WO2019187887A1 - Stretching device as well as manufacturing device and manufacturing method for fiber and fiber web - Google Patents

Stretching device as well as manufacturing device and manufacturing method for fiber and fiber web Download PDF

Info

Publication number
WO2019187887A1
WO2019187887A1 PCT/JP2019/007201 JP2019007201W WO2019187887A1 WO 2019187887 A1 WO2019187887 A1 WO 2019187887A1 JP 2019007201 W JP2019007201 W JP 2019007201W WO 2019187887 A1 WO2019187887 A1 WO 2019187887A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
passage
airflow
sectional area
airflow passage
Prior art date
Application number
PCT/JP2019/007201
Other languages
French (fr)
Japanese (ja)
Inventor
田村知樹
山本拓
箭内勝文
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020207026557A priority Critical patent/KR102391138B1/en
Priority to CN201980019338.2A priority patent/CN111868312B/en
Priority to JP2019514048A priority patent/JP6965922B2/en
Publication of WO2019187887A1 publication Critical patent/WO2019187887A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/222Stretching in a gaseous atmosphere or in a fluid bed
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding

Definitions

  • the present invention relates to a stretching apparatus, and a fiber and fiber web manufacturing apparatus and manufacturing method using the stretching apparatus.
  • Patent Document 1 discloses an open drawing apparatus.
  • gas is blown out into a passage in which an inlet for sucking a yarn group pushed out from a spinneret and an outlet for discharging a yarn group sucked from the inlet are formed, and a gas flow in a suction direction is formed.
  • a stretching device provided with a divergent portion in which the passage width on the outlet side is wider than the passage width on the inlet side between the gas injection port and the outlet of the passage. Has been.
  • the velocity of the mixed flow of the gas flow (primary gas flow) generated by being supplied from the injection port to the passage and the gas flow (secondary gas flow) generated by being sucked into the passage from the inlet of the passage The amount of decrease is reduced and the yarn swing in the passage is suppressed, and the secondary gas flow rate is increased, so even if the primary gas flow rate is the same, the spinning tension and spinning of the yarn group are the same. Speed can be increased and energy efficiency can be increased.
  • Patent Document 2 discloses a stretching apparatus in which the space from the spinneret to the cooling chamber and the stretching apparatus is a closed system.
  • the connection between the cooling chamber and the stretching device is closed with respect to the surroundings (a closed system in which air does not flow in and out), and at least one diffuser (flow passage restriction) is provided downstream of the stretching device. It has been proposed to provide widening. When this drawing apparatus is used, the spinning speed of the filament can be increased and a thinner filament can be obtained.
  • JP 2002-371428 A Japanese Patent No. 3704522
  • a region having a constant passage width between the gas injection port and the divergent portion is set to 1 to 10 of the passage width. It is preferably provided in the range of double (path length in the embodiment: 3 to 30 mm). That is, the idea of shortening the passage length (hereinafter referred to as a passage x) in a region having a constant passage width and increasing the passage length (hereinafter referred to as a passage y) at the divergent portion is disclosed.
  • the stretching apparatus of Patent Document 2 since the diaphragm is used and the throttle is provided in the middle of the flow path, the pressure loss increases in the throttle part, and sufficient gas cannot be supplied. Therefore, the high wind speed condition cannot be obtained, and it may be difficult to manufacture a fine filament. Furthermore, in the apparatus of Patent Document 2, the cooling chamber and the stretching apparatus become a closed system, and the filament is stretched in the stretching apparatus using the airflow supplied from the cooling chamber. There are restrictions on the amount of airflow that can be supplied, which may result in insufficient cooling of the filament. In addition, when a yarn is manufactured for a long time, filaments may accumulate on the narrowed portion, resulting in unevenness of the sheet.
  • an object of the present invention is to provide a drawing device capable of efficiently producing a pulling force on a yarn and capable of producing a yarn having a fineness with energy saving and stably.
  • Another object of the present invention is to provide a fiber and fiber web manufacturing apparatus and method using such a stretching apparatus.
  • the present invention has any one of the following configurations.
  • a passage having an inlet and an outlet for a yarn obtained by melt spinning a thermoplastic polymer an air stream is blown inward from the outside of the running path of the yarn to stretch the yarn.
  • the passage having the inlet and the outlet of the yarn includes the first airflow passage, the airflow injection port, the second airflow passage, the third airflow passage, and the fourth airflow passage with respect to the yarn traveling direction.
  • a stretching apparatus which is continuously provided in this order and satisfies the following (i) to (iv):
  • the third airflow passage has a constant flow path cross-sectional area with respect to the yarn traveling direction.
  • the second airflow passage has a flow passage cross-sectional area smaller than that of the third airflow passage, and the flow passage cross-sectional area is constant and / or gradually increased with respect to the yarn traveling direction.
  • the fourth airflow passage has a flow passage cross-sectional area larger than that of the third airflow passage, and the flow passage cross-sectional area is constant and / or gradually increased with respect to the yarn traveling direction.
  • the length L 2 of the yarn running direction of the second air flow passage, the length of the third and the yarn running direction of the length L 3 of the air flow passage, the yarn running direction of the fourth air flow path L 4 satisfies the following relational expression.
  • the passage having the yarn inlet and outlet is formed by a pair of opposed outer wall members, and one passage forming surface of the pair of outer wall members is separated from the second airflow passage in the yarn traveling direction.
  • the stretching apparatus according to any one of (1) to (3), wherein a space between the fourth airflow path and the fourth airflow path is formed as a continuous single plane parallel to the yarn traveling direction.
  • a fiber manufacturing apparatus having a spinneret, a cooling device for spun yarn, and a drawing device according to any one of (1) to (4) in the yarn traveling direction in this order. .
  • a yarn is formed by melt spinning a thermoplastic polymer from a spinneret, and the yarn is cooled and solidified, and then the yarn is stretched by the drawing apparatus according to any one of (1) to (4).
  • a method for producing a fiber A method for producing a fiber web, wherein a fiber web is produced using the apparatus according to any one of (1) to (6).
  • the “passage” refers to an airflow passage formed by an outer wall member that surrounds the outer side of the yarn travel path and having an inflow port and an outflow port that are open to the outside, in the following order: It is comprised by the continuous 1st airflow path, the airflow injection port, the 2nd airflow path, the 3rd airflow path, and the 4th airflow path.
  • the “inlet” refers to an opening that is disposed on the most upstream side in the yarn traveling direction of the passage and is open to the outside.
  • the “outlet” refers to an opening that is disposed on the most downstream side in the yarn traveling direction of the passage and is open to the outside.
  • the term “upstream” refers to a side closer to the spinneret in the main yarn traveling direction in which the thermoplastic polymer discharged from the spinneret is solidified by cooling and becomes a yarn.
  • the “downstream” means a side farther from the spinneret in the traveling direction of the main yarn that becomes a yarn by cooling and solidifying the thermoplastic polymer discharged from the spinneret.
  • the “air flow injection port” refers to an opening provided in the passage and through which gas is injected.
  • the “first airflow passage” means a portion from the inlet to the upstream end of the airflow injection port in the passage
  • the “second airflow passage” means an airflow in the passage. This refers to the interval from the downstream end of the injection port to the upstream end of the third airflow passage.
  • the “third airflow passage” refers to a portion of the passage that exists between the second airflow passage and the fourth airflow passage and has a constant cross-sectional area with respect to the yarn traveling direction.
  • the “fourth airflow passage” refers to a portion of the passage from the downstream end of the third airflow passage to the outlet.
  • the “minimum flow path cross-sectional area H 2MIN of the second air flow passage” means a flow break at a position in the second air flow passage where the cross-sectional area in the direction perpendicular to the running direction of the yarn is minimum. It refers to the area.
  • the “maximum flow path cross-sectional area H 4MAX of the fourth airflow path” means a flow path cross-sectional area at a position where the cross-sectional area in the direction perpendicular to the running direction of the yarn is maximum in the fourth airflow path.
  • the “flow passage cross-sectional area H 3 of the third airflow passage” refers to a flow passage cross-sectional area of the third airflow passage in a direction perpendicular to the yarn traveling direction.
  • the drawing device of the present invention by relatively elongating the section where the pulling force can be applied to the yarn, the yarn pulling effect in the drawing device is sufficiently expressed even if the gas supply amount is small. As a result, stable operation with energy saving becomes possible. Further, since the traction force can be sufficiently expressed, the spinning speed can be improved, and a yarn having a small single yarn fineness can be obtained. And when manufacturing a fiber web from the fiber obtained by doing in this way, it becomes possible to obtain the fiber web with a favorable texture with the reduction
  • FIG. 1 is an overall schematic cross-sectional view of a spinning device including a stretching device according to an embodiment of the present invention. It is a schematic sectional drawing of the extending
  • FIG. 1 is an overall schematic longitudinal sectional view of a spinning device provided with a stretching apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic longitudinal sectional view of the stretching apparatus used in FIG.
  • FIG.3, FIG.4, FIG.8 is a schematic longitudinal cross-sectional view of the other preferable form of the extending
  • the stretching apparatus of the present invention is used in, for example, a nonwoven fabric manufacturing apparatus, which, as shown in FIG. 1, captures fibers in a web shape on a spinneret 1, a cooling device 19, a stretching apparatus 3, and a moving net. Consists of a conveyor 4 and the like to collect. Although not shown, a mechanism for thermally bonding the fiber web is also provided on the downstream side of the conveyor 4.
  • thermoplastic polymer melt-spun from the spinneret 1, and the obtained yarn 2 is cooled by the cooling device 19 and then stretched by the stretching device 3 with tension applied.
  • the yarn 2 is then sprayed from the stretching device 3 onto the net of the conveyor 4 to form a fiber web on the conveyor 4.
  • a region where the yarn travels in the stretching device 3 a long rectangular region that is very long in the machine width direction (the depth direction of the drawing in FIG. 1) is formed.
  • the stretching device 3 has an airflow passage 9 that is sandwiched between outer wall members 5 from the upstream side to the downstream side in the yarn traveling direction, and an upstream end portion of the airflow passage 9.
  • the airflow passage 9 includes a first airflow passage 10 located downstream of the inflow port 14 in the yarn traveling direction, an airflow injection port 7 that communicates with the first airflow passage 10 and blows an airflow onto the yarn, and an airflow injection port. 7, the second airflow passage 11 located downstream in the yarn running direction, the third airflow passage 12 located downstream in the yarn running direction of the second airflow passage 11, and the downstream side of the third airflow passage 12.
  • the third airflow passage 12 has a constant flow path cross-sectional area in a direction perpendicular to the yarn traveling direction with respect to the yarn traveling direction, and the second airflow passage 11 is more in the yarn traveling direction than the third airflow passage 12.
  • the fourth airflow passage 13 includes a part of the outlet 15 through which the yarn flows out, and is perpendicular to the yarn traveling direction as compared with the third airflow passage 12.
  • the channel cross-sectional area of is large.
  • the gas introduced into the buffer unit 6 of the airflow supply means is then injected into the airflow passage 9 from the airflow injection port 7 through the gas supply pipe. Then, it passes through the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 and is discharged from the outlet 15 to the outside. According to the flow of the airflow, the yarn that flows in along with the airflow from the inlet 14 passes through the inside of the airflow passage 9 and is discharged from the outlet 15.
  • the stretching device 3 is generally called an ejector, and pulls and stretches the yarn by supplying a high-pressure compressed gas directly to the airflow passage 9.
  • a compressor is separately required, and accordingly, equipment costs are required, and utility costs are increased, leading to an increase in manufacturing costs. Therefore, in order to reduce the amount of compressed gas used, it is important to most effectively express the yarn pulling force in the drawing device 3, but the drawing force applied to the yarn by the drawing device is F, a constant.
  • the amount of gas flowing in from 14 is reduced. As a result, it has been found that there is a limit to narrowing the gap of the airflow passage 9 (that is, reducing the cross-sectional area of the flow path). Next, increasing the amount of gas supplied from the airflow injection port 7 is also considered to be an effective means for increasing the wind speed w of the gas, but naturally the amount of compressed air used is increased. This leads to an increase in manufacturing cost.
  • the present inventors have focused on the length and gap of the airflow passage 9.
  • the present inventors have found that by optimizing these, the amount of gas flowing in from the inlet 14 can be increased, and as a result, the traction force F of the yarn in the drawing device 3 can be increased.
  • the important point is the configuration of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 from the downstream end 8 of the airflow injection port to the outlet 15.
  • the third airflow passage 12 has a constant cross-sectional area with respect to the yarn traveling direction.
  • the second airflow passage 11 has a flow passage cross-sectional area smaller than that of the third airflow passage 12, and the flow passage cross-sectional area is constant and / or gradually increased with respect to the yarn traveling direction.
  • the fourth air flow passage 13 has a flow passage cross-sectional area larger than that of the third air flow passage 12, and the flow passage cross-sectional area is constant and / or gradually increased with respect to the yarn traveling direction.
  • the length of the third airflow passage 12 in the yarn traveling direction can be increased while maintaining the state where the static pressure in the airflow passage 9 is lowered. It becomes possible to maintain the high wind speed level of the airflow in the third airflow passage 12 for a long time. As a result, the yarn pulling force F can be effectively expressed.
  • the airflow passage 9 has a higher pressure than the outside, and gas may flow out from the inlet 14. As a result, the wind speed w of the gas in the third airflow passage 12 decreases, and the yarn pulling force cannot be obtained.
  • (L 3 + L 4 ) / (L 2 + L 3 + L 4 ) sufficiently secures a section in which the traction force with respect to the yarn is large (that is, the second airflow passage 11 having a high wind speed) and sufficiently exerts the traction force on the yarn. Therefore, it is preferably 0.99 or less.
  • L 4 / (L 2 + L 3 + L 4 ) is sufficient to sufficiently secure the section of the fourth airflow passage 13 and stabilize the flow in the fourth airflow passage 13 to sufficiently exhibit the diffuser effect. Moreover, it is preferable that it is 0.01 or more.
  • the second air flow passage 11 and the fourth air flow passage 13 each have a constant flow path cross-sectional area toward the downstream side in the yarn running direction in FIG. 2, but as shown in FIG. You may increase gradually as it goes to the downstream of a direction. In this case, the diffuser effect is easily exhibited in the second air flow passage 11 and the fourth air flow passage 13, and the static pressure in the air flow passage 9 is further reduced, so that the inflow amount of gas flowing in from the inflow port 14 is increased.
  • the taper is gradually increased.
  • the present invention is not limited to this, and the taper may be gradually increased.
  • FIG. 3 although it may increase gradually over the full length of the 2nd airflow path 11 and the 4th airflow path 13, only one part may increase gradually in a taper shape as shown in FIG.
  • the flow passage sectional area on the downstream side in the yarn traveling direction may be expanded at a stretch as shown in FIG. 2, or the second airflow passage may be configured as shown in FIGS. 11 and the fourth airflow passage 13 may be configured such that at least the vicinity of the communicating portion with the third airflow passage 12 is tapered so that the cross-sectional area of the flow path gradually increases. Moreover, the structure in which these were combined may be sufficient.
  • Forming the outer wall member 5 so that the cross-sectional area of the flow path is expanded at a stretch only at the communication portion has an advantage that it is easy to process in manufacturing the outer wall member 5, and is tapered in the vicinity of the communication portion.
  • the turbulent vortex is less likely to be generated when the gas passes, and the yarn disturbance can be suppressed.
  • the length of the yarn running direction of the second air flow passage 11 L 2 and the yarn running direction of the length L 3 of the third airflow passageway 12 yarn running direction of the fourth air flow passage 13 it is preferable that the sum of the length L 4 of the (mm) satisfies the following relation. L 2 + L 3 + L 4 ⁇ 100 With this configuration, the above-described yarn pulling force can be effectively generated.
  • the configuration satisfies the above relational expression, and that the sum is 250 or more.
  • the total length of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 is preferably 1500 mm or less, and more preferably 1000 mm or less.
  • the minimum flow path cross-sectional area H 2MIN of the second air flow passage 11, the flow path cross-sectional area H 3 of the third airflow passageway 12 and the maximum flow path cross-sectional area H 4MAX fourth airflow passage 13 It is preferable that the following relational expression is satisfied. 1.05 ⁇ H 3 / H 2MIN 1.05 ⁇ H 4MAX / H 3 With this configuration, the above-described yarn pulling force can be generated more effectively.
  • the ratio of the cross-sectional area of each flow path is less than 1.05, the flow path is not sufficiently enlarged toward the downstream side in the yarn traveling direction when viewed as the entire airflow passage.
  • the ratio of the respective channel cross-sectional areas is preferably 3 or less.
  • one passage forming surface of the pair of outer wall members 5 forming the air flow passage is in the running yarn direction between the second air flow passage 11 and the fourth air flow passage 13 as shown in FIG. It is preferable that it is formed in one continuous plane parallel to the running yarn direction so that the distance from the yarn is constant. With this configuration, a portion where the flow path does not expand is continuously formed on one side of the yarn in the second air flow passage 11 to the fourth air flow passage 13, and as a result, in the vicinity of the portion. An air flow with less turbulence is continuously formed, and it becomes possible to express traction force to the yarn more efficiently.
  • various materials such as metals, alloys, ceramics, and resins can be employed as the material of the outer wall member 5.
  • metals are preferable from the viewpoints of strength and wear resistance.
  • the cross-sectional shape of the airflow passage 9 in the direction perpendicular to the yarn running direction various shapes such as a round shape and a rectangular shape can be adopted.
  • a rectangular shape is preferable from the viewpoint that the amount of compressed air used is relatively small and the yarns are not easily fused or scratched.
  • the length of the first airflow passage 10 in the yarn traveling direction is shortened, the pressure loss in the flow path is reduced, and the amount of gas flowing in from the inlet 14 is increased. Therefore, the length is 100 mm. It is preferable to make it below, and it is more preferable to make it below 50 mm.
  • the cross-sectional area of the first airflow passage 10 in the direction perpendicular to the yarn traveling direction can be set within a range in which the yarn can flow. Since the pressure loss in the first airflow passage 10 decreases and the amount of gas flowing in from the inlet 14 increases, the minimum cross-sectional area in the direction perpendicular to the yarn traveling direction of the second airflow passage 11 is reduced. On the other hand, it is preferably wide, and more preferably wider than the maximum cross-sectional area in the direction perpendicular to the yarn running direction of the fourth airflow passage 13.
  • the gas supply pipe connecting the buffer 6 and the airflow injection port 7 preferably has an angle of 30 ° or less with respect to the airflow passage 9 from the viewpoint of suppressing a decrease in wind speed in the airflow passage 9. More preferably, a decrease in wind speed can be suppressed by setting the angle to 15 ° or less.
  • the shape of the gas supply pipe the cross-sectional shape in a direction perpendicular to the air flow direction in the gas supply pipe is preferably rectangular. Such a cross-section may be enlarged as the cross-sectional area is constant with respect to the airflow direction in the gas supply pipe or toward the airflow injection port 7, but the effect of the Laval nozzle that increases the wind speed due to adiabatic expansion in the sonic region is obtained. It is more preferable to enlarge toward the airflow injection port 7 so as to be obtained.
  • Air is the most economical and preferable airflow supplied to the yarn from the airflow injection port 7, but may be mixed gas, steam, saturated steam, or heated steam.
  • air stream having a high density because the density ⁇ of the air stream is also related as in the above formula (A).
  • the temperature of the air flow is most economically preferable at normal temperature, but is not limited thereto.
  • the humidity of the airflow is not controlled because the air is taken in. However, this is not the case. For example, by using a high-humidity airflow, the traction force of the yarn is improved. It becomes possible to make it.
  • the present invention is an extremely versatile invention and can be applied to the production of all known fiber webs. Therefore, it is not particularly limited by the polymer constituting the fiber web.
  • examples of polymers constituting the fiber web include polyester, polyamide, polyphenylene sulfide, polyolefin, polyethylene, polypropylene, and the like.
  • matting agents such as titanium dioxide, silicon oxide, kaolin, anti-coloring agents, stabilizers, antioxidants, deodorants, flame retardants, yarn friction, as long as the spinning stability is not impaired.
  • Various functional particles such as a reducing agent, a color pigment, and a surface modifier, additives such as organic compounds may be contained, and copolymerization may be included.
  • the polymer constituting the fiber web may be composed of a single component or a plurality of components.
  • examples of the configuration include a core sheath and side-by-side.
  • the cross-sectional shape of the fibers forming the fiber web may be irregular, such as round, triangular, flat, or hollow.
  • the single yarn fineness of the fiber web is not particularly limited.
  • the number of single yarns of the fiber web is not particularly limited, but the difference from the conventional technology becomes clearer as the number of single yarns of the fiber web increases.
  • a polyolefin resin is melt-spun from a spinneret 1.
  • the spinning temperature at this time is preferably 200 to 270 ° C., more preferably 210 to 260 ° C., and further preferably 220 to 250 ° C.
  • the yarn 2 melt-spun from the spinneret 1 is then cooled by the cooling device 19.
  • a cooling device 19 forcibly blows cold air onto the yarn.
  • a method of natural cooling at the ambient temperature around the yarn a method of natural cooling by adjusting the distance between the spinneret 1 and the drawing device 3, and the like. A method combining these methods can also be employed.
  • the cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature, and the like.
  • the yarn cooled by the cooling device 19 is then stretched by being applied with tension by the stretching device 3 as described above, and blown onto the net of the conveyor 4 to form a fiber web on the conveyor 4.
  • the spinning speed when using the stretching apparatus 3 of the present invention is preferably 3,500 to 6,500 m / min, more preferably 4,000 to 6,500 m / min, and still more preferably 4,500 to 6,500 m / min. 500 to 6,500 m / min.
  • the spinning speed is preferably 3,500 to 6,500 m / min, more preferably 4,000 to 6,500 m / min, and still more preferably 4,500 to 6,500 m / min. 500 to 6,500 m / min.
  • the stretching apparatus according to the present invention can be used not only for the production of fiber webs but also for the production of fibers used in applications such as clothing and industry.
  • the fiber obtained by spinning, cooling, and stretching may be wound around a bobbin or the like in the same manner as the above-described nonwoven fabric production.
  • FIG. 6 shows a schematic diagram of the traction force measurement method.
  • a single nylon No. 3 nylon teg (A-154 made by Yutaka Make) 17 is fixed to a tension meter 16 (MODEL-RX-1 made by Aiko Engineering Co., Ltd.), and an air flow passage 9 is formed from the upper part of the drawing device 3.
  • the guts 17 are hung inside, and the guts 17 are cut at the lowest point (outlet 15) of the airflow passage.
  • compressed air was supplied to the stretching device 3, and the tension (N) generated at that time was measured with a tension meter 16. This measurement was repeated 5 times, and the average value (N) was taken as the traction force.
  • Spinning speed (10000 ⁇ single hole discharge amount) / single fiber fineness.
  • Example 1 A fiber web was manufactured as follows using the apparatus having the configuration shown in FIGS. Incidentally, the stretching device 3, the cross section of the air flow passage 9 is rectangular, the length L from the inlet 14 of the air flow passage 9 to the outlet port 15 200 mm, 50 mm and length L 2 of the second air flow passage 11, the 3 50 mm length L 3 of the air flow passage 12, the length L 4 of the fourth air flow passage 13 was set to 50 mm. Also, the gap W 1 of the first air flow passage 3 mm, and the gap W 2 of the second air flow passage 3 mm, 4 mm gap W 3 of the third airflow passageway, a gap W 4 of the fourth air flow passage 13 and 5 mm.
  • the installation angle of the airflow supply pipe with respect to the airflow passage 9 was 15 °, and the width of the airflow supply pipe was 0.2 mm.
  • 0.2 MPa compressed air was supplied to the air flow supply unit to the stretching device 3.
  • the static pressure in the airflow passage 9 at the downstream end 8 of the airflow injection port was ⁇ 6.3 kPa.
  • a polypropylene resin having a melt flow rate (MFR) of 35 g / 10 min was melted by an extruder and spun from a rectangular spinneret 1 with a spinning temperature of 235 ° C. and a hole diameter of 0.30 mm at a single hole discharge rate of 0.56 g / min.
  • MFR melt flow rate
  • a fiber web made of fibers was obtained.
  • the properties of the obtained polypropylene long fiber were a single fiber diameter of 16.6 ⁇ m, and a spinning speed calculated from this was 2,951 m / min.
  • Example 2 As a pattern in which the total length of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 is long, the length L from the inlet 14 to the outlet 15 of the airflow passage 9 is 350 mm, and the second airflow passage 11 100mm length L 2 of the length L 3 of 100mm of the third airflow passageway 12, except that the length L 4 of the fourth air flow path 13 and 100mm were the same as in example 1.
  • the characteristics of the obtained polypropylene long fiber were a monofilament fiber diameter of 16.1 ⁇ m, and a spinning speed calculated from this was 3,043 m / min.
  • Example 3 As a pattern in which the total length of the second airflow passage 11, the third airflow passage 12 and the fourth airflow passage 13 is short, the length L from the inlet 14 to the outlet 15 of the airflow passage 9 is 140 mm, and the second airflow passage 11. length L 2 to 30mm, length L 3 of the 30mm of the third airflow passageway 12, except that the length L 4 of the fourth air flow path 13 and 30mm were the same as in example 1.
  • the properties of the obtained polypropylene long fiber were as follows: the single fiber diameter was 17.4 ⁇ m, and the spinning speed calculated from this was 2816 m / min.
  • Example 4 One passage forming surface of the pair of outer wall members 5 forming the air flow passage 9 is formed by a continuous single plane parallel to the traveling yarn direction between the second air flow passage 11 and the fourth air flow passage 13. The same pattern as that of Example 1 was used except that a stretching apparatus 3 as shown in FIG.
  • the properties of the obtained polypropylene long fiber were a single fiber diameter of 16.3 ⁇ m, and a spinning speed calculated from this was 3,005 m / min.
  • the properties of the obtained polypropylene long fiber were a single fiber diameter of 17.6 ⁇ m, and a spinning speed calculated from this was 2,783 m / min.
  • Example 2 Not larger fourth airflow channel 13 (i.e., not provided substantially fourth airflow passage) as a pattern, a gap W 4 of the fourth air flow path 13 and 4 mm, the third air flow passage and the fourth air flow path in FIG. 2 Example 1 was the same as Example 1 except that the cross-sectional shape and the cross-sectional area were the same.
  • the properties of the obtained polypropylene long fiber were as follows: the single fiber fiber diameter was 18.6 ⁇ m, and the spinning speed calculated from this was 2,634 m / min.
  • the traction force As a result of measuring the traction force, it was 32 mN as shown in Table 1.
  • the static pressure in the airflow passage 9 at the downstream end 8 on the airflow injection port was ⁇ 5.5 kPa.
  • the single fiber fiber diameter was 18.1 ⁇ m, and the spinning speed calculated from this was 2,707 m / min.
  • the properties of the obtained polypropylene long fiber were as follows: the single fiber fiber diameter was 18.4 ⁇ m, and the spinning speed calculated from this was 2,663 m / min.
  • the stretching device of the present invention can be applied not only to stretching yarns for nonwoven fabrics but also to stretching yarns for other uses such as various woven and knitted fabrics.

