JP6965502B2 - Water quality analyzer - Google Patents

Water quality analyzer Download PDF

Info

Publication number
JP6965502B2
JP6965502B2 JP2016167570A JP2016167570A JP6965502B2 JP 6965502 B2 JP6965502 B2 JP 6965502B2 JP 2016167570 A JP2016167570 A JP 2016167570A JP 2016167570 A JP2016167570 A JP 2016167570A JP 6965502 B2 JP6965502 B2 JP 6965502B2
Authority
JP
Japan
Prior art keywords
sample
liquid
sample solution
predetermined amount
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016167570A
Other languages
Japanese (ja)
Other versions
JP2018036084A (en
Inventor
佳夫 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2016167570A priority Critical patent/JP6965502B2/en
Publication of JP2018036084A publication Critical patent/JP2018036084A/en
Application granted granted Critical
Publication of JP6965502B2 publication Critical patent/JP6965502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水質分析計に関し、特に試料液中の全窒素濃度を測定する全窒素測定装置に関する。 The present invention relates to a water quality analyzer, and more particularly to a total nitrogen measuring device for measuring the total nitrogen concentration in a sample solution.

工場排水等の試料液中の全窒素化合物総量を窒素の濃度で表す全窒素の測定方法は、日本工業規格の「工場から排出される排水の試験方法」に規定されている「紫外吸光光度法」(JIS K 0102 45.2)が一般に利用されている。この紫外吸光光度法は、酸化剤であるペルオキソ二硫酸カリウムを添加した試料液をオートクレーブ法、すなわち高温・高圧下で処理する方法である。
また、「紫外吸光光度法」に「紫外線酸化分解」を組み合わせた方法(以下、「紫外線酸化分解法」という)を採用した全窒素測定装置も市販されている。
The method for measuring total nitrogen, which expresses the total amount of total nitrogen compounds in a sample solution such as factory wastewater by the concentration of nitrogen, is the "ultraviolet absorptiometry" specified in the "Test method for wastewater discharged from factories" of the Japanese Industrial Standards. "(JIS K 0102 45.2) is commonly used. This ultraviolet absorptiometry is an autoclave method, that is, a method of treating a sample solution to which potassium persulfate, which is an oxidizing agent, is added, under high temperature and high pressure.
In addition, a total nitrogen measuring device that employs a method that combines "ultraviolet absorptiometry" with "ultraviolet oxidative decomposition" (hereinafter referred to as "ultraviolet oxidative decomposition method") is also commercially available.

紫外線酸化分解法において、採取された所定量aの試料液Sは、まず初めに計量されて所定量bの希釈水で希釈される。そして、試料液S中の窒素化合物が分解されやすいように、試料液Sをアルカリ性とするための前処理として所定量cの水酸化ナトリウム溶液(NaOH)が添加される。次に、酸化剤となる所定量dのペルオキソ二硫酸カリウム溶液が添加された後、所定量(a+b+c+d)の調整試料液S1は紫外線酸化分解工程へ移される。 In the ultraviolet oxidative decomposition method, the sample liquid S of the predetermined amount a collected is first weighed and diluted with the diluted water of the predetermined amount b. Then, a predetermined amount of sodium hydroxide solution (NaOH) is added as a pretreatment for making the sample liquid S alkaline so that the nitrogen compound in the sample liquid S is easily decomposed. Next, after a predetermined amount d of potassium persulfate solution serving as an oxidizing agent is added, a predetermined amount (a + b + c + d) of the prepared sample solution S1 is transferred to the ultraviolet oxidative decomposition step.

そして、調整試料液S1は70℃以上の加熱条件下で紫外線が照射され、調整試料液S1中の窒素化合物は紫外線に反応して硝酸イオンにまで酸化分解されて反応試料液S2となる。その後、吸光度測定時にpHを調整するための所定量eの塩酸等が添加され、220nm付近の吸光度測定によって所定量(a+b+c+d+e)の調整試料液S3中の全窒素濃度の測定が行われる(例えば特許文献1参照)。 Then, the adjusted sample solution S1 is irradiated with ultraviolet rays under heating conditions of 70 ° C. or higher, and the nitrogen compound in the adjusted sample solution S1 is oxidatively decomposed into nitrate ions in response to the ultraviolet rays to become the reaction sample solution S2. After that, a predetermined amount of hydrochloric acid or the like for adjusting the pH is added at the time of absorbance measurement, and the total nitrogen concentration in the adjusted sample solution S3 of a predetermined amount (a + b + c + d + e) is measured by measuring the absorbance at around 220 nm (for example, patent). Reference 1).

図4は、従来のオンライン全窒素測定装置の全体構成の一例を概略的に示す図である。また、リアクタと測定部の構成の一例を図2、3に断面図で示す。なお、地面に水平な一方向をX方向とし、地面に水平でX方向と垂直な方向をY方向とし、X方向とY方向とに垂直な方向をZ方向とする。
オンライン全窒素測定装置101は、試料槽2と、シリンジポンプ(計量部)12と、第一マルチポートバルブ20と、第二マルチポートバルブ30と、リアクタ40と、測定部50と、コンピュータ160とを備える。
FIG. 4 is a diagram schematically showing an example of the overall configuration of a conventional online total nitrogen measuring device. Further, an example of the configuration of the reactor and the measuring unit is shown in cross-sectional views in FIGS. One direction horizontal to the ground is the X direction, the direction horizontal to the ground and perpendicular to the X direction is the Y direction, and the direction perpendicular to the X direction and the Y direction is the Z direction.
The online total nitrogen measuring device 101 includes a sample tank 2, a syringe pump (measuring unit) 12, a first multiport valve 20, a second multiport valve 30, a reactor 40, a measuring unit 50, and a computer 160. To be equipped.

試料槽2は、例えば工場排水や環境水等の試料液Sが連続して供給されるようになっており、第一マルチポートバルブ20の1つの分配ポートに接続されている。 The sample tank 2 is configured to be continuously supplied with a sample liquid S such as factory wastewater or environmental water, and is connected to one distribution port of the first multi-port valve 20.

シリンジポンプ12は、筒状体のシリンジ12aと、シリンジ12a内に挿入される円柱形状のピストン12bと、コンピュータ160に制御されるパルスモータ12cとを備える。そして、シリンジポンプ12のピストン12bは、パルスモータ12cにより上下動するようになっており、ピストン12bが下方に引かれると所定量の溶液をシリンジ12a内に注入し、ピストン12bが上方に押されるとシリンジ12a内の所定量の溶液を排出している。 The syringe pump 12 includes a cylindrical syringe 12a, a cylindrical piston 12b inserted into the syringe 12a, and a pulse motor 12c controlled by a computer 160. Then, the piston 12b of the syringe pump 12 is moved up and down by the pulse motor 12c, and when the piston 12b is pulled downward, a predetermined amount of solution is injected into the syringe 12a and the piston 12b is pushed upward. And a predetermined amount of solution in the syringe 12a is discharged.

第一マルチポートバルブ20は、8個の分配ポートと1個の共通ポートとからなる。分配ポートには、試料槽2と、スパン液入り容器3と、標準試料液入り容器4と、希釈水入り容器5と、リアクタ40と、測定部50とが接続されている。そして、第一マルチポートバルブ20は、モータ(図示せず)により駆動され、共通ポートと1個の分配ポートとを選択的に接続するようになっている。 The first multi-port valve 20 includes eight distribution ports and one common port. The sample tank 2, the container 3 containing the span liquid, the container 4 containing the standard sample liquid, the container 5 containing the diluted water, the reactor 40, and the measuring unit 50 are connected to the distribution port. The first multi-port valve 20 is driven by a motor (not shown) to selectively connect the common port and one distribution port.

第二マルチポートバルブ30は、8個の分配ポートと1個の共通ポートとからなる。分配ポートには、ペルオキソ二硫酸カリウム溶液入り容器6と、水酸化ナトリウム溶液入り容器7と、塩酸入り容器8と、モリブデン酸入り容器9と、アスコルビン酸入り容器10と、硫酸入り容器11と、第一マルチポートバルブ20の共通ポートとが接続されている。さらに、第二マルチポートバルブ30の共通ポートには、シリンジポンプ12が接続されている。そして、第二マルチポートバルブ30は、モータ(図示せず)により駆動され、共通ポートと1個の分配ポートとを選択的に接続するようになっている。 The second multi-port valve 30 includes eight distribution ports and one common port. The distribution port includes a container 6 containing a potassium peroxodisulfate solution, a container 7 containing a sodium hydroxide solution, a container 8 containing hydrochloric acid, a container 9 containing molybdic acid, a container 10 containing ascorbic acid, and a container 11 containing sulfuric acid. The common port of the first multi-port valve 20 is connected. Further, a syringe pump 12 is connected to the common port of the second multi-port valve 30. The second multi-port valve 30 is driven by a motor (not shown) to selectively connect the common port and one distribution port.

リアクタ40は、図2に示すように、調整試料液S1を収容するための反応容器41と、調整試料液S1に紫外線を照射する紫外線ランプ42と、調整試料液S1の酸化反応温度を制御するヒータ43とを備える。 As shown in FIG. 2, the reactor 40 controls the reaction vessel 41 for accommodating the adjusted sample solution S1, the ultraviolet lamp 42 for irradiating the adjusted sample solution S1 with ultraviolet rays, and the oxidation reaction temperature of the adjusted sample solution S1. A heater 43 is provided.

反応容器41は、円筒状(例えば外径12mm、内径10mm、高さ130mm)の側壁41aと円形状の下面41bとからなり、側壁41aの下部には第一マルチポートバルブ20と接続された試料液導入口41cが形成され、下面41bには廃液を処理するためのドレインと接続された試料液排出口41dが形成されている。なお、反応容器41は、石英ガラス等で形成されている。
ヒータ43は、金属製で円筒状のブロック体と、ブロック体に埋め込まれた熱電対(図示せず)とを備え、反応容器41の外周面に接触するように配置されている。
The reaction vessel 41 is composed of a cylindrical (for example, outer diameter 12 mm, inner diameter 10 mm, height 130 mm) side wall 41a and a circular lower surface 41b, and a sample connected to the first multiport valve 20 under the side wall 41a. A liquid introduction port 41c is formed, and a sample liquid discharge port 41d connected to a drain for treating waste liquid is formed on the lower surface 41b. The reaction vessel 41 is made of quartz glass or the like.
The heater 43 includes a metal cylindrical block body and a thermocouple (not shown) embedded in the block body, and is arranged so as to come into contact with the outer peripheral surface of the reaction vessel 41.

紫外線ランプ42は、例えば低圧水銀灯やエキシマレーザや重水素ランプやキセノンランプやHg−Zn−Pbランプ等である。
そして、紫外線ランプ42は、反応容器41内の中央部に上方から挿入されて配置されている。これにより、反応容器41内に所定量の調整試料液S1が収容されると、紫外線ランプ42は調整試料液S1に浸漬されるようになっている。
The ultraviolet lamp 42 is, for example, a low-pressure mercury lamp, an excimer laser, a deuterium lamp, a xenon lamp, an Hg-Zn-Pb lamp, or the like.
The ultraviolet lamp 42 is inserted into the central portion of the reaction vessel 41 from above and arranged. As a result, when a predetermined amount of the adjusted sample solution S1 is contained in the reaction vessel 41, the ultraviolet lamp 42 is immersed in the adjusted sample solution S1.

測定部50は、図3に示すように、レーザ光を右方(X方向)に出射する半導体レーザ素子(光源部)51と、X方向に進行するレーザ光の光強度Iを検出するフォトダイオード(検出部)52と、半導体レーザ素子51とフォトダイオード52との間に配置され所定量の調整試料液S3を収容するための測定セル(試料容器)53とを備える。なお、光源部は半導体レーザ素子に限らずキセノンフラッシュランプ等としてもよい。 As shown in FIG. 3, the measuring unit 50 includes a semiconductor laser element (light source unit) 51 that emits laser light to the right (X direction) and a photodiode that detects the light intensity I of the laser light traveling in the X direction. A (detection unit) 52 and a measurement cell (sample container) 53 arranged between the semiconductor laser element 51 and the photodiode 52 and accommodating a predetermined amount of the adjusted sample liquid S3 are provided. The light source unit is not limited to the semiconductor laser element, and may be a xenon flash lamp or the like.

