JP6965898B2 - Composition for rubber - Google Patents

Composition for rubber Download PDF

Info

Publication number
JP6965898B2
JP6965898B2 JP2018567468A JP2018567468A JP6965898B2 JP 6965898 B2 JP6965898 B2 JP 6965898B2 JP 2018567468 A JP2018567468 A JP 2018567468A JP 2018567468 A JP2018567468 A JP 2018567468A JP 6965898 B2 JP6965898 B2 JP 6965898B2
Authority
JP
Japan
Prior art keywords
rubber
epichlorohydrin
ethylene oxide
unit derived
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018567468A
Other languages
Japanese (ja)
Other versions
JPWO2018147328A1 (en
Inventor
友訓 原田
剛 今岡
太郎 尾崎
俊幸 船山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Publication of JPWO2018147328A1 publication Critical patent/JPWO2018147328A1/en
Application granted granted Critical
Publication of JP6965898B2 publication Critical patent/JP6965898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • C08L71/03Polyepihalohydrins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、エピクロロヒドリン系重合体を必須成分とするゴム用組成物及びその組成物から得られるゴム材料に関する。上記ゴム材料は耐熱性ゴム用組成物から得られる耐熱性ゴム材料であることが好ましく、また架橋された耐熱性ゴム材料を「架橋ゴム材料」ということがある。 The present invention relates to a composition for rubber containing an epichlorohydrin-based polymer as an essential component and a rubber material obtained from the composition. The rubber material is preferably a heat-resistant rubber material obtained from a heat-resistant rubber composition, and the crosslinked heat-resistant rubber material may be referred to as a “crosslinked rubber material”.

建築物、航空機、自動車、鉄道車両、コンピュータ、自動車用タイヤ等の分野において、免震、制震、制振、防振を目的とした材料として、主に天然ゴムを用いた材料が用いられている。しかし、天然ゴム材料は耐熱性及び耐オゾン性等が不十分という問題があった。そこで、耐熱性の改良のため、主鎖に二重結合を持たない耐熱性に優れるEPDMを用いた技術が開示されており(特許文献1,2)、これらは特にエンジンマウント、ボディマウント、キャブマウント、メンバマウント、ストラットマウント、センタベアリングサポート、トーショナルダンパー、マフラーハンガー、サスペンションブッシュ等の高温環境下に配置されて使用される自動車用の防振ゴムとして開発されたものである。 In the fields of buildings, aircraft, automobiles, railroad vehicles, computers, automobile tires, etc., materials mainly using natural rubber are used as materials for the purpose of seismic isolation, vibration control, vibration control, and vibration control. There is. However, the natural rubber material has a problem of insufficient heat resistance and ozone resistance. Therefore, in order to improve the heat resistance, a technique using EPDM having excellent heat resistance without a double bond in the main chain has been disclosed (Patent Documents 1 and 2), and these are particularly engine mounts, body mounts, and cabs. It was developed as an anti-vibration rubber for automobiles that is placed and used in high temperature environments such as mounts, member mounts, strut mounts, center bearing supports, torsional dampers, muffler hangers, and suspension bushes.

特開2005−113093号公報Japanese Unexamined Patent Publication No. 2005-113093 特開2009−298949号公報JP-A-2009-298949

前記EPDM系ゴムは必ずしも耐油性が優れているとはいえず、さらなる改善が求められる。ところで耐油性に優れたゴムとして、エピクロロヒドリン重合体を用いたエピクロロヒドリンゴム材料が知られている。エピクロロヒドリンゴム材料はその耐熱性、耐油性、耐オゾン性等を活かして、自動車用途でも、燃料ホースやエアー系ホース、チューブ材料、シール材料として幅広く使用されている。 The EPDM rubber is not always excellent in oil resistance, and further improvement is required. By the way, as a rubber having excellent oil resistance, an epichlorohydrin rubber material using an epichlorohydrin polymer is known. Epichlorohydrin rubber materials are widely used as fuel hoses, air hoses, tube materials, and sealing materials even in automobile applications by taking advantage of their heat resistance, oil resistance, ozone resistance, and the like.

しかし、エピクロロヒドリンゴム材料では、低動倍率化が十分ではなく、建築物、航空機、自動車、鉄道車両、コンピュータ、自動車用タイヤ等の分野において、吸音、免震、制震、制振、防振を目的とした材料には用いられていなかった。
すなわち耐熱性、耐油性、及び耐オゾン性に優れ、かつ吸音、免震、制震、制振、又は防振にも優れた材料については、その選択肢が少ないのが現状である。
However, epichlorohydrin rubber materials do not have sufficient low dynamic magnification, and in the fields of buildings, aircraft, automobiles, railroad vehicles, computers, automobile tires, etc., sound absorption, seismic isolation, vibration control, vibration control, and vibration control It was not used as a material for vibration.
That is, there are currently few options for materials that are excellent in heat resistance, oil resistance, and ozone resistance, and are also excellent in sound absorption, seismic isolation, vibration control, vibration control, or vibration control.

そこでエピクロロヒドリン系重合体を用いたゴム材料、及び上記ゴム材料のための組成物を提供することを課題とする。 Therefore, it is an object of the present invention to provide a rubber material using an epichlorohydrin-based polymer and a composition for the above rubber material.

本発明者らは、エチレンオキシド由来の構成単位を特定の範囲で有するエピクロロヒドリン系重合体、カーボンブラックを含有する組成物から得られるエピクロロヒドリン系ゴム材料を見出した。 The present inventors have found an epichlorohydrin-based rubber material obtained from a composition containing carbon black, an epichlorohydrin-based polymer having a constituent unit derived from ethylene oxide in a specific range.

即ち、上記課題を解決できた本発明のゴム用組成物、ゴム材料は、以下の通りである。
項1 (A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体及び(B)カーボンブラックを含有し、前記(A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体が、エチレンオキシドに由来する構成単位を3〜30mol%有するゴム用組成物。
項2 (A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体100重量部に対して、(B)カーボンブラックの含有量が5〜25重量部含有する項1に記載のゴム用組成物。
項3 更に、(C)架橋剤を含有する項1又は2に記載のゴム用組成物。
項4 項1〜3いずれかに記載するゴム用組成物から作製されたゴム材料。
項5 項4に記載するゴム材料から作製された自動車用ホース材料、チューブ材料、マウント材料、シール材料。
That is, the rubber composition and rubber material of the present invention that have solved the above problems are as follows.
Item 1 (A) An epichlorohydrin-based polymer having a structural unit derived from ethylene oxide and (B) an epichlorohydrin-based polymer containing carbon black and having a structural unit derived from (A) ethylene oxide. , A composition for rubber having 3 to 30 mol% of a structural unit derived from ethylene oxide.
Item 2 (A) For rubber according to Item 1, wherein the content of (B) carbon black is 5 to 25 parts by weight with respect to 100 parts by weight of the epichlorohydrin-based polymer having a structural unit derived from ethylene oxide. Composition.
Item 3 The rubber composition according to Item 1 or 2, further comprising (C) a cross-linking agent.
Item 4 A rubber material produced from the composition for rubber according to any one of Items 1 to 3.
Item 5 An automobile hose material, a tube material, a mounting material, and a sealing material made from the rubber material according to Item 4.

