JP2000258224A - Liquid quantity detecting mechanism - Google Patents

Liquid quantity detecting mechanism

Info

Publication number
JP2000258224A
JP2000258224A JP5788699A JP5788699A JP2000258224A JP 2000258224 A JP2000258224 A JP 2000258224A JP 5788699 A JP5788699 A JP 5788699A JP 5788699 A JP5788699 A JP 5788699A JP 2000258224 A JP2000258224 A JP 2000258224A
Authority
JP
Japan
Prior art keywords
solution
light
amount
optical sensor
float
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5788699A
Other languages
Japanese (ja)
Inventor
Koji Sato
孝二 佐藤
Yoshiaki Sato
佳明 佐藤
Sadato Igarashi
貞人 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP5788699A priority Critical patent/JP2000258224A/en
Publication of JP2000258224A publication Critical patent/JP2000258224A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Level Indicators Using A Float (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid quantity detecting mechanism capable of detecting the quantity of a solution without being affected by foaming and turbidity. SOLUTION: This mechanism for detecting the liquid quantity of a translucent solution is provided with a translucent container 1 to hold a translucent solution, a non-translucent float 4 which floats in the translucent solution on the translucent container 1, and an optical sensor light emitting part 2 and an optical sensor light receiving part 3 on both sides of the translucent container 1 and detects the quantity of the solution by detecting the lower part of the non- translucent float 4 on the basis of the quantity of transmitted light measured by the optical sensor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、臨床検査、生化
学、医学、農学、工学、薬学などすべての分野におい
て、容器に自動的に溶液を供給する装置おいて液量検出
する機構に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mechanism for detecting a liquid amount in an apparatus for automatically supplying a solution to a container in all fields such as clinical examination, biochemistry, medicine, agriculture, engineering, and pharmacy. is there.

【0002】[0002]

【従来の技術】液量検出機構は容器に自動的に溶液を供
給し規定量に達したら供給を停止する装置などに用いら
れている。その機構はかず多く考案されているが、その
中に事前に規定量に達した場合の液面の位置を測定して
おき、その値と光学センサにより実際に測定した液面の
位置を比較する方法がある。液面の検出は空気中、溶液
中、液面における透過光量の違いを利用したものであ
る。
2. Description of the Related Art A liquid amount detecting mechanism is used in a device for automatically supplying a solution to a container and stopping the supply when the solution reaches a specified amount. Although many mechanisms have been devised, the position of the liquid surface when the specified amount is reached is measured in advance, and the value is compared with the position of the liquid surface actually measured by the optical sensor. There is a way. The detection of the liquid level utilizes the difference in the amount of transmitted light in air, in a solution, and at the liquid level.

【0003】図5〜図7に従来技術の構造を、図8に透
過光量と溶液を供給していく時間変化との関係を示す。
容器1の両側に光学センサ発光部2、光学センサ受光部
3があり光学センサ発光部2から発せられた入射光7は
容器1内を透過し光学センサ受光部3に透過光8として
達し、その透過光量に応じた電気信号を出力する。
FIGS. 5 to 7 show the structure of the prior art, and FIG. 8 shows the relationship between the amount of transmitted light and the change over time when the solution is supplied.
An optical sensor light emitting unit 2 and an optical sensor light receiving unit 3 are provided on both sides of the container 1. Incident light 7 emitted from the optical sensor light emitting unit 2 passes through the container 1 and reaches the optical sensor light receiving unit 3 as transmitted light 8, and An electric signal corresponding to the amount of transmitted light is output.

【0004】溶液供給口6より溶液が供給され始める
と、始めの段階では図5に示すように光学センサ発光部
2から発光された入射光7は容器1内の空気中を通り透
過光8として光学センサ受光部3に達する。その後、図
6に示すように、液面9が光学センサの位置に達した場
合では液面9により光が遮られ透過光量は空気中を透過
してきた場合より弱くなる。そして図7のように溶液中
が光学センサの位置に達した場合は透過光量は最大値を
示す。これらの透過光量と溶液を供給していく時間変化
との関係は図8の通りとなる。
When the supply of the solution from the solution supply port 6 is started, the incident light 7 emitted from the optical sensor light emitting section 2 passes through the air in the container 1 as the transmitted light 8 as shown in FIG. The light reaches the optical sensor light receiving unit 3. Thereafter, as shown in FIG. 6, when the liquid level 9 reaches the position of the optical sensor, the light is blocked by the liquid level 9 and the transmitted light amount becomes weaker than when transmitted through the air. Then, as shown in FIG. 7, when the solution reaches the position of the optical sensor, the amount of transmitted light shows the maximum value. FIG. 8 shows the relationship between the amount of transmitted light and the change over time when the solution is supplied.

【0005】この現象に着目して、図8においてしきい
値をAとしA以下の値を示した時、液面9を検出したと
判断することができる。また、しきい値をBにしておき
B以上の値を示した時、液面から溶液中に変わったと判
断することができる。
Focusing on this phenomenon, it is possible to determine that the liquid level 9 has been detected when the threshold value is A and the value is not more than A in FIG. When the threshold value is set to B and a value equal to or more than B is indicated, it can be determined that the liquid level has changed into the solution.

【0006】これらの方法により測定される液面の位置
を規定量の場合の液面の位置に合うように光学センサの
位置を調整することで規定量を検出している。
[0006] The specified amount is detected by adjusting the position of the optical sensor so that the position of the liquid surface measured by these methods matches the position of the liquid surface in the case of the specified amount.

【0007】[0007]

【発明が解決しようとする課題】通常の光透過性溶液の
場合、従来技術で検出が可能である。しかし、ドデシル
硫酸ナトリウム(以下SDS溶液と称す)のように泡立っ
たり、温度変化により濁りが生じたりする溶液の場合そ
の検出が困難である。
In the case of a normal light-transmitting solution, detection can be performed by the conventional technique. However, it is difficult to detect a solution such as sodium dodecyl sulfate (hereinafter referred to as an SDS solution) that foams or becomes turbid due to a change in temperature.

【0008】SDS溶液に対し、図8におけるしきい値
Aにより液面を検出する方法を適用した場合、図9に示
すように液面9上に発生する泡10が光の透過を遮り、
液面9と同等またはそれ以下の光量しか透過できないこ
とがある。この場合図10に示すように、空気中の透過
光量がしきい値Aを下回ってしまい、あたかも液面9が
センサの位置に達したと誤判定をしてしまうことが起
る。
When the method of detecting the liquid surface by the threshold value A in FIG. 8 is applied to the SDS solution, bubbles 10 generated on the liquid surface 9 block light transmission as shown in FIG.
In some cases, only a light amount equal to or less than the liquid level 9 can be transmitted. In this case, as shown in FIG. 10, the amount of transmitted light in the air falls below the threshold value A, and an erroneous determination that the liquid level 9 reaches the position of the sensor occurs.

【0009】これを避ける方法として、図8におけるし
きい値Bを用いる方法をがある。しかし、濁りが発生し
た場合、図11に示すように溶液中の透過光量が減少し
空気中の透過光量以下になることがある。この場合図1
2に示すように、溶液中の透過光量がしきい値B以下に
なり、規定量を検出できず溶液が規定量に達しているに
もかかわらず供給を停止することができず容器から溢れ
出してしまうことがある。
As a method for avoiding this, there is a method using the threshold value B in FIG. However, when turbidity occurs, as shown in FIG. 11, the amount of transmitted light in the solution may decrease to become less than the amount of transmitted light in the air. In this case, FIG.
As shown in FIG. 2, the amount of transmitted light in the solution falls below the threshold value B, and the supply cannot be stopped even though the specified amount cannot be detected and the solution has reached the specified amount. Sometimes.

【0010】[0010]

【課題を解決するための手段】上記課題は、非光透過性
フロートを溶液に浮かべ溶液に浸っている非光透過性フ
ロートの下部を検出することで解決できる。
The above object can be attained by detecting the lower part of the non-light-transmitting float in which the non-light-transmitting float is floated in the solution and immersed in the solution.

【0011】[0011]

【発明の実施の形態】図1〜図3に本発明の方法を実施
するための機構の一例を、図4に透過光量と溶液を供給
していく時間変化との関係を示す。図1に示すように容
器1の両側に光学センサ発光部2、光学センサ受光部3
を有し、容器1の中にはフロート4がある。フロート4
の形状は任意であるが、溶液に浮かんだ際に下部下部が
浸っているように溶液の比重にあわせて材質を選定する
必要がある。光学センサ発光部2と光学センサ受光部3
は容器1内が空の状態でフロート4が光を遮る位置に配
置する。フロート4は容器1内を横方向に移動しないよ
うに仕切板5で上下移動できる程度に固定されている。
仕切板5は下部が解放されており、容器1内全体が均一
な液面になるようになっている。溶液の供給口6は光路
を遮らない位置に設ける。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 3 show an example of a mechanism for carrying out the method of the present invention, and FIG. 4 shows the relationship between the amount of transmitted light and the change over time when a solution is supplied. As shown in FIG. 1, the optical sensor light emitting unit 2 and the optical sensor light receiving unit 3 are provided on both sides of the container 1.
, And there is a float 4 in the container 1. Float 4
Is arbitrary, but it is necessary to select a material in accordance with the specific gravity of the solution so that the lower portion is immersed when floating in the solution. Optical sensor light emitting unit 2 and optical sensor light receiving unit 3
Is disposed at a position where the float 4 blocks light with the container 1 being empty. The float 4 is fixed by a partition plate 5 so as to be able to move up and down so as not to move in the container 1 in the horizontal direction.
The lower part of the partition plate 5 is open, and the entire inside of the container 1 has a uniform liquid level. The solution supply port 6 is provided at a position that does not block the optical path.

【0012】図2に示すようにSDS溶液を供給しだす
と同時に泡立ちが始まる。光学センサ2から発せられた
光はフロート4によって遮られており、泡の有無にかか
わらず光学センサ3に全く達しない。その後、図3に示
すように溶液量が増えるとフロート4が浮き始める。そ
してフロート4の下部が光学センサの位置を上回ると光
が透過しセンサ受光部3に達する。
As shown in FIG. 2, foaming starts simultaneously with the supply of the SDS solution. Light emitted from the optical sensor 2 is blocked by the float 4 and does not reach the optical sensor 3 at all regardless of the presence or absence of bubbles. Thereafter, as shown in FIG. 3, when the amount of the solution increases, the float 4 starts to float. When the lower part of the float 4 exceeds the position of the optical sensor, light is transmitted and reaches the sensor light receiving unit 3.

【0013】これらの透過光量と溶液を供給していく時
間変化との関係は図4の通りとなる。供給始めに泡立ち
があるがフロート4により遮られているため透過光量は
ゼロで変化が無く泡の影響をとり除くことができる。そ
の後フロート4が浮きはじめ、フロート4によって遮ら
れていた光が透過してくる。この変化を検出することで
液面を検出する場合と同様に規定量を検出できる。
FIG. 4 shows the relationship between the amount of transmitted light and the change over time when the solution is supplied. At the beginning of the supply, there is bubbling, but since it is blocked by the float 4, the amount of transmitted light is zero and there is no change, so that the influence of the bubbling can be removed. After that, the float 4 starts to float, and the light blocked by the float 4 is transmitted. By detecting this change, the specified amount can be detected in the same manner as when the liquid level is detected.

【0014】本方法でも溶液中の透過光量を用いて判定
しているので濁りの影響が考えられる。しかし、比較す
る透過光量がフロートによって遮られているため完全に
ゼロであり、しきい値をゼロ以外のどのような値にも設
定できる。つまり、完全に光を遮ってしまうほど濁らな
い限り濁りの影響を取り除くことができる。
Also in this method, since the determination is made using the transmitted light amount in the solution, the influence of turbidity can be considered. However, the transmitted light amount to be compared is completely zero because it is blocked by the float, and the threshold value can be set to any value other than zero. That is, the effect of turbidity can be removed as long as it is not turbid enough to completely block light.

【0015】[0015]

【発明の効果】本発明によれば泡立ちおよび濁りのある
溶液についてもその影響を受けずに溶液量を検出するこ
とができる。
According to the present invention, it is possible to detect the amount of a bubbling and turbid solution without being affected by the solution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するための一実施例で溶液
が空の状態を示す側面図。
FIG. 1 is a side view showing an empty state in an embodiment for carrying out a method of the present invention.

【図2】本発明の方法を実施するための一実施例で溶液
注ぎ始めの状態を示す側面図。
FIG. 2 is a side view showing a state at the beginning of pouring a solution in one embodiment for carrying out the method of the present invention.

【図3】本発明の方法を実施するための一実施例で溶液
が規定量供給された状態を示す側面図。
FIG. 3 is a side view showing a state where a predetermined amount of a solution is supplied in an embodiment for carrying out the method of the present invention.

【図4】本発明の方法において透過光量と供給していく
時間変化の関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the amount of transmitted light and the change with time of supply in the method of the present invention.

【図5】従来の方法で溶液が空の状態を示す側面図。FIG. 5 is a side view showing a state in which a solution is empty by a conventional method.

【図6】従来の方法で溶液注ぎ始めの状態を示す側面
図。
FIG. 6 is a side view showing a state in which a solution is poured by a conventional method.

【図7】従来の方法で溶液が規定量供給された状態を示
す側面図。
FIG. 7 is a side view showing a state in which a prescribed amount of a solution is supplied by a conventional method.

【図8】従来の方法において透過光量と供給していく時
間変化の関係、
FIG. 8 shows the relationship between the amount of transmitted light and the change with supply time in a conventional method,

【図9】従来の方法で泡の部分を検出した場合を示す側
面図。
FIG. 9 is a side view showing a case where a bubble portion is detected by a conventional method.

