10が充電されることになる。
S508では、二次電池10の電圧VBが所定値V1に一致したか否かが判断される。電圧VBが所定値V1に一致すると、S510に進んで、フラグFS1を1にセットした後、S512へ進む。フラグFS1の初期値は0であり、たとえば、通信線212と通信線312の通信が確立した際に、0にリセットされる。S508で電圧VBが所定値V1に一致していないと判断されると、S512へ進む。
S512では、二次電池10の電圧VBが所定値V2(>V1)と一致したか否かが判断される。電圧VBが所定値V2に一致すると、S514に進んで、フラグFS2を1にセットした後、このルーチンの処理を終え、再度、所定時間毎にS500からルーチンが実行される。フラグFS2の初期値は0であり、たとえば、通信線212と通信線312の通信が確立した際に、0にリセットされる。S512で電圧VBが所定値V1に一致していないと判断されると、このルーチンの処理を終える。
図6は、充電−EUC210で実行される、区間容量算出のフローチャートである。このフローチャートも、充電コネクタ314が充電インレット213に挿入され、通信線212と通信線312の通信が確立したときに開始され、所定時間毎に繰り返し実行される。また、二次電池10のSOCが所定の値(たとえば、満充電)に達して、二次電池10の充電が終了すると、処理を終了する。
まず、S600で、フラグFS1が1であるか否かが判断される。FS1=0であれば、否定判断されてこのルーチンを終了する。図5のS508で電圧VBが所定値V1に一致したと判断され、フラグFS1が1にセットされると、S600で肯定判断されて、S602に進む。S602では、電流センサ102で検出された電流IB、すなわち、充電電流P−inを積算し、S604に進む。なお、積算される充電電流P−inは、電流センサ102で検出された電流IBに代えて、図5のS504で算出された充電電流P−inであってもよい。
S604では、フラグFS2が1であるか否かが判断される。FS2=0であれば、否定判断されてこのルーチンを終了する。図5のS512で電圧VBが所定値V2に一致したと判断され、フラグFS2が1にセットされると、S604で肯定判断されて、S606に進み、フラグFS1を0にリセットした後、S608に進む。
S608において、S602で積算された充電電流P−inの積算値ΣP−inを、区間容量Q(n)として記憶し(より詳細には、前回記憶していた区間容量Q(n)を積算値ΣP−inで書き換える。また、区間容量Q(n)を書き換えた後、積算値ΣP−inを0にリセットする。)、このルーチンを終了する。このように、図6のフローチャートが処理されることにより、二次電池10の充電中に、二次電池10の電圧V1から電圧V2における区間容量が算出される。
図7は、充電−EUC210で実行される、劣化量Rを演算するフローチャートである。このフローチャートは、充電コネクタ314が充電インレット213に挿入され、通信線212と通信線312の通信が確立したときに、一度実行される。
S700では、前回の充電中に記憶された区間容量Q(n)と初期区間容量Q(0)(二次電池10の新品時における、電圧V1から電圧V2における区間容量)とに基づいて、劣化量Rを算出し、算出した劣化量Rを記憶する。たとえば、初期区間容量Q(0)に対する区間容量Q(n)の容量低下割合を劣化量Rとして算出する。なお、区間容量Q(n)から劣化量Rを算出する方法は、種々の方法が公知であり、たとえば、特開2013−53943号公報にあるよう、区間容量Q(n)から二次電池10の満充電容量を特定し、劣化量Rを算出するものであってもよい。このS700で算出され記憶された劣化量Rが、図5のS502で使用されることになる。
〔変形例〕
上記の実施の形態では、充電電流P−inを、「充電電流P−in−SOC」マップから算出している。このため、多くのマップ値を記憶するため、充電−ECU210の記憶装置の容量を大きくする必要がある場合には、制御装置がコストアップする懸念がある。図3(C)に示す「充電電流P−in−SOC」マップを単純化しても、ハイレート劣化を抑止しつつ短時間で充電することが可能であれば、「充電電流P−in−SOC」マップを用いた充電電流P−inの演算を行わなくともよい。
上記の実施の形態では、充電電流P−inを、「充電電流P−in−SOC」マップから算出している。このため、多くのマップ値を記憶するため、充電−ECU210の記憶装置の容量を大きくする必要がある場合には、制御装置がコストアップする懸念がある。図3(C)に示す「充電電流P−in−SOC」マップを単純化しても、ハイレート劣化を抑止しつつ短時間で充電することが可能であれば、「充電電流P−in−SOC」マップを用いた充電電流P−inの演算を行わなくともよい。
図8に示す「充電電流P−in−SOC」マップは、図3(C)に示す「充電電流P−in−SOC」マップを単純化したものである。実線3001−1は、図3(C)における実線3001(二次電池10が新品時(劣化量0%)における「充電電流P−in−SOC」マップ)を単純化したものであり、一点鎖線3002−1は、一点鎖線3002(劣化量10%おける「充電電流P−in−SOC」マップ)を単純化したものである。実線3001−1では、SOCがTh1(0)において充電電流P−inがA1からA2に変化し、SOCがTh2(0)において充電電流P−inがA2からA3に変化している。また、一点鎖線3002−2では、SOCがTh1(n)において充電電流P−inがA1からA2に変化し、SOCがTh2(n)において充電電流P−inがA2からA3に変化している。なお、A3<A1<A2である。