Abstract

In order to provide a stretching device that is capable of efficiently applying a traction force to yarns, thus making it possible to stably manufacture fine yarns while saving energy, the present invention provides a stretching device that stretches a yarn obtained by subjecting a thermoplastic polymer to melt spinning and blowing air onto the yarn inwardly from outside a transfer path of the yarn in a channel having an inlet and an outlet for the yarn, the stretching device being characterized in that the channel having the inlet and the outlet for the yarn is provided with a first airflow channel, an airflow jetting hole, a second airflow channel, a third airflow channel, and a fourth airflow channel, continuously in this order along the yarn transfer direction, and in that the following (i) to (iv) are satisfied. (i) The third airflow channel has a fixed flow channel sectional area along the yarn transfer direction. (ii) The second airflow channel has a smaller flow channel sectional area than the third airflow channel, and the flow channel sectional area thereof is fixed and/or gradually increases along the yarn transfer direction. (iii) The fourth airflow channel has a greater flow channel sectional area than the third airflow channel, and the flow channel sectional area thereof is constant and/or gradually increases along the yarn transfer direction. (iv) The length L2 of the second airflow channel in the yarn transfer direction, the length L3 of the third airflow channel in the yarn transfer direction, and the length L4 of the fourth airflow channel in the yarn transfer direction satisfy the following relationships: (L3 + L4) / (L2 + L3 + L4) ≥ 0.6 and L4 / (L2 + L3 + L4) ≤ 0.4.

Description

延伸装置、ならびに、繊維および繊維ウェブの製造装置および製造方法Stretching apparatus, and fiber and fiber web manufacturing apparatus and manufacturing method
 本発明は、延伸装置、ならびに、それを用いた繊維および繊維ウェブの製造装置および製造方法に関する。 The present invention relates to a stretching apparatus, and a fiber and fiber web manufacturing apparatus and manufacturing method using the stretching apparatus.
 従来、不織布の製造において、紡糸口金から糸状に吐出された熱可塑性ポリマを延伸する方法については、様々な研究・開発がなされており、幾つかの装置構造にて実施されている。一般的なものとしては、紡糸孔を有する紡糸口金から吐出された糸の走行経路において、糸の上流から下流方向に高速の気体を供給することにより、糸に張力を付与し、糸を細繊化させる延伸装置がある。上記延伸装置から排出された糸をコレクタに定着させることにより不織布が連続的に製造される。 Conventionally, in the production of nonwoven fabrics, various researches and developments have been made on a method of stretching a thermoplastic polymer discharged from a spinneret into a thread shape, and it has been implemented in several apparatus structures. Generally, in the traveling path of a yarn discharged from a spinneret having a spinning hole, a high-speed gas is supplied from the upstream side to the downstream side of the yarn to impart tension to the yarn, thereby finely tying the yarn. There is a stretching device to make it. The nonwoven fabric is continuously produced by fixing the yarn discharged from the drawing device to the collector.
 より具体的には、例えば、開放系での延伸装置が特許文献1で開示されている。特許文献1では、紡糸口金から押し出される糸条群を吸引する入口と該入口から吸引された糸条群を排出する出口とが形成された通路内に、気体を噴出して吸引方向の気体流を形成するための気体噴出口を設けるとともに、前記通路の気体噴射口と前記出口との間に、出口側の通路幅が入口側の通路幅よりも広がった末広がり部を設けた延伸装置が提案されている。この装置を用いると、噴射口から通路に供給されて発生する気体流(一次気体流)と通路の入口から通路内に吸引されて発生する気体流(二次気体流)との混合流の速度低下量が少なくなって通路内での糸条の振れが抑制されると共に、二次気体流の風量が増加することにより、一次気体流の流量が同じだとしても糸条群の紡糸張力と紡糸速度を高め、エネルギー効率を高めることができる。 More specifically, for example, Patent Document 1 discloses an open drawing apparatus. In Patent Document 1, gas is blown out into a passage in which an inlet for sucking a yarn group pushed out from a spinneret and an outlet for discharging a yarn group sucked from the inlet are formed, and a gas flow in a suction direction is formed. And a stretching device provided with a divergent portion in which the passage width on the outlet side is wider than the passage width on the inlet side between the gas injection port and the outlet of the passage. Has been. Using this device, the velocity of the mixed flow of the gas flow (primary gas flow) generated by being supplied from the injection port to the passage and the gas flow (secondary gas flow) generated by being sucked into the passage from the inlet of the passage The amount of decrease is reduced and the yarn swing in the passage is suppressed, and the secondary gas flow rate is increased, so even if the primary gas flow rate is the same, the spinning tension and spinning of the yarn group are the same. Speed can be increased and energy efficiency can be increased.
 また、紡糸口金から冷却室、延伸装置までの空間が密閉系である延伸装置が特許文献2で開示されている。特許文献2では、冷却室と延伸装置との接続は周囲に対して閉鎖(空気の流入出が無い密閉系)された構成とし、延伸装置の下流側に少なくとも1個のディフューザー(流路の絞りと拡幅を形成)を設けることが提案されている。この延伸装置を用いるとフィラメントの紡糸速度を高め、より細いフィラメントを得ることができる。 Further, Patent Document 2 discloses a stretching apparatus in which the space from the spinneret to the cooling chamber and the stretching apparatus is a closed system. In Patent Document 2, the connection between the cooling chamber and the stretching device is closed with respect to the surroundings (a closed system in which air does not flow in and out), and at least one diffuser (flow passage restriction) is provided downstream of the stretching device. It has been proposed to provide widening. When this drawing apparatus is used, the spinning speed of the filament can be increased and a thinner filament can be obtained.
特開2002-371428号公報JP 2002-371428 A 特許第3704522号公報Japanese Patent No. 3704522
 しかしながら、特許文献1の延伸装置では、延伸装置通路内の気流の抵抗およびそれによる損失を小さくする観点から、気体噴射口から末広がり部の間に通路幅一定の領域を、通路幅の1~10倍(実施例の通路長さ:3~30mm)の範囲で設けることが好ましいとされている。すなわち、通路幅一定の領域の通路長さ(以降、通路xと呼ぶ)を短く、末広がり部での通路長さ(以降、通路yと呼ぶ)を長くする思想が開示されている。しかしながら、このような通路xが短く、通路yが長くなる構成では、糸条群を延伸させるための牽引力が十分に得られず、糸条群の紡糸張力と紡糸速度が低下してしまう場合がある。さらに特許文献1の実施例では、延伸装置の糸走行方向の全体長さが100mmと糸に張力を付与する区間が短い構成となっており、牽引力が通路長さに比例することから、十分に糸条群を延伸させ、細繊度のフィラメントを製造するための紡糸張力を得るには不十分な場合がある。 However, in the stretching apparatus of Patent Document 1, from the viewpoint of reducing the resistance of the air flow in the stretching apparatus passage and the loss caused thereby, a region having a constant passage width between the gas injection port and the divergent portion is set to 1 to 10 of the passage width. It is preferably provided in the range of double (path length in the embodiment: 3 to 30 mm). That is, the idea of shortening the passage length (hereinafter referred to as a passage x) in a region having a constant passage width and increasing the passage length (hereinafter referred to as a passage y) at the divergent portion is disclosed. However, in such a configuration in which the passage x is short and the passage y is long, sufficient traction force for stretching the yarn group cannot be obtained, and the spinning tension and spinning speed of the yarn group may be reduced. is there. Furthermore, in the example of Patent Document 1, the entire length of the drawing device in the yarn traveling direction is 100 mm, and the section for applying tension to the yarn is short, and the traction force is proportional to the passage length. It may be insufficient to obtain a spinning tension for drawing the yarn group and producing a fine filament.
 また、特許文献2の延伸装置では、ディフューザーの構成を用い、流路の途中に絞りを設けていることから、絞り部において圧損が増大し、十分な気体を供給できなくなる。そのため、高風速の条件を得ることができず、延いては、細繊度のフィラメントを製造することが困難になる場合がある。さらに、特許文献2の装置では、冷却室と延伸装置とが密閉系となり、冷却室から供給する気流を用いて、延伸装置でのフィラメントの延伸を行うため、上記の理由より、冷却室にて供給できる気流の量に制約があり、フィラメントの冷却不足が発生する場合がある。また、長時間糸条を製造する際には、絞り部にフィラメントが堆積し、シートの目付斑が生じる場合がある。 Further, in the stretching apparatus of Patent Document 2, since the diaphragm is used and the throttle is provided in the middle of the flow path, the pressure loss increases in the throttle part, and sufficient gas cannot be supplied. Therefore, the high wind speed condition cannot be obtained, and it may be difficult to manufacture a fine filament. Furthermore, in the apparatus of Patent Document 2, the cooling chamber and the stretching apparatus become a closed system, and the filament is stretched in the stretching apparatus using the airflow supplied from the cooling chamber. There are restrictions on the amount of airflow that can be supplied, which may result in insufficient cooling of the filament. In addition, when a yarn is manufactured for a long time, filaments may accumulate on the narrowed portion, resulting in unevenness of the sheet.
 そこで、本発明の目的は、糸条への牽引力を効率的に作用させることができる、省エネルギーで安定的に細繊度の糸条を製造可能な延伸装置を提供することにある。また、本発明は、かかる延伸装置を用いた繊維および繊維ウェブの製造装置や製造方法を提供することも目的とする。 Therefore, an object of the present invention is to provide a drawing device capable of efficiently producing a pulling force on a yarn and capable of producing a yarn having a fineness with energy saving and stably. Another object of the present invention is to provide a fiber and fiber web manufacturing apparatus and method using such a stretching apparatus.
 上記目的を達成するための本発明は、以下のいずれかの構成をとるものである。
(1) 熱可塑性ポリマを溶融紡糸して得られた糸条の流入口および流出口を有する通路内で、その糸条の走行経路の外側から内向きに気流を吹き付けて該糸条を延伸する延伸装置であって、糸条の流入口および流出口を有する前記通路は、第1気流通路、気流噴射口、第2気流通路、第3気流通路および第4気流通路を、糸条走行方向に関してこの順序で連続して備え、次の(i)~(iv)を満足することを特徴とする延伸装置。
(i)前記第3気流通路は流路断面積が糸条走行方向に関して一定である。
(ii)前記第2気流通路は、流路断面積が前記第3気流通路よりも小さく、かつ、その流路断面積が糸条走行方向に関して一定および/または漸増している。
(iii)前記第4気流通路は、流路断面積が第3気流通路よりも大きく、かつ、その流路断面積が糸条走行方向に関して一定および/または漸増している。
(iv)前記第2気流通路の糸条走行方向の長さLと、前記第3気流通路の糸条走行方向の長さLと、前記第4気流通路の糸条走行方向の長さLとが、次の関係式を満足する。
(L+L)/(L+L+L)≧0.6
/(L+L+L)≦0.4
(2) 前記Lと前記Lと前記Lとの和(mm)が次の関係式を満足する、前記(1)に記載の延伸装置。
+L+L≧100
(3) 前記第2気流通路の最小流路断面積H2MINと、前記第3気流通路の流路断面積Hと前記第4気流通路の最大流路断面積H4MAXとが、次の関係式を満足する、前記(1)または(2)に記載の延伸装置。
1.05≦H/H2MIN
1.05≦H4MAX/H
(4) 糸条の流入口および流出口を有する前記通路は対向する一対の外壁部材から形成され、前記一対の外壁部材の一方の通路形成面は、糸条走行方向に関して前記第2気流通路から前記第4気流通路までの間が、前記糸条走行方向に平行な連続的な一平面で形成されている、前記(1)から(3)のいずれかに記載の延伸装置。
(5) 紡糸口金と、紡糸された糸条の冷却装置と、前記(1)から(4)のいずれかに記載の延伸装置とを、糸条走行方向にこの順序で有する、繊維の製造装置。
(6) 紡糸口金と、紡糸された糸条の冷却装置と、前記(1)から(4)のいずれかに記載の延伸装置と、ネットを備えた繊維ウェブのコンベアとを、糸条走行方向にこの順序で有する、繊維ウェブの製造装置。
(7) 紡糸口金より熱可塑性ポリマを溶融紡糸することで糸条を形成し、該糸条を冷却固化した後、前記(1)から(4)のいずれかに記載の延伸装置により前記糸条を延伸する、繊維の製造方法。
(8) 前記(1)から(6)のいずれかに記載の装置を用いて繊維ウェブを製造する、繊維ウェブの製造方法。
In order to achieve the above object, the present invention has any one of the following configurations.
(1) In a passage having an inlet and an outlet for a yarn obtained by melt spinning a thermoplastic polymer, an air stream is blown inward from the outside of the running path of the yarn to stretch the yarn. In the drawing apparatus, the passage having the inlet and the outlet of the yarn includes the first airflow passage, the airflow injection port, the second airflow passage, the third airflow passage, and the fourth airflow passage with respect to the yarn traveling direction. A stretching apparatus which is continuously provided in this order and satisfies the following (i) to (iv):
(I) The third airflow passage has a constant flow path cross-sectional area with respect to the yarn traveling direction.
(Ii) The second airflow passage has a flow passage cross-sectional area smaller than that of the third airflow passage, and the flow passage cross-sectional area is constant and / or gradually increased with respect to the yarn traveling direction.
(Iii) The fourth airflow passage has a flow passage cross-sectional area larger than that of the third airflow passage, and the flow passage cross-sectional area is constant and / or gradually increased with respect to the yarn traveling direction.
(Iv) the length L 2 of the yarn running direction of the second air flow passage, the length of the third and the yarn running direction of the length L 3 of the air flow passage, the yarn running direction of the fourth air flow path L 4 satisfies the following relational expression.
(L 3 + L 4 ) / (L 2 + L 3 + L 4 ) ≧ 0.6
L 4 / (L 2 + L 3 + L 4 ) ≦ 0.4
(2) the sum of the L 2 and the L 3 and the L 4 (mm) satisfies the following relationship, stretching apparatus according to (1).
L 2 + L 3 + L 4 ≧ 100
(3) The minimum flow path cross-sectional area H 2MIN of the second air flow path, the flow path cross-sectional area H 3 of the third air flow path, and the maximum flow cross-sectional area H 4MAX of the fourth air flow path are as follows: The stretching apparatus according to (1) or (2), which satisfies the formula.
1.05 ≦ H 3 / H 2MIN
1.05 ≦ H 4MAX / H 3
(4) The passage having the yarn inlet and outlet is formed by a pair of opposed outer wall members, and one passage forming surface of the pair of outer wall members is separated from the second airflow passage in the yarn traveling direction. The stretching apparatus according to any one of (1) to (3), wherein a space between the fourth airflow path and the fourth airflow path is formed as a continuous single plane parallel to the yarn traveling direction.
(5) A fiber manufacturing apparatus having a spinneret, a cooling device for spun yarn, and a drawing device according to any one of (1) to (4) in the yarn traveling direction in this order. .
(6) A spinneret, a cooling device for the spun yarn, a drawing device according to any one of (1) to (4), and a fiber web conveyor provided with a net, in the yarn running direction In this order, the fiber web manufacturing apparatus.
(7) A yarn is formed by melt spinning a thermoplastic polymer from a spinneret, and the yarn is cooled and solidified, and then the yarn is stretched by the drawing apparatus according to any one of (1) to (4). A method for producing a fiber.
(8) A method for producing a fiber web, wherein a fiber web is produced using the apparatus according to any one of (1) to (6).
 ここで、本発明において「通路」とは、糸条の走行経路の外側を包囲する外壁部材によって形成された、流入口と流出口とが外部に開放された気流通路をいい、以下の順序で連続する第1気流通路、気流噴射口、第2気流通路、第3気流通路、および第4気流通路によって構成される。 Here, in the present invention, the “passage” refers to an airflow passage formed by an outer wall member that surrounds the outer side of the yarn travel path and having an inflow port and an outflow port that are open to the outside, in the following order: It is comprised by the continuous 1st airflow path, the airflow injection port, the 2nd airflow path, the 3rd airflow path, and the 4th airflow path.
 本発明において、「流入口」とは、前記通路の糸条走行方向の最も上流側に配設され、外部に開放された開口部をいう。一方、「流出口」とは、前記通路の糸条走行方向の最も下流側に配設され、外部に開放された開口部をいう。なお、「上流」とは、紡糸口金から吐出される熱可塑性ポリマが冷却固化して糸条となる主たる糸条走行方向において、紡糸口金に近い側をいう。一方、「下流」とは、紡糸口金から吐出される熱可塑性ポリマが冷却固化して糸条となる主たる糸条の走行方向において、紡糸口金から遠い側をいう。 In the present invention, the “inlet” refers to an opening that is disposed on the most upstream side in the yarn traveling direction of the passage and is open to the outside. On the other hand, the “outlet” refers to an opening that is disposed on the most downstream side in the yarn traveling direction of the passage and is open to the outside. The term “upstream” refers to a side closer to the spinneret in the main yarn traveling direction in which the thermoplastic polymer discharged from the spinneret is solidified by cooling and becomes a yarn. On the other hand, the “downstream” means a side farther from the spinneret in the traveling direction of the main yarn that becomes a yarn by cooling and solidifying the thermoplastic polymer discharged from the spinneret.
 本発明において、「気流噴射口」とは、前記通路に設けられた、気体が噴射される開口部をいう。 In the present invention, the “air flow injection port” refers to an opening provided in the passage and through which gas is injected.
 本発明において、「第1気流通路」とは、前記通路のうち、前記流入口から気流噴射口上流側端部までの間をいい、「第2気流通路」とは、前記通路のうち、気流噴射口下流側端部から第3気流通路の上流側端部までの間をいう。また、「第3気流通路」とは、前記通路のうち、第2気流通路および第4気流通路の間に存在し、流路断面積が糸条走行方向に関して一定である部分をいう。そして、「第4気流通路」とは、前記通路のうち、前記第3気流通路の下流側端部から前記流出口までの間をいう。 In the present invention, the “first airflow passage” means a portion from the inlet to the upstream end of the airflow injection port in the passage, and the “second airflow passage” means an airflow in the passage. This refers to the interval from the downstream end of the injection port to the upstream end of the third airflow passage. In addition, the “third airflow passage” refers to a portion of the passage that exists between the second airflow passage and the fourth airflow passage and has a constant cross-sectional area with respect to the yarn traveling direction. The “fourth airflow passage” refers to a portion of the passage from the downstream end of the third airflow passage to the outlet.
 本発明において、「第2気流通路の最小流路断面積H2MIN」とは、第2気流通路のうち、糸条の走行方向に垂直な方向の断面積が最小となる位置での流路断面積をいう。また、「第4気流通路の最大の流路断面積H4MAX」とは、第4気流通路のうち、糸条の走行方向に垂直な方向の断面積が最大となる位置での流路断面積をいう。そして、「第3気流通路の流路断面積H」とは、第3気流通路の、糸条走行方向に垂直な方向の流路断面積をいう。 In the present invention, the “minimum flow path cross-sectional area H 2MIN of the second air flow passage” means a flow break at a position in the second air flow passage where the cross-sectional area in the direction perpendicular to the running direction of the yarn is minimum. It refers to the area. In addition, the “maximum flow path cross-sectional area H 4MAX of the fourth airflow path” means a flow path cross-sectional area at a position where the cross-sectional area in the direction perpendicular to the running direction of the yarn is maximum in the fourth airflow path. Say. The “flow passage cross-sectional area H 3 of the third airflow passage” refers to a flow passage cross-sectional area of the third airflow passage in a direction perpendicular to the yarn traveling direction.
 本発明の延伸装置によれば、糸条への牽引力が付与できる区間を相対的に長尺化することにより、気体の供給量が少なくても延伸装置における糸条の牽引効果を十分に発現することができ、その結果、省エネルギーでの安定運転が可能となる。また、牽引力を十分に発現できることから、紡糸速度の向上が可能となり、単糸繊度が小さい糸を得ることも可能となる。そして、このようにして得られた繊維から繊維ウェブを製造する場合には、単糸繊度の減少に伴い、風合いが良好である繊維ウェブを得ることが可能となる。 According to the drawing device of the present invention, by relatively elongating the section where the pulling force can be applied to the yarn, the yarn pulling effect in the drawing device is sufficiently expressed even if the gas supply amount is small. As a result, stable operation with energy saving becomes possible. Further, since the traction force can be sufficiently expressed, the spinning speed can be improved, and a yarn having a small single yarn fineness can be obtained. And when manufacturing a fiber web from the fiber obtained by doing in this way, it becomes possible to obtain the fiber web with a favorable texture with the reduction | decrease of single yarn fineness.