本発明により得られたゴム材料は、良好な耐熱性を有し、低動倍率と減衰性とのバランスに優れているため、両方の特性が同時に要求されるマウント材料(特にエンジンマウントに用いられる材料)として好適である。 The rubber material obtained by the present invention has good heat resistance and has an excellent balance between low dynamic ratio and damping property, so that it is used as a mounting material (particularly used for an engine mount) in which both characteristics are required at the same time. Material) is suitable.

以下、耐熱性ゴム用組成物及び耐熱性ゴム用組成物を架橋してなる耐熱性ゴム材料を代表にとって、本発明のゴム用組成物及びゴム材料について詳細に説明する。前記耐熱性ゴム用組成物は(A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体及び(B)カーボンブラックを含有し、前記(A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体が、エチレンオキシドに由来する構成単位を3〜30mol%有する。 Hereinafter, the rubber composition and the rubber material of the present invention will be described in detail, with the heat-resistant rubber composition obtained by cross-linking the heat-resistant rubber composition and the heat-resistant rubber composition as a representative. The heat-resistant rubber composition contains (A) an epichlorohydrin-based polymer having a structural unit derived from ethylene oxide and (B) carbon black, and epichloro having a structural unit derived from (A) ethylene oxide. The hydrin-based polymer has 3 to 30 mol% of structural units derived from ethylene oxide.

前記耐熱性ゴム用組成物に用いられる(A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体は、エピクロロヒドリン由来の構成単位とエチレンオキシド由来の構成単位を有する重合体であり、プロピレンオキシド、n−ブチレンオキシド等のエチレンオキシド以外のアルキレンオキシド類、メチルグリシジルエーテル、エチルグリシジルエーテル、n−グリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル等のグリシジル類に由来する構成単位を含んでいてもよい。 The (A) epichlorohydrin-based polymer having a structural unit derived from ethylene oxide used in the composition for heat-resistant rubber is a polymer having a structural unit derived from epichlorohydrin and a structural unit derived from ethylene oxide. Containing structural units derived from alkylene oxides other than ethylene oxide such as propylene oxide and n-butylene oxide, and glycidyls such as methylglycidyl ether, ethylglycidyl ether, n-glycidyl ether, allylglycidyl ether and phenylglycidyl ether. May be good.

(A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体としては、エピクロロヒドリンに由来する構成単位を40mol%以上含有することが好ましく、50mol%以上含有することがより好ましく、70mol%以上含有することが特に好ましく、97mol%以下含有することがより好ましく、95mol%以下含有することが特に好ましい。 The epichlorohydrin-based polymer having a structural unit derived from (A) ethylene oxide preferably contains 40 mol% or more of the structural unit derived from epichlorohydrin, and more preferably 50 mol% or more. It is particularly preferably contained in an amount of 70 mol% or more, more preferably contained in an amount of 97 mol% or less, and particularly preferably contained in an amount of 95 mol% or less.

(A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体としては、エチレンオキシドに由来する構成単位を3mol%以上含有する。また、前記エチレンオキシドに由来する構成単位としては5mol%以上含有することが好ましく、7mol%以上含有することがより好ましい。またエチレンオキシドに由来する構成単位は30mol%以下含有しており、20mol%以下含有することが好ましく、15mol%以下含有することがより好ましい。これらの範囲であれば、低動倍率化及び優れた減衰性を両方満たす点で好ましい。 (A) The epichlorohydrin-based polymer having a structural unit derived from ethylene oxide contains 3 mol% or more of the structural unit derived from ethylene oxide. Further, the constituent unit derived from the ethylene oxide preferably contains 5 mol% or more, and more preferably 7 mol% or more. Further, the constituent unit derived from ethylene oxide is contained in an amount of 30 mol% or less, preferably 20 mol% or less, and more preferably 15 mol% or less. Within these ranges, it is preferable in that both low dynamic magnification and excellent damping properties are satisfied.

尚、本発明においては、(A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体における各構成単位に由来するモル比率は、単独の重合体で構成されていればそのまま適用し、複数の重合体で構成されていれば、各重合体のモル比率と(A)エピクロロヒドリン系重合体における各重合体が占める重量における比率より算出することができる。 In the present invention, the molar ratio derived from each structural unit in the epichlorohydrin-based polymer having the structural unit derived from (A) ethylene oxide is applied as it is if it is composed of a single polymer. If it is composed of a plurality of polymers, it can be calculated from the molar ratio of each polymer and the ratio of the weight occupied by each polymer in (A) epichlorohydrin-based polymer.

(A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体が複数の重合体で構成される際には、エピクロロヒドリン単独重合体、エピクロロヒドリン−エチレンオキシド共重合体、エピクロロヒドリン−プロピレンオキシド共重合体、エピクロロヒドリン−エチレンオキシド−アリルグリシジルエーテル三元共重合体、エピクロロヒドリン−エチレンオキシド−プロピレンオキシド−アリルグリシジルエーテル四元共重合体等のこれらの単独重合体又は共重合体を一種、又は二種以上併用して使用することができる。これらの単独重合体又は共重合体としては、大阪ソーダ株式会社製のエピクロマーH、エピクロマーC、エピクロマーCG、エピクロマーD、エピクロマーDG、エピオン等を例示することができる。 (A) When the epichlorohydrin-based polymer having a structural unit derived from ethylene oxide is composed of a plurality of polymers, the epichlorohydrin homopolymer, the epichlorohydrin-ethylene oxide copolymer, and the epichlorohydrin-ethylene oxide copolymer are used. Chlorohydrin-propylene oxide copolymer, epichlorohydrin-ethylene oxide-allyl glycidyl ether ternary copolymer, epichlorohydrin-ethylene oxide-propylene oxide-allyl glycidyl ether quaternary copolymer, etc. The coalescence or copolymer can be used alone or in combination of two or more. Examples of these homopolymers or copolymers include Epichromer H, Epichromer C, Epichromer CG, Epichromer D, Epichromer DG, and Epion manufactured by Osaka Soda Co., Ltd.