測定セル53は、円筒状(例えば外径12mm、内径10mm、高さ130mm)の側壁53aと円形状の上面53b及び下面53cとからなり、上面53bには廃液を処理するためのドレインと接続された試料液排出口53dが形成され、下面53cには第一マルチポートバルブ20と接続された試料液導入口53eが形成されている。なお、測定セル53は、石英ガラス等で形成されている。
これにより、半導体レーザ素子51から出射されたレーザ光は、側壁53aを透過して測定対象領域(光路)を通過し、対面側の側壁53aを透過後にフォトダイオード52で受光されるようになっている。このとき、調整試料液S3が測定対象領域に存在すれば、レーザ光の一部は調整試料液S3により吸収される。
The measurement cell 53 is composed of a cylindrical (for example, outer diameter 12 mm, inner diameter 10 mm, height 130 mm) side wall 53a and a circular upper surface 53b and lower surface 53c, and the upper surface 53b is connected to a drain for treating waste liquid. A sample liquid discharge port 53d is formed, and a sample liquid introduction port 53e connected to the first multi-port valve 20 is formed on the lower surface 53c. The measurement cell 53 is made of quartz glass or the like.
As a result, the laser light emitted from the semiconductor laser element 51 passes through the side wall 53a, passes through the measurement target region (optical path), passes through the side wall 53a on the opposite side, and is received by the photodiode 52. There is. At this time, if the adjusted sample solution S3 is present in the measurement target region, a part of the laser beam is absorbed by the adjusted sample solution S3.

ここで、上述したオンライン全窒素測定装置101を用いて試料液Sの全窒素濃度を自動的に分析する方法について説明する。コンピュータ160は、所定のタイミングでパルスモータ12cに駆動信号を出力することにより、試料槽2から所定量aの試料液Sをシリンジポンプ12で計量して採取し、再度パルスモータ12cに駆動信号を出力することにより、容器5から所定量bの希釈水をシリンジポンプ12で計量して採取し、シリンジ12a内で試料液Sを希釈する。次に、コンピュータ160は、パルスモータ12cに駆動信号を出力することにより、シリンジ12a内に容器7の所定量cの水酸化ナトリウム溶液と容器6の所定量dのペルオキソ二硫酸カリウム溶液とを添加して調整試料液S1とした後、再度パルスモータ12cに駆動信号を出力することにより、所定量(a+b+c+d)の調整試料液S1をシリンジポンプ12からリアクタ40へ導入する。 Here, a method for automatically analyzing the total nitrogen concentration of the sample liquid S using the above-mentioned online total nitrogen measuring device 101 will be described. By outputting a drive signal to the pulse motor 12c at a predetermined timing, the computer 160 measures and collects a predetermined amount of the sample liquid S from the sample tank 2 with the syringe pump 12, and again outputs the drive signal to the pulse motor 12c. By outputting, a predetermined amount of diluted water b is weighed and collected from the container 5 by the syringe pump 12, and the sample liquid S is diluted in the syringe 12a. Next, the computer 160 adds a predetermined amount c of the sodium hydroxide solution of the container 7 and a predetermined amount d of the potassium peroxodisulfate solution of the container 6 into the syringe 12a by outputting a drive signal to the pulse motor 12c. Then, after the adjustment sample solution S1 is obtained, a predetermined amount (a + b + c + d) of the adjustment sample solution S1 is introduced into the reactor 40 from the syringe pump 12 by outputting a drive signal to the pulse motor 12c again.

リアクタ40では、紫外線ランプ42により約20分間紫外線を調整試料液S1に照射し、窒素化合物を硝酸イオンに酸化分解するとともに、液中のペルオキソ二硫酸カリウムを硫酸カリウムに分解する。そして、全てのペルオキソ二硫酸カリウムを分解後、さらに紫外線を5〜20分間照射することにより、硝酸イオンを亜硝酸イオンへ還元する。これらの反応が終了した後に、コンピュータ160は、パルスモータ12cに駆動信号を出力することにより、所定量(a+b+c+d)の反応試料液S2をシリンジポンプ12で計量して採取し、再度パルスモータ12cに駆動信号を出力することにより、シリンジ12a内で容器8の所定量eの塩酸を添加して所定量(a+b+c+d+e)の調整試料液S3を生成させる。 In the reactor 40, the adjusted sample solution S1 is irradiated with ultraviolet rays by an ultraviolet lamp 42 for about 20 minutes to oxidatively decompose the nitrogen compound into nitrate ions and decompose potassium peroxodisulfate in the solution into potassium sulfate. Then, after decomposing all potassium persulfate, nitrate ions are reduced to nitrite ions by further irradiating with ultraviolet rays for 5 to 20 minutes. After these reactions are completed, the computer 160 outputs a drive signal to the pulse motor 12c to measure and collect a predetermined amount (a + b + c + d) of the reaction sample solution S2 with the syringe pump 12 and again to the pulse motor 12c. By outputting the drive signal, a predetermined amount of hydrochloric acid of the container 8 is added in the syringe 12a to generate a predetermined amount (a + b + c + d + e) of the adjusted sample solution S3.

次に、コンピュータ160は、パルスモータ12cに駆動信号を出力することにより、所定量(a+b+c+d+e)の調整試料液S3をシリンジポンプ12から測定セル53へ導入後、半導体レーザ素子51からレーザ光を出射させて、フォトダイオード52で光強度Iを検出させる。そして、コンピュータ160は、検出された光強度Iに基づいて220nmにおける吸光度を測定することにより、調整試料液S3の全窒素濃度を算出する。 Next, the computer 160 outputs a drive signal to the pulse motor 12c to introduce a predetermined amount (a + b + c + d + e) of the adjustment sample solution S3 from the syringe pump 12 into the measurement cell 53, and then emits laser light from the semiconductor laser element 51. Then, the light intensity I is detected by the photodiode 52. Then, the computer 160 calculates the total nitrogen concentration of the prepared sample solution S3 by measuring the absorbance at 220 nm based on the detected light intensity I.

特開2003−344381号公報Japanese Unexamined Patent Publication No. 2003-344381

上述したようなオンライン全窒素測定装置101では、試料槽2や容器3〜11内の液量が不足していたり、配管等に異常があったりすることで、必要な量の溶液がシリンジポンプ12に採取できないことや、シリンジポンプ12で採取して測定セル53へ送液するまでの過程で調整試料液S3が漏れてしまうことにより、予め決められた所定量(a+b+c+d+e)の調整試料液S3が測定セル53内に送液されないことがあった。
しかし、オンライン全窒素測定装置101では、試料液Sの全窒素濃度を自動的に算出しているため、分析者等が液切れや液漏れ等の異常状態を発見できなかったり、発見が遅れたりすることにより、試料液Sの全窒素濃度が正確に測定できていないことがあった。
In the online total nitrogen measuring device 101 as described above, the required amount of liquid is supplied to the syringe pump 12 due to insufficient liquid volume in the sample tank 2 or containers 3 to 11 or an abnormality in the piping or the like. The adjusted sample solution S3 has a predetermined amount (a + b + c + d + e) due to leakage of the adjusted sample solution S3 in the process of collecting the sample solution with the syringe pump 12 and sending the solution to the measurement cell 53. In some cases, the liquid was not sent into the measurement cell 53.
However, since the online total nitrogen measuring device 101 automatically calculates the total nitrogen concentration of the sample liquid S, the analyst or the like may not be able to detect an abnormal state such as liquid shortage or liquid leakage, or the detection may be delayed. As a result, the total nitrogen concentration of the sample solution S may not be accurately measured.

本出願人は、オンライン全窒素測定装置101の異常状態を発見する検知方法について検討し、所定量(a+b+c+d+e)の調整試料液S3が測定セル53内に送液されたか否かを検知することに着目した。このような採水異常の検知方法としては、調整試料液S3を測定セル53内に送液後、フォトダイオード52で検出された光の透過率の大小を確認することで調整試料液S3の有無を検知することが考えられる。
しかし、従来のオンライン全窒素測定装置101では、試料槽2及び容器3〜11のいずれか1種類の液量が不足しているような場合には、測定セル53内が空(無)になることはない。例えば、所定量dのペルオキソ二硫酸カリウム溶液が添加されず、(a+b+c+e)の調整試料液S3’が測定セル53内に送液されていても「問題なし」と判定される。したがって、測定セル53内が空(無)か否かを判定するような検知方法では不充分である。
The applicant examines a detection method for detecting an abnormal state of the online total nitrogen measuring device 101, and detects whether or not a predetermined amount (a + b + c + d + e) of the adjusted sample liquid S3 has been sent into the measuring cell 53. I paid attention to it. As a method for detecting such a water sampling abnormality, the presence or absence of the adjusted sample solution S3 is obtained by sending the adjusted sample solution S3 into the measurement cell 53 and then checking the magnitude of the light transmittance detected by the photodiode 52. Can be detected.
However, in the conventional online total nitrogen measuring device 101, when the amount of any one of the sample tank 2 and the containers 3 to 11 is insufficient, the inside of the measuring cell 53 becomes empty (none). There is no such thing. For example, even if a predetermined amount of the potassium persulfate solution d is not added and the prepared sample solution S3'of (a + b + c + e) is sent into the measurement cell 53, it is determined that there is no problem. Therefore, a detection method for determining whether or not the inside of the measurement cell 53 is empty (none) is insufficient.

ところで、上述したような測定セル53内に調整試料液S3が送液されると、(1)光路(測定対象領域)に調整試料液S3層の界面が未到達の状態と、(2)光路中に調整試料液S3層の界面が到達した状態と、(3)光路が調整試料液S3層中の状態とに順次変化していく。このとき、半導体レーザ素子51を点灯させながら測定セル53内に調整試料液S3を送液すると、測定セル53内が空の状態から所定量(a+b+c+d+e)の調整試料液S3が収容された状態になるまでの間に得られる光強度変化I(L)は、調整試料液S3の送液量Lに対して特徴的な波形となる。この波形は、図5に示すように、送液量Lに対して、「(1)光強度Iの増減が比較的小さい状態」から始まり、「(2)光強度Iの増減が比較的大きい状態」を経て、最後に再度「(3)光強度Iの増減が比較的小さい状態」となる。 By the way, when the adjusted sample solution S3 is sent into the measurement cell 53 as described above, (1) the interface of the adjusted sample solution S3 layer has not reached the optical path (measurement target region), and (2) the optical path. The state in which the interface of the adjusted sample solution S3 layer has reached the inside and the state in which (3) the optical path is in the adjusted sample solution S3 layer are sequentially changed. At this time, when the adjustment sample liquid S3 is sent into the measurement cell 53 while the semiconductor laser element 51 is lit, the measurement cell 53 is changed from an empty state to a state in which a predetermined amount (a + b + c + d + e) of the adjustment sample liquid S3 is contained. The light intensity change I (L) obtained in the process of becoming the above has a characteristic waveform with respect to the liquid feed amount L of the adjusted sample liquid S3. As shown in FIG. 5, this waveform starts from "(1) a state in which the increase / decrease in light intensity I is relatively small" with respect to the liquid feed amount L, and "(2) the increase / decrease in light intensity I is relatively large". After passing through the "state", finally, the "(3) state in which the increase / decrease in the light intensity I is relatively small" is obtained again.