図9は、図8に示すように「充電電流P−in−SOC」マップを単純化しても、ハイレート劣化を抑止しつつ短時間で充電することが可能な場合に、図5で示した充電制御のフローチャートに変えて、充電−EUC210で実行するフローチャートである。図9のフローチャートは、図5に示すフローチャートのS502とS504を、S900〜S908に置き換えたものである。
図9において、S900では、劣化量Rからしきい値Th1としきい値Th2を求める。具体的には、劣化量Rが0%の場合には、しきい値Th1を図8に示すTh1(0)とするとともに、しきい値Th2をTh2(0)とする。劣化量が10%のときには、しきい値Th1を図8に示すTh1(n)とするとともに、しきい値Th2をTh2(n)とする。劣化量Rが0〜10%の間にある場合は、Th1(0)とTh1(n)との間で補間計算を行うとともに、Th2(0)とTh2(n)との間で補間計算を行い、しきい値Th1、しきい値Th2を求めてもよい。あるいは、劣化量Rにより近い方の実線3001−1、一点鎖線3002−1に対応する値を、しきい値Th1およびしきい値Th2としてもよい。
続く、S902では、SOCがしきい値Th1より小さいか否かが判断される。SOC<Th1であり肯定判断された場合には、S904に進み、充電電流P−inをA1とした後、S506(図5)へ進む。S902で否定判断されたときには、S904へ進んで、SOCがしきい値Th2より小さいか否かが判断される。S904で、SOC<Th2であり肯定判断された場合には、S906に進み、充電電流P−inをA2とした後、S506(図5)へ進む。S904で否定判断されたときには、S908で充電電流P−inをA3とした後、S506(図5)へ進む。
このように、劣化量Rに基づいて算出した、しきい値Th1、Th2とSOCを比較することによって、充電電流P−inを求めるようにしても、二次電池10を充放電した際にケース111に加わる荷重の変動量に基づいて、SOCに応じた充電電流P−inが設定され、荷重の変動量が大きいほど小さく設定された充電電流P−inによって、二次電池10が充電することができる。
なお、本開示に係る実施の形態において、SOC算出部201が「SOC取得手段」に相当し、充電電流演算部204が「充電電力設定手段」に相当し、充電電流送信部および充電装置200が「充電手段」に相当する。
上記の実施の形態では、充電電流を制御して二次電池10の充電を行っているが、充電電力を制御して二次電池10の充電を行うものでもよい。また、給電装置3の給電部320から、充電電流P−inに応じた充電電流を充電装置220に供給するのではなく、給電部320から供給された充電電力を、充電装置220で充電電流P−inの大きさに変換して、二次電池10を充電するようにしてもよい。
充電−EUC210と制御部310との通信は、通信線212と通信線312を介して行っているが、給電ケーブル311と電力線211を介したPLC(Power Line Communication:電力線通信)であってもよく、無線通信で行ってもよい。また、給電装置3の給電部320からAC電力が充電装置220に供給され、充電装置220でAC電力をDC電力に変換するものであってもよい。
上記の実施の形態では、二次電池10の区間容量から劣化量Rを求め、劣化量Rを考慮して充電電流P−inを演算している。このように、二次電池10の劣化量Rを考慮しているため、二次電池10の劣化後においても、ハイレート劣化を適切に抑制しつつ充電を早期に終了することができる。なお、劣化量Rを考慮して充電電流P−inを求めることは必須ではなく、劣化量Rを求めることなく、充電電流P−inを演算するようにしてもよい。なお、二次電池10としてリチウムイオン電池について説明したが、本件開示は、ハイレート劣化が生じ得る非水電解液二次電池に適用可能である。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
1 電動車両、2 充電制御装置、3 給電装置、10 二次電池、17,117 負極シート、40 ディファレンシャルギヤ、50 駆動輪、101 電圧センサ、102 電流センサ、110 電池セル、111 ケース、112 蓋体、113 正極端子、114 負極端子、115 電極体、116 正極シート、118 セパレータ、200,220 充電装置、201 算出部、202 区間容量算出部、203 劣化量演算部、204 充電電流演算部、205 充電電流送信部、211 電力線、212,312,313 通信線、213 充電インレット、310 制御部、311 給電ケーブル、314 充電コネクタ、320 給電部。
Claims (1)
- ケース内に電極体を収納した電池セルを少なくともひとつ備える非水電解液二次電池の充電制御装置であって、
前記非水電解液二次電池のSOCを取得するSOC取得手段と、
前記非水電解液二次電池を充放電した際に前記ケースに加わる荷重の変動量に基づいて、前記SOC取得手段で取得したSOCに応じた充電電力を設定する充電電力設定手段と、
前記充電電力設定手段で設定した充電電力で前記非水電解液二次電池の充電を実行する充電手段と、を備え、
前記充電電力は、前記荷重の変動量が大きいほど小さく設定されている、非水電解液二次電池の充電制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018198345A JP6969532B2 (ja) | 2018-10-22 | 2018-10-22 | 非水電解液二次電池の充電制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018198345A JP6969532B2 (ja) | 2018-10-22 | 2018-10-22 | 非水電解液二次電池の充電制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020068550A JP2020068550A (ja) | 2020-04-30 |