【図10】従来の方法において透過光量と供給していく
時間変化の関係への泡の影響を示すグラフ。
FIG. 10 is a graph showing the influence of bubbles on the relationship between the amount of transmitted light and the change with time of supply in a conventional method.

【図11】従来の方法で濁りを検出した場合を示す側面
図。
FIG. 11 is a side view showing a case where turbidity is detected by a conventional method.

【図12】従来の方法において透過光量と供給していく
時間変化の関係への濁りの影響を示すグラフ。
FIG. 12 is a graph showing the influence of turbidity on the relationship between the amount of transmitted light and the change with time of supply in a conventional method.

【符号の説明】[Explanation of symbols]

図において1は容器、2は光学センサ発光部、3は光学
センサ受光部、4はフロート、5は仕切板、6は溶液供
給口、7は入射光、8は透過光、9は液面、10は泡で
ある。
In the figure, 1 is a container, 2 is an optical sensor light emitting unit, 3 is an optical sensor light receiving unit, 4 is a float, 5 is a partition plate, 6 is a solution supply port, 7 is incident light, 8 is transmitted light, 9 is liquid level, 10 is a foam.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光透過性溶液を保持する光透過性容器と
該光透過性容器内に該光透過性溶液に浮かぶ非光透過性
フロートと該光透過性容器内を透過するように光学セン
サを該光透過性容器外部に具備し、該光学センサにより
測定した透過光量により光非透過性フロートの下部を検
出することで溶液量を検出することを特徴とした光透過
性溶液の液量検出機構。
1. A light-transmitting container for holding a light-transmitting solution, a non-light-transmitting float floating in the light-transmitting solution in the light-transmitting container, and an optical sensor for transmitting light through the light-transmitting container. Wherein the amount of the solution is detected by detecting the lower part of the light non-transmissive float based on the amount of transmitted light measured by the optical sensor. mechanism.
JP5788699A 1999-03-05 1999-03-05 Liquid quantity detecting mechanism Withdrawn JP2000258224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5788699A JP2000258224A (en) 1999-03-05 1999-03-05 Liquid quantity detecting mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5788699A JP2000258224A (en) 1999-03-05 1999-03-05 Liquid quantity detecting mechanism

Publications (1)

Publication Number Publication Date
JP2000258224A true JP2000258224A (en) 2000-09-22

Family

ID=13068484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5788699A Withdrawn JP2000258224A (en) 1999-03-05 1999-03-05 Liquid quantity detecting mechanism

Country Status (1)

Country Link
JP (1) JP2000258224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036084A (en) * 2016-08-30 2018-03-08 株式会社島津製作所 Water Quality Analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036084A (en) * 2016-08-30 2018-03-08 株式会社島津製作所 Water Quality Analyzer

Similar Documents

Publication Publication Date Title
ES2718206T3 (en) Article support for a sorting device
JP2009204445A (en) Automatic analysis apparatus
KR960024642A (en) Systems and methods for transferring liquid between a container and a device associated with the liquid
JPS63147650A (en) Recording apparatus
ATE42943T1 (en) AUTOMATIC REFILL CONTROL.
JP2000258224A (en) Liquid quantity detecting mechanism
JP2015017901A (en) Water quality measuring device
CN113864146A (en) Liquid supply system
JP2023160683A (en) Continuous liquid separating device and continuous liquid separating method
JP2007218831A (en) Fish monitoring system
JP2002202173A (en) Automatic volume measuring instrument for container and volume measuring method for container using the same
ES2718131A1 (en) Volatile substances diffuser (Machine-translation by Google Translate, not legally binding)
JPH02146282A (en) Idle running preventing device for liquid feeder
US5797057A (en) Method of water replenishment for an automatic developing apparatus and device therefor
JPS56118623A (en) Detecting method for transparent substance
CN220063823U (en) Water quality detection system based on liquid level control
JP4063657B2 (en) Beverage dispenser
KR920007242Y1 (en) Apparatus for mixing solution automatically
JPH11281461A (en) Liquid weighing instrument, liquid weighing method, and substrate treating device
JP2009174869A (en) Dispenser, autoanalyzer, control program of dispenser, and dispensing method
JP2023000743A (en) Suction nozzle and analyzer
JP2004012409A (en) Fluid level detecting apparatus and photograph processing apparatus having the same
JPH02293648A (en) Liquid concentration detector
KR100354764B1 (en) Method of measuring liquid level stored in the container for printer
JPH06105197B2 (en) Oil leak detection method and its detection device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509