通常、測定セル53内へ調整試料液S3を送液するときの送液量は、測定の種類によって一意的に決まっているため、測定の種類(例えば、送液量(a+b+c+d+e))が決まっていれば、得られた光強度変化I(L)において「(2)光強度Iの増減が比較的大きい状態」となる送液量ポイントL’も決まる。よって、得られた光強度変化I(L)において「(2)光強度Iの増減が比較的大きい状態」が送液量ポイントL’より大きい場合、或いは、「(1)光強度Iの増減が比較的小さい状態」のまま「(2)光強度Iの増減が比較的大きい状態」とならない場合には、測定セル53内への送液量が不足していることになる。つまり、シリンジポンプ12による計量後から測定セル53へ送液するまでの過程において採水異常があることになる。 Normally, the amount of liquid to be fed when the adjusted sample liquid S3 is fed into the measurement cell 53 is uniquely determined by the type of measurement, so that the type of measurement (for example, the amount of liquid to be fed (a + b + c + d + e)) is determined. Then, in the obtained light intensity change I (L), the liquid feeding amount point L'that becomes "(2) a state in which the increase / decrease in the light intensity I is relatively large" is also determined. Therefore, in the obtained light intensity change I (L), when "(2) a state in which the increase / decrease in light intensity I is relatively large" is larger than the liquid feeding amount point L', or "(1) increase / decrease in light intensity I". If "(2) The increase / decrease in light intensity I is relatively large" does not occur while "is relatively small", the amount of liquid sent into the measurement cell 53 is insufficient. That is, there is a water sampling abnormality in the process from the measurement by the syringe pump 12 to the delivery of the liquid to the measurement cell 53.

そこで、半導体レーザ素子51を点灯させながら測定セル53内に調整試料液S3を送液していき、そのときの光強度Iを監視し、比較的大きな光強度Iの変動が起きたポイントでの送液量Lが基準送液量L’よりも大きいとき、或いは、光強度Iが変動しないときには、採水異常と判定することを見出した。 Therefore, the adjusted sample liquid S3 is sent into the measurement cell 53 while the semiconductor laser element 51 is lit, and the light intensity I at that time is monitored, and at the point where a relatively large fluctuation of the light intensity I occurs. It has been found that when the liquid feed amount L is larger than the reference liquid feed amount L', or when the light intensity I does not fluctuate, it is determined that the water sampling is abnormal.

すなわち、本発明の水質分析計は、下部に試料液導入口が形成され、当該試料液導入口から試料液が導入される試料容器と、前記試料容器に光を照射する光源部と、前記試料容器を透過した光を検出する検出部と、前記試料容器内に所定量の試料液が導入されるときに前記検出部で検出された参照用の送液量に対する光強度変化を記憶するメモリとを備える水質分析計であって、前記試料容器内に試料液が収容されていくときに前記検出部で検出された実測の送液量に対する光強度変化と、前記参照用の光強度変化とを比較して、前記試料容器内に前記所定量の試料液が収容されたか否かを判定する判定部を備えるようにしている。 That is, in the water quality analyzer of the present invention, a sample container in which a sample solution introduction port is formed at the lower part and the sample solution is introduced from the sample solution introduction port, a light source unit that irradiates the sample container with light, and the sample. A detection unit that detects the light transmitted through the container, and a memory that stores a change in light intensity with respect to the reference liquid feed amount detected by the detection unit when a predetermined amount of sample liquid is introduced into the sample container. A water quality analyzer comprising the above, in which a change in light intensity with respect to an actually measured liquid feed amount detected by the detection unit when the sample liquid is contained in the sample container and a change in light intensity for reference are obtained. For comparison, a determination unit for determining whether or not the predetermined amount of the sample solution is contained in the sample container is provided.

ここで、「所定量」とは、分析者等によって予め決められた試料液の吸光度等を測定するための任意の量である。 Here, the "predetermined amount" is an arbitrary amount for measuring the absorbance of the sample solution or the like, which is predetermined by an analyst or the like.

以上のように、本発明の水質分析計によれば、液切れや液漏れによる異常状態を早急に発見することができる。 As described above, according to the water quality analyzer of the present invention, it is possible to quickly detect an abnormal state due to liquid shortage or liquid leakage.

(その他の課題を解決するための手段及び効果)
また、本発明の水質分析計において、前記試料容器は、前記試料液を分析するための測定セルであるか、或いは、前記試料液を反応させるための反応容器であるようにしてもよい。
さらに、本発明の水質分析計は、前記試料液を計量する計量部と、前記試料液導入口と前記計量部とが接続されたバルブと、前記計量部及び前記バルブを制御する制御部とを備えるようにしてもよい。
(Means and effects to solve other problems)
Further, in the water quality analyzer of the present invention, the sample container may be a measurement cell for analyzing the sample solution or a reaction container for reacting the sample solution.
Further, the water quality analyzer of the present invention includes a measuring unit for measuring the sample liquid, a valve connected to the sample liquid introduction port and the measuring unit, and a control unit for controlling the measuring unit and the valve. You may be prepared.

本発明の一例である全窒素測定装置を示す全体構成概略図。The overall configuration schematic diagram which shows the total nitrogen measuring apparatus which is an example of this invention. リアクタの構成の一例を示す断面図。FIG. 5 is a cross-sectional view showing an example of the configuration of the reactor. 測定部の構成の一例を示す断面図。The cross-sectional view which shows an example of the structure of the measuring part. 従来の全窒素測定装置の一例を示す全体構成概略図。The overall configuration schematic diagram which shows an example of the conventional total nitrogen measuring apparatus. 光強度変化の一例を示すグラフ。The graph which shows an example of the light intensity change.

以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It goes without saying that the present invention is not limited to the embodiments described below, and various aspects are included without departing from the spirit of the present invention.

本発明に係る水質分析計の一例として、オンライン全窒素測定装置の概略的な全体構成例を図1に示す。なお、上述したオンライン全窒素測定装置101と同様のものについては、同じ符号を付すことにより説明を省略する。
オンライン全窒素測定装置1は、試料槽2と、シリンジポンプ(計量部)12と、第一マルチポートバルブ20と、第二マルチポートバルブ30と、リアクタ40と、測定部50と、コンピュータ60とを備える。
As an example of the water quality analyzer according to the present invention, FIG. 1 shows a schematic overall configuration example of the online total nitrogen measuring device. The same reference numerals as those of the above-mentioned online total nitrogen measuring apparatus 101 will be described by the same reference numerals.
The online total nitrogen measuring device 1 includes a sample tank 2, a syringe pump (measuring unit) 12, a first multiport valve 20, a second multiport valve 30, a reactor 40, a measuring unit 50, and a computer 60. To be equipped.