エピクロロヒドリン単独重合体、エピクロロヒドリン−エチレンオキシド共重合体、エピクロロヒドリン−エチレンオキシド−アリルグリシジルエーテル三元共重合体の共重合組成については、塩素含有量、ヨウ素価により求められる。
塩素含有量はJIS K7229に記載の方法に従い、電位差滴定法によって測定する。得られた塩素含有量からエピクロロヒドリンに由来する構成単位のモル分率を算出する。
ヨウ素価はJIS K6235に準じた方法で測定する。得られたヨウ素価からアリルグリシジルエーテルに由来する構成単位のモル分率を算出する。
エチレンオキシドに由来する構成単位のモル分率は、エピクロロヒドリンに由来する構成単位のモル分率、アリルグリシジルエーテルに由来する構成単位のモル分率より算出する。
The copolymer composition of the epichlorohydrin homopolymer, the epichlorohydrin-ethylene oxide copolymer, and the epichlorohydrin-ethylene oxide-allyl glycidyl ether ternary copolymer is determined by the chlorine content and the iodine value.
The chlorine content is measured by potentiometric titration according to the method described in JIS K7229. From the obtained chlorine content, the mole fraction of the constituent unit derived from epichlorohydrin is calculated.
The iodine value is measured by a method according to JIS K6235. From the obtained iodine value, the mole fraction of the constituent unit derived from allyl glycidyl ether is calculated.
The mole fraction of the constituent unit derived from ethylene oxide is calculated from the mole fraction of the constituent unit derived from epichlorohydrin and the molar fraction of the constituent unit derived from allylglycidyl ether.

(A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体の分子量は特に制限されないが、通常ムーニー粘度表示でML1+4(100℃)=30〜150程度となる分子量であればよい。(A) The molecular weight of the epichlorohydrin-based polymer having a structural unit derived from ethylene oxide is not particularly limited, but if the molecular weight is usually about ML 1 + 4 (100 ° C.) = 30 to 150 on the Mooney viscosity display. good.

エピクロロヒドリン系重合体の製造は、触媒としてオキシラン化合物を開環重合させ得るものを使用し、温度−20〜100℃の範囲で溶液重合法、スラリー重合法等により実施できる。このような触媒としては、例えば有機アルミニウムを主体としこれに水やリン等のオキソ酸化合物やアセチルアセトン等を反応させた触媒系、有機亜鉛を主体としこれに水を反応させた触媒系、有機錫−リン酸エステル縮合物触媒系等が挙げられる。例えば米国特許第3,773,694号明細書に記載の有機錫−リン酸エステル縮合物触媒系を使用して本発明のポリエーテル共重合体を製造することができる。なお、このような製法により、共重合させる場合、これらの成分を実質上ランダムに共重合することが好ましい。 The epichlorohydrin-based polymer can be produced by a solution polymerization method, a slurry polymerization method, or the like in a temperature range of 20 to 100 ° C. using a catalyst capable of ring-opening polymerization of an oxylan compound. Examples of such a catalyst include a catalyst system in which organic aluminum is mainly used and reacted with an oxo acid compound such as water or phosphorus or acetylacetone, a catalyst system in which organic zinc is mainly used and water is reacted with the catalyst system, and organic tin. -A phosphate ester condensate catalyst system and the like can be mentioned. For example, the polyether copolymer of the present invention can be produced using the organic tin-phosphate ester condensate catalyst system described in US Pat. No. 3,773,694. When copolymerizing by such a production method, it is preferable to copolymerize these components substantially randomly.

本発明の耐熱性ゴム用組成物に用いられる(B)カーボンブラックとしては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどが挙げられ、具体的には、SAF、ISAF、HAF、EPC、XCF、FEF、GPF、HMF、SRF、FT、MTを例示することができる。これらのカーボンブラックは単独で使用してもよいし、また2種以上を併用してもよい。 Examples of the (B) carbon black used in the heat-resistant rubber composition of the present invention include furnace black, acetylene black, thermal black, channel black, graphite, and the like, and specific examples thereof include SAF, ISAF, HAF, and EPC. , XCF, FEF, GPF, HMF, SRF, FT, MT can be exemplified. These carbon blacks may be used alone or in combination of two or more.

(B)カーボンブラックとしては、窒素吸着比表面積(N2SA)が5m2/g以上が好ましく、7m2/g以上がより好ましく、10m2/g以上が特に好ましい。上限は、一般的に入手しやすい観点から180m2/g以下が好ましい。The (B) carbon black, the nitrogen adsorption specific surface area (N2SA) is preferably at least 5 m 2 / g, more preferably not less than 7m 2 / g, more 10 m 2 / g is particularly preferred. The upper limit is preferably 180 m 2 / g or less from the viewpoint of generally being easily available.

(B)カーボンブラックとしては、ジブチルフタレート(DBP)吸油量が15ml/100g以上が好ましく、20ml/100g以上がより好ましく、30ml/100g以上が特に好ましい。上限は一般的に入手しやすい観点から、175ml/100g以下が好ましく、170ml/100g以下がより好ましい。 As the carbon black, the dibutyl phthalate (DBP) oil absorption is preferably 15 ml / 100 g or more, more preferably 20 ml / 100 g or more, and particularly preferably 30 ml / 100 g or more. The upper limit is preferably 175 ml / 100 g or less, more preferably 170 ml / 100 g or less, from the viewpoint of generally being easily available.

耐熱性ゴム用組成物において、(B)カーボンブラックの含有量は(A)エピクロロヒドリン系重合体100重量部に対して、5重量部以上であることが好ましく、7重量部以上であることがより好ましく、25重量部以下であることが好ましく、15重量部以下であることがより好ましい。これらの範囲を満足すると、低動倍率化及び優れた減衰性をより一層優れたレベルで両方可能になる。 In the heat-resistant rubber composition, the content of (B) carbon black is preferably 5 parts by weight or more, preferably 7 parts by weight or more, based on 100 parts by weight of the (A) epichlorohydrin-based polymer. It is more preferably 25 parts by weight or less, and more preferably 15 parts by weight or less. Satisfying these ranges enables both low dynamic magnification and excellent damping at an even better level.

耐熱性ゴム用組成物において、更に(C)架橋剤を含有してもよい。(C)架橋剤としては、エピクロロヒドリン系重合体を架橋できるものであれば特に限定されない。塩素原子の反応性を利用する公知の架橋剤、即ちポリアミン系架橋剤、チオウレア系架橋剤、チアジアゾール系架橋剤、トリアジン系架橋剤、キノキサリン系架橋剤、ビスフェノール系架橋剤等が挙げられ、また、側鎖二重結合の反応性を利用する公知の架橋剤、例えば、有機過酸化物系架橋剤、硫黄、モルホリンポリスルフィド系架橋剤、チウラムポリスルフィド系架橋剤等を例示することができる。 The heat-resistant rubber composition may further contain (C) a cross-linking agent. The cross-linking agent (C) is not particularly limited as long as it can cross-link the epichlorohydrin-based polymer. Known cross-linking agents that utilize the reactivity of chlorine atoms, that is, polyamine-based cross-linking agents, thiourea-based cross-linking agents, thiadiazol-based cross-linking agents, triazine-based cross-linking agents, quinoxaline-based cross-linking agents, bisphenol-based cross-linking agents, and the like. Known cross-linking agents that utilize the reactivity of the side chain double bond, for example, organic peroxide-based cross-linking agents, sulfur, morpholine polysulfide-based cross-linking agents, thiuram polysulfide-based cross-linking agents, and the like can be exemplified.

ポリアミン系架橋剤としては、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ヘキサメチレンテトラミン、p−フェニレンジアミン、クメンジアミン、N,N'−ジシンナミリデン−1,6−ヘキサンジアミン、エチレンジアミンカーバメート、ヘキサメチレンジアミンカーバメート等が挙げられる。
チオウレア系架橋剤としては、2−メルカプトイミダゾリン(エチレンチオウレア)、1,3−ジエチルチオウレア、1,3−ジブチルチオウレア、トリメチルチオウレア等が挙げられる。
チアジアゾール系架橋剤としては、2,5−ジメルカプト−1,3,4−チアジアゾール、2−メルカプト−1,3,4−チアジアゾール−5−チオベンゾエート等が挙げられる。
トリアジン系架橋剤としては、2,4,6−トリメルカプト−1,3,5−トリアジン、2−ヘキシルアミノ−4,6−ジメルカプトトリアジン、2−ジエチルアミノ−4,6−ジメルカプトトリアジン、2−シクロヘキシルアミノ−4,6−ジメルカプトトリアジン、2−ジブチルアミノ−4,6−ジメルカプトトリアジン、2−アニリノ−4,6−ジメルカプトトリアジン、2−フェニルアミノ−4,6−ジメルカプトトリアジン等が挙げられる。
キノキサリン系架橋剤としては、2,3−ジメルカプトキノキサリン、キノキサリン−2,3−ジチオカーボネート、6−メチルキノキサリン−2,3−ジチオカーボネート、5,8−ジメチルキノキサリン−2,3−ジチオカーボネート等が挙げられる。
ビスフェノール系架橋剤としてはビスフェノールAF、ビスフェノールS等が挙げられる。
有機過酸化物系架橋剤としては、tert−ブチルヒドロパーオキサイド、p−メンタンヒドロパーオキサイド、ジクミルパーオキサイド、tert−ブチルパーオキサイド、1,3−ビス(tert−ブチルパーオキシイソプロピル)ベンゼン、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、ベンゾイルパーオキサイド、tert−ブチルパーオキシベンゾエート等が挙げられる。
モルホリンポリスルフィド系架橋剤としては、モルホリンジスルフィドが挙げられる。
チウラムポリスルフィド系架橋剤としては、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィド、ジペンタメチレンチウラムヘキサスルフィド等が挙げられる。
Examples of polyamine-based cross-linking agents include ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, hexamethylenetetramine, p-phenylenediamine, cumenediamine, N, N'-dicinnamylidene-1,6-hexanediamine, ethylenediamine carbamate, and hexamethylene. Examples include diamine carbamate.
Examples of the thiourea-based cross-linking agent include 2-mercaptoimidazoline (ethylene thiourea), 1,3-diethyl thiourea, 1,3-dibutyl thiourea, and trimethyl thiourea.
Examples of the thiadiazole-based cross-linking agent include 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-1,3,4-thiadiazole-5-thiobenzoate and the like.
Examples of the triazine-based cross-linking agent include 2,4,6-trimercapto-1,3,5-triazine, 2-hexylamino-4,6-dimercaptotriazine, 2-diethylamino-4,6-dimercaptotriazine, 2 -Cyclohexylamino-4,6-dimercaptotriazine, 2-dibutylamino-4,6-dimercaptotriazine, 2-anilino-4,6-dimercaptotriazine, 2-phenylamino-4,6-dimercaptotriazine, etc. Can be mentioned.
Examples of the quinoxaline-based cross-linking agent include 2,3-dimercaptoquinoxaline, quinoxaline-2,3-dithiocarbonate, 6-methylquinoxaline-2,3-dithiocarbonate, 5,8-dimethylquinoxaline-2,3-dithiocarbonate and the like. Can be mentioned.
Examples of the bisphenol-based cross-linking agent include bisphenol AF and bisphenol S.
Examples of the organic peroxide-based cross-linking agent include tert-butyl hydroperoxide, p-menthan hydroperoxide, dicumyl peroxide, tert-butyl peroxide, and 1,3-bis (tert-butyl peroxyisopropyl) benzene. Examples thereof include 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, benzoyl peroxide, and tert-butylperoxybenzoate.
Examples of the morpholine polysulfide-based cross-linking agent include morpholine disulfide.
Examples of the thiuram polysulfide-based cross-linking agent include tetramethyl thiuram disulfide, tetraethyl thiuram disulfide, tetrabutyl thiuram disulfide, dipentamethylene thiuram tetrasulfide, and dipentamethylene thiuram hexasulfide.

この中でも、チオウレア系架橋剤、キノキサリン系架橋剤、トリアジン系架橋剤であることが好ましく、2−メルカプトイミダゾリン(エチレンチオウレアともいう)、6−メチルキノキサリン−2,3−ジチオカーボネート、2,4,6−トリメルカプト−1,3,5−トリアジン(2,4,6−トリメルカプト−S−トリアジンともいう)であることが特に好ましい。(C)架橋剤は一種を単独で用いても、二種以上を組み合わせて用いても良い。 Among these, thiourea-based cross-linking agents, quinoxaline-based cross-linking agents, and triazine-based cross-linking agents are preferable, and 2-mercaptoimidazoline (also referred to as ethylene thiourea), 6-methylquinoxaline-2,3-dithiocarbonate, 2,4. 6-Trimercapto-1,3,5-triazine (also referred to as 2,4,6-trimercapto-S-triazine) is particularly preferred. (C) The cross-linking agent may be used alone or in combination of two or more.

耐熱性ゴム用組成物において、(C)架橋剤の含有量は、(A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体100重量部に対して、0.1重量部以上、10重量部以下であることが好ましい。下限値については、0.3重量部以上であることが特に好ましく、上限値については、5重量部以下であることが特に好ましい。 In the heat-resistant rubber composition, the content of the (C) cross-linking agent is 0.1 part by weight or more with respect to 100 parts by weight of the epichlorohydrin-based polymer having a structural unit derived from (A) ethylene oxide. It is preferably 10 parts by weight or less. The lower limit is particularly preferably 0.3 parts by weight or more, and the upper limit is particularly preferably 5 parts by weight or less.