本発明の一実施形態にかかる延伸装置を備えた紡糸装置の全体概略断面図である。1 is an overall schematic cross-sectional view of a spinning device including a stretching device according to an embodiment of the present invention. 本発明の一実施形態を示す延伸装置の概略断面図である。It is a schematic sectional drawing of the extending | stretching apparatus which shows one Embodiment of this invention. 本発明の別の実施形態を延伸装置の概略断面図である。It is a schematic sectional drawing of an extending | stretching apparatus another embodiment of this invention. 本発明のさらに別の実施形態を示す延伸装置の概略断面図である。It is a schematic sectional drawing of the extending | stretching apparatus which shows another embodiment of this invention. 本発明および従来技術の実施形態にかかる延伸装置において通路内の静圧分布を測定した値である。It is the value which measured the static pressure distribution in a channel | path in the extending | stretching apparatus concerning embodiment of this invention and a prior art. 延伸装置の牽引力の測定方法を説明するための模式断面図である。It is a schematic cross section for demonstrating the measuring method of the tractive force of an extending | stretching apparatus. 延伸装置の通路内の静圧の測定方法を説明するための斜視図である。It is a perspective view for demonstrating the measuring method of the static pressure in the channel | path of an extending | stretching apparatus. 本発明のさらに別の実施形態を示す延伸装置の概略断面図である。It is a schematic sectional drawing of the extending | stretching apparatus which shows another embodiment of this invention.
 以下、図面を参照しながら、本発明の延伸装置の最良の実施形態について詳細に説明する。図1は、本発明の一実施形態にかかる延伸装置を備えた紡糸装置の全体概略縦断面図であり、図2は、図1に用いた延伸装置の概略縦断面図である。また、図3、図4、図8は、本発明にかかる延伸装置の他の好ましい形態の概略縦断面図である。 Hereinafter, the best embodiment of the stretching apparatus of the present invention will be described in detail with reference to the drawings. FIG. 1 is an overall schematic longitudinal sectional view of a spinning device provided with a stretching apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic longitudinal sectional view of the stretching apparatus used in FIG. Moreover, FIG.3, FIG.4, FIG.8 is a schematic longitudinal cross-sectional view of the other preferable form of the extending | stretching apparatus concerning this invention.
 本発明の延伸装置は例えば不織布製造装置に用いられるが、かかる製造装置は、図1に示すように、紡糸口金1、冷却装置19、延伸装置3、移動するネット上に繊維をウェブ状に捕集するコンベア4などから構成される。また、図示しないが、コンベア4の下流側には、繊維ウェブを熱接着する機構も備える。 The stretching apparatus of the present invention is used in, for example, a nonwoven fabric manufacturing apparatus, which, as shown in FIG. 1, captures fibers in a web shape on a spinneret 1, a cooling device 19, a stretching apparatus 3, and a moving net. Consists of a conveyor 4 and the like to collect. Although not shown, a mechanism for thermally bonding the fiber web is also provided on the downstream side of the conveyor 4.
 このような装置においては、紡糸口金1より熱可塑性ポリマが溶融紡糸され、得られた糸条2は、冷却装置19にて冷却された後、延伸装置3により張力が付与されて延伸される。糸条2は、その後、延伸装置3からコンベア4のネット上に吹き付けられ、コンベア4上で繊維ウェブを形成する。ここで、延伸装置3において糸条が走行する領域としては、機幅方向(図1の紙面奥行方向)に非常に長い、長尺の矩形領域が形成されている。 In such an apparatus, a thermoplastic polymer is melt-spun from the spinneret 1, and the obtained yarn 2 is cooled by the cooling device 19 and then stretched by the stretching device 3 with tension applied. The yarn 2 is then sprayed from the stretching device 3 onto the net of the conveyor 4 to form a fiber web on the conveyor 4. Here, as a region where the yarn travels in the stretching device 3, a long rectangular region that is very long in the machine width direction (the depth direction of the drawing in FIG. 1) is formed.
 延伸装置3は、図2に示すように、糸条走行方向の上流側から下流側に向かい、外壁部材5に挟まれた気流通路9を有しており、その気流通路9の上流側端部には糸条が流入する流入口14を、下流側端部には糸条が流出する流出口15を有している。気流通路9は、流入口14の糸条走行方向の下流側に位置する第1気流通路10と、第1気流通路10に連通し、糸条に気流を吹き付ける気流噴射口7と、気流噴射口7の糸条走行方向の下流側に位置する第2気流通路11と、第2気流通路11の糸条走行方向の下流側に位置する第3気流通路12と、第3気流通路12の下流側に位置する第4気流通路13とで構成される。第3気流通路12は、糸条走行方向に関して、該糸条走行方向に垂直な方向の流路断面積が一定、第2気流通路11は、第3気流通路12と比べて、糸条走行方向に垂直な方向の流路断面積が小さく、第4気流通路13は、糸条が流出する流出口15を一部に含み、第3気流通路12と比べて、糸条走行方向に垂直な方向の流路断面積が大きい。 As shown in FIG. 2, the stretching device 3 has an airflow passage 9 that is sandwiched between outer wall members 5 from the upstream side to the downstream side in the yarn traveling direction, and an upstream end portion of the airflow passage 9. Has an inlet 14 through which the yarn flows in, and an outlet 15 through which the yarn flows out at the downstream end. The airflow passage 9 includes a first airflow passage 10 located downstream of the inflow port 14 in the yarn traveling direction, an airflow injection port 7 that communicates with the first airflow passage 10 and blows an airflow onto the yarn, and an airflow injection port. 7, the second airflow passage 11 located downstream in the yarn running direction, the third airflow passage 12 located downstream in the yarn running direction of the second airflow passage 11, and the downstream side of the third airflow passage 12. And the fourth airflow passage 13 located at the center. The third airflow passage 12 has a constant flow path cross-sectional area in a direction perpendicular to the yarn traveling direction with respect to the yarn traveling direction, and the second airflow passage 11 is more in the yarn traveling direction than the third airflow passage 12. The fourth airflow passage 13 includes a part of the outlet 15 through which the yarn flows out, and is perpendicular to the yarn traveling direction as compared with the third airflow passage 12. The channel cross-sectional area of is large.
 以上のような構成の延伸装置3においては、気流供給手段のバッファ部6に導入された気体が、その後に気体供給管を経て気流噴射口7から気流通路9の内部に噴射される。そして、第2気流通路11、第3気流通路12、第4気流通路13を通過し、流出口15から外部に排出される。その気流の流れに従って、流入口14から気流と共に流入した糸条が、気流通路9の内部を通過し、流出口15から排出される。 In the stretching apparatus 3 having the above-described configuration, the gas introduced into the buffer unit 6 of the airflow supply means is then injected into the airflow passage 9 from the airflow injection port 7 through the gas supply pipe. Then, it passes through the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 and is discharged from the outlet 15 to the outside. According to the flow of the airflow, the yarn that flows in along with the airflow from the inlet 14 passes through the inside of the airflow passage 9 and is discharged from the outlet 15.
 ここで、本発明の延伸装置3において、糸条の牽引効果を十分に発現し、気体の供給量を低減、省エネルギー化が可能となる原理について説明する。延伸装置3は、一般的にエジェクターとも呼ばれ、高圧の圧縮気体を気流通路9に直接供給することで、糸条の牽引、且つ延伸を行うものである。その際に、圧縮気体を使用することから、コンプレッサーが別途必要となり、その分だけ設備費が必要となり、また用役費が増加し、製造コストの増加に繋がる。そこで、圧縮気体の使用量そのものを削減するには、延伸装置3での糸条の牽引力を最も効果的に発現させることが重要となるが、延伸装置で糸に付与される牽引力をF、定数をCF、気流の密度をρ、気流の風速をw、糸の円周長さをc、気流通路の長さをlとすると、牽引力Fは、式(A)に示すように、気流の風速wの2乗、気流通路の長さlに比例する。
F=CFρwcl     ・・・(A)
 そのため牽引力Fを増大させる方法としては、気流通路9を通過する気体の風速wを極力増加させることが考えらえる。しかし、気流通路9の間隙を狭めることで(すなわち流路断面積を減少させると)気体の風速wが増加すると予想されるが、実際には、気流通路9の圧力損失が増加し、流入口14から流入する気体の流入量が減少する。その結果、気流通路9の間隙を狭くする(すなわち流路断面積を小さくする)には限度があることが判明した。次に、気流噴射口7から供給する気体の供給量を増加させることも、気体の風速wを増加させるための有効な手段であると考えられるが、当然ながら、圧縮空気の使用量を増加させることは、製造コストの増加に繋がる。
Here, in the drawing apparatus 3 of the present invention, the principle that the yarn pulling effect is sufficiently exhibited, the gas supply amount can be reduced, and the energy can be saved will be described. The stretching device 3 is generally called an ejector, and pulls and stretches the yarn by supplying a high-pressure compressed gas directly to the airflow passage 9. At that time, since compressed gas is used, a compressor is separately required, and accordingly, equipment costs are required, and utility costs are increased, leading to an increase in manufacturing costs. Therefore, in order to reduce the amount of compressed gas used, it is important to most effectively express the yarn pulling force in the drawing device 3, but the drawing force applied to the yarn by the drawing device is F, a constant. Is CF, the density of the air current is ρ, the air speed of the air current is w, the circumferential length of the yarn is c, and the length of the air current passage is l, the traction force F is the air speed of the air current as shown in the equation (A). It is proportional to the square of w and the length l of the airflow passage.
F = CFρw 2 cl (A)
Therefore, as a method of increasing the traction force F, it is conceivable to increase the wind speed w of the gas passing through the airflow passage 9 as much as possible. However, it is expected that the gas wind speed w increases by narrowing the gap of the airflow passage 9 (that is, when the flow path cross-sectional area is reduced). The amount of gas flowing in from 14 is reduced. As a result, it has been found that there is a limit to narrowing the gap of the airflow passage 9 (that is, reducing the cross-sectional area of the flow path). Next, increasing the amount of gas supplied from the airflow injection port 7 is also considered to be an effective means for increasing the wind speed w of the gas, but naturally the amount of compressed air used is increased. This leads to an increase in manufacturing cost.
 そこで、本発明者らは、上記の課題解決のために鋭意検討を重ねた結果、気流通路9の長さと間隙に着目した。本発明者らは、これらを適正化することにより、流入口14から流入する気体の流入量を増大し、その結果、延伸装置3での糸条の牽引力Fを増大できることを見出した。その重要なポイントは、気流噴射口下流側端部8から流出口15までの、第2気流通路11、第3気流通路12、および第4気流通路13の構成であり、相対的に、流路断面積が糸条走行方向に関して一定である第3気流通路12の長さLを長く、一方、第3気流通路の流路断面積よりも小さい断面積を有する第2気流通路11の長さL、および、第3気流通路12の流路断面積よりも大きい断面積を有する第4気流通路13の長さLを短くするということである。 Therefore, as a result of intensive studies for solving the above problems, the present inventors have focused on the length and gap of the airflow passage 9. The present inventors have found that by optimizing these, the amount of gas flowing in from the inlet 14 can be increased, and as a result, the traction force F of the yarn in the drawing device 3 can be increased. The important point is the configuration of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 from the downstream end 8 of the airflow injection port to the outlet 15. increasing the length L 3 of the constant is the third airflow passage 12 with respect to the cross-sectional area of the yarn running direction, while the length of the second air flow passage 11 having a smaller cross sectional area than the flow path cross-sectional area of the third airflow passageway L 2, and is that to shorten the length L 4 of the fourth air flow passage 13 having a sectional area larger than the flow path cross-sectional area of the third airflow passageway 12.
 具体的には、以下の関係を満足させるということである。
(i)第3気流通路12は流路断面積が糸条走行方向に関して一定である。
(ii)第2気流通路11は、流路断面積が第3気流通路12よりも小さく、かつ、その流路断面積が糸条走行方向に関して一定および/または漸増している。
(iii)第4気流通路13は、流路断面積が第3気流通路12よりも大きく、かつ、その流路断面積が糸条走行方向に関して一定および/または漸増している。
(iv)第2気流通路11の糸条走行方向の長さLと、第3気流通路12の糸条走行方向の長さLと、第4気流通路13の糸条走行方向の長さLとが、次の関係式を満足する。
(L+L)/(L+L+L)≧0.6
/(L+L+L)≦0.4
 まず、(ii)、(iii)の構成とすることで、第2気流通路11、第4気流通路13においてディフューザー効果が発現し、気体が気流通路9を走行し易くなり、図5に示すように気流通路9内の静圧が低下することから、外部との圧力差が生じて、流入口14からの気体の流入量が増加する。その流入気体に、気流噴射口8から供給される供給気体が合わさり、第2気流通路11に供給されることから、第2気流通路11、第3気流通路12内での気体の風速wが増加する。
Specifically, the following relationship is satisfied.
(I) The third airflow passage 12 has a constant cross-sectional area with respect to the yarn traveling direction.
(Ii) The second airflow passage 11 has a flow passage cross-sectional area smaller than that of the third airflow passage 12, and the flow passage cross-sectional area is constant and / or gradually increased with respect to the yarn traveling direction.
(Iii) The fourth air flow passage 13 has a flow passage cross-sectional area larger than that of the third air flow passage 12, and the flow passage cross-sectional area is constant and / or gradually increased with respect to the yarn traveling direction.
(Iv) the yarn to the running direction of the length L 2, the length of the third and the yarn running direction of the length L 3 of the air flow passage 12, the yarn running direction of the fourth air flow path 13 of the second air flow passage 11 L 4 satisfies the following relational expression.
(L 3 + L 4 ) / (L 2 + L 3 + L 4 ) ≧ 0.6
L 4 / (L 2 + L 3 + L 4 ) ≦ 0.4
First, by adopting the configurations of (ii) and (iii), the diffuser effect is manifested in the second airflow passage 11 and the fourth airflow passage 13, and gas easily travels through the airflow passage 9, as shown in FIG. Since the static pressure in the airflow passage 9 decreases, a pressure difference from the outside is generated, and the amount of gas flowing in from the inlet 14 increases. Since the supply gas supplied from the airflow injection port 8 is combined with the inflowing gas and supplied to the second airflow passage 11, the wind speed w of the gas in the second airflow passage 11 and the third airflow passage 12 increases. To do.
 そして、(i)、(iv)の構成とすることで、気流通路9内の静圧が低下した状態を維持しつつ、第3気流通路12の糸条走行方向の長さを長尺化でき、第3気流通路12での気流の高風速レベルを長く維持することが可能となる。これにより、糸条の牽引力Fを効果的に発現させることが可能となる。 And by having the configuration of (i) and (iv), the length of the third airflow passage 12 in the yarn traveling direction can be increased while maintaining the state where the static pressure in the airflow passage 9 is lowered. It becomes possible to maintain the high wind speed level of the airflow in the third airflow passage 12 for a long time. As a result, the yarn pulling force F can be effectively expressed.
 ここで、流路断面積が、第2気流通路11で第3気流通路12よりも大きい、または第4気流通路で第3気流通路よりも小さい場合は、気体通路9内での静圧が増加するため、外部との圧力差が小さくなり、流入口14から流入する気体の流入量が減少する。最悪は、気流通路9が外部よりも高圧となり、流入口14から気体が流出する場合もある。その結果、第3気流通路12内での気体の風速wが低下し、糸条の牽引力が得られなくなる。 Here, when the cross-sectional area of the flow path is larger in the second airflow path 11 than the third airflow path 12, or smaller in the fourth airflow path than the third airflow path, the static pressure in the gas path 9 increases. Therefore, the pressure difference with the outside becomes small, and the inflow amount of gas flowing in from the inflow port 14 decreases. In the worst case, the airflow passage 9 has a higher pressure than the outside, and gas may flow out from the inlet 14. As a result, the wind speed w of the gas in the third airflow passage 12 decreases, and the yarn pulling force cannot be obtained.
 (L+L)/(L+L+L)が0.6より小さい場合には、流路断面積が小さい第2気流通路が長くなることにより、気流通路9内での静圧が増加するため、外部との圧力差が小さくなり、流入口14から流入する気体の流入量が減少する。また、L/(L+L+L)が0.4を超える場合には、風速が低下する第4気流通路13が長くなることにより、糸条に対する牽引力が減少する区間が長くなるため、糸条の牽引力を十分には得られなくなる。 When (L 3 + L 4 ) / (L 2 + L 3 + L 4 ) is smaller than 0.6, the second air flow passage having a small flow passage cross-sectional area becomes long, and thus the static pressure in the air flow passage 9 is reduced. Since it increases, the pressure difference with the outside becomes small, and the inflow amount of gas flowing in from the inlet 14 decreases. In addition, when L 4 / (L 2 + L 3 + L 4 ) exceeds 0.4, the fourth airflow passage 13 in which the wind speed decreases is lengthened, so that a section in which the traction force with respect to the yarn is decreased is lengthened. The traction force of the yarn cannot be obtained sufficiently.
 なお、(L+L)/(L+L+L)は、糸条に対する牽引力が大きい区間(すなわち風速の速い第2気流通路11)を十分に確保して糸条に牽引力を十分作用させるために、0.99以下であることが好ましい。また、L/(L+L+L)は、第4気流通路13の区間を十分に確保し、第4気流通路13での流れをより安定化させてディフューザー効果を十分に発現するために、0.01以上であることが好ましい。 In addition, (L 3 + L 4 ) / (L 2 + L 3 + L 4 ) sufficiently secures a section in which the traction force with respect to the yarn is large (that is, the second airflow passage 11 having a high wind speed) and sufficiently exerts the traction force on the yarn. Therefore, it is preferably 0.99 or less. In addition, L 4 / (L 2 + L 3 + L 4 ) is sufficient to sufficiently secure the section of the fourth airflow passage 13 and stabilize the flow in the fourth airflow passage 13 to sufficiently exhibit the diffuser effect. Moreover, it is preferable that it is 0.01 or more.