コンピュータ60は、CPU(制御部)61とモニタ等の表示装置62とメモリ63とを備える。また、CPU61が処理する機能をブロック化して説明すると、フォトダイオード(検出部)52から光強度Iを取得する取得部61aと、検出された光強度Iに基づいて吸光度を算出する吸光度算出部61bと、光強度変化I(L)に基づいて所定量の調整試料液S3が収容されたか否かを判定する判定部61cと、シリンジポンプ12を制御する計量部制御部61dとを有する。 The computer 60 includes a CPU (control unit) 61, a display device 62 such as a monitor, and a memory 63. Further, to explain the function processed by the CPU 61 in a blocked manner, the acquisition unit 61a that acquires the light intensity I from the photodiode (detection unit) 52 and the absorbance calculation unit 61b that calculates the absorbance based on the detected light intensity I It has a determination unit 61c for determining whether or not a predetermined amount of the adjusted sample solution S3 is contained based on the light intensity change I (L), and a measurement unit control unit 61d for controlling the syringe pump 12.

さらに、メモリ63には、採水異常を判定するために、所定量(a+b+c+d+e)の調整試料液S3送液時に「(2)光強度Iの増減が比較的大きい状態」となる基準送液量L’(例えば900μl)が予め記憶されている。 Further, in order to determine the water sampling abnormality, the memory 63 has a reference liquid feeding amount in which "(2) a state in which the increase / decrease in light intensity I is relatively large" when the adjusted sample liquid S3 is fed in a predetermined amount (a + b + c + d + e). L'(for example, 900 μl) is stored in advance.

判定部61cは、測定セル53内に調整試料液S3が収容されていくときにフォトダイオード52で検出された光強度変化I(L)に基づいて、測定セル53内に所定量(a+b+c+d+e)の調整試料液S3が収容されたか否かを判定する制御を行う。
具体的には、測定セル53内に反応試料液S2が収容されていくときにフォトダイオード52で検出された光強度変化I(L)の曲線の傾斜量を順次調べて、傾斜量が所定値以下になったときをピークの開始点であると判定し、傾斜量が負から正に転じたときをピークの頂点(送液量ポイントL)であると判定し、さらに傾斜量が所定値以下になったときをピークの終了点であると判定する。そして、送液量ポイントLが基準送液量L’より大きい場合には、測定セル53内への送液量が不足していると判定して表示装置62に警告表示を行う。また、ピークが検出されなかった場合にも、測定セル53内への送液量が不足していると判定して表示装置62に警告表示を行う。
The determination unit 61c has a predetermined amount (a + b + c + d + e) in the measurement cell 53 based on the light intensity change I (L) detected by the photodiode 52 when the adjustment sample liquid S3 is housed in the measurement cell 53. Control is performed to determine whether or not the prepared sample liquid S3 is contained.
Specifically, the amount of inclination of the curve of the light intensity change I (L) detected by the photodiode 52 when the reaction sample liquid S2 is accommodated in the measurement cell 53 is sequentially examined, and the amount of inclination is a predetermined value. When it becomes less than or equal to, it is determined to be the start point of the peak, when the inclination amount changes from negative to positive, it is determined to be the peak (liquid feeding amount point L), and further, the inclination amount is equal to or less than a predetermined value. When becomes, it is determined that the end point of the peak is reached. Then, when the liquid feeding amount point L is larger than the reference liquid feeding amount L', it is determined that the liquid feeding amount into the measurement cell 53 is insufficient, and a warning is displayed on the display device 62. Further, even when the peak is not detected, it is determined that the amount of liquid sent into the measurement cell 53 is insufficient, and a warning is displayed on the display device 62.

ここで、上述したオンライン全窒素測定装置1を用いて試料液Sの全窒素濃度を自動的に分析する方法について説明する。コンピュータ60の計量部制御部61dは、所定のタイミングでパルスモータ12cに駆動信号を出力することにより、試料槽2から所定量aの試料液Sをシリンジポンプ12で計量して採取し、再度パルスモータ12cに駆動信号を出力することにより、容器5から所定量bの希釈水をシリンジポンプ12で計量して採取し、シリンジ12a内で試料液Sを希釈する。次に、計量部制御部61dは、パルスモータ12cに駆動信号を出力することにより、シリンジ12a内に容器7の所定量cの水酸化ナトリウム溶液と容器6の所定量dのペルオキソ二硫酸カリウム溶液とを添加して調整試料液S1とした後、再度パルスモータ12cに駆動信号を出力することにより、所定量(a+b+c+d)の調整試料液S1をシリンジポンプ12からリアクタ40へ導入する。 Here, a method for automatically analyzing the total nitrogen concentration of the sample solution S using the online total nitrogen measuring device 1 described above will be described. The measuring unit control unit 61d of the computer 60 outputs a drive signal to the pulse motor 12c at a predetermined timing to measure and collect a predetermined amount of the sample liquid S from the sample tank 2 with the syringe pump 12, and then pulse again. By outputting a drive signal to the motor 12c, a predetermined amount of diluted water b is weighed and collected from the container 5 by the syringe pump 12, and the sample liquid S is diluted in the syringe 12a. Next, the measuring unit control unit 61d outputs a drive signal to the pulse motor 12c, so that a predetermined amount c of the sodium hydroxide solution of the container 7 and a predetermined amount d of the potassium peroxodisulfate solution of the container 6 are contained in the syringe 12a. Is added to prepare the adjusted sample solution S1, and then a drive signal is output to the pulse motor 12c again to introduce a predetermined amount (a + b + c + d) of the adjusted sample solution S1 from the syringe pump 12 into the reactor 40.