耐熱性ゴム用組成物には、本発明の効果を損なわない限り、上記以外の配合剤、例えば、受酸剤、滑剤、老化防止剤、酸化防止剤、紫外線吸収剤や光安定剤等の添加剤、補強剤、可塑剤、加工助剤、難燃剤、架橋促進剤、架橋遅延剤、素練り促進剤等を更に任意に配合できる。さらに本発明の特性が失われない範囲で、当該技術分野で通常行われている、ゴム、樹脂等のブレンドを行うことも可能である。 Addition of compounding agents other than the above, for example, acid receiving agents, lubricants, antioxidants, antioxidants, ultraviolet absorbers, light stabilizers, etc., to the heat-resistant rubber composition as long as the effects of the present invention are not impaired. Agents, reinforcing agents, plasticizers, processing aids, flame retardants, cross-linking accelerators, cross-linking retarders, kneading accelerators and the like can be further optionally blended. Further, it is also possible to blend rubber, resin and the like, which are usually performed in the art, as long as the characteristics of the present invention are not lost.

耐熱性ゴム用組成物において、架橋剤に応じて公知の(D)受酸剤を使用でき、金属化合物及び/又は無機マイクロポーラス・クリスタルが用いられる。 In the composition for heat-resistant rubber, a known (D) acid receiving agent can be used depending on the cross-linking agent, and a metal compound and / or an inorganic microporous crystal is used.

金属化合物としては、周期表第II族(2族および12族) 金属の酸化物、水酸化物、炭酸塩、カルボン酸塩、ケイ酸塩、ホウ酸塩、亜リン酸塩、周期表第IV族(4族および14族)の非鉛系金属の酸化物、塩基性炭酸塩、塩基性カルボン酸塩、塩基性亜リン酸塩、塩基性亜硫酸塩、三塩基性硫酸塩等の金属化合物が挙げられる。 Examples of the metal compound include oxides of Group II (Groups 2 and 12) metals in the periodic table, hydroxides, carbonates, carboxylates, silicates, borates, phosphites, and Periodic Table IV. Metal compounds such as oxides of non-lead metals of groups (Groups 4 and 14), basic carbonates, basic carboxylates, basic subphosphates, basic sulfites, tribasic sulfates, etc. Can be mentioned.

前記金属化合物の具体例としては、酸化マグネシウム、水酸化マグネシウム、水酸化バリウム、炭酸マグネシウム、炭酸バリウム、炭酸ナトリウム、生石灰、消石灰、炭酸カルシウム、ケイ酸カルシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、フタル酸カルシウム、亜リン酸カルシウム、亜鉛華、酸化錫、ステアリン酸錫、塩基性亜リン酸錫、等を挙げることができる。特に好ましい受酸剤としては酸化マグネシウム、炭酸カルシウム、消石灰、生石灰が挙げられる。 Specific examples of the metal compound include magnesium oxide, magnesium hydroxide, barium hydroxide, magnesium carbonate, barium carbonate, sodium carbonate, quicklime, calcium phosphate, calcium carbonate, calcium silicate, calcium stearate, zinc stearate, and calcium phthalate. , Calcium silicate, Zinchua, tin oxide, tin stearate, basic tin phosphite, and the like. Particularly preferable acid receiving agents include magnesium oxide, calcium carbonate, slaked lime, and quicklime.

無機マイクロポーラス・クリスタルとは、結晶性の多孔体を意味し、無定型の多孔体、例えばシリカゲル、アルミナ等とは明瞭に区別できるものである。このような無機マイクロポーラス・クリスタルの例としては、ゼオライト類、アルミナホスフェート型モレキュラーシーブ、層状ケイ酸塩、ハイドロタルサイト類、チタン酸アルカリ金属塩等が挙げられる。特に好ましい受酸剤としては、ハイドロタルサイト類が挙げられる。 The inorganic microporous crystal means a crystalline porous body, and is clearly distinguishable from an amorphous porous body such as silica gel or alumina. Examples of such inorganic microporous crystals include zeolites, alumina phosphate type molecular sieves, layered silicates, hydrotalcites, alkali metal titanates and the like. Particularly preferable acid receiving agents include hydrotalcites.

ゼオライト類は、天然ゼオライトの外、A型、X型、Y型の合成ゼオライト、ソーダライト類、天然ないしは合成モルデナイト、ZSM−5などの各種ゼオライト及びこれらの金属置換体であり、これらは単独で用いても2種以上の組み合わせで用いても良い。また金属置換体の金属はナトリウムであることが多い。ゼオライト類としては酸受容能が大きいものが好ましく、A型ゼオライトが好ましい。 Zeolites are not only natural zeolites, but also various zeolites such as A-type, X-type, and Y-type synthetic zeolites, sodalites, natural or synthetic mordenites, and ZSM-5, and metal substituents thereof. It may be used or may be used in combination of two or more kinds. The metal of the metal substituent is often sodium. As the zeolites, those having a large acid receptivity are preferable, and type A zeolites are preferable.

前記ハイドロタルサイト類は下記一般式(1)
MgXZnYAlZ(OH)(2(X+Y)+3Z-2)CO3・wH2O (1)
[式中、XとYはそれぞれX+Y=1〜10の関係を有する0〜10の実数、Zは1〜5の実数、Wは0〜10の実数をそれぞれ示す]で表わされる。
ハイドロタルサイト類の具体例として、Mg4.5Al2(OH)13CO3・3.5H2O、Mg4.5Al2(OH)13CO3、Mg4Al2(OH)12CO3・3.5H2O、Mg5Al2(OH)14CO3・4H2O、Mg3Al2(OH)10CO3・1.7H2O、Mg3ZnAl2(OH)12CO3・3.5H2O、Mg3ZnAl2(OH)12CO3、Mg4.3Al2(OH)12.6CO3・3.5H2O等を挙げることができる。
The hydrotalcites have the following general formula (1).
Mg X Zn Y Al Z (OH) (2 (X + Y) + 3Z-2) CO 3・ wH 2 O (1)
In the formula, X and Y are represented by 0 to 10 real numbers having a relationship of X + Y = 1 to 10, Z is a 1 to 5 real number, and W is a 0 to 10 real number.
Specific examples of hydrotalcites include Mg 4.5 Al 2 (OH) 13 CO 3・ 3.5H 2 O, Mg 4.5 Al 2 (OH) 13 CO 3 , Mg 4 Al 2 (OH) 12 CO 3・ 3. 5H 2 O, Mg 5 Al 2 (OH) 14 CO 3 · 4H 2 O, Mg 3 Al 2 (OH) 10 CO 3 · 1.7H 2 O, Mg 3 ZnAl 2 (OH) 12 CO 3 · 3.5H 2 O, Mg 3 ZnAl 2 (OH) 12 CO 3 , Mg 4.3 Al 2 (OH) 12.6 CO 3・ 3.5H 2 O and the like can be mentioned.

