JP6965922B2 - Stretching equipment, and fiber and fiber web manufacturing equipment and manufacturing methods - Google Patents

Stretching equipment, and fiber and fiber web manufacturing equipment and manufacturing methods Download PDF

Info

Publication number
JP6965922B2
JP6965922B2 JP2019514048A JP2019514048A JP6965922B2 JP 6965922 B2 JP6965922 B2 JP 6965922B2 JP 2019514048 A JP2019514048 A JP 2019514048A JP 2019514048 A JP2019514048 A JP 2019514048A JP 6965922 B2 JP6965922 B2 JP 6965922B2
Authority
JP
Japan
Prior art keywords
passage
yarn
airflow
airflow passage
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019514048A
Other languages
Japanese (ja)
Other versions
JPWO2019187887A1 (en
Inventor
知樹 田村
拓 山本
勝文 箭内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2019187887A1 publication Critical patent/JPWO2019187887A1/en
Application granted granted Critical
Publication of JP6965922B2 publication Critical patent/JP6965922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/222Stretching in a gaseous atmosphere or in a fluid bed
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、延伸装置、ならびに、それを用いた繊維および繊維ウェブの製造装置および製造方法に関する。 The present invention relates to a drawing device, and a fiber and fiber web manufacturing device and manufacturing method using the stretching device.

従来、不織布の製造において、紡糸口金から糸状に吐出された熱可塑性ポリマを延伸する方法については、様々な研究・開発がなされており、幾つかの装置構造にて実施されている。一般的なものとしては、紡糸孔を有する紡糸口金から吐出された糸の走行経路において、糸の上流から下流方向に高速の気体を供給することにより、糸に張力を付与し、糸を細繊化させる延伸装置がある。上記延伸装置から排出された糸をコレクタに定着させることにより不織布が連続的に製造される。 Conventionally, in the production of non-woven fabrics, various studies and developments have been made on a method of stretching a thermoplastic polymer discharged in a thread shape from a spinneret, and the method has been carried out in several apparatus structures. Generally, in the traveling path of a yarn discharged from a spinneret having a spinning hole, tension is applied to the yarn by supplying a high-speed gas from the upstream to the downstream of the yarn, and the yarn is finely fiberized. There is a stretching device to make it. The non-woven fabric is continuously produced by fixing the yarn discharged from the drawing device to the collector.

より具体的には、例えば、開放系での延伸装置が特許文献1で開示されている。特許文献1では、紡糸口金から押し出される糸条群を吸引する入口と該入口から吸引された糸条群を排出する出口とが形成された通路内に、気体を噴出して吸引方向の気体流を形成するための気体噴出口を設けるとともに、前記通路の気体噴射口と前記出口との間に、出口側の通路幅が入口側の通路幅よりも広がった末広がり部を設けた延伸装置が提案されている。この装置を用いると、噴射口から通路に供給されて発生する気体流(一次気体流)と通路の入口から通路内に吸引されて発生する気体流(二次気体流)との混合流の速度低下量が少なくなって通路内での糸条の振れが抑制されると共に、二次気体流の風量が増加することにより、一次気体流の流量が同じだとしても糸条群の紡糸張力と紡糸速度を高め、エネルギー効率を高めることができる。 More specifically, for example, a stretching device in an open system is disclosed in Patent Document 1. In Patent Document 1, gas is ejected into a passage formed by an inlet for sucking a group of threads extruded from a spinneret and an outlet for discharging a group of threads sucked from the inlet, and a gas flow in the suction direction. A stretching device is proposed in which a gas outlet for forming the gas is provided and a divergent portion is provided between the gas injection port of the passage and the outlet so that the width of the passage on the outlet side is wider than the width of the passage on the inlet side. Has been done. When this device is used, the velocity of the mixed flow of the gas flow (primary gas flow) generated by being supplied to the passage from the injection port and the gas flow (secondary gas flow) generated by being sucked into the passage from the inlet of the passage. The amount of decrease is reduced, the runout of the yarn in the passage is suppressed, and the air volume of the secondary gas flow is increased. Therefore, even if the flow rate of the primary gas flow is the same, the spinning tension and spinning of the yarn group It can increase speed and increase energy efficiency.

また、紡糸口金から冷却室、延伸装置までの空間が密閉系である延伸装置が特許文献2で開示されている。特許文献2では、冷却室と延伸装置との接続は周囲に対して閉鎖(空気の流入出が無い密閉系)された構成とし、延伸装置の下流側に少なくとも1個のディフューザー(流路の絞りと拡幅を形成)を設けることが提案されている。この延伸装置を用いるとフィラメントの紡糸速度を高め、より細いフィラメントを得ることができる。 Further, Patent Document 2 discloses a drawing device in which the space from the spinneret to the cooling chamber and the drawing device is a closed system. In Patent Document 2, the connection between the cooling chamber and the stretching device is closed to the surroundings (a closed system with no inflow and outflow of air), and at least one diffuser (flow path narrowing) is provided on the downstream side of the stretching device. And widening) is proposed. By using this drawing device, the spinning speed of the filament can be increased and a finer filament can be obtained.

特開2002−371428号公報JP-A-2002-371428 特許第3704522号公報Japanese Patent No. 3704522

しかしながら、特許文献1の延伸装置では、延伸装置通路内の気流の抵抗およびそれによる損失を小さくする観点から、気体噴射口から末広がり部の間に通路幅一定の領域を、通路幅の1〜10倍(実施例の通路長さ:3〜30mm)の範囲で設けることが好ましいとされている。すなわち、通路幅一定の領域の通路長さ(以降、通路xと呼ぶ)を短く、末広がり部での通路長さ(以降、通路yと呼ぶ)を長くする思想が開示されている。しかしながら、このような通路xが短く、通路yが長くなる構成では、糸条群を延伸させるための牽引力が十分に得られず、糸条群の紡糸張力と紡糸速度が低下してしまう場合がある。さらに特許文献1の実施例では、延伸装置の糸走行方向の全体長さが100mmと糸に張力を付与する区間が短い構成となっており、牽引力が通路長さに比例することから、十分に糸条群を延伸させ、細繊度のフィラメントを製造するための紡糸張力を得るには不十分な場合がある。 However, in the stretching device of Patent Document 1, from the viewpoint of reducing the resistance of the air flow in the stretching device passage and the loss due to the resistance, a region having a constant passage width between the gas injection port and the divergent portion is formed between 1 to 10 of the passage width. It is said that it is preferable to provide it in the range of double (passage length of the embodiment: 3 to 30 mm). That is, the idea of shortening the passage length in the region where the passage width is constant (hereinafter referred to as the passage x) and increasing the passage length in the divergent portion (hereinafter referred to as the passage y) is disclosed. However, in such a configuration in which the passage x is short and the passage y is long, sufficient traction force for stretching the yarn group may not be obtained, and the spinning tension and spinning speed of the yarn group may decrease. be. Further, in the embodiment of Patent Document 1, the total length of the drawing device in the yarn traveling direction is 100 mm, and the section for applying tension to the yarn is short, and the traction force is proportional to the passage length. It may not be sufficient to stretch the yarns to obtain spinning tension to produce filaments of fineness.

また、特許文献2の延伸装置では、ディフューザーの構成を用い、流路の途中に絞りを設けていることから、絞り部において圧損が増大し、十分な気体を供給できなくなる。そのため、高風速の条件を得ることができず、延いては、細繊度のフィラメントを製造することが困難になる場合がある。さらに、特許文献2の装置では、冷却室と延伸装置とが密閉系となり、冷却室から供給する気流を用いて、延伸装置でのフィラメントの延伸を行うため、上記の理由より、冷却室にて供給できる気流の量に制約があり、フィラメントの冷却不足が発生する場合がある。また、長時間糸条を製造する際には、絞り部にフィラメントが堆積し、シートの目付斑が生じる場合がある。 Further, in the stretching apparatus of Patent Document 2, since the structure of the diffuser is used and the throttle is provided in the middle of the flow path, the pressure loss increases in the throttle portion and a sufficient gas cannot be supplied. Therefore, the condition of high wind speed cannot be obtained, and it may be difficult to produce a filament having a fine fineness. Further, in the apparatus of Patent Document 2, the cooling chamber and the stretching apparatus are sealed, and the filament is stretched in the stretching apparatus using the airflow supplied from the cooling chamber. Therefore, for the above reason, the cooling chamber is used. There is a limit to the amount of airflow that can be supplied, and insufficient cooling of the filament may occur. Further, when the yarn is manufactured for a long time, filaments may be deposited on the squeezed portion, and the sheet may have a basis weight unevenness.

そこで、本発明の目的は、糸条への牽引力を効率的に作用させることができる、省エネルギーで安定的に細繊度の糸条を製造可能な延伸装置を提供することにある。また、本発明は、かかる延伸装置を用いた繊維および繊維ウェブの製造装置や製造方法を提供することも目的とする。 Therefore, an object of the present invention is to provide a drawing device capable of efficiently producing a yarn having a fine fineness with energy saving, which can efficiently apply a traction force to the yarn. It is also an object of the present invention to provide a fiber and fiber web manufacturing device and a manufacturing method using such a stretching device.

上記目的を達成するための本発明は、以下のいずれかの構成をとるものである。
(1) 熱可塑性ポリマを溶融紡糸して得られた糸条の流入口および流出口を有する通路内で、その糸条の走行経路の外側から内向きに気流を吹き付けて該糸条を延伸する延伸装置であって、糸条の流入口および流出口を有する前記通路は、第1気流通路、気流噴射口、第2気流通路、第3気流通路および第4気流通路を、糸条走行方向に関してこの順序で連続して備え、次の(i)〜(iv)を満足することを特徴とする延伸装置。
(i)前記第3気流通路は流路断面積が糸条走行方向に関して一定である。
(ii)前記第2気流通路は、流路断面積が前記第3気流通路よりも小さく、かつ、その流路断面積が糸条走行方向に関して一定および/または漸増している。
(iii)前記第4気流通路は、流路断面積が第3気流通路よりも大きく、かつ、その流路断面積が糸条走行方向に関して一定および/または漸増している。
(iv)前記第2気流通路の糸条走行方向の長さLと、前記第3気流通路の糸条走行方向の長さLと、前記第4気流通路の糸条走行方向の長さLとが、次の関係式を満足する。
(L+L)/(L+L+L)≧0.6
/(L+L+L)≦0.4
(2) 前記Lと前記Lと前記Lとの和(mm)が次の関係式を満足する、前記(1)に記載の延伸装置。
+L+L≧100
(3) 前記第2気流通路の最小流路断面積H2MINと、前記第3気流通路の流路断面積Hと前記第4気流通路の最大流路断面積H4MAXとが、次の関係式を満足する、前記(1)または(2)に記載の延伸装置。
1.05≦H/H2MIN
1.05≦H4MAX/H
(4) 糸条の流入口および流出口を有する前記通路は対向する一対の外壁部材から形成され、前記一対の外壁部材の一方の通路形成面は、糸条走行方向に関して前記第2気流通路から前記第4気流通路までの間が、前記糸条走行方向に平行な連続的な一平面で形成されている、前記(1)から(3)のいずれかに記載の延伸装置。
(5) 紡糸口金と、紡糸された糸条の冷却装置と、前記(1)から(4)のいずれかに記載の延伸装置とを、糸条走行方向にこの順序で有する、繊維の製造装置。
(6) 紡糸口金と、紡糸された糸条の冷却装置と、前記(1)から(4)のいずれかに記載の延伸装置と、ネットを備えた繊維ウェブのコンベアとを、糸条走行方向にこの順序で有する、繊維ウェブの製造装置。
(7) 紡糸口金より熱可塑性ポリマを溶融紡糸することで糸条を形成し、該糸条を冷却固化した後、前記(1)から(4)のいずれかに記載の延伸装置により前記糸条を延伸する、繊維の製造方法。
(8) 前記(1)から(6)のいずれかに記載の装置を用いて繊維ウェブを製造する、繊維ウェブの製造方法。
The present invention for achieving the above object has any of the following configurations.
(1) In a passage having an inlet and an outlet of a yarn obtained by melt-spinning a thermoplastic polymer, an air flow is blown inward from the outside of the traveling path of the yarn to stretch the yarn. The stretching device, which has an inlet and an outlet for the yarn, has a first air passage, an air flow injection port, a second air passage, a third air passage, and a fourth air passage in the thread traveling direction. A stretching device that is continuously provided in this order and satisfies the following (i) to (iv).
(I) In the third airflow passage, the cross-sectional area of the flow path is constant with respect to the thread traveling direction.
(Ii) The second airflow passage has a flow path cross-sectional area smaller than that of the third airflow passage, and the flow path cross-sectional area is constant and / or gradually increases with respect to the thread traveling direction.
(Iii) The fourth airflow passage has a larger flow path cross-sectional area than the third airflow passage, and the flow path cross-sectional area is constant and / or gradually increases with respect to the thread traveling direction.
(Iv) the length L 2 of the yarn running direction of the second air flow passage, the length of the third and the yarn running direction of the length L 3 of the air flow passage, the yarn running direction of the fourth air flow path L 4 satisfies the following relational expression.
(L 3 + L 4 ) / (L 2 + L 3 + L 4 ) ≧ 0.6
L 4 / (L 2 + L 3 + L 4 ) ≤ 0.4
(2) The stretching apparatus according to (1), wherein the sum (mm) of L 2 and L 3 and L 4 satisfies the following relational expression.
L 2 + L 3 + L 4 ≧ 100
(3) The relationship between the minimum flow path cross-sectional area H 2MIN of the second air flow passage, the flow path cross-sectional area H 3 of the third air flow passage, and the maximum flow path cross-sectional area H 4MAX of the fourth air flow passage is as follows. The stretching device according to (1) or (2) above, which satisfies the formula.
1.05 ≤ H 3 / H 2MIN
1.05 ≤ H 4MAX / H 3
(4) The passage having the inlet and outlet of the yarn is formed from a pair of outer wall members facing each other, and one passage forming surface of the pair of outer wall members is from the second air passage in the thread traveling direction. The stretching device according to any one of (1) to (3) above, wherein the area up to the fourth airflow passage is formed by a continuous one plane parallel to the traveling direction of the yarn.
(5) A fiber manufacturing apparatus having a spinneret, a cooling device for spun yarn, and a drawing apparatus according to any one of (1) to (4) above in this order in the yarn traveling direction. ..
(6) A yarn traveling direction of a spinneret, a cooling device for spun yarn, a drawing device according to any one of (1) to (4) above, and a fiber web conveyor provided with a net. A fiber web manufacturing device that has in this order.
(7) A yarn is formed by melt-spinning a thermoplastic polymer from a spinneret, and after the yarn is cooled and solidified, the yarn is subjected to the drawing device according to any one of (1) to (4). A method for producing a fiber.
(8) A method for producing a fiber web, wherein the fiber web is produced using the apparatus according to any one of (1) to (6) above.

ここで、本発明において「通路」とは、糸条の走行経路の外側を包囲する外壁部材によって形成された、流入口と流出口とが外部に開放された気流通路をいい、以下の順序で連続する第1気流通路、気流噴射口、第2気流通路、第3気流通路、および第4気流通路によって構成される。 Here, in the present invention, the "passage" refers to an airflow passage in which the inflow port and the outflow port are open to the outside, formed by an outer wall member surrounding the outside of the traveling path of the thread, in the following order. It is composed of a continuous first airflow passage, an airflow injection port, a second airflow passage, a third airflow passage, and a fourth airflow passage.

本発明において、「流入口」とは、前記通路の糸条走行方向の最も上流側に配設され、外部に開放された開口部をいう。一方、「流出口」とは、前記通路の糸条走行方向の最も下流側に配設され、外部に開放された開口部をいう。なお、「上流」とは、紡糸口金から吐出される熱可塑性ポリマが冷却固化して糸条となる主たる糸条走行方向において、紡糸口金に近い側をいう。一方、「下流」とは、紡糸口金から吐出される熱可塑性ポリマが冷却固化して糸条となる主たる糸条の走行方向において、紡糸口金から遠い側をいう。 In the present invention, the "inflow port" means an opening which is arranged on the most upstream side in the thread traveling direction of the passage and is open to the outside. On the other hand, the “outlet” refers to an opening that is arranged on the most downstream side in the thread traveling direction of the passage and is open to the outside. The term "upstream" refers to the side close to the spinneret in the main yarn running direction in which the thermoplastic polymer discharged from the spinneret is cooled and solidified to become a yarn. On the other hand, the “downstream” refers to the side far from the spinneret in the traveling direction of the main yarn, in which the thermoplastic polymer discharged from the spinneret is cooled and solidified to become a yarn.

本発明において、「気流噴射口」とは、前記通路に設けられた、気体が噴射される開口部をいう。 In the present invention, the "airflow injection port" refers to an opening provided in the passage for injecting gas.

本発明において、「第1気流通路」とは、前記通路のうち、前記流入口から気流噴射口上流側端部までの間をいい、「第2気流通路」とは、前記通路のうち、気流噴射口下流側端部から第3気流通路の上流側端部までの間をいう。また、「第3気流通路」とは、前記通路のうち、第2気流通路および第4気流通路の間に存在し、流路断面積が糸条走行方向に関して一定である部分をいう。そして、「第4気流通路」とは、前記通路のうち、前記第3気流通路の下流側端部から前記流出口までの間をいう。 In the present invention, the "first airflow passage" refers to the passage from the inflow port to the upstream end of the airflow injection port, and the "second airflow passage" refers to the airflow in the passage. It refers to the area from the downstream end of the injection port to the upstream end of the third airflow passage. Further, the "third airflow passage" refers to a portion of the passage that exists between the second airflow passage and the fourth airflow passage and whose cross-sectional area of the flow path is constant with respect to the thread traveling direction. The "fourth airflow passage" refers to the passage from the downstream end of the third airflow passage to the outlet.

本発明において、「第2気流通路の最小流路断面積H2MIN」とは、第2気流通路のうち、糸条の走行方向に垂直な方向の断面積が最小となる位置での流路断面積をいう。また、「第4気流通路の最大の流路断面積H4MAX」とは、第4気流通路のうち、糸条の走行方向に垂直な方向の断面積が最大となる位置での流路断面積をいう。そして、「第3気流通路の流路断面積H」とは、第3気流通路の、糸条走行方向に垂直な方向の流路断面積をいう。In the present invention, the "minimum flow path cross-sectional area H 2MIN of the second air flow passage" refers to the flow path break at the position where the cross-sectional area of the second air flow passage in the direction perpendicular to the traveling direction of the thread is the minimum. Refers to the area. Further, "maximum flow path cross-sectional area of the fourth air flow passage H 4MAX " is the flow path cross-sectional area of the fourth air flow passage at the position where the cross-sectional area in the direction perpendicular to the traveling direction of the thread is maximum. To say. The "flow path cross-sectional area H 3 of the third air flow passage" means the flow path cross-sectional area of the third air flow passage in the direction perpendicular to the thread traveling direction.

本発明の延伸装置によれば、糸条への牽引力が付与できる区間を相対的に長尺化することにより、気体の供給量が少なくても延伸装置における糸条の牽引効果を十分に発現することができ、その結果、省エネルギーでの安定運転が可能となる。また、牽引力を十分に発現できることから、紡糸速度の向上が可能となり、単糸繊度が小さい糸を得ることも可能となる。そして、このようにして得られた繊維から繊維ウェブを製造する場合には、単糸繊度の減少に伴い、風合いが良好である繊維ウェブを得ることが可能となる。 According to the stretching apparatus of the present invention, by making the section to which the traction force can be applied to the yarn relatively long, the traction effect of the yarn in the stretching apparatus can be sufficiently exhibited even if the amount of gas supplied is small. As a result, stable operation with energy saving becomes possible. Further, since the traction force can be sufficiently exhibited, the spinning speed can be improved, and a yarn having a small single yarn fineness can be obtained. Then, when the fiber web is produced from the fibers thus obtained, it becomes possible to obtain a fiber web having a good texture as the single yarn fineness decreases.

本発明の一実施形態にかかる延伸装置を備えた紡糸装置の全体概略断面図である。It is an overall schematic sectional view of the spinning apparatus provided with the drawing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態を示す延伸装置の概略断面図である。It is the schematic sectional drawing of the stretching apparatus which shows one Embodiment of this invention. 本発明の別の実施形態を延伸装置の概略断面図である。Another embodiment of the present invention is a schematic cross-sectional view of a stretching device. 本発明のさらに別の実施形態を示す延伸装置の概略断面図である。It is the schematic sectional drawing of the stretching apparatus which shows still another embodiment of this invention. 本発明および従来技術の実施形態にかかる延伸装置において通路内の静圧分布を測定した値である。It is a value which measured the static pressure distribution in a passage in the stretching apparatus which concerns on embodiment of this invention and the prior art. 延伸装置の牽引力の測定方法を説明するための模式断面図である。It is a schematic cross-sectional view for demonstrating the method of measuring the traction force of a stretching apparatus. 延伸装置の通路内の静圧の測定方法を説明するための斜視図である。It is a perspective view for demonstrating the method of measuring the static pressure in the passage of a stretching apparatus. 本発明のさらに別の実施形態を示す延伸装置の概略断面図である。It is the schematic sectional drawing of the stretching apparatus which shows still another embodiment of this invention.

以下、図面を参照しながら、本発明の延伸装置の最良の実施形態について詳細に説明する。図1は、本発明の一実施形態にかかる延伸装置を備えた紡糸装置の全体概略縦断面図であり、図2は、図1に用いた延伸装置の概略縦断面図である。また、図3、図4、図8は、本発明にかかる延伸装置の他の好ましい形態の概略縦断面図である。 Hereinafter, the best embodiment of the stretching device of the present invention will be described in detail with reference to the drawings. FIG. 1 is an overall schematic longitudinal sectional view of a spinning apparatus provided with a stretching apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic longitudinal sectional view of the drawing apparatus used in FIG. In addition, FIGS. 3, 4, and 8 are schematic vertical sectional views of another preferable form of the stretching apparatus according to the present invention.

本発明の延伸装置は例えば不織布製造装置に用いられるが、かかる製造装置は、図1に示すように、紡糸口金1、冷却装置19、延伸装置3、移動するネット上に繊維をウェブ状に捕集するコンベア4などから構成される。また、図示しないが、コンベア4の下流側には、繊維ウェブを熱接着する機構も備える。 The stretching device of the present invention is used, for example, in a non-woven fabric manufacturing device, and as shown in FIG. 1, the stretching device captures fibers in a web shape on a spinneret 1, a cooling device 19, a stretching device 3, and a moving net. It is composed of a collecting conveyor 4 and the like. Further, although not shown, a mechanism for heat-bonding the fiber web is also provided on the downstream side of the conveyor 4.

このような装置においては、紡糸口金1より熱可塑性ポリマが溶融紡糸され、得られた糸条2は、冷却装置19にて冷却された後、延伸装置3により張力が付与されて延伸される。糸条2は、その後、延伸装置3からコンベア4のネット上に吹き付けられ、コンベア4上で繊維ウェブを形成する。ここで、延伸装置3において糸条が走行する領域としては、機幅方向(図1の紙面奥行方向)に非常に長い、長尺の矩形領域が形成されている。 In such a device, a thermoplastic polymer is melt-spun from the spinneret 1, and the obtained yarn 2 is cooled by the cooling device 19 and then stretched by applying tension to the drawing device 3. The yarn 2 is then sprayed from the stretching device 3 onto the net of the conveyor 4 to form a fiber web on the conveyor 4. Here, as a region in which the yarn travels in the stretching device 3, a long rectangular region that is very long in the machine width direction (the paper surface depth direction in FIG. 1) is formed.

延伸装置3は、図2に示すように、糸条走行方向の上流側から下流側に向かい、外壁部材5に挟まれた気流通路9を有しており、その気流通路9の上流側端部には糸条が流入する流入口14を、下流側端部には糸条が流出する流出口15を有している。気流通路9は、流入口14の糸条走行方向の下流側に位置する第1気流通路10と、第1気流通路10に連通し、糸条に気流を吹き付ける気流噴射口7と、気流噴射口7の糸条走行方向の下流側に位置する第2気流通路11と、第2気流通路11の糸条走行方向の下流側に位置する第3気流通路12と、第3気流通路12の下流側に位置する第4気流通路13とで構成される。第3気流通路12は、糸条走行方向に関して、該糸条走行方向に垂直な方向の流路断面積が一定、第2気流通路11は、第3気流通路12と比べて、糸条走行方向に垂直な方向の流路断面積が小さく、第4気流通路13は、糸条が流出する流出口15を一部に含み、第3気流通路12と比べて、糸条走行方向に垂直な方向の流路断面積が大きい。 As shown in FIG. 2, the stretching device 3 has an airflow passage 9 sandwiched between outer wall members 5 from the upstream side to the downstream side in the thread traveling direction, and the upstream end portion of the airflow passage 9 is provided. Has an inflow port 14 into which the thread flows in, and an outflow port 15 in which the thread flows out at the downstream end. The airflow passages 9 communicate with the first airflow passage 10 located on the downstream side of the inflow port 14 in the thread traveling direction, the airflow injection port 7 that communicates with the first airflow passage 10 and blows the airflow onto the threads, and the airflow injection port. The second airflow passage 11 located on the downstream side in the thread traveling direction of No. 7, the third airflow passage 12 located on the downstream side in the thread traveling direction of the second airflow passage 11, and the downstream side of the third airflow passage 12. It is composed of a fourth airflow passage 13 located at. The third airflow passage 12 has a constant flow path cross-sectional area in the direction perpendicular to the thread traveling direction with respect to the thread traveling direction, and the second airflow passage 11 has a thread traveling direction as compared with the third airflow passage 12. The cross-sectional area of the flow path in the direction perpendicular to is small, and the fourth airflow passage 13 includes an outflow port 15 through which the yarn flows out, and is in a direction perpendicular to the running direction of the yarn as compared with the third airflow passage 12. The cross-sectional area of the flow path is large.

以上のような構成の延伸装置3においては、気流供給手段のバッファ部6に導入された気体が、その後に気体供給管を経て気流噴射口7から気流通路9の内部に噴射される。そして、第2気流通路11、第3気流通路12、第4気流通路13を通過し、流出口15から外部に排出される。その気流の流れに従って、流入口14から気流と共に流入した糸条が、気流通路9の内部を通過し、流出口15から排出される。 In the stretching device 3 having the above configuration, the gas introduced into the buffer portion 6 of the airflow supply means is subsequently injected into the inside of the airflow passage 9 from the airflow injection port 7 via the gas supply pipe. Then, it passes through the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13, and is discharged to the outside from the outflow port 15. According to the flow of the airflow, the threads flowing in from the inflow port 14 together with the airflow pass through the inside of the airflow passage 9 and are discharged from the outflow port 15.

ここで、本発明の延伸装置3において、糸条の牽引効果を十分に発現し、気体の供給量を低減、省エネルギー化が可能となる原理について説明する。延伸装置3は、一般的にエジェクターとも呼ばれ、高圧の圧縮気体を気流通路9に直接供給することで、糸条の牽引、且つ延伸を行うものである。その際に、圧縮気体を使用することから、コンプレッサーが別途必要となり、その分だけ設備費が必要となり、また用役費が増加し、製造コストの増加に繋がる。そこで、圧縮気体の使用量そのものを削減するには、延伸装置3での糸条の牽引力を最も効果的に発現させることが重要となるが、延伸装置で糸に付与される牽引力をF、定数をCF、気流の密度をρ、気流の風速をw、糸の円周長さをc、気流通路の長さをlとすると、牽引力Fは、式(A)に示すように、気流の風速wの2乗、気流通路の長さlに比例する。
F=CFρwcl ・・・(A)
そのため牽引力Fを増大させる方法としては、気流通路9を通過する気体の風速wを極力増加させることが考えらえる。しかし、気流通路9の間隙を狭めることで(すなわち流路断面積を減少させると)気体の風速wが増加すると予想されるが、実際には、気流通路9の圧力損失が増加し、流入口14から流入する気体の流入量が減少する。その結果、気流通路9の間隙を狭くする(すなわち流路断面積を小さくする)には限度があることが判明した。次に、気流噴射口7から供給する気体の供給量を増加させることも、気体の風速wを増加させるための有効な手段であると考えられるが、当然ながら、圧縮空気の使用量を増加させることは、製造コストの増加に繋がる。
Here, the principle that the drawing device 3 of the present invention can sufficiently exhibit the traction effect of the yarn, reduce the supply amount of gas, and save energy will be described. The stretching device 3 is also generally called an ejector, and pulls and stretches the yarn by directly supplying a high-pressure compressed gas to the airflow passage 9. At that time, since compressed gas is used, a compressor is required separately, and equipment costs are required accordingly, and utility costs increase, leading to an increase in manufacturing costs. Therefore, in order to reduce the amount of compressed gas used itself, it is important to most effectively express the traction force of the thread in the drawing device 3, but the traction force applied to the thread by the drawing device is F, a constant. Is CF, the airflow density is ρ, the airflow velocity is w, the circumference length of the thread is c, and the length of the airflow passage is l. It is proportional to the square of w and the length l of the airflow passage.
F = CFρw 2 cl ・ ・ ・ (A)
Therefore, as a method of increasing the traction force F, it is conceivable to increase the wind speed w of the gas passing through the airflow passage 9 as much as possible. However, it is expected that the wind speed w of the gas increases by narrowing the gap of the airflow passage 9 (that is, reducing the cross-sectional area of the flow path), but in reality, the pressure loss of the airflow passage 9 increases and the inflow port increases. The inflow amount of the gas flowing in from 14 is reduced. As a result, it was found that there is a limit to narrowing the gap of the airflow passage 9 (that is, reducing the cross-sectional area of the flow passage). Next, increasing the supply amount of the gas supplied from the airflow injection port 7 is also considered to be an effective means for increasing the wind speed w of the gas, but of course, the amount of compressed air used is increased. This leads to an increase in manufacturing costs.

そこで、本発明者らは、上記の課題解決のために鋭意検討を重ねた結果、気流通路9の長さと間隙に着目した。本発明者らは、これらを適正化することにより、流入口14から流入する気体の流入量を増大し、その結果、延伸装置3での糸条の牽引力Fを増大できることを見出した。その重要なポイントは、気流噴射口下流側端部8から流出口15までの、第2気流通路11、第3気流通路12、および第4気流通路13の構成であり、相対的に、流路断面積が糸条走行方向に関して一定である第3気流通路12の長さLを長く、一方、第3気流通路の流路断面積よりも小さい断面積を有する第2気流通路11の長さL、および、第3気流通路12の流路断面積よりも大きい断面積を有する第4気流通路13の長さLを短くするということである。Therefore, the present inventors have focused on the length and the gap of the airflow passage 9 as a result of repeated studies for solving the above-mentioned problems. The present inventors have found that by optimizing these, the inflow amount of the gas flowing in from the inflow port 14 can be increased, and as a result, the traction force F of the yarn in the drawing device 3 can be increased. The important point is the configuration of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 from the downstream end 8 of the airflow injection port to the outflow port 15, and the relative flow paths. increasing the length L 3 of the constant is the third airflow passage 12 with respect to the cross-sectional area of the yarn running direction, while the length of the second air flow passage 11 having a smaller cross sectional area than the flow path cross-sectional area of the third airflow passageway L 2 and the length L 4 of the fourth air flow passage 13 having a cross-sectional area larger than the flow path cross-sectional area of the third air flow passage 12 are shortened.