リアクタ40では、紫外線ランプ42により約20分間紫外線を調整試料液S1に照射し、窒素化合物を硝酸イオンまで酸化分解するとともに、液中のペルオキソ二硫酸カリウムを硫酸カリウムに分解する。そして、全てのペルオキソ二硫酸カリウムを分解後、さらに紫外線を5〜20分間照射することにより、硝酸イオンを亜硝酸イオンへ還元する。これらの反応が終了した後に、計量部制御部61dは、パルスモータ12cに駆動信号を出力することにより、所定量(a+b+c+d)の反応試料液S2をシリンジポンプ12で計量して採取し、再度パルスモータ12cに駆動信号を出力することにより、シリンジ12a内で容器8の所定量eの塩酸を添加して所定量(a+b+c+d+e)の調整試料液S3を生成させる。 In the reactor 40, ultraviolet rays are irradiated to the adjusted sample solution S1 for about 20 minutes by an ultraviolet lamp 42 to oxidatively decompose nitrogen compounds to nitrate ions and decompose potassium peroxodisulfate in the solution into potassium sulfate. Then, after decomposing all potassium persulfate, nitrate ions are reduced to nitrite ions by further irradiating with ultraviolet rays for 5 to 20 minutes. After these reactions are completed, the measuring unit control unit 61d outputs a drive signal to the pulse motor 12c to measure and collect a predetermined amount (a + b + c + d) of the reaction sample solution S2 with the syringe pump 12, and then pulse again. By outputting a drive signal to the motor 12c, a predetermined amount of hydrochloric acid of the container 8 is added in the syringe 12a to generate a predetermined amount (a + b + c + d + e) of the adjusted sample solution S3.

次に、計量部制御部61dは、パルスモータ12cに駆動信号を出力することにより、所定量(a+b+c+d+e)の調整試料液S3をシリンジポンプ12から測定セル53へ導入する。このとき、取得部61aは、半導体レーザ素子51からレーザ光を出射させて光強度変化I(L)をフォトダイオード52で検出させる。次に、判定部61cは、検出された光強度変化I(L)に基づいて、測定セル53内に所定量(a+b+c+d+e)の調整試料液S3が収容されたか否かを判定する。 Next, the measuring unit control unit 61d introduces a predetermined amount (a + b + c + d + e) of the adjusted sample liquid S3 from the syringe pump 12 into the measuring cell 53 by outputting a drive signal to the pulse motor 12c. At this time, the acquisition unit 61a emits a laser beam from the semiconductor laser element 51 to detect the light intensity change I (L) by the photodiode 52. Next, the determination unit 61c determines whether or not a predetermined amount (a + b + c + d + e) of the adjusted sample solution S3 is contained in the measurement cell 53 based on the detected light intensity change I (L).

そして、所定量(a+b+c+d+e)の調整試料液S3が収容されたと判定したときには、吸光度算出部61bは、検出された光強度Iに基づいて220nmにおける吸光度を測定することにより、試料液Sの全窒素濃度を算出してメモリ63に記憶させる。一方、所定量(a+b+c+d+e)の調整試料液S3が収容されていないと判定したときには、判定部61cは、表示装置62に警告表示を行う。 Then, when it is determined that a predetermined amount (a + b + c + d + e) of the adjusted sample solution S3 is contained, the absorbance calculation unit 61b measures the absorbance at 220 nm based on the detected light intensity I to obtain the total nitrogen content of the sample solution S. The density is calculated and stored in the memory 63. On the other hand, when it is determined that the adjusted sample liquid S3 of a predetermined amount (a + b + c + d + e) is not contained, the determination unit 61c displays a warning on the display device 62.

以上のように、本発明に係る構成を有したオンライン全窒素測定装置1によれば、液切れや液漏れ等の異常状態を早期に発見することができる。 As described above, according to the online total nitrogen measuring device 1 having the configuration according to the present invention, it is possible to detect an abnormal state such as liquid shortage or liquid leakage at an early stage.

<他の実施形態>
<1>上述したオンライン全窒素測定装置1では、測定セル53内に所定量(a+b+c+d+e)の調整試料液S3が収容されたか否かを判定する構成を示したが、これに代えて、リアクタ40に光源部と検出部とを設け、リアクタ40内に所定量(a+b+c+d)の調整試料液S1が収容されたか否かを判定するような構成としてもよい。
<Other embodiments>
<1> The above-mentioned online total nitrogen measuring device 1 shows a configuration for determining whether or not a predetermined amount (a + b + c + d + e) of the adjusted sample liquid S3 is contained in the measuring cell 53. Instead, the reactor 40 is used. A light source unit and a detection unit may be provided in the reactor 40 to determine whether or not a predetermined amount (a + b + c + d) of the adjusted sample liquid S1 is contained in the reactor 40.

<2>上述した実施形態では、本発明をオンライン全窒素測定装置1に適用した場合の構成について説明したが、これに代えて、その他の水質分析計に適用してもよい。 <2> In the above-described embodiment, the configuration when the present invention is applied to the online total nitrogen measuring device 1 has been described, but instead, it may be applied to other water quality analyzers.

本発明は、試料液中の全窒素濃度を測定する全窒素測定装置等の水質分析計に利用することができる。 The present invention can be used in a water quality analyzer such as a total nitrogen measuring device that measures the total nitrogen concentration in a sample solution.