 そして、第2気流通路11、第4気流通路13は、それぞれ、図2において糸条走行方向の下流側に向かって流路断面積が一定であるが、図3に示すように、糸条走行方向の下流側に向かうに従い、漸増していてもよい。この場合、第2気流通路11、第4気流通路13においてディフューザー効果が発現し易くなり、気流通路9内の静圧が更に低下することから、流入口14から流入する気体の流入量が増加する利点を有している。なお、図3では、テーパ状に漸増しているが、この限りでは無く、階段状に漸増していてもよい。また、図3では、第2気流通路11、第4気流通路13の全長に渡り漸増してもよいが、図4に示すように一部のみがテーパ状に漸増してもよい。 The second air flow passage 11 and the fourth air flow passage 13 each have a constant flow path cross-sectional area toward the downstream side in the yarn running direction in FIG. 2, but as shown in FIG. You may increase gradually as it goes to the downstream of a direction. In this case, the diffuser effect is easily exhibited in the second air flow passage 11 and the fourth air flow passage 13, and the static pressure in the air flow passage 9 is further reduced, so that the inflow amount of gas flowing in from the inflow port 14 is increased. Has advantages. In FIG. 3, the taper is gradually increased. However, the present invention is not limited to this, and the taper may be gradually increased. Moreover, in FIG. 3, although it may increase gradually over the full length of the 2nd airflow path 11 and the 4th airflow path 13, only one part may increase gradually in a taper shape as shown in FIG.
 さらに、第2気流通路11と第3気流通路12との連通部、および、第3気流通路12と第4気流通路13との連通部においては、糸条走行方向の下流側の流路断面積が拡大することになるが、図2に示すようにそれらの連通部で流路断面積が一気に拡大するように構成してもよいし、図3、図4に示すように、第2気流通路11および第4気流通路13の、少なくとも、第3気流通路12との連通部近傍部をテーパ状にし、流路断面積が徐々に拡大するよう構成してもよい。またこれらが組み合わされた構成であってもよい。流路断面積が連通部のみで一気に拡大されるように外壁部材5を形成すると、外壁部材5を製造する上で加工しやすい利点を有しており、また、連通部近傍でテーパ状となるように外壁部材5を形成すると、気体が通過する上で、乱流渦が発生しにくくなり、糸条乱れを抑制できる利点を有している。 Furthermore, in the communicating portion between the second airflow passage 11 and the third airflow passage 12 and the communicating portion between the third airflow passage 12 and the fourth airflow passage 13, the flow passage sectional area on the downstream side in the yarn traveling direction. However, as shown in FIG. 2, the cross-sectional area of the flow path may be expanded at a stretch as shown in FIG. 2, or the second airflow passage may be configured as shown in FIGS. 11 and the fourth airflow passage 13 may be configured such that at least the vicinity of the communicating portion with the third airflow passage 12 is tapered so that the cross-sectional area of the flow path gradually increases. Moreover, the structure in which these were combined may be sufficient. Forming the outer wall member 5 so that the cross-sectional area of the flow path is expanded at a stretch only at the communication portion has an advantage that it is easy to process in manufacturing the outer wall member 5, and is tapered in the vicinity of the communication portion. When the outer wall member 5 is formed as described above, the turbulent vortex is less likely to be generated when the gas passes, and the yarn disturbance can be suppressed.
 次に、第2気流通路11と第3気流通路12と第4気流通路13の糸条走行方向の長さが牽引力に与える影響について、詳細に説明する。本発明の延伸装置3では、第2気流通路11の糸条走行方向の長さLと第3気流通路12の糸条走行方向の長さLと第4気流通路13の糸条走行方向の長さLとの和(mm)が次の関係式を満足することが好ましい。
+L+L≧100
 この構成とすることで、上述した糸条の牽引力を効果的に発生させることが可能となる。上記和が100mm未満となる場合、第2気流通路11と第3気流通路12と第4気流通路13の全長が短くなることにより、糸条を牽引する長さが短くなり、所望の牽引力が得にくくなる。また、流出口15と気流噴射口7の距離が近接することから気流通路における圧力損失が少なくなり、第4気流通路13を用いることによるディフューザー効果を十分には得にくくなる。よって、上記関係式を満足するような構成であることが、さらには上記和が250以上であることが好ましい。
Next, the influence of the length of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 in the yarn traveling direction on the traction force will be described in detail. In stretching apparatus 3 of the present invention, the length of the yarn running direction of the second air flow passage 11 L 2 and the yarn running direction of the length L 3 of the third airflow passageway 12 yarn running direction of the fourth air flow passage 13 it is preferable that the sum of the length L 4 of the (mm) satisfies the following relation.
L 2 + L 3 + L 4 ≧ 100
With this configuration, the above-described yarn pulling force can be effectively generated. When the above sum is less than 100 mm, the total length of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 is shortened, so that the length for pulling the yarn is shortened and a desired traction force is obtained. It becomes difficult. Further, since the distance between the outlet 15 and the airflow injection port 7 is close, the pressure loss in the airflow passage is reduced, and it becomes difficult to sufficiently obtain the diffuser effect by using the fourth airflow passage 13. Therefore, it is preferable that the configuration satisfies the above relational expression, and that the sum is 250 or more.
 なお、第2気流通路11と第3気流通路12と第4気流通路13の全長が長くなることにより、糸条を牽引する長さが長くなるが、気体通路9内での静圧が増加するため、外部との圧力差が小さくなり、流入口14から流入する気体の流入量が減少する。よって、第2気流通路11と第3気流通路12と第4気流通路13の全長は1500mm以下であることが好ましく、1000mm以下であることが更に好ましい。 In addition, although the length which pulls a thread | yarn becomes long because the full length of the 2nd airflow path 11, the 3rd airflow path 12, and the 4th airflow path 13 becomes long, the static pressure in the gas path 9 increases. Therefore, the pressure difference with the outside is reduced, and the amount of gas flowing in from the inlet 14 is reduced. Therefore, the total length of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 is preferably 1500 mm or less, and more preferably 1000 mm or less.
 さらに、本発明においては、第2気流通路11の最小流路断面積H2MINと、第3気流通路12の流路断面積Hと第4気流通路13の最大流路断面積H4MAXとが、次の関係式を満足することが好ましい。
1.05≦H/H2MIN
1.05≦H4MAX/H
 この構成とすることで、上述した糸条の牽引力をより効果的に発生させることが可能となる。ここで、それぞれの流路断面積の比率が1.05未満となる場合は、気流通路全体としてみれば、糸条走行方向に関して下流側に向かうに従い流路が十分に拡大されていないということであり、気流通路におけるディフューザー効果が十分には得られにくい。なお、流れに乱れが生じるのを防ぎディフューザー効果をより効果的に発現させるために、それぞれの流路断面積の比率は3以下であることが好ましい。
Further, in the present invention, the minimum flow path cross-sectional area H 2MIN of the second air flow passage 11, the flow path cross-sectional area H 3 of the third airflow passageway 12 and the maximum flow path cross-sectional area H 4MAX fourth airflow passage 13 It is preferable that the following relational expression is satisfied.
1.05 ≦ H 3 / H 2MIN
1.05 ≦ H 4MAX / H 3
With this configuration, the above-described yarn pulling force can be generated more effectively. Here, when the ratio of the cross-sectional area of each flow path is less than 1.05, the flow path is not sufficiently enlarged toward the downstream side in the yarn traveling direction when viewed as the entire airflow passage. In addition, it is difficult to obtain a sufficient diffuser effect in the airflow passage. In order to prevent turbulence in the flow and to exhibit the diffuser effect more effectively, the ratio of the respective channel cross-sectional areas is preferably 3 or less.
 さらに、本発明においては、気流流路を形成する一対の外壁部材5の一方の通路形成面が、図8に示すように第2気流通路11から第4気流通路13の間で走行糸条方向に関して糸条との距離が一定となるように、走行糸条方向と平行な連続的な一平面で形成されていることが好ましい。この構成とすることで第2気流通路11から第4気流通路13において糸条の一方の側には流路の拡大しない部分が連続的に形成されることになり、その結果、該部分付近では乱れの少ない気流が連続的に形成され、より効率的に糸条に対して牽引力を発現することが可能になる。 Furthermore, in the present invention, one passage forming surface of the pair of outer wall members 5 forming the air flow passage is in the running yarn direction between the second air flow passage 11 and the fourth air flow passage 13 as shown in FIG. It is preferable that it is formed in one continuous plane parallel to the running yarn direction so that the distance from the yarn is constant. With this configuration, a portion where the flow path does not expand is continuously formed on one side of the yarn in the second air flow passage 11 to the fourth air flow passage 13, and as a result, in the vicinity of the portion. An air flow with less turbulence is continuously formed, and it becomes possible to express traction force to the yarn more efficiently.
 次に、図1、図2、図3、図4、図8に示した本発明の実施形態の延伸装置3に共通した各部材、各部材の形状について詳細に説明する。 Next, each member and the shape of each member common to the stretching apparatus 3 of the embodiment of the present invention shown in FIGS. 1, 2, 3, 4, and 8 will be described in detail.
 本発明における延伸装置3において、外壁部材5の材質としては、金属、合金、セラミックス、樹脂等種々のものを採用することができる。この中でも強度、耐磨耗性の観点から、金属であることが好ましい。 In the stretching apparatus 3 according to the present invention, various materials such as metals, alloys, ceramics, and resins can be employed as the material of the outer wall member 5. Among these, metals are preferable from the viewpoints of strength and wear resistance.
 気流通路9の、糸条走行方向と垂直な方向の断面形状としては、丸形や矩形等種々のものを採用することができる。中でも圧縮エアの使用量が比較的少なく、糸条同士の融着や擦過が起こりにくいという観点から、矩形が好ましい。 As the cross-sectional shape of the airflow passage 9 in the direction perpendicular to the yarn running direction, various shapes such as a round shape and a rectangular shape can be adopted. Among these, a rectangular shape is preferable from the viewpoint that the amount of compressed air used is relatively small and the yarns are not easily fused or scratched.
 第1気流通路10の糸条走行方向の長さは、短くすることにより流路での圧力損失が減少して、流入口14から流入する気体の流入量が増加することから、長さは100mm以下にする方が好ましく、50mm以下にすることがより好ましい。 Since the length of the first airflow passage 10 in the yarn traveling direction is shortened, the pressure loss in the flow path is reduced, and the amount of gas flowing in from the inlet 14 is increased. Therefore, the length is 100 mm. It is preferable to make it below, and it is more preferable to make it below 50 mm.
 第1気流通路10の、糸条走行方向に対して垂直方向の断面積は、糸条を流入することができる範囲で設定することができる。第1気流通路10での圧力損失が減少して、流入口14から流入する気体の流入量が増加することから、第2気流通路11の糸条走行方向に対して垂直方向の最小断面積に対して広いことが好ましく、第4気流通路13の糸条走行方向に対して垂直方向の最大断面積より広いことがより好ましい。 The cross-sectional area of the first airflow passage 10 in the direction perpendicular to the yarn traveling direction can be set within a range in which the yarn can flow. Since the pressure loss in the first airflow passage 10 decreases and the amount of gas flowing in from the inlet 14 increases, the minimum cross-sectional area in the direction perpendicular to the yarn traveling direction of the second airflow passage 11 is reduced. On the other hand, it is preferably wide, and more preferably wider than the maximum cross-sectional area in the direction perpendicular to the yarn running direction of the fourth airflow passage 13.
 バッファ6と気流噴射口7をつなぐ気体供給管は、気流通路9における風速の低下を抑制する観点から、気流通路9に対する角度が30°以下であることが好ましい。より好ましくは15°以下にすることにより風速の低下を抑制することができる。気体供給管の形状としては、該気体供給管の中の気流方向に関して垂直な方向の断面形状が矩形であることが好ましい。かかる断面は、断面積が気体供給管の中の気流方向に関して一定であっても、気流噴射口7に向かうに従い拡大してもよいが、音速領域において断熱膨張により風速が増加するラバールノズルの効果が得られるように、気流噴射口7に向かい拡大させることがより好ましい。 The gas supply pipe connecting the buffer 6 and the airflow injection port 7 preferably has an angle of 30 ° or less with respect to the airflow passage 9 from the viewpoint of suppressing a decrease in wind speed in the airflow passage 9. More preferably, a decrease in wind speed can be suppressed by setting the angle to 15 ° or less. As the shape of the gas supply pipe, the cross-sectional shape in a direction perpendicular to the air flow direction in the gas supply pipe is preferably rectangular. Such a cross-section may be enlarged as the cross-sectional area is constant with respect to the airflow direction in the gas supply pipe or toward the airflow injection port 7, but the effect of the Laval nozzle that increases the wind speed due to adiabatic expansion in the sonic region is obtained. It is more preferable to enlarge toward the airflow injection port 7 so as to be obtained.
 気流噴射口7から糸条に供給される気流は、空気が最も経済的で好ましいが、混合ガスやスチーム、飽和蒸気、加熱蒸気であってもよい。糸条の牽引力を向上させるには、前述の式(A)の通り、気流の密度ρも関連していることから、密度が高い気流を選択することが好ましい。また、気流の温度は、常温が最も経済的に好ましいが、この限りでは無い。また、気流の湿度は、大気を取り込むため、湿度管理をしていない方が経済的に好ましいが、この限りでは無く、例えば、高湿度の気流を供給とすることで、糸条の牽引力を向上させることが可能となる。 Air is the most economical and preferable airflow supplied to the yarn from the airflow injection port 7, but may be mixed gas, steam, saturated steam, or heated steam. In order to improve the traction force of the yarn, it is preferable to select an air stream having a high density because the density ρ of the air stream is also related as in the above formula (A). The temperature of the air flow is most economically preferable at normal temperature, but is not limited thereto. In addition, it is economically preferable that the humidity of the airflow is not controlled because the air is taken in. However, this is not the case. For example, by using a high-humidity airflow, the traction force of the yarn is improved. It becomes possible to make it.
 本発明は、極めて汎用性の高い発明であり、公知の繊維ウェブ全ての製造においてに適用できる。従って、繊維ウェブを構成するポリマにより特に限られるものではない。例えば、繊維ウェブを構成するポリマの一例を挙げれば、ポリエステル、ポリアミド、ポリフェニレンサルファイド、ポリオレフィン、ポリエチレン、ポリプロピレン等々が挙げられる。更に、上記したポリマに、紡糸安定性等を損なわない範囲で、二酸化チタン等の艶消し剤、酸化ケイ素、カオリン、着色防止剤、安定剤、抗酸化剤、消臭剤、難燃剤、糸摩擦低減剤、着色顔料、表面改質剤等の各種機能性粒子や有機化合物等の添加剤が含有されていても良く、共重合が含まれても良い。 The present invention is an extremely versatile invention and can be applied to the production of all known fiber webs. Therefore, it is not particularly limited by the polymer constituting the fiber web. For example, examples of polymers constituting the fiber web include polyester, polyamide, polyphenylene sulfide, polyolefin, polyethylene, polypropylene, and the like. Further, in the above-mentioned polymers, matting agents such as titanium dioxide, silicon oxide, kaolin, anti-coloring agents, stabilizers, antioxidants, deodorants, flame retardants, yarn friction, as long as the spinning stability is not impaired. Various functional particles such as a reducing agent, a color pigment, and a surface modifier, additives such as organic compounds may be contained, and copolymerization may be included.
 また、繊維ウェブを構成するポリマは、単一成分で構成しても、複数成分で構成してもよく、複数成分の場合には、例えば、芯鞘、サイドバイサイド等の構成が挙げられる。 Further, the polymer constituting the fiber web may be composed of a single component or a plurality of components. In the case of a plurality of components, examples of the configuration include a core sheath and side-by-side.
 繊維ウェブを形成する繊維の断面形状は、丸、三角、扁平等の異形状や中空であってもよい。また、繊維ウェブの単糸繊度は特に限られるものではない。繊維ウェブの単糸数も特に限られるものではないが、繊維ウェブの単糸数が多ければ多いほど、従来の技術との差異が明確となる。 The cross-sectional shape of the fibers forming the fiber web may be irregular, such as round, triangular, flat, or hollow. Further, the single yarn fineness of the fiber web is not particularly limited. The number of single yarns of the fiber web is not particularly limited, but the difference from the conventional technology becomes clearer as the number of single yarns of the fiber web increases.
 次に、図1、図2に示す装置を用いて、繊維ウェブから成るスパンボンド不織布を製造する好ましい態様について、具体的に説明する。 Next, a preferred embodiment for producing a spunbonded nonwoven fabric made of a fibrous web will be specifically described using the apparatus shown in FIGS.
 図1に示す装置において、例えばポリオレフィン系樹脂は紡糸口金1より溶融紡糸される。この時の紡糸温度は、200~270℃であることが好ましく、より好ましくは210~260℃であり、さらに好ましくは220~250℃である。紡糸温度を上記範囲内とすることにより、安定した溶融状態とし、優れた紡糸安定性を得ることができる。 In the apparatus shown in FIG. 1, for example, a polyolefin resin is melt-spun from a spinneret 1. The spinning temperature at this time is preferably 200 to 270 ° C., more preferably 210 to 260 ° C., and further preferably 220 to 250 ° C. By setting the spinning temperature within the above range, a stable molten state can be obtained, and excellent spinning stability can be obtained.
 紡糸口金1より溶融紡糸された糸条2は、次に冷却装置19にて冷却されるが、具体的な冷却方法としては、例えば、冷却装置19にて冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度で自然冷却する方法、および紡糸口金1と延伸装置3との間の距離を調整して自然冷却する方法等が挙げられる。また、これらの方法を組み合わせる方法を採用することもできる。なお、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸する温度および雰囲気温度等を考慮して適宜調整して採用することができる。 The yarn 2 melt-spun from the spinneret 1 is then cooled by the cooling device 19. As a specific cooling method, for example, a cooling device 19 forcibly blows cold air onto the yarn. , A method of natural cooling at the ambient temperature around the yarn, a method of natural cooling by adjusting the distance between the spinneret 1 and the drawing device 3, and the like. A method combining these methods can also be employed. The cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature, and the like.
 冷却装置19にて冷却された糸条は、その後、上記したように延伸装置3により張力が付与されて延伸され、コンベア4のネット上に吹き付けられ、コンベア4上で繊維ウェブを形成する。 The yarn cooled by the cooling device 19 is then stretched by being applied with tension by the stretching device 3 as described above, and blown onto the net of the conveyor 4 to form a fiber web on the conveyor 4.