耐熱性ゴム用組成物において、(D)受酸剤の含有量は、(A)エピクロロヒドリン系重合体100重量部に対して、0.2重量部以上であることが好ましく、1重量部以上であることが特に好ましく、また、50重量部以下であることが好ましく、20重量部以下であることが特に好ましい。(D)受酸剤の含有量が0.2重量部未満では架橋が不十分となり、50重量部を超えると架橋物が剛直になりすぎて、エピクロロヒドリン系ゴム組成物を架橋して得られる架橋物として通常期待される物性が得られなくなる恐れがある。 In the heat-resistant rubber composition, the content of the (D) acid-receiving agent is preferably 0.2 parts by weight or more with respect to 100 parts by weight of the (A) epichlorohydrin-based polymer, and is preferably 1 part by weight. It is particularly preferably parts or more, more preferably 50 parts by weight or less, and particularly preferably 20 parts by weight or less. (D) If the content of the acid receiving agent is less than 0.2 parts by weight, the cross-linking becomes insufficient, and if it exceeds 50 parts by weight, the cross-linked product becomes too rigid, and the epichlorohydrin-based rubber composition is cross-linked. There is a risk that the physical properties normally expected as the obtained crosslinked product cannot be obtained.

前記滑剤としては、具体的には、例えば、パラフィン・ワックス、炭化水素系ワックスなどのパラフィンおよび炭化水素樹脂;ステアリン酸、パルミチン酸などの脂肪酸;ステアロアミド、オレイル・アミドなどの脂肪酸アミド;n−ブチル・ステアレートなどの脂肪酸エステル;ソルビタン脂肪酸エステル;脂肪アルコール;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 Specific examples of the lubricant include paraffin waxes such as paraffin waxes and hydrocarbon waxes and hydrocarbon resins; fatty acids such as stearic acid and palmitic acid; fatty acid amides such as stearic acid and oleyl amide; n-butyl. -Fatty acid esters such as stearate; sorbitan fatty acid esters; fatty alcohols; etc. may be mentioned, and these may be used alone or in combination of two or more.

前記老化防止剤として、公知の、アミン系老化防止剤、フェノール系老化防止剤、ベンズイミダゾール系老化防止剤、ジチオカルバミン酸塩系老化防止剤、チオ尿素系老化防止剤、有機チオ酸系老化防止剤、亜リン酸系老化防止剤が例示され、これらを1種単独で用いてもよく、2種以上を併用してもよい。好ましくは、アミン系老化防止剤、フェノール系老化防止剤、ベンズイミダゾール系老化防止剤、ジチオカルバミン酸塩系老化防止剤であり、より好ましくはジチオカルバミン酸塩系老化防止剤である。 Known anti-aging agents include amine-based anti-aging agents, phenol-based anti-aging agents, benzimidazole-based anti-aging agents, dithiocarbamate-based anti-aging agents, thiourea-based anti-aging agents, and organic thioic acid-based anti-aging agents. , Hypophosphate-based anti-aging agents are exemplified, and these may be used alone or in combination of two or more. Preferably, it is an amine-based anti-aging agent, a phenol-based anti-aging agent, a benzimidazole-based anti-aging agent, a dithiocarbamate-based anti-aging agent, and more preferably a dithiocarbamate-based anti-aging agent.

前記可塑剤として、フタル酸ジオクチルなどのフタル酸誘導体、ジブチルジグリコール−アジペートやジ(ブトキシエトキシ)エチルアジペート等のアジピン酸誘導体、セバシン酸ジオクチル等のセバシン酸誘導体、トリオクチルトリメリテート等のトリメリット酸誘導体などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。 As the plasticizer, a phthalic acid derivative such as dioctyl phthalate, an adipic acid derivative such as dibutyldiglycol-adipate or di (butoxyethoxy) ethyl adipate, a sebacic acid derivative such as dioctyl sebacate, and a trimellitic acid such as trioctyl remeritate. Merit acid derivatives and the like can be mentioned, and these may be used alone or in combination of two or more.

前記素練り促進剤として、芳香族メルカプタン系化合物、芳香族ジスルフィド系化合物、芳香族メルカプタン金属系化合物、またはこれらの混合系化合物を用いることができ、代表的にはo,o−ジベンズアミドジフェニルジスルフィドが挙げられる。 As the kneading accelerator, an aromatic mercaptan compound, an aromatic disulfide compound, an aromatic mercaptan metal compound, or a mixed compound thereof can be used, and typically o, o-dibenzamide diphenyl disulfide can be used. Can be mentioned.

前記耐熱性ゴム用組成物を製造するには、従来ポリマー加工の分野において用いられている任意の混合手段、例えばミキシングロール、バンバリーミキサー、各種ニーダー類等を用いることができる。 In order to produce the heat-resistant rubber composition, any mixing means conventionally used in the field of polymer processing, for example, a mixing roll, a Banbury mixer, various kneaders and the like can be used.

前記耐熱性ゴム材料は、前記耐熱性ゴム用組成物より作製される。一般には架橋して得られるため、架橋物、架橋ゴム材料として記載することもできる。 The heat-resistant rubber material is produced from the heat-resistant rubber composition. Since it is generally obtained by cross-linking, it can also be described as a cross-linked product or a cross-linked rubber material.

前記耐熱性ゴム材料は、通常100〜200℃に加熱することで得られる。架橋時間は温度により異なるが、通常0.5〜300分の間である。架橋成型の方法としては、金型による圧縮成型、射出成型、スチーム缶、エアーバス、赤外線或いはマイクロウェーブによる加熱等任意の方法を用いることができる。 The heat-resistant rubber material is usually obtained by heating to 100 to 200 ° C. The cross-linking time varies depending on the temperature, but is usually between 0.5 and 300 minutes. As the method of cross-linking molding, any method such as compression molding by a mold, injection molding, steam can, air bath, heating by infrared rays or microwaves can be used.

本発明のゴム材料の引張強さ(TB)は、例えば、1MPa以上、好ましくは3MPa以上、より好ましくは5MPa以上である。上限は特に限定されないが、例えば、20MPa以下、または15MPa以下程度であっても実用上問題ない。 The tensile strength (TB) of the rubber material of the present invention is, for example, 1 MPa or more, preferably 3 MPa or more, and more preferably 5 MPa or more. The upper limit is not particularly limited, but for example, there is no problem in practical use even if it is about 20 MPa or less or about 15 MPa or less.

また本発明のゴム材料の伸び(EB)は、例えば、100%以上、好ましくは200%以上、より好ましくは300%以上である。伸び(EB)の上限は特に限定されないが、例えば、800%以下、または600%以下程度であっても実用上問題ない。 The elongation (EB) of the rubber material of the present invention is, for example, 100% or more, preferably 200% or more, and more preferably 300% or more. The upper limit of the elongation (EB) is not particularly limited, but for example, even if it is about 800% or less or 600% or less, there is no practical problem.