具体的には、以下の関係を満足させるということである。
(i)第3気流通路12は流路断面積が糸条走行方向に関して一定である。
(ii)第2気流通路11は、流路断面積が第3気流通路12よりも小さく、かつ、その流路断面積が糸条走行方向に関して一定および/または漸増している。
(iii)第4気流通路13は、流路断面積が第3気流通路12よりも大きく、かつ、その流路断面積が糸条走行方向に関して一定および/または漸増している。
(iv)第2気流通路11の糸条走行方向の長さLと、第3気流通路12の糸条走行方向の長さLと、第4気流通路13の糸条走行方向の長さLとが、次の関係式を満足する。
(L+L)/(L+L+L)≧0.6
/(L+L+L)≦0.4
まず、(ii)、(iii)の構成とすることで、第2気流通路11、第4気流通路13においてディフューザー効果が発現し、気体が気流通路9を走行し易くなり、図5に示すように気流通路9内の静圧が低下することから、外部との圧力差が生じて、流入口14からの気体の流入量が増加する。その流入気体に、気流噴射口8から供給される供給気体が合わさり、第2気流通路11に供給されることから、第2気流通路11、第3気流通路12内での気体の風速wが増加する。
Specifically, it means satisfying the following relationships.
(I) The third airflow passage 12 has a constant flow path cross-sectional area with respect to the thread traveling direction.
(Ii) The second airflow passage 11 has a flow path cross-sectional area smaller than that of the third airflow passage 12, and the flow path cross-sectional area is constant and / or gradually increases with respect to the thread traveling direction.
(Iii) The fourth airflow passage 13 has a flow path cross-sectional area larger than that of the third airflow passage 12, and the flow path cross-sectional area is constant and / or gradually increases with respect to the thread traveling direction.
(Iv) the yarn to the running direction of the length L 2, the length of the third and the yarn running direction of the length L 3 of the air flow passage 12, the yarn running direction of the fourth air flow path 13 of the second air flow passage 11 L 4 satisfies the following relational expression.
(L 3 + L 4 ) / (L 2 + L 3 + L 4 ) ≧ 0.6
L 4 / (L 2 + L 3 + L 4 ) ≤ 0.4
First, by configuring (ii) and (iii), the diffuser effect is exhibited in the second airflow passage 11 and the fourth airflow passage 13, and the gas easily travels in the airflow passage 9, as shown in FIG. Since the static pressure in the airflow passage 9 decreases, a pressure difference from the outside occurs, and the inflow amount of gas from the inflow port 14 increases. Since the supply gas supplied from the airflow injection port 8 is combined with the inflow gas and supplied to the second airflow passage 11, the wind speed w of the gas in the second airflow passage 11 and the third airflow passage 12 increases. do.

そして、(i)、(iv)の構成とすることで、気流通路9内の静圧が低下した状態を維持しつつ、第3気流通路12の糸条走行方向の長さを長尺化でき、第3気流通路12での気流の高風速レベルを長く維持することが可能となる。これにより、糸条の牽引力Fを効果的に発現させることが可能となる。 Then, by adopting the configurations (i) and (iv), the length of the third airflow passage 12 in the thread traveling direction can be lengthened while maintaining the state in which the static pressure in the airflow passage 9 is lowered. , The high wind speed level of the airflow in the third airflow passage 12 can be maintained for a long time. This makes it possible to effectively develop the traction force F of the yarn.

ここで、流路断面積が、第2気流通路11で第3気流通路12よりも大きい、または第4気流通路で第3気流通路よりも小さい場合は、気体通路9内での静圧が増加するため、外部との圧力差が小さくなり、流入口14から流入する気体の流入量が減少する。最悪は、気流通路9が外部よりも高圧となり、流入口14から気体が流出する場合もある。その結果、第3気流通路12内での気体の風速wが低下し、糸条の牽引力が得られなくなる。 Here, when the cross-sectional area of the flow path is larger than the third airflow passage 12 in the second airflow passage 11 or smaller than the third airflow passage in the fourth airflow passage, the static pressure in the gas passage 9 increases. Therefore, the pressure difference from the outside becomes small, and the inflow amount of the gas flowing in from the inflow port 14 decreases. In the worst case, the airflow passage 9 becomes higher pressure than the outside, and gas may flow out from the inflow port 14. As a result, the wind speed w of the gas in the third airflow passage 12 decreases, and the traction force of the yarn cannot be obtained.

(L+L)/(L+L+L)が0.6より小さい場合には、流路断面積が小さい第2気流通路が長くなることにより、気流通路9内での静圧が増加するため、外部との圧力差が小さくなり、流入口14から流入する気体の流入量が減少する。また、L/(L+L+L)が0.4を超える場合には、風速が低下する第4気流通路13が長くなることにより、糸条に対する牽引力が減少する区間が長くなるため、糸条の牽引力を十分には得られなくなる。When (L 3 + L 4 ) / (L 2 + L 3 + L 4 ) is smaller than 0.6, the static pressure in the air flow passage 9 becomes longer due to the lengthening of the second air flow passage having a small flow path cross-sectional area. As the pressure increases, the pressure difference from the outside becomes smaller, and the inflow amount of the gas flowing in from the inflow port 14 decreases. Further, when L 4 / (L 2 + L 3 + L 4 ) exceeds 0.4, the fourth airflow passage 13 in which the wind speed decreases becomes longer, so that the section in which the traction force with respect to the yarn decreases becomes longer. , The traction force of the thread cannot be sufficiently obtained.

なお、(L+L)/(L+L+L)は、糸条に対する牽引力が大きい区間(すなわち風速の速い第2気流通路11)を十分に確保して糸条に牽引力を十分作用させるために、0.99以下であることが好ましい。また、L/(L+L+L)は、第4気流通路13の区間を十分に確保し、第4気流通路13での流れをより安定化させてディフューザー効果を十分に発現するために、0.01以上であることが好ましい。In addition, in (L 3 + L 4 ) / (L 2 + L 3 + L 4 ), a section having a large traction force with respect to the yarn (that is, the second airflow passage 11 having a high wind speed) is sufficiently secured to sufficiently exert the traction force on the yarn. It is preferably 0.99 or less. Further, L 4 / (L 2 + L 3 + L 4 ) sufficiently secures a section of the fourth air flow passage 13, further stabilizes the flow in the fourth air flow passage 13, and sufficiently exerts the diffuser effect. In addition, it is preferably 0.01 or more.

そして、第2気流通路11、第4気流通路13は、それぞれ、図2において糸条走行方向の下流側に向かって流路断面積が一定であるが、図3に示すように、糸条走行方向の下流側に向かうに従い、漸増していてもよい。この場合、第2気流通路11、第4気流通路13においてディフューザー効果が発現し易くなり、気流通路9内の静圧が更に低下することから、流入口14から流入する気体の流入量が増加する利点を有している。なお、図3では、テーパ状に漸増しているが、この限りでは無く、階段状に漸増していてもよい。また、図3では、第2気流通路11、第4気流通路13の全長に渡り漸増してもよいが、図4に示すように一部のみがテーパ状に漸増してもよい。 The second airflow passage 11 and the fourth airflow passage 13 have a constant flow path cross-sectional area toward the downstream side in the thread traveling direction in FIG. 2, respectively, but as shown in FIG. 3, the thread traveling It may gradually increase toward the downstream side in the direction. In this case, the diffuser effect is likely to appear in the second airflow passage 11 and the fourth airflow passage 13, and the static pressure in the airflow passage 9 is further reduced, so that the inflow amount of the gas flowing in from the inflow port 14 increases. Has advantages. In FIG. 3, the taper is gradually increased, but the present invention is not limited to this, and the taper may be gradually increased. Further, in FIG. 3, the number may be gradually increased over the entire length of the second airflow passage 11 and the fourth airflow passage 13, but as shown in FIG. 4, only a part thereof may be gradually increased in a tapered shape.

さらに、第2気流通路11と第3気流通路12との連通部、および、第3気流通路12と第4気流通路13との連通部においては、糸条走行方向の下流側の流路断面積が拡大することになるが、図2に示すようにそれらの連通部で流路断面積が一気に拡大するように構成してもよいし、図3、図4に示すように、第2気流通路11および第4気流通路13の、少なくとも、第3気流通路12との連通部近傍部をテーパ状にし、流路断面積が徐々に拡大するよう構成してもよい。またこれらが組み合わされた構成であってもよい。流路断面積が連通部のみで一気に拡大されるように外壁部材5を形成すると、外壁部材5を製造する上で加工しやすい利点を有しており、また、連通部近傍でテーパ状となるように外壁部材5を形成すると、気体が通過する上で、乱流渦が発生しにくくなり、糸条乱れを抑制できる利点を有している。 Further, in the communication portion between the second airflow passage 11 and the third airflow passage 12 and the communication portion between the third airflow passage 12 and the fourth airflow passage 13, the cross-sectional area of the flow path on the downstream side in the thread traveling direction. However, as shown in FIG. 2, the flow path cross-sectional area may be expanded at once at the communication portions thereof, or as shown in FIGS. 3 and 4, the second airflow passage may be expanded. At least the portion of the 11 and the fourth airflow passage 13 near the communication portion with the third airflow passage 12 may be tapered so that the cross-sectional area of the flow passage gradually increases. Further, the configuration may be a combination of these. If the outer wall member 5 is formed so that the cross-sectional area of the flow path is expanded at once only in the communication portion, it has an advantage that it is easy to process in manufacturing the outer wall member 5, and it becomes tapered in the vicinity of the communication portion. When the outer wall member 5 is formed as described above, there is an advantage that a turbulent vortex is less likely to be generated when the gas passes through, and the thread turbulence can be suppressed.

次に、第2気流通路11と第3気流通路12と第4気流通路13の糸条走行方向の長さが牽引力に与える影響について、詳細に説明する。本発明の延伸装置3では、第2気流通路11の糸条走行方向の長さLと第3気流通路12の糸条走行方向の長さLと第4気流通路13の糸条走行方向の長さLとの和(mm)が次の関係式を満足することが好ましい。
+L+L≧100
この構成とすることで、上述した糸条の牽引力を効果的に発生させることが可能となる。上記和が100mm未満となる場合、第2気流通路11と第3気流通路12と第4気流通路13の全長が短くなることにより、糸条を牽引する長さが短くなり、所望の牽引力が得にくくなる。また、流出口15と気流噴射口7の距離が近接することから気流通路における圧力損失が少なくなり、第4気流通路13を用いることによるディフューザー効果を十分には得にくくなる。よって、上記関係式を満足するような構成であることが、さらには上記和が250以上であることが好ましい。
Next, the influence of the lengths of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 in the thread traveling direction on the traction force will be described in detail. In stretching apparatus 3 of the present invention, the length of the yarn running direction of the second air flow passage 11 L 2 and the yarn running direction of the length L 3 of the third airflow passageway 12 yarn running direction of the fourth air flow passage 13 It is preferable that the sum (mm) of the length L 4 and the length L 4 satisfies the following relational expression.
L 2 + L 3 + L 4 ≧ 100
With this configuration, it is possible to effectively generate the above-mentioned traction force of the yarn. When the sum is less than 100 mm, the total length of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 is shortened, so that the length of pulling the yarn is shortened and a desired traction force is obtained. It becomes difficult. Further, since the airflow outlet 15 and the airflow injection port 7 are close to each other, the pressure loss in the airflow passage is reduced, and it becomes difficult to sufficiently obtain the diffuser effect by using the fourth airflow passage 13. Therefore, it is preferable that the configuration satisfies the above relational expression, and further, the sum is 250 or more.

なお、第2気流通路11と第3気流通路12と第4気流通路13の全長が長くなることにより、糸条を牽引する長さが長くなるが、気体通路9内での静圧が増加するため、外部との圧力差が小さくなり、流入口14から流入する気体の流入量が減少する。よって、第2気流通路11と第3気流通路12と第4気流通路13の全長は1500mm以下であることが好ましく、1000mm以下であることが更に好ましい。 By increasing the total length of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13, the length of pulling the thread becomes longer, but the static pressure in the gas passage 9 increases. Therefore, the pressure difference from the outside becomes small, and the inflow amount of the gas flowing in from the inflow port 14 decreases. Therefore, the total length of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 is preferably 1500 mm or less, and more preferably 1000 mm or less.