 本発明の延伸装置3を用いた際の紡糸速度は、3,500~6,500m/分であることが好ましく、より好ましくは4,000~6,500m/分であり、さらに好ましくは4,500~6,500m/分である。紡糸速度を3,500~6,500m/分とすることにより、高い生産性を有することになり、また繊維の配向結晶化が進み高い強度の長繊維を得ることができる。このため高い強度の繊維で構成される不織布も強力に優れたものとなる。 The spinning speed when using the stretching apparatus 3 of the present invention is preferably 3,500 to 6,500 m / min, more preferably 4,000 to 6,500 m / min, and still more preferably 4,500 to 6,500 m / min. 500 to 6,500 m / min. By setting the spinning speed to 3,500 to 6,500 m / min, high productivity can be obtained, and the oriented crystallization of the fibers can proceed to obtain high strength long fibers. For this reason, the nonwoven fabric comprised with a high intensity | strength fiber also becomes the thing excellent in strength.
 本発明にかかる延伸装置は、繊維ウェブの製造のみならず、衣料、産業等の用途で使用される繊維の製造にも用いることができる。その場合、上述の不織布製造と同様に紡糸、冷却、延伸して得られた繊維をボビン等に巻き取ればよい。 The stretching apparatus according to the present invention can be used not only for the production of fiber webs but also for the production of fibers used in applications such as clothing and industry. In that case, the fiber obtained by spinning, cooling, and stretching may be wound around a bobbin or the like in the same manner as the above-described nonwoven fabric production.
 以下、実施例を挙げて本発明をさらに具体的に説明する。なお実施例における特性値の測定法等は次のとおりである。 Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the measuring method of the characteristic value in an Example, etc. are as follows.
 (1)牽引力(N):
 図6に牽引力の測定方法の概要図を示す。まず、張力計16(アイコーエンジニアリング社製 MODEL-RX-1)に、単糸1本の3号ナイロンテグス(ユタカメイク社製 A-154)17を固定し、延伸装置3の上部から気流通路9内にテグス17を垂らし、気流通路の最下点(流出口15)でテグス17を切断した状態とする。そして、延伸装置3に圧縮空気を供給し、その際に発生した張力(N)を張力計16にて測定した。この測定を5回繰り返し、その平均値(N)を牽引力とした。
(1) Traction force (N):
FIG. 6 shows a schematic diagram of the traction force measurement method. First, a single nylon No. 3 nylon teg (A-154 made by Yutaka Make) 17 is fixed to a tension meter 16 (MODEL-RX-1 made by Aiko Engineering Co., Ltd.), and an air flow passage 9 is formed from the upper part of the drawing device 3. The guts 17 are hung inside, and the guts 17 are cut at the lowest point (outlet 15) of the airflow passage. Then, compressed air was supplied to the stretching device 3, and the tension (N) generated at that time was measured with a tension meter 16. This measurement was repeated 5 times, and the average value (N) was taken as the traction force.
 (2)気流通路の内部の静圧(kPa):
 図7に示すように、気流通路9の側壁部材20に穿孔された貫通穴である静圧測定口18に、圧力計(コパル電子社製 PG-100-102G)を密閉接続した状態で延伸装置3に圧縮空気を供給して、気流通路9の内部のゲージ圧(kPa)を測定した。なお、測定高さは気流噴射口下流側端部8の位置とした。この測定値を気流通路の内部の静圧として採用した。
(2) Static pressure (kPa) inside the airflow passage:
As shown in FIG. 7, a stretching device in a state where a pressure gauge (PG-100-102G manufactured by Copal Electronics Co., Ltd.) is hermetically connected to a static pressure measuring port 18 which is a through hole drilled in the side wall member 20 of the airflow passage 9. 3 was supplied with compressed air, and the gauge pressure (kPa) inside the airflow passage 9 was measured. The measurement height was the position of the downstream end 8 of the airflow injection port. This measured value was adopted as the static pressure inside the airflow passage.
 (3)供給圧力(MPa)
 常温、常湿の室内において、延伸装置3の気流供給部に圧力計(長野計器社製 GS50-171-0.6MP)を密閉接続した状態で延伸装置3に圧縮空気を供給して、内部のゲージ圧(MPa)を測定した。この測定値を延伸装置への供給圧力として採用した。
(3) Supply pressure (MPa)
In a room of normal temperature and humidity, compressed air is supplied to the stretching device 3 with a pressure gauge (GS50-171-0.6MP, manufactured by Nagano Keiki Co., Ltd.) sealed in the air flow supply section of the stretching device 3. Gauge pressure (MPa) was measured. This measured value was adopted as the supply pressure to the stretching apparatus.
 (4)単繊維繊維径(μm):
 延伸装置で牽引し、延伸した後、ネット上に捕集した繊維ウェブからランダムに小片サンプル10個を採取し、マイクロスコープで1000倍の表面写真を撮影した。各サンプルの写真から10本ずつ、計100本の繊維の幅を測定し、それらの平均値を単繊維繊維径として採用した。
(4) Single fiber fiber diameter (μm):
After pulling with a stretching device and stretching, ten small piece samples were randomly collected from the fiber web collected on the net, and a 1000 times surface photograph was taken with a microscope. The width of a total of 100 fibers, 10 from each sample photograph, was measured, and the average value thereof was adopted as the single fiber fiber diameter.
 (5)紡糸速度(m/分):
 上記の単繊維繊維径と使用する樹脂の固形密度から長さ10,000m当たりの質量を単繊維繊度として、小数点以下第二位を四捨五入して算出した。単繊維繊度(dtex)と、各条件で設定した紡糸口金単孔から吐出される樹脂の吐出量(以下、単孔吐出量と略記する。)(g/分)から、次の式に基づき、紡糸速度を算出した。
紡糸速度=(10000×単孔吐出量)/単繊維繊度。
(5) Spinning speed (m / min):
The mass per 10,000 m in length was calculated as the single fiber fineness from the single fiber fiber diameter and the solid density of the resin to be used, and rounded off to the second decimal place. From the single fiber fineness (dtex) and the discharge amount of resin discharged from the spinneret single hole set under each condition (hereinafter abbreviated as single hole discharge amount) (g / min), based on the following formula: The spinning speed was calculated.
Spinning speed = (10000 × single hole discharge amount) / single fiber fineness.
 [実施例1]
 図1、図2に示す構成の装置にて、以下のとおり繊維ウェブを製造した。なお、延伸装置3は、気流通路9の断面が矩形であり、気流通路9の流入口14から流出口15までの長さLを200mm、第2気流通路11の長さLを50mm、第3気流通路12の長さLを50mm、第4気流通路13の長さLを50mmとした。また、第1気流通路の間隙Wを3mm、第2気流通路の間隙Wを3mm、第3気流通路の間隙Wを4mm、第4気流通路13の間隙Wを5mmとした。気流供給管の気流通路9に対する設置角度は15°とし、気流供給管の幅は0.2mmとした。また、延伸装置3への気流供給部には0.2MPaの圧縮空気を供給した。牽引力の測定を実施した結果、表1に示すように、37mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は-6.3kPaとなった。
[Example 1]
A fiber web was manufactured as follows using the apparatus having the configuration shown in FIGS. Incidentally, the stretching device 3, the cross section of the air flow passage 9 is rectangular, the length L from the inlet 14 of the air flow passage 9 to the outlet port 15 200 mm, 50 mm and length L 2 of the second air flow passage 11, the 3 50 mm length L 3 of the air flow passage 12, the length L 4 of the fourth air flow passage 13 was set to 50 mm. Also, the gap W 1 of the first air flow passage 3 mm, and the gap W 2 of the second air flow passage 3 mm, 4 mm gap W 3 of the third airflow passageway, a gap W 4 of the fourth air flow passage 13 and 5 mm. The installation angle of the airflow supply pipe with respect to the airflow passage 9 was 15 °, and the width of the airflow supply pipe was 0.2 mm. In addition, 0.2 MPa compressed air was supplied to the air flow supply unit to the stretching device 3. As a result of measuring the traction force, it was 37 mN as shown in Table 1. In addition, the static pressure in the airflow passage 9 at the downstream end 8 of the airflow injection port was −6.3 kPa.
 メルトフローレート(MFR)35g/10分のポリプロピレン樹脂を押出機で溶融し、紡糸温度235℃、孔径φ0.30mmの矩形の紡糸口金1から、単孔吐出量0.56g/分で紡出し、得られた糸条を、冷却装置19にて冷却固化した後、延伸装置3に供給圧力0.20MPaの圧縮空気を供給することで牽引、延伸し、移動するネット上に捕集してポリプロピレン長繊維からなる繊維ウェブを得た。 A polypropylene resin having a melt flow rate (MFR) of 35 g / 10 min was melted by an extruder and spun from a rectangular spinneret 1 with a spinning temperature of 235 ° C. and a hole diameter of 0.30 mm at a single hole discharge rate of 0.56 g / min. After the obtained yarn is cooled and solidified by the cooling device 19, it is pulled and drawn by supplying compressed air having a supply pressure of 0.20 MPa to the drawing device 3, and collected on a moving net to obtain a polypropylene length. A fiber web made of fibers was obtained.
 得られたポリプロピレン長繊維の特性は、単繊維繊維径が16.6μmであり、これから換算した紡糸速度は2,951m/分であった。 The properties of the obtained polypropylene long fiber were a single fiber diameter of 16.6 μm, and a spinning speed calculated from this was 2,951 m / min.
 [実施例2]
 第2気流通路11と第3気流通路12と第4気流通路13との合計長さが長いパターンとして、気流通路9の流入口14から流出口15までの長さLを350mm、第2気流通路11の長さLを100mm、第3気流通路12の長さLを100mm、第4気流通路13の長さLを100mmとした以外は実施例1と同様にした。
[Example 2]
As a pattern in which the total length of the second airflow passage 11, the third airflow passage 12, and the fourth airflow passage 13 is long, the length L from the inlet 14 to the outlet 15 of the airflow passage 9 is 350 mm, and the second airflow passage 11 100mm length L 2 of the length L 3 of 100mm of the third airflow passageway 12, except that the length L 4 of the fourth air flow path 13 and 100mm were the same as in example 1.
 牽引力の測定を実施した結果、表1に示すように、40mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は-5.5kPaとなった。 As a result of measuring the traction force, it was 40 mN as shown in Table 1. The static pressure in the airflow passage 9 at the downstream end 8 on the airflow injection port was −5.5 kPa.
 得られたポリプロピレン長繊維の特性は、単繊維繊維径が16.1μmであり、これから換算した紡糸速度は3,043m/分であった。 The characteristics of the obtained polypropylene long fiber were a monofilament fiber diameter of 16.1 μm, and a spinning speed calculated from this was 3,043 m / min.
  [実施例3]
 第2気流通路11と第3気流通路12と第4気流通路13の合計長さが短いパターンとして、気流通路9の流入口14から流出口15までの長さLを140mm、第2気流通路11の長さLを30mm、第3気流通路12の長さLを30mm、第4気流通路13の長さLを30mmとした以外は実施例1と同様にした。
[Example 3]
As a pattern in which the total length of the second airflow passage 11, the third airflow passage 12 and the fourth airflow passage 13 is short, the length L from the inlet 14 to the outlet 15 of the airflow passage 9 is 140 mm, and the second airflow passage 11. length L 2 to 30mm, length L 3 of the 30mm of the third airflow passageway 12, except that the length L 4 of the fourth air flow path 13 and 30mm were the same as in example 1.
 牽引力の測定を実施した結果、表1に示すように、35mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は-7.2kPaとなった。 As a result of measuring the traction force, it was 35 mN as shown in Table 1. The static pressure in the airflow passage 9 at the downstream end 8 on the airflow injection port was −7.2 kPa.
 得られたポリプロピレン長繊維の特性は、単繊維繊維径は17.4μmであり、これから換算した紡糸速度は2816m/分であった。 The properties of the obtained polypropylene long fiber were as follows: the single fiber diameter was 17.4 μm, and the spinning speed calculated from this was 2816 m / min.
 [実施例4]
 気流流路9を形成する一対の外壁部材5の一方の通路形成面が、第2気流通路11から第4気流通路13の間で走行糸条方向と平行な連続的な一平面で形成されているパターンとして、図8に示すような延伸装置3を用いた以外は実施例1と同様にした。
[Example 4]
One passage forming surface of the pair of outer wall members 5 forming the air flow passage 9 is formed by a continuous single plane parallel to the traveling yarn direction between the second air flow passage 11 and the fourth air flow passage 13. The same pattern as that of Example 1 was used except that a stretching apparatus 3 as shown in FIG.
 牽引力の測定を実施した結果、表1に示すように、39mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は-6.5kPaとなった。 As a result of measuring the traction force, it was 39 mN as shown in Table 1. The static pressure in the airflow passage 9 at the downstream end 8 on the airflow injection port was −6.5 kPa.
 得られたポリプロピレン長繊維の特性は、単繊維繊維径が16.3μmであり、これから換算した紡糸速度は3,005m/分であった。 The properties of the obtained polypropylene long fiber were a single fiber diameter of 16.3 μm, and a spinning speed calculated from this was 3,005 m / min.
 [比較例1]
 第2気流通路を拡大しないパターンとして、第2気流通路11の間隙Wを4mmとし、図2における第2気流通路と第3気流通路の断面形状、断面積が同じになるようにした以外は実施例1と同様にした。
[Comparative Example 1]
As a pattern which does not expand the second airflow passage, the gap W 2 of the second airflow passage 11 and 4 mm, the cross-sectional shape of the second air flow passage and the third air flow passage in FIG. 2, except that the cross-sectional area was set to the same Same as Example 1.
 牽引力の測定を実施した結果、表1に示すように、34mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は-7.0kPaとなった。 As a result of measuring the tractive force, it was 34 mN as shown in Table 1. The static pressure in the airflow passage 9 at the downstream end 8 on the airflow injection port was −7.0 kPa.
 得られたポリプロピレン長繊維の特性は、単繊維繊維径が17.6μmであり、これから換算した紡糸速度は2,783m/分であった。 The properties of the obtained polypropylene long fiber were a single fiber diameter of 17.6 μm, and a spinning speed calculated from this was 2,783 m / min.
 [比較例2]
 第4気流通路13を拡大しない(すなわち、実質的に第4気流通路を設けない)パターンとして、第4気流通路13の間隙Wを4mmとし、図2における第3気流通路と第4気流通路の断面形状、断面積が同じになるようにした以外は実施例1と同様にした。
[Comparative Example 2]
Not larger fourth airflow channel 13 (i.e., not provided substantially fourth airflow passage) as a pattern, a gap W 4 of the fourth air flow path 13 and 4 mm, the third air flow passage and the fourth air flow path in FIG. 2 Example 1 was the same as Example 1 except that the cross-sectional shape and the cross-sectional area were the same.
 牽引力の測定を実施した結果、表1に示すように、30mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は-5.8kPaとなった。 As a result of measuring the traction force, it was 30 mN as shown in Table 1. The static pressure in the airflow passage 9 at the downstream end 8 on the airflow injection port was −5.8 kPa.
 得られたポリプロピレン長繊維の特性は、単繊維繊維径は18.6μmであり、これから換算した紡糸速度は2,634m/分であった。 The properties of the obtained polypropylene long fiber were as follows: the single fiber fiber diameter was 18.6 μm, and the spinning speed calculated from this was 2,634 m / min.
 [比較例3]
 第3気流通路12、第4気流通路13に対して第2気流通路11が長いパターンとして、気流通路9の流入口14から流出口15までの長さLを200mm、第2気流通路11の長さLを75mm、第3気流通路12の長さLを25mm、第4気流通路13の長さLを50mmとした以外は実施例1と同様にした。
[Comparative Example 3]
As a pattern in which the second airflow passage 11 is longer than the third airflow passage 12 and the fourth airflow passage 13, the length L from the inlet 14 to the outlet 15 of the airflow passage 9 is 200 mm, and the length of the second airflow passage 11 is long. It is 75mm and L 2, the length L 3 of the 25mm of the third airflow passageway 12, except that the length L 4 of the fourth air flow path 13 and 50mm were the same as in example 1.
 牽引力の測定を実施した結果、表1に示すように、32mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は-5.5kPaとなった。得られたポリプロピレン長繊維の特性は、単繊維繊維径は18.1μmであり、これから換算した紡糸速度は2,707m/分であった。 As a result of measuring the traction force, it was 32 mN as shown in Table 1. The static pressure in the airflow passage 9 at the downstream end 8 on the airflow injection port was −5.5 kPa. As for the properties of the obtained polypropylene long fiber, the single fiber fiber diameter was 18.1 μm, and the spinning speed calculated from this was 2,707 m / min.
 [比較例4]
 第2気流通路11、第3気流通路12に対して第4気流通路13が長いパターンとして、気流通路9の流入口14から流出口15までの長さLを200mm、第2気流通路11の長さLを32.5mm、第3気流通路12の長さLを32.5mm、第4気流通路13の長さLを75mmとした以外は実施例1と同様にした。
[Comparative Example 4]
As a pattern in which the fourth airflow passage 13 is longer than the second airflow passage 11 and the third airflow passage 12, the length L from the inlet 14 to the outlet 15 of the airflow passage 9 is 200 mm, and the length of the second airflow passage 11 is long. It is 32.5mm and L 2, the length L 3 of the third airflow passageway 12 32.5mm, except that the length L 4 of the fourth air flow path 13 and 75mm were the same as in example 1.
 牽引力の測定を実施した結果、表1に示すように、31mNとなった。また、気流噴射口下流側端部8での気流通路9内静圧は-6.6kPaとなった。 As a result of measuring the traction force, it was 31 mN as shown in Table 1. In addition, the static pressure in the airflow passage 9 at the downstream end 8 of the airflow injection port was −6.6 kPa.
 得られたポリプロピレン長繊維の特性は、単繊維繊維径は18.4μmであり、これから換算した紡糸速度は2,663m/分であった。 The properties of the obtained polypropylene long fiber were as follows: the single fiber fiber diameter was 18.4 μm, and the spinning speed calculated from this was 2,663 m / min.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の延伸装置は、不織布用の糸条の延伸に限らず、各種の織編物など他の用途の糸条の延伸にも応用することができる。 The stretching device of the present invention can be applied not only to stretching yarns for nonwoven fabrics but also to stretching yarns for other uses such as various woven and knitted fabrics.
 1:紡糸口金
 2:糸条
 3:延伸装置
 4:コンベア
 5:外壁部材
 6:気流供給部のバッファ
 7:気流噴射口
 8:気流噴射口下流側端部
 9:気流通路
 10:第1気流通路
 11:第2気流通路
 12:第3気流通路
 13:第4気流通路 
 14:流入口
 15:流出口
 16:張力計
 17:テグス
 18:静圧測定口
 19:冷却装置
 20:側壁部材
 90:通路形成面
1: Spinneret 2: Thread 3: Stretching device 4: Conveyor 5: Outer wall member 6: Buffer of airflow supply unit 7: Airflow injection port 8: Downstream side end of airflow injection port 9: Airflow passage 10: First airflow passage 11: Second airflow passage 12: Third airflow passage 13: Fourth airflow passage
14: Inlet 15: Outlet 16: Tension meter 17: Teggs 18: Static pressure measuring port 19: Cooling device 20: Side wall member 90: Passage forming surface