本発明のゴム材料の耐熱性は、125℃168時間の耐熱性試験前後の各物性の変化率(下記式参照)などに基づいて評価できる。
変化率(%)={(耐熱性試験後の物性−耐熱試験前の物性)/耐熱試験前の物性}×100
なお、耐熱試験前の物性を本明細書では常態物性という場合もある。
本発明のゴム材料の引張強さ(TB)の変化率は、例えば、−30%以上、好ましくは−25%以上、より好ましくは−20%以上であり、例えば、30%以下であってよく、20%以下であってよく、10%以下であってよい。
本発明のゴム材料の伸び(EB)の変化率は、例えば、−40%以上、好ましくは−30%以上、より好ましくは−20%以上であり、例えば、10%以下であってよい。
The heat resistance of the rubber material of the present invention can be evaluated based on the rate of change of each physical property before and after the heat resistance test at 125 ° C. for 168 hours (see the following formula).
Rate of change (%) = {(Physical characteristics after heat resistance test-Physical properties before heat resistance test) / Physical properties before heat resistance test} x 100
In addition, the physical characteristics before the heat resistance test may be referred to as normal physical properties in the present specification.
The rate of change in the tensile strength (TB) of the rubber material of the present invention may be, for example, -30% or more, preferably -25% or more, more preferably -20% or more, for example, 30% or less. , 20% or less, and may be 10% or less.
The rate of change in elongation (EB) of the rubber material of the present invention may be, for example, -40% or more, preferably -30% or more, more preferably -20% or more, and may be, for example, 10% or less.

本発明のゴム材料は、鉄道車両用ゴム、産業機械用ゴム、建築用免震ゴム、免震ゴム支承、マウント等の自動車用ゴム等の防振、免震ゴムに好適に用いることができ、特に耐熱性と、低動倍率と減衰性とのバランスに優れるマウント材料(特にエンジンマウントに用いられる材料)に好適に用いられる。 The rubber material of the present invention can be suitably used for anti-vibration and seismic isolation rubber for rubber for railway vehicles, rubber for industrial machinery, seismic isolation rubber for construction, seismic isolation rubber support, rubber for automobiles such as mounts, etc. In particular, it is suitably used for a mount material (particularly a material used for an engine mount) having an excellent balance between heat resistance, low dynamic ratio and damping property.

本願は、2017年2月9日に提出された日本国特許出願第2017−022559号に基づく優先権の利益を主張するものである。2017年2月9日に出願された日本国特許出願第2017−022559号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority under Japanese Patent Application No. 2017-022559 filed on February 9, 2017. The entire contents of the specification of Japanese Patent Application No. 2017-022559 filed on February 9, 2017 are incorporated herein by reference.

以下、本発明を実施例により具体的に説明するが、本発明はこの記載に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to this description.

実施例1〜3及び比較例1〜5
表1に示す配合で各材料をニーダーおよびオープンロールで混練し、厚さ2〜2.5mmの未架橋ゴムシートを作製した。また、未架橋ゴムシートを170℃で15分プレス架橋し、2mm厚の一次架橋物を得た。さらにこれをエア・オーブンで150℃で2時間加熱し、二次架橋物を得た。
二次架橋物(ゴム材料)の動特性を決定するため、(株)鷺ノ宮製作所製ダイナミックサーボを用いて荷重に対するゴム材料試験片の変位量の測定を行った。静的ばね定数(Ks)は試験片を0〜3mmに圧縮する際の1〜2mm区間の静的荷重と変位の比に基づいて算出し、動的ばね定数(Kd)は試験片のプリセット圧縮率が5%、ひずみ振幅が±0.1%、周波数が100Hzのときの動荷重と変位の比に基づいて算出した。
二次架橋物(ゴム材料)のtanδを決定するため、(株)鷺ノ宮製作所製ダイナミックサーボを用いて荷重に対するゴム材料試験片の変位量の測定を行った。動的測定時試験片のプリセット圧縮率が5%、ひずみ振幅が0.25mm、周波数が15Hzのときの荷重−変位量関係からtanδを決定した。
二次架橋物の常態での引張特性(引張強さ(TB)、伸び(EB))をJIS K6251に準じて引張試験を行うことによって決定した。
また二次架橋物(ゴム材料)に対してJIS K6257促進老化試験A−2法に準じて125℃168時間の耐熱試験を行い、耐熱試験後のゴム材料の引張特性(引張強さ(TB)、伸び(EB))をJIS K6251に準じて引張試験を行うことによって決定した。そして該耐熱試験前後の各物性(TB、EB)の変化率(ΔTB、ΔEB)を下記式に基づいて算出し、耐熱性を評価した。
変化率(%)={(耐熱性試験後の物性−常態物性)/常態物性}×100
ゴム材料の各評価結果について表2に示した。
Examples 1 to 3 and Comparative Examples 1 to 5
Each material was kneaded with a kneader and an open roll according to the formulation shown in Table 1 to prepare an uncrosslinked rubber sheet having a thickness of 2 to 2.5 mm. Further, the uncrosslinked rubber sheet was press-crosslinked at 170 ° C. for 15 minutes to obtain a primary crosslinked product having a thickness of 2 mm. Further, this was heated in an air oven at 150 ° C. for 2 hours to obtain a secondary crosslinked product.
In order to determine the dynamic characteristics of the secondary crosslinked product (rubber material), the displacement amount of the rubber material test piece with respect to the load was measured using a dynamic servo manufactured by Saginomiya Seisakusho Co., Ltd. The static spring constant (Ks) is calculated based on the ratio of the static load to the displacement in the 1 to 2 mm section when the test piece is compressed to 0 to 3 mm, and the dynamic spring constant (Kd) is the preset compression of the test piece. It was calculated based on the ratio of dynamic load and displacement when the rate was 5%, the strain amplitude was ± 0.1%, and the frequency was 100 Hz.
In order to determine the tan δ of the secondary crosslinked product (rubber material), the displacement amount of the rubber material test piece with respect to the load was measured using a dynamic servo manufactured by Saginomiya Seisakusho Co., Ltd. Tan δ was determined from the load-displacement amount relationship when the preset compressibility of the test piece during dynamic measurement was 5%, the strain amplitude was 0.25 mm, and the frequency was 15 Hz.
The tensile properties (tensile strength (TB), elongation (EB)) of the secondary crosslinked product under normal conditions were determined by performing a tensile test according to JIS K6251.
Further, the secondary crosslinked product (rubber material) was subjected to a heat resistance test at 125 ° C. for 168 hours according to the JIS K6257 accelerated aging test A-2 method, and the tensile properties (tensile strength (TB)) of the rubber material after the heat resistance test. , Elongation (EB)) was determined by performing a tensile test according to JIS K6251. Then, the rate of change (ΔTB, ΔEB) of each physical property (TB, EB) before and after the heat resistance test was calculated based on the following formula, and the heat resistance was evaluated.
Rate of change (%) = {(Physical characteristics after heat resistance test-Normal physical properties) / Normal physical properties} x 100
Table 2 shows the results of each evaluation of the rubber material.