さらに、本発明においては、第2気流通路11の最小流路断面積H2MINと、第3気流通路12の流路断面積Hと第4気流通路13の最大流路断面積H4MAXとが、次の関係式を満足することが好ましい。
1.05≦H/H2MIN
1.05≦H4MAX/H
この構成とすることで、上述した糸条の牽引力をより効果的に発生させることが可能となる。ここで、それぞれの流路断面積の比率が1.05未満となる場合は、気流通路全体としてみれば、糸条走行方向に関して下流側に向かうに従い流路が十分に拡大されていないということであり、気流通路におけるディフューザー効果が十分には得られにくい。なお、流れに乱れが生じるのを防ぎディフューザー効果をより効果的に発現させるために、それぞれの流路断面積の比率は3以下であることが好ましい。
Further, in the present invention, the minimum flow path cross-sectional area H 2MIN of the second air flow passage 11, the flow path cross-sectional area H 3 of the third airflow passageway 12 and the maximum flow path cross-sectional area H 4MAX fourth airflow passage 13 , It is preferable to satisfy the following relational expression.
1.05 ≤ H 3 / H 2MIN
1.05 ≤ H 4MAX / H 3
With this configuration, the above-mentioned traction force of the yarn can be generated more effectively. Here, when the ratio of the cross-sectional area of each flow path is less than 1.05, it means that the flow path is not sufficiently expanded toward the downstream side in the thread traveling direction as a whole. Therefore, it is difficult to obtain a sufficient diffuser effect in the airflow passage. In order to prevent turbulence in the flow and more effectively exhibit the diffuser effect, the ratio of the cross-sectional areas of each flow path is preferably 3 or less.

さらに、本発明においては、気流流路を形成する一対の外壁部材5の一方の通路形成面が、図8に示すように第2気流通路11から第4気流通路13の間で走行糸条方向に関して糸条との距離が一定となるように、走行糸条方向と平行な連続的な一平面で形成されていることが好ましい。この構成とすることで第2気流通路11から第4気流通路13において糸条の一方の側には流路の拡大しない部分が連続的に形成されることになり、その結果、該部分付近では乱れの少ない気流が連続的に形成され、より効率的に糸条に対して牽引力を発現することが可能になる。 Further, in the present invention, one passage forming surface of the pair of outer wall members 5 forming the airflow passage is in the traveling thread direction between the second airflow passage 11 and the fourth airflow passage 13 as shown in FIG. It is preferable that the surface is formed in a continuous plane parallel to the running thread direction so that the distance from the thread is constant. With this configuration, a non-expanding portion of the flow path is continuously formed on one side of the thread in the second airflow passage 11 to the fourth airflow passage 13, and as a result, in the vicinity of the portion. An air flow with less turbulence is continuously formed, and it becomes possible to exert a traction force on the yarn more efficiently.

次に、図1、図2、図3、図4、図8に示した本発明の実施形態の延伸装置3に共通した各部材、各部材の形状について詳細に説明する。 Next, each member common to the stretching apparatus 3 of the embodiment of the present invention shown in FIGS. 1, 2, 3, 4, and 8 and the shape of each member will be described in detail.

本発明における延伸装置3において、外壁部材5の材質としては、金属、合金、セラミックス、樹脂等種々のものを採用することができる。この中でも強度、耐磨耗性の観点から、金属であることが好ましい。 In the stretching device 3 of the present invention, various materials such as metal, alloy, ceramics, and resin can be adopted as the material of the outer wall member 5. Of these, metal is preferable from the viewpoint of strength and abrasion resistance.

気流通路9の、糸条走行方向と垂直な方向の断面形状としては、丸形や矩形等種々のものを採用することができる。中でも圧縮エアの使用量が比較的少なく、糸条同士の融着や擦過が起こりにくいという観点から、矩形が好ましい。 As the cross-sectional shape of the airflow passage 9 in the direction perpendicular to the thread traveling direction, various shapes such as a round shape and a rectangular shape can be adopted. Of these, a rectangle is preferable from the viewpoint that the amount of compressed air used is relatively small and the yarns are less likely to be fused or scratched.

第1気流通路10の糸条走行方向の長さは、短くすることにより流路での圧力損失が減少して、流入口14から流入する気体の流入量が増加することから、長さは100mm以下にする方が好ましく、50mm以下にすることがより好ましい。 By shortening the length of the first airflow passage 10 in the thread traveling direction, the pressure loss in the flow path is reduced and the inflow amount of the gas flowing in from the inflow port 14 is increased, so that the length is 100 mm. It is more preferably 50 mm or less, and more preferably 50 mm or less.

第1気流通路10の、糸条走行方向に対して垂直方向の断面積は、糸条を流入することができる範囲で設定することができる。第1気流通路10での圧力損失が減少して、流入口14から流入する気体の流入量が増加することから、第2気流通路11の糸条走行方向に対して垂直方向の最小断面積に対して広いことが好ましく、第4気流通路13の糸条走行方向に対して垂直方向の最大断面積より広いことがより好ましい。 The cross-sectional area of the first airflow passage 10 in the direction perpendicular to the thread traveling direction can be set within a range in which the thread can flow in. Since the pressure loss in the first airflow passage 10 decreases and the inflow amount of the gas flowing in from the inflow port 14 increases, the minimum cross-sectional area in the direction perpendicular to the thread traveling direction of the second airflow passage 11 is obtained. On the other hand, it is preferably wider, and more preferably wider than the maximum cross-sectional area in the direction perpendicular to the thread traveling direction of the fourth airflow passage 13.

バッファ6と気流噴射口7をつなぐ気体供給管は、気流通路9における風速の低下を抑制する観点から、気流通路9に対する角度が30°以下であることが好ましい。より好ましくは15°以下にすることにより風速の低下を抑制することができる。気体供給管の形状としては、該気体供給管の中の気流方向に関して垂直な方向の断面形状が矩形であることが好ましい。かかる断面は、断面積が気体供給管の中の気流方向に関して一定であっても、気流噴射口7に向かうに従い拡大してもよいが、音速領域において断熱膨張により風速が増加するラバールノズルの効果が得られるように、気流噴射口7に向かい拡大させることがより好ましい。 The gas supply pipe connecting the buffer 6 and the airflow injection port 7 preferably has an angle of 30 ° or less with respect to the airflow passage 9 from the viewpoint of suppressing a decrease in the wind speed in the airflow passage 9. More preferably, the decrease in wind speed can be suppressed by setting the temperature to 15 ° or less. As for the shape of the gas supply pipe, it is preferable that the cross-sectional shape in the direction perpendicular to the airflow direction in the gas supply pipe is rectangular. Such a cross section may be expanded toward the airflow injection port 7 even if the cross-sectional area is constant with respect to the airflow direction in the gas supply pipe, but the effect of the Laval nozzle in which the wind speed increases due to adiabatic expansion in the sound velocity region is effective. It is more preferable to expand toward the airflow injection port 7 so as to be obtained.

気流噴射口7から糸条に供給される気流は、空気が最も経済的で好ましいが、混合ガスやスチーム、飽和蒸気、加熱蒸気であってもよい。糸条の牽引力を向上させるには、前述の式(A)の通り、気流の密度ρも関連していることから、密度が高い気流を選択することが好ましい。また、気流の温度は、常温が最も経済的に好ましいが、この限りでは無い。また、気流の湿度は、大気を取り込むため、湿度管理をしていない方が経済的に好ましいが、この限りでは無く、例えば、高湿度の気流を供給とすることで、糸条の牽引力を向上させることが可能となる。 The airflow supplied to the threads from the airflow injection port 7 is most economical and preferable, but may be a mixed gas, steam, saturated steam, or heated steam. In order to improve the traction force of the yarn, it is preferable to select an airflow having a high density because the density ρ of the airflow is also related as described in the above formula (A). Further, the temperature of the air flow is most economically preferable at room temperature, but the temperature is not limited to this. In addition, since the humidity of the airflow takes in the atmosphere, it is economically preferable not to control the humidity, but this is not the case. For example, by supplying a high humidity airflow, the traction force of the yarn is improved. It becomes possible to make it.

本発明は、極めて汎用性の高い発明であり、公知の繊維ウェブ全ての製造においてに適用できる。従って、繊維ウェブを構成するポリマにより特に限られるものではない。例えば、繊維ウェブを構成するポリマの一例を挙げれば、ポリエステル、ポリアミド、ポリフェニレンサルファイド、ポリオレフィン、ポリエチレン、ポリプロピレン等々が挙げられる。更に、上記したポリマに、紡糸安定性等を損なわない範囲で、二酸化チタン等の艶消し剤、酸化ケイ素、カオリン、着色防止剤、安定剤、抗酸化剤、消臭剤、難燃剤、糸摩擦低減剤、着色顔料、表面改質剤等の各種機能性粒子や有機化合物等の添加剤が含有されていても良く、共重合が含まれても良い。 The present invention is an extremely versatile invention and can be applied to the production of all known fiber webs. Therefore, it is not particularly limited by the polymer constituting the fiber web. For example, polyester, polyamide, polyphenylene sulfide, polyolefin, polyethylene, polypropylene and the like can be mentioned as an example of the polymer constituting the fiber web. Further, in the above-mentioned polymer, a matting agent such as titanium dioxide, silicon oxide, kaolin, a color inhibitor, a stabilizer, an antioxidant, a deodorant, a flame retardant, and a thread friction are added to the above-mentioned polymer as long as the spinning stability is not impaired. Various functional particles such as a reducing agent, a coloring pigment, and a surface modifier, and additives such as an organic compound may be contained, and copolymerization may be contained.

また、繊維ウェブを構成するポリマは、単一成分で構成しても、複数成分で構成してもよく、複数成分の場合には、例えば、芯鞘、サイドバイサイド等の構成が挙げられる。 Further, the polymer constituting the fiber web may be composed of a single component or a plurality of components, and in the case of a plurality of components, for example, a core sheath, a side-by-side structure, or the like may be mentioned.

繊維ウェブを形成する繊維の断面形状は、丸、三角、扁平等の異形状や中空であってもよい。また、繊維ウェブの単糸繊度は特に限られるものではない。繊維ウェブの単糸数も特に限られるものではないが、繊維ウェブの単糸数が多ければ多いほど、従来の技術との差異が明確となる。 The cross-sectional shape of the fibers forming the fiber web may be irregular such as round, triangular, flat, or hollow. Further, the single yarn fineness of the fiber web is not particularly limited. The number of single yarns of the fiber web is not particularly limited, but the larger the number of single yarns of the fiber web, the clearer the difference from the conventional technique.

次に、図1、図2に示す装置を用いて、繊維ウェブから成るスパンボンド不織布を製造する好ましい態様について、具体的に説明する。 Next, a preferred embodiment for producing a spunbonded nonwoven fabric made of a fiber web will be specifically described using the apparatus shown in FIGS. 1 and 2.