Claims (8)

  1.  熱可塑性ポリマを溶融紡糸して得られた糸条の流入口および流出口を有する通路内で、その糸条の走行経路の外側から内向きに気流を吹き付けて該糸条を延伸する延伸装置であって、糸条の流入口および流出口を有する前記通路は、第1気流通路、気流噴射口、第2気流通路、第3気流通路および第4気流通路を、糸条走行方向に関してこの順序で連続して備え、次の(i)~(iv)を満足することを特徴とする延伸装置。
    (i)前記第3気流通路は流路断面積が糸条走行方向に関して一定である。
    (ii)前記第2気流通路は、流路断面積が前記第3気流通路よりも小さく、かつ、その流路断面積が糸条走行方向に関して一定および/または漸増している。
    (iii)前記第4気流通路は、流路断面積が第3気流通路よりも大きく、かつ、その流路断面積が糸条走行方向に関して一定および/または漸増している。
    (iv)前記第2気流通路の糸条走行方向の長さLと、前記第3気流通路の糸条走行方向の長さLと、前記第4気流通路の糸条走行方向の長さLとが、次の関係式を満足する。
    (L+L)/(L+L+L)≧0.6
    /(L+L+L)≦0.4
    A drawing device that draws an air flow inward from the outside of the running path of the yarn in a passage having a yarn inlet and outlet obtained by melt spinning the thermoplastic polymer. The passage having the yarn inlet and the outlet includes the first airflow passage, the airflow injection port, the second airflow passage, the third airflow passage, and the fourth airflow passage in this order with respect to the yarn traveling direction. A stretching apparatus that is continuously provided and satisfies the following (i) to (iv):
    (I) The third airflow passage has a constant flow path cross-sectional area with respect to the yarn traveling direction.
    (Ii) The second airflow passage has a flow passage cross-sectional area smaller than that of the third airflow passage, and the flow passage cross-sectional area is constant and / or gradually increased with respect to the yarn traveling direction.
    (Iii) The fourth airflow passage has a flow passage cross-sectional area larger than that of the third airflow passage, and the flow passage cross-sectional area is constant and / or gradually increased with respect to the yarn traveling direction.
    (Iv) the length L 2 of the yarn running direction of the second air flow passage, the length of the third and the yarn running direction of the length L 3 of the air flow passage, the yarn running direction of the fourth air flow path L 4 satisfies the following relational expression.
    (L 3 + L 4 ) / (L 2 + L 3 + L 4 ) ≧ 0.6
    L 4 / (L 2 + L 3 + L 4 ) ≦ 0.4
  2.  前記Lと前記Lと前記Lとの和(mm)が次の関係式を満足する、請求項1に記載の延伸装置。
    +L+L≧100
    The stretching apparatus according to claim 1, wherein a sum (mm) of L 2 , L 3, and L 4 satisfies the following relational expression.
    L 2 + L 3 + L 4 ≧ 100
  3.  前記第2気流通路の最小流路断面積H2MINと、前記第3気流通路の流路断面積Hと前記第4気流通路の最大流路断面積H4MAXとが、次の関係式を満足する、請求項1または2に記載の延伸装置。
    1.05≦H/H2MIN
    1.05≦H4MAX/H
    The minimum flow path cross-sectional area H 2MIN of the second air flow path, the flow path cross-sectional area H 3 of the third air flow path, and the maximum flow cross-sectional area H 4MAX of the fourth air flow path satisfy the following relational expression: The stretching apparatus according to claim 1 or 2.
    1.05 ≦ H 3 / H 2MIN
    1.05 ≦ H 4MAX / H 3
  4.  糸条の流入口および流出口を有する前記通路は対向する一対の外壁部材から形成され、前記一対の外壁部材の一方の通路形成面は、糸条走行方向に関して前記第2気流通路から前記第4気流通路までの間が、前記糸条走行方向に平行な連続的な一平面で形成されている、請求項1から3のいずれかに記載の延伸装置。 The passage having the yarn inlet and outlet is formed by a pair of opposed outer wall members, and one passage forming surface of the pair of outer wall members is formed from the second airflow passage to the fourth in the yarn traveling direction. The stretching apparatus according to any one of claims 1 to 3, wherein a space to the airflow passage is formed by a continuous single plane parallel to the yarn traveling direction.
  5.  紡糸口金と、紡糸された糸条の冷却装置と、請求項1から4のいずれかに記載の延伸装置とを、糸条走行方向にこの順序で有する、繊維の製造装置。 An apparatus for producing a fiber, comprising: a spinneret, a cooling device for spun yarn, and a drawing device according to any one of claims 1 to 4 in this order in a yarn traveling direction.
  6.  紡糸口金と、紡糸された糸条の冷却装置と、請求項1から4のいずれかに記載の延伸装置と、ネットを備えた繊維ウェブのコンベアとを、糸条走行方向にこの順序で有する、繊維ウェブの製造装置。 A spinneret, a device for cooling the spun yarn, a drawing device according to any one of claims 1 to 4, and a fiber web conveyor provided with a net in this order in the yarn running direction. Fiber web production equipment.
  7.  紡糸口金より熱可塑性ポリマを溶融紡糸することで糸条を形成し、該糸条を冷却固化した後、請求項1から4のいずれかに記載の延伸装置により前記糸条を延伸する、繊維の製造方法。 A fiber is formed by melt spinning a thermoplastic polymer from a spinneret, and after cooling and solidifying the yarn, the yarn is drawn by the drawing device according to any one of claims 1 to 4. Production method.
  8.  請求項1から6のいずれかに記載の装置を用いて繊維ウェブを製造する、繊維ウェブの製造方法。 A method for producing a fiber web, comprising producing a fiber web using the apparatus according to any one of claims 1 to 6.
PCT/JP2019/007201 2018-03-29 2019-02-26 Stretching device as well as manufacturing device and manufacturing method for fiber and fiber web WO2019187887A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207026557A KR102391138B1 (en) 2018-03-29 2019-02-26 Drawing apparatus, and apparatus and method for manufacturing fibers and fibrous webs
CN201980019338.2A CN111868312B (en) 2018-03-29 2019-02-26 Stretching device, and device and method for manufacturing fiber and fiber web
JP2019514048A JP6965922B2 (en) 2018-03-29 2019-02-26 Stretching equipment, and fiber and fiber web manufacturing equipment and manufacturing methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-064188 2018-03-29
JP2018064188 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019187887A1 true WO2019187887A1 (en) 2019-10-03