1: オンライン全窒素測定装置(水質分析計)
51: 半導体レーザ素子(光源部)
52: フォトダイオード(検出部)
53: 測定セル(試料容器)
53e: 試料液導入口
61c: 判定部
1: Online total nitrogen measuring device (water quality analyzer)
51: Semiconductor laser element (light source unit)
52: Photodiode (detector)
53: Measurement cell (sample container)
53e: Sample liquid introduction port 61c: Judgment unit

Claims (3)

下部に試料液導入口が形成され、当該試料液導入口から試料液が導入される試料容器と、
前記試料容器に光を照射する光源部と、
前記試料容器を透過した光を検出する検出部と、
前記試料容器内に所定量の試料液が導入されるときに前記検出部で検出された参照用の送液量に対する光強度変化を記憶するメモリとを備える水質分析計であって、
前記試料容器内に試料液が収容されていくときに前記検出部で検出された実測の送液量に対する光強度変化と、前記参照用の光強度変化とを比較して、前記試料容器内に前記所定量の試料液が収容されたか否かを判定する判定部を備えることを特徴とする水質分析計。
A sample container in which a sample solution inlet is formed at the bottom and the sample solution is introduced from the sample solution inlet, and a sample container.
A light source unit that irradiates the sample container with light,
A detection unit that detects the light transmitted through the sample container and
A water quality analyzer including a memory for storing a change in light intensity with respect to a reference liquid feed amount detected by the detection unit when a predetermined amount of sample liquid is introduced into the sample container.
When the sample liquid is contained in the sample container, the change in light intensity with respect to the measured amount of liquid sent detected by the detection unit is compared with the change in light intensity for reference, and the change in light intensity for reference is compared in the sample container. A water quality analyzer comprising a determination unit for determining whether or not a predetermined amount of sample liquid is contained.
前記試料容器は、前記試料液を分析するための測定セルであるか、或いは、前記試料液を反応させるための反応容器であることを特徴とする請求項1に記載の水質分析計。 The water quality analyzer according to claim 1, wherein the sample container is a measurement cell for analyzing the sample solution or a reaction container for reacting the sample solution. 前記試料液を計量する計量部と、
前記試料液導入口と前記計量部とが接続されたバルブと、
前記計量部及び前記バルブを制御する制御部とを備えることを特徴とする請求項1又は請求項2に記載の水質分析計。
A measuring unit that measures the sample liquid and
A valve to which the sample liquid introduction port and the measuring unit are connected,
The water quality analyzer according to claim 1 or 2, further comprising a measuring unit and a control unit that controls the valve.
JP2016167570A 2016-08-30 2016-08-30 Water quality analyzer Active JP6965502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016167570A JP6965502B2 (en) 2016-08-30 2016-08-30 Water quality analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016167570A JP6965502B2 (en) 2016-08-30 2016-08-30 Water quality analyzer

Publications (2)

Publication Number Publication Date
JP2018036084A JP2018036084A (en) 2018-03-08
JP6965502B2 true JP6965502B2 (en) 2021-11-10

Family

ID=61565704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016167570A Active JP6965502B2 (en) 2016-08-30 2016-08-30 Water quality analyzer

Country Status (1)

Country Link
JP (1) JP6965502B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186690A1 (en) * 2018-03-27 2019-10-03 株式会社島津製作所 Multiport valve for water quality analyzer
CN110412659A (en) * 2018-04-27 2019-11-05 株式会社岛津制作所 A kind of judgment method judging whether there is test sample supply
WO2020136944A1 (en) * 2018-12-27 2020-07-02 株式会社島津製作所 Method for detecting presence/absence of liquid suctioned by syringe pump, and device with syringe pump
CN114720650B (en) * 2022-03-28 2023-08-08 天津大学 Urban water supply water barrier detection device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101981U (en) * 1980-12-12 1982-06-23
JPS58103639A (en) * 1981-12-15 1983-06-20 Hitachi Ltd Sampling and metering device for minute amount of sample liquid
US4517302A (en) * 1982-11-15 1985-05-14 Technicon Instruments Corporation Continuous flow metering apparatus
JP2000258224A (en) * 1999-03-05 2000-09-22 Hitachi Koki Co Ltd Liquid quantity detecting mechanism
JP2004184162A (en) * 2002-12-02 2004-07-02 Kurabo Ind Ltd Spectral measuring instrument
JP4342885B2 (en) * 2003-09-18 2009-10-14 東亜ディーケーケー株式会社 Analyzer
JP4418706B2 (en) * 2004-04-27 2010-02-24 アプリシアテクノロジー株式会社 Liquid suction / discharge control method and liquid suction / discharge apparatus using the same
JP2009186365A (en) * 2008-02-07 2009-08-20 Dkk Toa Corp Optical unit, manufacturing method therefor, and water quality analyzer
JP6394263B2 (en) * 2014-10-14 2018-09-26 株式会社島津製作所 Water quality analyzer

Also Published As

Publication number Publication date
JP2018036084A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6965502B2 (en) Water quality analyzer
US11703494B2 (en) Measuring device
US10295458B2 (en) Analytical device for determining a digestion parameter of a liquid sample
US7349760B2 (en) System and method for sensing and controlling the concentration of a chemical agent in a solution
JP6394263B2 (en) Water quality analyzer
JP4758863B2 (en) Mercury analyzer and mercury analysis method
US20150168366A1 (en) Digestion reactor and analytical device for determining a digestion parameter of a liquid sample
CN107533043B (en) Water quality analysis device
JP6665751B2 (en) Water quality analyzer
CN113390808B (en) Water quality analysis device and water quality analysis method
US10627384B1 (en) Water quality analyzer
US20160003738A1 (en) Device and method for measuring the oxygen content in welding processes
US10345321B2 (en) Automatic analyzer and method
US9207225B2 (en) Method for detecting a concentration of chlorate-ions in an aqueous solution, apparatus for detecting a concentration of chlorate-ions and control unit
JP2012058105A (en) Optical analyzer
CN115917294A (en) Water quality analyzer and water quality analyzing method
US9513227B2 (en) Method for quantitative determination of oxidant and apparatus for quantitative determination of oxidant
JP2017223583A (en) Water Quality Analyzer
da Silva Borges et al. An automatic falling drop system based on multicommutation process for photometric chlorine determination in bleach
FR2764983A1 (en) Analysis of a chemical sample by titration and colorimetric analysis
JP4409489B2 (en) Chemical concentration monitor
JPH02152544A (en) Liquid management method
WO2021145302A1 (en) Analysis apparatus, program for analysis apparatus, and analysis method
CN106290343A (en) Total surplus line oxide real-time detection apparatus and detection method
CN111077074A (en) Water quality analyzer and ultraviolet lamp degradation determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210622

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210622

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20210706

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210713

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R151 Written notification of patent or utility model registration

Ref document number: 6965502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151