図1に示す装置において、例えばポリオレフィン系樹脂は紡糸口金1より溶融紡糸される。この時の紡糸温度は、200〜270℃であることが好ましく、より好ましくは210〜260℃であり、さらに好ましくは220〜250℃である。紡糸温度を上記範囲内とすることにより、安定した溶融状態とし、優れた紡糸安定性を得ることができる。 In the apparatus shown in FIG. 1, for example, a polyolefin resin is melt-spun from a spinneret 1. The spinning temperature at this time is preferably 200 to 270 ° C, more preferably 210 to 260 ° C, and even more preferably 220 to 250 ° C. By setting the spinning temperature within the above range, a stable molten state can be obtained and excellent spinning stability can be obtained.

紡糸口金1より溶融紡糸された糸条2は、次に冷却装置19にて冷却されるが、具体的な冷却方法としては、例えば、冷却装置19にて冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度で自然冷却する方法、および紡糸口金1と延伸装置3との間の距離を調整して自然冷却する方法等が挙げられる。また、これらの方法を組み合わせる方法を採用することもできる。なお、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸する温度および雰囲気温度等を考慮して適宜調整して採用することができる。 The yarn 2 melt-spun from the spinneret 1 is then cooled by the cooling device 19, and as a specific cooling method, for example, a method of forcibly blowing cold air onto the yarn by the cooling device 19. , A method of naturally cooling at the ambient temperature around the yarn, a method of adjusting the distance between the spinneret 1 and the drawing device 3, and the like. It is also possible to adopt a method that combines these methods. The cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature, and the like.

冷却装置19にて冷却された糸条は、その後、上記したように延伸装置3により張力が付与されて延伸され、コンベア4のネット上に吹き付けられ、コンベア4上で繊維ウェブを形成する。 The yarn cooled by the cooling device 19 is then tensioned and stretched by the stretching device 3 as described above, and is sprayed onto the net of the conveyor 4 to form a fiber web on the conveyor 4.

本発明の延伸装置3を用いた際の紡糸速度は、3,500〜6,500m/分であることが好ましく、より好ましくは4,000〜6,500m/分であり、さらに好ましくは4,500〜6,500m/分である。紡糸速度を3,500〜6,500m/分とすることにより、高い生産性を有することになり、また繊維の配向結晶化が進み高い強度の長繊維を得ることができる。このため高い強度の繊維で構成される不織布も強力に優れたものとなる。 The spinning speed when the stretching apparatus 3 of the present invention is used is preferably 3,500 to 6,500 m / min, more preferably 4,000 to 6,500 m / min, and even more preferably 4,. It is 500 to 6,500 m / min. By setting the spinning speed to 3,500 to 6,500 m / min, high productivity can be obtained, and the orientation and crystallization of the fibers proceed to obtain high-strength long fibers. Therefore, the non-woven fabric composed of high-strength fibers is also strongly excellent.

本発明にかかる延伸装置は、繊維ウェブの製造のみならず、衣料、産業等の用途で使用される繊維の製造にも用いることができる。その場合、上述の不織布製造と同様に紡糸、冷却、延伸して得られた繊維をボビン等に巻き取ればよい。 The stretching device according to the present invention can be used not only for producing fiber webs but also for producing fibers used in applications such as clothing and industry. In that case, the fibers obtained by spinning, cooling, and stretching may be wound around a bobbin or the like in the same manner as in the above-mentioned non-woven fabric production.

以下、実施例を挙げて本発明をさらに具体的に説明する。なお実施例における特性値の測定法等は次のとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples. The method for measuring the characteristic value in the examples is as follows.

(1)牽引力(N):
図6に牽引力の測定方法の概要図を示す。まず、張力計16(アイコーエンジニアリング社製 MODEL−RX−1)に、単糸1本の3号ナイロンテグス(ユタカメイク社製 A−154)17を固定し、延伸装置3の上部から気流通路9内にテグス17を垂らし、気流通路の最下点(流出口15)でテグス17を切断した状態とする。そして、延伸装置3に圧縮空気を供給し、その際に発生した張力(N)を張力計16にて測定した。この測定を5回繰り返し、その平均値(N)を牽引力とした。
(1) Traction force (N):
FIG. 6 shows a schematic diagram of a method for measuring traction force. First, a single yarn No. 3 nylon Tegs (A-154 manufactured by Yutaka Make Co., Ltd.) 17 is fixed to a tension meter 16 (MODEL-RX-1 manufactured by Aiko Engineering Co., Ltd.), and an air flow passage 9 is provided from the upper part of the stretching device 3. It is assumed that the Tegs 17 is hung inside and the Tegs 17 is cut at the lowest point (outlet 15) of the airflow passage. Then, compressed air was supplied to the stretching device 3, and the tension (N) generated at that time was measured with a tension meter 16. This measurement was repeated 5 times, and the average value (N) was used as the traction force.

(2)気流通路の内部の静圧(kPa):
図7に示すように、気流通路9の側壁部材20に穿孔された貫通穴である静圧測定口18に、圧力計(コパル電子社製 PG−100−102G)を密閉接続した状態で延伸装置3に圧縮空気を供給して、気流通路9の内部のゲージ圧(kPa)を測定した。なお、測定高さは気流噴射口下流側端部8の位置とした。この測定値を気流通路の内部の静圧として採用した。
(2) Static pressure (kPa) inside the airflow passage:
As shown in FIG. 7, a stretching device in a state where a pressure gauge (PG-100-102G manufactured by Copal Electronics Co., Ltd.) is hermetically connected to a static pressure measuring port 18 which is a through hole formed in a side wall member 20 of an airflow passage 9. Compressed air was supplied to No. 3, and the gauge pressure (kPa) inside the airflow passage 9 was measured. The measurement height was set to the position of the end portion 8 on the downstream side of the airflow injection port. This measured value was adopted as the static pressure inside the airflow passage.

(3)供給圧力(MPa)
常温、常湿の室内において、延伸装置3の気流供給部に圧力計(長野計器社製 GS50−171−0.6MP)を密閉接続した状態で延伸装置3に圧縮空気を供給して、内部のゲージ圧(MPa)を測定した。この測定値を延伸装置への供給圧力として採用した。
(3) Supply pressure (MPa)
In a room at room temperature and normal humidity, compressed air is supplied to the stretching device 3 with a pressure gauge (GS50-171-0.6MP manufactured by Nagano Keiki Co., Ltd.) sealedly connected to the airflow supply section of the stretching device 3 to supply compressed air inside. The gauge pressure (MPa) was measured. This measured value was adopted as the supply pressure to the stretching device.

(4)単繊維繊維径(μm):
延伸装置で牽引し、延伸した後、ネット上に捕集した繊維ウェブからランダムに小片サンプル10個を採取し、マイクロスコープで1000倍の表面写真を撮影した。各サンプルの写真から10本ずつ、計100本の繊維の幅を測定し、それらの平均値を単繊維繊維径として採用した。
(4) Single fiber Fiber diameter (μm):
After being towed by a stretching device and stretched, 10 small piece samples were randomly collected from the fiber web collected on the net, and a surface photograph of 1000 times was taken with a microscope. The widths of a total of 100 fibers were measured, 10 from the photographs of each sample, and the average value thereof was adopted as the single fiber fiber diameter.

(5)紡糸速度(m/分):
上記の単繊維繊維径と使用する樹脂の固形密度から長さ10,000m当たりの質量を単繊維繊度として、小数点以下第二位を四捨五入して算出した。単繊維繊度(dtex)と、各条件で設定した紡糸口金単孔から吐出される樹脂の吐出量(以下、単孔吐出量と略記する。)(g/分)から、次の式に基づき、紡糸速度を算出した。
紡糸速度=(10000×単孔吐出量)/単繊維繊度。
(5) Spinning speed (m / min):
It was calculated by rounding off the second decimal place with the mass per 10,000 m in length as the single fiber fineness from the above single fiber fiber diameter and the solid density of the resin used. Based on the single fiber fineness (dtex) and the discharge amount of the resin discharged from the single hole of the spinneret set under each condition (hereinafter, abbreviated as the single hole discharge amount) (g / min), based on the following formula. The spinning speed was calculated.
Spinning speed = (10000 x single hole discharge amount) / single fiber fineness.

[実施例1]
図1、図2に示す構成の装置にて、以下のとおり繊維ウェブを製造した。なお、延伸装置3は、気流通路9の断面が矩形であり、気流通路9の流入口14から流出口15までの長さLを200mm、第2気流通路11の長さLを50mm、第3気流通路12の長さLを50mm、第4気流通路13の長さLを50mmとした。また、第1気流通路の間隙Wを3mm、第2気流通路の間隙Wを3mm、第3気流通路の間隙Wを4mm、第4気流通路13の間隙Wを5mmとした。気流供給管の気流通路9に対する設置角度は15°とし、気流供給管の幅は0.2mmとした。また、延伸装置3への気流供給部には0.2MPaの圧縮空気を供給した。牽引力の測定を実施した結果、表1に示すように、37mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は−6.3kPaとなった。
[Example 1]
The fiber web was manufactured as follows by the apparatus having the configuration shown in FIGS. 1 and 2. The stretching device 3 has a rectangular cross section of the airflow passage 9, and the length L from the inflow port 14 to the outflow port 15 of the airflow passage 9 is 200 mm, the length L2 of the second airflow passage 11 is 50 mm, and the second. 3 50 mm length L 3 of the air flow passage 12, the length L 4 of the fourth air flow passage 13 was set to 50 mm. Also, the gap W 1 of the first air flow passage 3 mm, and the gap W 2 of the second air flow passage 3 mm, 4 mm gap W 3 of the third airflow passageway, a gap W 4 of the fourth air flow passage 13 and 5 mm. The installation angle of the airflow supply pipe with respect to the airflow passage 9 was 15 °, and the width of the airflow supply pipe was 0.2 mm. Further, 0.2 MPa of compressed air was supplied to the airflow supply unit to the stretching device 3. As a result of measuring the traction force, it was 37 mN as shown in Table 1. Further, the static pressure in the airflow passage 9 at the downstream end 8 of the airflow injection port was −6.3 kPa.

メルトフローレート(MFR)35g/10分のポリプロピレン樹脂を押出機で溶融し、紡糸温度235℃、孔径φ0.30mmの矩形の紡糸口金1から、単孔吐出量0.56g/分で紡出し、得られた糸条を、冷却装置19にて冷却固化した後、延伸装置3に供給圧力0.20MPaの圧縮空気を供給することで牽引、延伸し、移動するネット上に捕集してポリプロピレン長繊維からなる繊維ウェブを得た。 A polypropylene resin having a melt flow rate (MFR) of 35 g / 10 minutes is melted by an extruder and spun from a rectangular spinneret 1 having a spinning temperature of 235 ° C. and a hole diameter of φ0.30 mm at a single hole discharge rate of 0.56 g / min. The obtained fibers are cooled and solidified by the cooling device 19, and then towed and stretched by supplying compressed air having a supply pressure of 0.20 MPa to the drawing device 3, and collected on a moving net to have a polypropylene length. A fiber web consisting of fibers was obtained.

得られたポリプロピレン長繊維の特性は、単繊維繊維径が16.6μmであり、これから換算した紡糸速度は2,951m/分であった。 The characteristics of the obtained polypropylene long fibers were that the single fiber fiber diameter was 16.6 μm, and the spinning speed converted from this was 2,951 m / min.

[実施例2]
第2気流通路11と第3気流通路12と第4気流通路13との合計長さが長いパターンとして、気流通路9の流入口14から流出口15までの長さLを350mm、第2気流通路11の長さLを100mm、第3気流通路12の長さLを100mm、第4気流通路13の長さLを100mmとした以外は実施例1と同様にした。
[Example 2]
As a pattern in which the total length of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 is long, the length L from the inflow port 14 to the outflow port 15 of the airflow passage 9 is 350 mm, and the second airflow passage The same as in Example 1 except that the length L 2 of 11 was 100 mm, the length L 3 of the third air flow passage 12 was 100 mm, and the length L 4 of the fourth air flow passage 13 was 100 mm.

牽引力の測定を実施した結果、表1に示すように、40mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は−5.5kPaとなった。 As a result of measuring the traction force, it was 40 mN as shown in Table 1. Further, the static pressure in the airflow passage 9 at the downstream end 8 of the airflow injection port was −5.5 kPa.

得られたポリプロピレン長繊維の特性は、単繊維繊維径が16.1μmであり、これから換算した紡糸速度は3,043m/分であった。 The characteristics of the obtained polypropylene long fibers were that the single fiber fiber diameter was 16.1 μm, and the spinning speed converted from this was 3,043 m / min.

[実施例3]
第2気流通路11と第3気流通路12と第4気流通路13の合計長さが短いパターンとして、気流通路9の流入口14から流出口15までの長さLを140mm、第2気流通路11の長さLを30mm、第3気流通路12の長さLを30mm、第4気流通路13の長さLを30mmとした以外は実施例1と同様にした。
[Example 3]
As a pattern in which the total length of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 is short, the length L from the inflow port 14 to the outflow port 15 of the airflow passage 9 is 140 mm, and the second airflow passage 11 The same as in Example 1 except that the length L 2 of the third air flow passage 12 was 30 mm, the length L 3 of the third air flow passage 12 was 30 mm, and the length L 4 of the fourth air flow passage 13 was 30 mm.

牽引力の測定を実施した結果、表1に示すように、35mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は−7.2kPaとなった。 As a result of measuring the traction force, it was 35 mN as shown in Table 1. Further, the static pressure in the airflow passage 9 at the downstream end 8 of the airflow injection port was −7.2 kPa.

得られたポリプロピレン長繊維の特性は、単繊維繊維径は17.4μmであり、これから換算した紡糸速度は2816m/分であった。 The characteristics of the obtained polypropylene filaments were that the single fiber fiber diameter was 17.4 μm, and the spinning speed converted from this was 2816 m / min.

[実施例4]
気流流路9を形成する一対の外壁部材5の一方の通路形成面が、第2気流通路11から第4気流通路13の間で走行糸条方向と平行な連続的な一平面で形成されているパターンとして、図8に示すような延伸装置3を用いた以外は実施例1と同様にした。
[Example 4]
One passage forming surface of the pair of outer wall members 5 forming the air flow passage 9 is formed in a continuous one plane parallel to the traveling thread direction between the second air passage passage 11 and the fourth air flow passage 13. The pattern was the same as in Example 1 except that the stretching device 3 as shown in FIG. 8 was used.

牽引力の測定を実施した結果、表1に示すように、39mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は−6.5kPaとなった。 As a result of measuring the traction force, it was 39 mN as shown in Table 1. Further, the static pressure in the airflow passage 9 at the downstream end 8 of the airflow injection port was −6.5 kPa.

得られたポリプロピレン長繊維の特性は、単繊維繊維径が16.3μmであり、これから換算した紡糸速度は3,005m/分であった。 The characteristics of the obtained polypropylene long fibers were that the single fiber fiber diameter was 16.3 μm, and the spinning speed converted from this was 3,005 m / min.

[比較例1]
第2気流通路を拡大しないパターンとして、第2気流通路11の間隙Wを4mmとし、図2における第2気流通路と第3気流通路の断面形状、断面積が同じになるようにした以外は実施例1と同様にした。
[Comparative Example 1]
As a pattern which does not expand the second airflow passage, the gap W 2 of the second airflow passage 11 and 4 mm, the cross-sectional shape of the second air flow passage and the third air flow passage in FIG. 2, except that the cross-sectional area was set to the same The same as in Example 1.

牽引力の測定を実施した結果、表1に示すように、34mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は−7.0kPaとなった。 As a result of measuring the traction force, it was 34 mN as shown in Table 1. Further, the static pressure in the airflow passage 9 at the downstream end 8 of the airflow injection port was −7.0 kPa.

得られたポリプロピレン長繊維の特性は、単繊維繊維径が17.6μmであり、これから換算した紡糸速度は2,783m/分であった。 The characteristics of the obtained polypropylene long fibers were that the single fiber fiber diameter was 17.6 μm, and the spinning speed converted from this was 2,783 m / min.

[比較例2]
第4気流通路13を拡大しない(すなわち、実質的に第4気流通路を設けない)パターンとして、第4気流通路13の間隙Wを4mmとし、図2における第3気流通路と第4気流通路の断面形状、断面積が同じになるようにした以外は実施例1と同様にした。
[Comparative Example 2]
Not larger fourth airflow channel 13 (i.e., not provided substantially fourth airflow passage) as a pattern, a gap W 4 of the fourth air flow path 13 and 4 mm, the third air flow passage and the fourth air flow path in FIG. 2 The same as in Example 1 except that the cross-sectional shape and cross-sectional area of the above were the same.

牽引力の測定を実施した結果、表1に示すように、30mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は−5.8kPaとなった。 As a result of measuring the traction force, it was 30 mN as shown in Table 1. Further, the static pressure in the airflow passage 9 at the downstream end 8 of the airflow injection port was −5.8 kPa.

得られたポリプロピレン長繊維の特性は、単繊維繊維径は18.6μmであり、これから換算した紡糸速度は2,634m/分であった。 The characteristics of the obtained polypropylene filaments were that the single fiber fiber diameter was 18.6 μm, and the spinning speed converted from this was 2,634 m / min.

[比較例3]
第3気流通路12、第4気流通路13に対して第2気流通路11が長いパターンとして、気流通路9の流入口14から流出口15までの長さLを200mm、第2気流通路11の長さLを75mm、第3気流通路12の長さLを25mm、第4気流通路13の長さLを50mmとした以外は実施例1と同様にした。
[Comparative Example 3]
As a pattern in which the second airflow passage 11 is longer than the third airflow passage 12 and the fourth airflow passage 13, the length L from the inflow port 14 to the outflow port 15 of the airflow passage 9 is 200 mm, and the length of the second airflow passage 11 is 200 mm. The same as in Example 1 except that the length L 2 was 75 mm, the length L 3 of the third air flow passage 12 was 25 mm, and the length L 4 of the fourth air flow passage 13 was 50 mm.

牽引力の測定を実施した結果、表1に示すように、32mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は−5.5kPaとなった。得られたポリプロピレン長繊維の特性は、単繊維繊維径は18.1μmであり、これから換算した紡糸速度は2,707m/分であった。 As a result of measuring the traction force, it was 32 mN as shown in Table 1. Further, the static pressure in the airflow passage 9 at the downstream end 8 of the airflow injection port was −5.5 kPa. The characteristics of the obtained polypropylene filaments were that the single fiber fiber diameter was 18.1 μm, and the spinning speed converted from this was 2,707 m / min.

[比較例4]
第2気流通路11、第3気流通路12に対して第4気流通路13が長いパターンとして、気流通路9の流入口14から流出口15までの長さLを200mm、第2気流通路11の長さLを32.5mm、第3気流通路12の長さLを32.5mm、第4気流通路13の長さLを75mmとした以外は実施例1と同様にした。
[Comparative Example 4]
As a pattern in which the fourth airflow passage 13 is longer than the second airflow passage 11 and the third airflow passage 12, the length L from the inflow port 14 to the outflow port 15 of the airflow passage 9 is 200 mm, and the length of the second airflow passage 11 is 200 mm. The same as in Example 1 except that the length L 2 was 32.5 mm, the length L 3 of the third air flow passage 12 was 32.5 mm, and the length L 4 of the fourth air flow passage 13 was 75 mm.

牽引力の測定を実施した結果、表1に示すように、31mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は−6.6kPaとなった。 As a result of measuring the traction force, it was 31 mN as shown in Table 1. Further, the static pressure in the airflow passage 9 at the downstream end 8 of the airflow injection port was −6.6 kPa.

得られたポリプロピレン長繊維の特性は、単繊維繊維径は18.4μmであり、これから換算した紡糸速度は2,663m/分であった。 The characteristics of the obtained polypropylene long fibers were that the single fiber fiber diameter was 18.4 μm, and the spinning speed converted from this was 2,663 m / min.

Figure 0006965922
Figure 0006965922

本発明の延伸装置は、不織布用の糸条の延伸に限らず、各種の織編物など他の用途の糸条の延伸にも応用することができる。 The stretching device of the present invention can be applied not only to stretching yarns for non-woven fabrics but also to stretching yarns for other purposes such as various woven and knitted fabrics.

1:紡糸口金
2:糸条
3:延伸装置
4:コンベア
5:外壁部材
6:気流供給部のバッファ
7:気流噴射口
8:気流噴射口下流側端部
9:気流通路
10:第1気流通路
11:第2気流通路
12:第3気流通路
13:第4気流通路
14:流入口
15:流出口
16:張力計
17:テグス
18:静圧測定口
19:冷却装置
20:側壁部材
90:通路形成面
1: Spinning cap 2: Thread 3: Stretching device 4: Conveyor 5: Outer wall member 6: Airflow supply part buffer 7: Airflow injection port 8: Airflow injection port downstream end 9: Airflow passage 10: First airflow passage 11: 2nd airflow passage 12: 3rd airflow passage 13: 4th airflow passage
14: Inflow port 15: Outlet 16: Tension meter 17: Tegs 18: Static pressure measurement port 19: Cooling device 20: Side wall member 90: Passage forming surface

Claims (8)

熱可塑性ポリマを溶融紡糸して得られた糸条の流入口および流出口を有する通路内で、その糸条の走行経路の外側から内向きに気流を吹き付けて該糸条を延伸する延伸装置であって、糸条の流入口および流出口を有する前記通路は、第1気流通路、気流噴射口、第2気流通路、第3気流通路および第4気流通路を、糸条走行方向に関してこの順序で連続して備え、次の(i)〜(iv)を満足することを特徴とする延伸装置。
(i)前記第3気流通路は流路断面積が糸条走行方向に関して一定である。
(ii)前記第2気流通路は、流路断面積が前記第3気流通路よりも小さく、かつ、その流路断面積が糸条走行方向に関して一定および/または漸増している。
(iii)前記第4気流通路は、流路断面積が第3気流通路よりも大きく、かつ、その流路断面積が糸条走行方向に関して一定および/または漸増している。
(iv)前記第2気流通路の糸条走行方向の長さLと、前記第3気流通路の糸条走行方向の長さLと、前記第4気流通路の糸条走行方向の長さLとが、次の関係式を満足する。
(L+L)/(L+L+L)≧0.6
/(L+L+L)≦0.4
A drawing device that stretches the yarn by blowing an inward airflow from the outside of the traveling path of the yarn in a passage having an inlet and an outlet of the yarn obtained by melt-spinning a thermoplastic polymer. The passage having the inlet and outlet of the yarn includes the first air passage, the air inlet, the second air passage, the third air passage, and the fourth air passage in this order with respect to the traveling direction of the yarn. A stretching device that is continuously provided and satisfies the following (i) to (iv).
(I) In the third airflow passage, the cross-sectional area of the flow path is constant with respect to the thread traveling direction.
(Ii) The second airflow passage has a flow path cross-sectional area smaller than that of the third airflow passage, and the flow path cross-sectional area is constant and / or gradually increases with respect to the thread traveling direction.
(Iii) The fourth airflow passage has a larger flow path cross-sectional area than the third airflow passage, and the flow path cross-sectional area is constant and / or gradually increases with respect to the thread traveling direction.
(Iv) the length L 2 of the yarn running direction of the second air flow passage, the length of the third and the yarn running direction of the length L 3 of the air flow passage, the yarn running direction of the fourth air flow path L 4 satisfies the following relational expression.
(L 3 + L 4 ) / (L 2 + L 3 + L 4 ) ≧ 0.6
L 4 / (L 2 + L 3 + L 4 ) ≤ 0.4
前記Lと前記Lと前記Lとの和(mm)が次の関係式を満足する、請求項1に記載の延伸装置。
+L+L≧100
The stretching apparatus according to claim 1, wherein the sum (mm) of the L 2 and the L 3 and the L 4 satisfies the following relational expression.
L 2 + L 3 + L 4 ≧ 100
前記第2気流通路の最小流路断面積H2MINと、前記第3気流通路の流路断面積Hと前記第4気流通路の最大流路断面積H4MAXとが、次の関係式を満足する、請求項1または2に記載の延伸装置。
1.05≦H/H2MIN
1.05≦H4MAX/H
The minimum flow path cross-sectional area H 2MIN of the second air flow passage, the flow path cross-sectional area H 3 of the third air flow passage, and the maximum flow path cross-sectional area H 4MAX of the fourth air flow passage satisfy the following relational expression. The stretching device according to claim 1 or 2.
1.05 ≤ H 3 / H 2MIN
1.05 ≤ H 4MAX / H 3
糸条の流入口および流出口を有する前記通路は対向する一対の外壁部材から形成され、前記一対の外壁部材の一方の通路形成面は、糸条走行方向に関して前記第2気流通路から前記第4気流通路までの間が、前記糸条走行方向に平行な連続的な一平面で形成されている、請求項1から3のいずれかに記載の延伸装置。 The passage having the inlet and outlet of the thread is formed of a pair of outer wall members facing each other, and one passage forming surface of the pair of outer wall members is formed from the second air passage to the fourth in the thread traveling direction. The stretching device according to any one of claims 1 to 3, wherein the space to the air flow passage is formed by a continuous one plane parallel to the thread traveling direction. 紡糸口金と、紡糸された糸条の冷却装置と、請求項1から4のいずれかに記載の延伸装置とを、糸条走行方向にこの順序で有する、繊維の製造装置。 A fiber manufacturing apparatus having a spinneret, a cooling device for spun yarn, and a drawing device according to any one of claims 1 to 4 in this order in the yarn traveling direction. 紡糸口金と、紡糸された糸条の冷却装置と、請求項1から4のいずれかに記載の延伸装置と、ネットを備えた繊維ウェブのコンベアとを、糸条走行方向にこの順序で有する、繊維ウェブの製造装置。 A spinneret, a cooling device for spun yarn, a drawing device according to any one of claims 1 to 4, and a fiber web conveyor provided with a net are provided in this order in the yarn traveling direction. Textile web manufacturing equipment. 紡糸口金より熱可塑性ポリマを溶融紡糸することで糸条を形成し、該糸条を冷却固化した後、請求項1から4のいずれかに記載の延伸装置により前記糸条を延伸する、繊維の製造方法。 A fiber in which a yarn is formed by melt-spinning a thermoplastic polymer from a spinneret, the yarn is cooled and solidified, and then the yarn is drawn by the drawing apparatus according to any one of claims 1 to 4. Production method. 請求項1から6のいずれかに記載の装置を用いて繊維ウェブを製造する、繊維ウェブの製造方法。 A method for producing a fiber web, wherein the fiber web is produced using the apparatus according to any one of claims 1 to 6.
JP2019514048A 2018-03-29 2019-02-26 Stretching equipment, and fiber and fiber web manufacturing equipment and manufacturing methods Active JP6965922B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018064188 2018-03-29
JP2018064188 2018-03-29
PCT/JP2019/007201 WO2019187887A1 (en) 2018-03-29 2019-02-26 Stretching device as well as manufacturing device and manufacturing method for fiber and fiber web

Publications (2)

Publication Number Publication Date
JPWO2019187887A1 JPWO2019187887A1 (en) 2021-02-12
JP6965922B2 true JP6965922B2 (en) 2021-11-10

Family

ID=68061219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019514048A Active JP6965922B2 (en) 2018-03-29 2019-02-26 Stretching equipment, and fiber and fiber web manufacturing equipment and manufacturing methods

Country Status (4)

Country Link
JP (1) JP6965922B2 (en)
KR (1) KR102391138B1 (en)
CN (1) CN111868312B (en)
WO (1) WO2019187887A1 (en)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1760483A1 (en) * 1968-05-25 1971-04-08 Lutravil Spinnvlies Fibers
JPS4933712B1 (en) * 1970-12-26 1974-09-09
JPS60394U (en) * 1983-06-15 1985-01-05 旭化成株式会社 Yarn take-up nozzle device
JPH05230710A (en) * 1992-02-14 1993-09-07 Mitsubishi Rayon Co Ltd Production of thermoplastic polymer fiber
US5397413A (en) * 1992-04-10 1995-03-14 Fiberweb North America, Inc. Apparatus and method for producing a web of thermoplastic filaments
JPH05321014A (en) * 1992-05-08 1993-12-07 Toray Ind Inc Device for spinning and method for spinning
DE4414277C1 (en) * 1994-04-23 1995-08-31 Reifenhaeuser Masch Spun-bonded fabric plant of higher process yield and transfer coefft.
FR2792655B1 (en) * 1999-04-23 2001-06-01 Icbt Perfojet Sa INSTALLATION FOR THE MANUFACTURE OF A NONWOVEN TEXTILE TABLECLOTH AND METHOD FOR IMPLEMENTING SUCH AN INSTALLATION
JP3623402B2 (en) * 1999-07-15 2005-02-23 ユニ・チャーム株式会社 Cooling and stretching equipment
US6499981B1 (en) * 1999-07-26 2002-12-31 Kabushiki Kaisha Kobe Seiko Sho Drawing unit
MXPA02007125A (en) * 2000-01-20 2003-01-28 Du Pont Method for high speed spinning of bicomponent fibers.
JP2001303420A (en) * 2000-04-26 2001-10-31 Mitsui Chemicals Inc Method for producing highly uniform nonwoven fabric and device therefor
JP2002371428A (en) * 2001-06-08 2002-12-26 Kobe Steel Ltd Yarn-drawing apparatus
DK1340843T3 (en) * 2002-02-28 2008-05-05 Reifenhaeuser Gmbh & Co Kg Plant for continuous fabrication of a spun felt web
EP1510603A4 (en) * 2002-06-03 2006-12-13 Toray Industries Device and method for manufacturing thread line
KR20050016507A (en) * 2002-06-03 2005-02-21 도레이 가부시끼가이샤 Device and method for manufacturing thread line
DE602006012527D1 (en) * 2006-12-15 2010-04-08 Fare Spa Apparatus and process for producing a spunbonded mat
US8246898B2 (en) * 2007-03-19 2012-08-21 Conrad John H Method and apparatus for enhanced fiber bundle dispersion with a divergent fiber draw unit
AU2010329094B2 (en) * 2009-12-09 2016-04-21 Toray Industries, Inc. Method for producing long fiber nonwoven fabric

Also Published As

Publication number Publication date
JPWO2019187887A1 (en) 2021-02-12
CN111868312A (en) 2020-10-30
WO2019187887A1 (en) 2019-10-03
KR102391138B1 (en) 2022-04-28
CN111868312B (en) 2022-05-31
KR20200138204A (en) 2020-12-09

Similar Documents

Publication Publication Date Title
US8241024B2 (en) Forming melt spun nonwowen webs
KR840000196B1 (en) Method and apparatus for forming nonwoven webs
US4405297A (en) Apparatus for forming nonwoven webs
US6800226B1 (en) Method and device for the production of an essentially continous fine thread
RU2003118457A (en) METHOD AND DEVICE FOR MANUFACTURE ON THE EXISTENCE OF INFINITE THIN THREADS
US5439364A (en) Apparatus for delivering and depositing continuous filaments by means of aerodynamic forces
WO2003102278A1 (en) Device and method for manufacturing thread line
JP4271226B2 (en) Non-woven fabric manufacturing method and apparatus
US6984350B2 (en) Method of and apparatus for manufacturing a web having filaments aligned in a transverse direction
JP6965922B2 (en) Stretching equipment, and fiber and fiber web manufacturing equipment and manufacturing methods
CN106555236B (en) A kind of device and method preparing superfine fibre beam using meltblown
JP6676764B2 (en) Apparatus for producing spunbonded nonwoven
KR102670281B1 (en) Manufacturing method of nonwoven fabric
JP3883818B2 (en) Non-woven fabric manufacturing method and apparatus
CN108884618A (en) The manufacturing device of non-woven cloth, the manufacturing method of non-woven cloth and non-woven cloth
JP7168135B1 (en) NONWOVEN FABRIC MANUFACTURING APPARATUS AND MANUFACTURING METHOD
CN109072519B (en) Apparatus for producing nonwoven fabric and method for producing nonwoven fabric
CN108677254B (en) Melt-blowing nozzle and fiber preparation device
WO2023008052A1 (en) Nonwoven production device and production method
JP2002371428A (en) Yarn-drawing apparatus
JP3163821B2 (en) Fiber web production equipment
WO2023181740A1 (en) Fiber manufacturing method and fiber manufacturing device
JPH0480137B2 (en)
JP2018080405A (en) Method for producing resin fiber, and nozzle head and production device used therefor
JPH04174753A (en) Nonwoven filament cloth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210719

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R151 Written notification of patent or utility model registration

Ref document number: 6965922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151