Family

ID=68061219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007201 WO2019187887A1 (en) 2018-03-29 2019-02-26 Stretching device as well as manufacturing device and manufacturing method for fiber and fiber web

Country Status (4)

Country Link
JP (1) JP6965922B2 (en)
KR (1) KR102391138B1 (en)
CN (1) CN111868312B (en)
WO (1) WO2019187887A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933712B1 (en) * 1970-12-26 1974-09-09
JPS60394U (en) * 1983-06-15 1985-01-05 旭化成株式会社 Yarn take-up nozzle device
JPH05321014A (en) * 1992-05-08 1993-12-07 Toray Ind Inc Device for spinning and method for spinning
JP2001303420A (en) * 2000-04-26 2001-10-31 Mitsui Chemicals Inc Method for producing highly uniform nonwoven fabric and device therefor
JP2002371428A (en) * 2001-06-08 2002-12-26 Kobe Steel Ltd Yarn-drawing apparatus
JP2003520303A (en) * 2000-01-20 2003-07-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High-speed spinning method of bicomponent fiber

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1760483A1 (en) * 1968-05-25 1971-04-08 Lutravil Spinnvlies Fibers
JPH05230710A (en) * 1992-02-14 1993-09-07 Mitsubishi Rayon Co Ltd Production of thermoplastic polymer fiber
US5397413A (en) * 1992-04-10 1995-03-14 Fiberweb North America, Inc. Apparatus and method for producing a web of thermoplastic filaments
DE4414277C1 (en) * 1994-04-23 1995-08-31 Reifenhaeuser Masch Spun-bonded fabric plant of higher process yield and transfer coefft.
FR2792655B1 (en) * 1999-04-23 2001-06-01 Icbt Perfojet Sa INSTALLATION FOR THE MANUFACTURE OF A NONWOVEN TEXTILE TABLECLOTH AND METHOD FOR IMPLEMENTING SUCH AN INSTALLATION
JP3623402B2 (en) * 1999-07-15 2005-02-23 ユニ・チャーム株式会社 Cooling and stretching equipment
US6499981B1 (en) * 1999-07-26 2002-12-31 Kabushiki Kaisha Kobe Seiko Sho Drawing unit
SI1340843T1 (en) * 2002-02-28 2008-04-30 Reifenhaeuser Masch Apparatus for the continuous production of a spunbonded web
WO2003102278A1 (en) * 2002-06-03 2003-12-11 Toray Industries, Inc. Device and method for manufacturing thread line
KR20050016507A (en) * 2002-06-03 2005-02-21 도레이 가부시끼가이샤 Device and method for manufacturing thread line
DE602006012527D1 (en) * 2006-12-15 2010-04-08 Fare Spa Apparatus and process for producing a spunbonded mat
US8246898B2 (en) * 2007-03-19 2012-08-21 Conrad John H Method and apparatus for enhanced fiber bundle dispersion with a divergent fiber draw unit
KR101745975B1 (en) * 2009-12-09 2017-06-12 도레이 카부시키가이샤 Method for producing long fiber nonwoven fabric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933712B1 (en) * 1970-12-26 1974-09-09
JPS60394U (en) * 1983-06-15 1985-01-05 旭化成株式会社 Yarn take-up nozzle device
JPH05321014A (en) * 1992-05-08 1993-12-07 Toray Ind Inc Device for spinning and method for spinning
JP2003520303A (en) * 2000-01-20 2003-07-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High-speed spinning method of bicomponent fiber
JP2001303420A (en) * 2000-04-26 2001-10-31 Mitsui Chemicals Inc Method for producing highly uniform nonwoven fabric and device therefor
JP2002371428A (en) * 2001-06-08 2002-12-26 Kobe Steel Ltd Yarn-drawing apparatus

Also Published As

Publication number Publication date
KR102391138B1 (en) 2022-04-28
JPWO2019187887A1 (en) 2021-02-12
CN111868312B (en) 2022-05-31
CN111868312A (en) 2020-10-30
KR20200138204A (en) 2020-12-09
JP6965922B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
US8017066B2 (en) Method and apparatus for forming melt spun nonwoven webs
KR840000196B1 (en) Method and apparatus for forming nonwoven webs
US6800226B1 (en) Method and device for the production of an essentially continous fine thread
KR101492282B1 (en) Method and apparatus for enhanced fiber bundle dispersion with a divergent fiber draw unit
TW565641B (en) Method and apparatus for manufacturing nonwoven fabric
US5439364A (en) Apparatus for delivering and depositing continuous filaments by means of aerodynamic forces
CN107366089A (en) Non-woven fabrics and sound-absorbing material
JP4271226B2 (en) Non-woven fabric manufacturing method and apparatus
CN108456940B (en) Fiber preparation device with asymmetric die head
WO2019187887A1 (en) Stretching device as well as manufacturing device and manufacturing method for fiber and fiber web
JP2020073749A (en) Spun-bonded non-woven fabric
JP6676764B2 (en) Apparatus for producing spunbonded nonwoven
JP3883818B2 (en) Non-woven fabric manufacturing method and apparatus
JP7168135B1 (en) NONWOVEN FABRIC MANUFACTURING APPARATUS AND MANUFACTURING METHOD
CN109072519B (en) Apparatus for producing nonwoven fabric and method for producing nonwoven fabric
CN107190424A (en) A kind of nonwoven production diffuser and its method of work
JPH04174753A (en) Nonwoven filament cloth
JPH10183455A (en) Production of nonwoven web comprising continuous filaments
KR20050016507A (en) Device and method for manufacturing thread line
JP2004204431A (en) Method for producing ultrafine fiber
JP2001303420A (en) Method for producing highly uniform nonwoven fabric and device therefor
JP2004300658A (en) Device and method for manufacturing fiber
JPH0491212A (en) Melt blown method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019514048

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776188

Country of ref document: EP

Kind code of ref document: A1