Figure 0006965898
Figure 0006965898

Figure 0006965898
Figure 0006965898

表1及び表2の実施例より、本発明のゴム用組成物から得られる耐熱性ゴム材料は、耐熱性が優れており、また低動倍率と減衰性とのバランスに優れていることが示された。 From the examples in Tables 1 and 2, it is shown that the heat-resistant rubber material obtained from the rubber composition of the present invention has excellent heat resistance and an excellent balance between low dynamic ratio and damping property. Was done.

本発明により、エピクロロヒドリン系重合体をベースとした低動倍率に優れた架橋ゴム材料を提供することができる。したがって、本発明の耐熱性ゴム用組成物、耐熱性ゴム材料より、鉄道車両用ゴム、産業機械用ゴム、建築用免震ゴム、免震ゴム支承、マウント等の自動車用ゴム等の防振、免震ゴムに好適に用いることができ、特に耐熱性と、低動倍率と減衰性とのバランスに優れるマウント材料に好適に用いられる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a crosslinked rubber material based on an epichlorohydrin-based polymer and having an excellent low dynamic ratio. Therefore, from the heat-resistant rubber composition and heat-resistant rubber material of the present invention, vibration isolation of rubber for railway vehicles, rubber for industrial machinery, seismic isolation rubber for construction, seismic isolation rubber support, rubber for automobiles such as mounts, etc. It can be suitably used for seismic isolation rubber, and is particularly preferably used for a mounting material having an excellent balance between heat resistance, low dynamic ratio and damping property.

Claims (5)

(A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体及び(B)カーボンブラックを含有し、前記(A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体が、エチレンオキシドに由来する構成単位を3〜30mol%有する、マウント材料に用いるゴム用組成物。 The epichlorohydrin-based polymer having a structural unit derived from (A) ethylene oxide and the epichlorohydrin-based polymer containing (B) carbon black and having a structural unit derived from (A) ethylene oxide are ethylene oxide. A composition for rubber used as a mounting material, which has 3 to 30 mol% of a structural unit derived from. (A)エチレンオキシドに由来する構成単位を有するエピクロロヒドリン系重合体100重量部に対して、(B)カーボンブラックの含有量が5〜25重量部含有する請求項1に記載のゴム用組成物。 The composition for rubber according to claim 1, wherein the content of (B) carbon black is 5 to 25 parts by weight with respect to 100 parts by weight of the epichlorohydrin-based polymer having a structural unit derived from (A) ethylene oxide. thing. 更に、(C)架橋剤を含有する請求項1又は2に記載のゴム用組成物。 The rubber composition according to claim 1 or 2, further comprising (C) a cross-linking agent. 請求項1〜3いずれかに記載するゴム用組成物から作製されたゴム材料。 A rubber material produced from the rubber composition according to any one of claims 1 to 3. 請求項4に記載するゴム材料から作製された自動車用マウント材料。 Automotive mount materials made of a rubber material according to claim 4.
JP2018567468A 2017-02-09 2018-02-07 Composition for rubber Active JP6965898B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017022559 2017-02-09
JP2017022559 2017-02-09
PCT/JP2018/004221 WO2018147328A1 (en) 2017-02-09 2018-02-07 Rubber composition

Publications (2)

Publication Number Publication Date
JPWO2018147328A1 JPWO2018147328A1 (en) 2019-12-12
JP6965898B2 true JP6965898B2 (en) 2021-11-10

Family

ID=63107522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018567468A Active JP6965898B2 (en) 2017-02-09 2018-02-07 Composition for rubber

Country Status (2)

Country Link
JP (1) JP6965898B2 (en)
WO (1) WO2018147328A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105293A4 (en) * 2020-02-12 2024-01-24 NOK Corporation Gasket

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601811B2 (en) * 1998-07-22 2004-12-15 バンドー化学株式会社 Conductive roller
JP2007185826A (en) * 2006-01-12 2007-07-26 Tokai Rubber Ind Ltd Heat-resistant hose
JP2007186564A (en) * 2006-01-12 2007-07-26 Tokai Rubber Ind Ltd Hydrin rubber composition
JP5431666B2 (en) * 2007-03-27 2014-03-05 東海ゴム工業株式会社 Hydrin rubber composition

Also Published As

Publication number Publication date
WO2018147328A1 (en) 2018-08-16
JPWO2018147328A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
KR101200664B1 (en) Composition for vulcanized rubber and vulcanization product
JP2006176763A (en) Composition for vulcanized rubber and vulcanized product therefrom
JP6965898B2 (en) Composition for rubber
JP7287396B2 (en) Composition for sound absorbing material
JP3994757B2 (en) Rubber composition for vulcanization and vulcanized product thereof
JP6070342B2 (en) Flexible rubber composition and vulcanized product thereof
JP2015034192A (en) Rubber composition for vibration-proof rubber excellent in heat resistance and vulcanized product of the same
JP4855643B2 (en) Rubber composition for vulcanization excellent in acid resistance and vulcanized rubber material thereof
JP5088010B2 (en) Rubber composition for vulcanization
JP2006282693A (en) Rubber composition
JPWO2017057024A1 (en) Heat-resistant rubber composition and cross-linked product thereof
JP5541525B2 (en) Vulcanized rubber composition for air spring and rubber molded body for air spring
JPWO2015133610A1 (en) Method for producing rubber composition
JP6897686B2 (en) Cosmetological equipment composition
JP4193560B2 (en) Vulcanizing rubber composition and vulcanized rubber material
JPWO2007063905A1 (en) Rubber composition, vulcanizable rubber composition, and rubber vulcanizate
JP4389687B2 (en) Rubber composition for vulcanization, and vulcanized rubber material using the composition
CN107250272B (en) Composition for vibration-damping rubber and crosslinked product thereof
JP4389738B2 (en) Rubber composition for vulcanization, rubber vulcanizate and rubber product comprising the vulcanizate
JP4389686B2 (en) Rubber composition for vulcanization, and vulcanized rubber material using the composition
JP5233988B2 (en) Polyether-based multi-component copolymer, cross-linkable rubber composition containing the same, and automotive rubber parts comprising the cross-linked product
JP2024145254A (en) Epihalohydrin rubber and rubber composition
WO2022075300A1 (en) Crosslinked product
JP2022057662A (en) Polyether polymer cross-linked product
JP2017222775A (en) Composition for vibration-proof rubber and crosslinking substance thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R150 Certificate of patent or registration of utility model

Ref document number: 6965898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150