JP6969532B2 true JP6969532B2 (ja) | 2021-11-24 |
Family
ID=70390640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018198345A Active JP6969532B2 (ja) | 2018-10-22 | 2018-10-22 | 非水電解液二次電池の充電制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6969532B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115832474A (zh) * | 2021-11-29 | 2023-03-21 | 宁德时代新能源科技股份有限公司 | 电池充电方法及电池、电能设备 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6447029B2 (ja) * | 2014-11-11 | 2019-01-09 | 三菱自動車工業株式会社 | 二次電池の制御装置 |
JP6455497B2 (ja) * | 2016-11-16 | 2019-01-23 | トヨタ自動車株式会社 | 車両の電池システム及びその制御方法 |
WO2018138969A1 (ja) * | 2017-01-27 | 2018-08-02 | 株式会社村田製作所 | 二次電池の充放電方法、二次電池の劣化検出方法及び二次電池の充電異常検出方法、並びに、充放電制御装置 |
-
2018
- 2018-10-22 JP JP2018198345A patent/JP6969532B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020068550A (ja) | 2020-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105322613B (zh) | 用于锂离子电池的快速充电算法 | |
US10859632B2 (en) | Secondary battery system and SOC estimation method for secondary battery | |
CN108819731B (zh) | 充电率推定方法及车载的电池系统 | |
KR101619634B1 (ko) | 배터리 모델 파라미터를 이용한 배터리 성능상태 추정 시스템 및 그 방법 | |
KR101608611B1 (ko) | 2차 전지의 제어 장치 및 soc 검출 방법 | |
EP2362478B1 (en) | Determination system and determination method for determining whether metal lithium is precipitated in a lithium ion secondary battery, and vehicle equipped with the determination system | |
JP6863258B2 (ja) | 二次電池システムおよび二次電池の活物質の応力推定方法 | |
US8000915B2 (en) | Method for estimating state of charge of a rechargeable battery | |
JP6500789B2 (ja) | 二次電池の制御システム | |
CN102771003B (zh) | 电池控制系统 | |
CN110400987B (zh) | 电池充放电电流的限制方法、电池管理系统及存储介质 | |
JP2015155859A (ja) | 電池残量推定装置、電池パック、蓄電装置、電動車両および電池残量推定方法 | |
KR101783918B1 (ko) | 이차 전지의 저항 추정 장치 및 방법 | |
CN108808067B (zh) | 电池系统及其控制方法 | |
JP6879136B2 (ja) | 二次電池の充放電制御装置 | |
JP5679055B2 (ja) | 電池の充電方法、及び電池の充電制御装置 | |
JP2018155706A (ja) | 二次電池の劣化状態推定装置並びにそれを備えた電池システム及び電動車両 | |
CN111092463B (zh) | 二次电池系统及二次电池的充电控制方法 | |
JP6969532B2 (ja) | 非水電解液二次電池の充電制御装置 | |
CN112820957B (zh) | 电池的充电方法以及充电系统 | |
JP2018179684A (ja) | 二次電池の劣化状態推定装置並びにそれを備えた電池システム及び電動車両 | |
JP5673422B2 (ja) | 二次電池の充電システム | |
JP2019106794A (ja) | 二次電池システム | |
JP6747333B2 (ja) | 二次電池システム | |
JP2017157448A (ja) | 電池システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210928 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211011 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6969532 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |